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SYMBOLS

Symbol Description Dimension

Bi Body force per unit volume in i-direction (vector) F/L3

C Molar concentration N/L3

Ci Molar concentration of the i th species N/L3

d Molecular diameter L
DAb Binary mass diffusivity for A-B system L2/t
eij Strain rate tensor t−1

Eak Activation energy for the kth reaction Q/N
fi External force per unit mass on species i (vector) F/M
F Force (vector) F
FS Surface force (vector) F
h Enthalpy per unit mass Q/M
ht Total enthalpy per unit mass Q/M
I Identity matrix or vector form of Kronecker delta

δij

–

Ji Mass flux of species i relative to mass-average
velocity (vector)

M/L2t

J∗
i Molar flux of species i relative to molar-average

velocity (vector)
N/L2t

K Boltzmann constant (Q/T)/molecule
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Symbol Description Dimension

l Mean free path L
ṁ Mass flux (vector) M/L2t
mi Mass of the i th species in the mixture M
mt Total mass of a multi component gaseous mixture M
Mwi Molecular weight of i th species M/N
ṅ Molar flux (vector) NL2t
ni Number of moles of i th species in the gaseous

mixture
N

Ni Number of moles of species i —
NA Avogadro’s number, 6.02252 × 1023

molecules/mole
–

q Heat-flux vector (vector) Q/L2t
T ◦ Fixed standard reference temperature, at 298.15 K T
u Arithmetic-mean molecular speed L/t
ui Velocity component in i th-direction L/t
v Mass-average velocity (vector) L/t
V Control volume L3

vi Velocity of i th species with respect to stationary
coordinate axes (vector)

L/t

ν∗ Molar-average velocity (vector) L/t
Vi Mass diffusion velocity of i th species (vector) L/t
V∗

i Molar diffusion velocity of i th species (vector) L/t
Xi Mole fraction of the i th species —
y Space coordinate in y-direction L
Yi Mass fraction of the i th species —
z Space coordination in z -direction L
Z Frequency of molecular collisions of gaseous

species per unit surface area
L−2t−1

Greek Symbols
α Thermal diffusivity L2/t
αi Thermal diffusion coefficient for species i L2/t
l Thermal conductivity or second viscosity Q/tLT or Ft/L2

μ Dynamic viscosity or first viscosity Ft/L2

μ′ Bulk viscosity Ft/L2

μij Reduced mass of molecules of species i and j M
σij, σ̃ Total stress tensor F/L2

τij Viscous stress tensor F/L2

�̇i Molar rate or production of species i N/(tL3)
ω̇i Mass rate of production of species i M/(tL3)
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This chapter first discusses turbulent and multiphase combustion as a major
area of research for understanding and importance of solution of multiple chal-
lenging and interesting problems related to energy, environment, transportation,
and chemical propulsion, among other fields. The second topic provides a sum-
mary of the major conservation equations used by researchers in the combustion
community.

1.1 WHY IS TURBULENT AND MULTIPHASE COMBUSTION
IMPORTANT?

Currently, a very high percentage (∼80%) of energy is generated by combustion
of liquids (such as gasoline and hydrocarbon fuels), solids (such as coal and
wood), and gases (such as natural gas composed of largely methane and other
hydrocarbons like ethane, propane, butanes and pentanes). For example, during
the first decades of the twenty-first century more than 50% of the electricity in
the United States was generated by coal-fired furnaces. This trend is expected to
continue for several decades. Thus, energy generation will continue to rely heavily
on combustion technology. Most practical devices involve turbulent combustion,
which requires understanding of both turbulence and combustion, as well as their
effects on each other. Industrial furnaces, diesel engines, liquid rocket engines,
and devices using solid propellants involve multiphase and turbulent combustion.
Single-phase turbulent reacting flows are complicated enough for modeling and
numerical solutions, some of these flows are still unresolved problems of our
time. The complexity of the problem increases even further with the presence of
multiple phases.

In recent years, there has been a greater move to increase combustion effi-
ciency while keeping the emissions level as low as possible. We live in times in
which energy has become a very critical commodity. Therefore, it is important
that the unresolved problems of combustion should be understood and solved.
Well-trained combustion engineers and scientists are needed to engage in numer-
ous challenging combustion problems. This chapter provides some general back-
ground about the applications of turbulent and multiphase combustion, the general
concept of modeling, and basic conservation equations for gas-phase mixtures
containing multiple species.

1.2 DIFFERENT APPLICATIONS FOR TURBULENT
AND MULTIPHASE COMBUSTION

There are various applications of turbulent and multiphase combustion associated
closely with our daily life. Some of these are:

• Power generation from combustion (one example of two-phase turbulent
combustion used for energy generation from coal-fired burners can be seen
in Figure 1.1)
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Figure 1.1 Schematic of a hybrid power generation system using coal-air combustion
(modified from http://fossil.energy.gov).

• High rates of combustion of energetic materials for various propulsion sys-
tems

• Process industry for production of engineering materials (e.g., ceramics, H2,
nanosized particles)

• Household and industrial heating;
• Active control of combustion processes;
• Safety protections for unwanted combustion;
• Ignition of various condensed-phase combustible materials (like solid pro-

pellants airbags in automobiles) for safety enhancement under emergency
situation

• Pollutant emission control of combustion products (about one-third of carbon
emissions in the United States comes from coal-fired power plants, one-
third from transportation, and the rest from the industrial, commercial, and
residential sources)

Figure 1.2 shows the distribution of total emissions estimates in the United
States by source category for specific pollutants in 2008. The major air pol-
lutants are particulate matter, CO, CO2, SOx, NOx, VOCs (volatile organic
compounds), NH3, mercury, and lead. Electric utilities contribute about 70%
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Figure 1.2 Distribution of national total emissions estimates by source category for
specific pollutants in year 2008 (modified from EPA report).

of national SO2 emissions. Agricultural operations (other processes) contribute
over 80% of national NH3 emissions. Almost 50% of the national VOC emis-
sions originate from solvent use (other processes) and highway vehicles. Highway
vehicles and nonroad mobile sources (e.g., aircrafts, agricultural vehicles, ships,
etc.) together contribute approximately 80% of national CO emissions. Fossil
fuel combustion is the primary source contributing to CO2 emissions. In 2007,
fossil fuel combustion contributed almost 94% of the total CO2 emissions. Major
sources of fossil fuel combustion include electricity generation, transportation
(including personal and heavy-duty vehicles), industrial processes, residential,
and commercial. Electricity generation contributed approximately 42% of CO2

emissions from fossil fuel combustion while transportation contributed approx-
imately 33%. Advance in combustion technology can lead to higher burning
efficiency and less production of harmful compounds.

1.2.1 Applications in High Rates of Combustion of Materials
for Propulsion Systems

Many propulsion systems employ combustion of condensed phase materials to
generate thermal energy. Some of these are:

• Gas turbine engines for aircrafts;
• Liquid fuels and oxidizers for liquid rocket engines (see Figure 1.3);
• Spray of liquid fuels for diesel engines, bipropellant rockets, and ramjets,

and the like
• Prevaporized hydrocarbons for reciprocating engines
• Solid propellants in rocket motors for space and missile propulsion
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Figure 1.3 Combustion and energy conversion in a nozzle of bipropellant liquid rocket
(Modified from O’ Leary and Beck, 1992).

• Solid fuels for hybrid rocket motors, ramjets, scramjets
• Monopropellants for space thrusters
• Solid propellants for gun and artillery propulsion systems

As shown in Figure 1.3, chemical energy is converted into thermal energy by
combustion. The thrust of a propulsion system is proportional to the momentum
of the exhaust jet. The specific impulse (Isp), defined as the thrust per propellant
weight flow rate, is known to be proportional to the square root of the flame
temperature divided by the average molecular weight of the combustion products,
as shown in Equation 1.1.

Isp ∝
√

Tf /Mw (1.1)
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More detailed description of this relationship is given in Chapter 1 of Kuo
Acharya, Applications of Turbulent and Multiphase Combustion (2012).

1.2.2 Applications in Power Generation

Condensed phase and gas-phase material are turned in various power generation
systems. For example:

• Coal particles: Burned in furnaces of power stations to produce steam for
driving turbines in order to generate electricity (see Figure 1.1)

• Liquid fuels: Used as the source of energy for transportation purposes with
automobiles, aircrafts, and ships

• Natural gases: Used for gas turbines and reciprocating engines
• Incineration of waste materials

1.2.3 Applications in Process Industry

In the material processing industry, combustion of different types of fuels has
been used for obtained elevated temperature conditions in the manufacturing
process. For example:

• Production of iron, steel, glass, ceramics, cement, carbon black, and refined
fuels through thermal heating processes

• Direct fabrication of ceramic materials by self-propagating high-temperature
synthesis (SHS) processes

• Combustion synthesis of nanosize powders

1.2.4 Applications in Household and Industrial Heating

For various heating systems, chemical energies of fuels and oxidizers are con-
verted to thermal energy by turbulent and multiphase combustion processes.

• Thermal energy generated by combustion: Used for heating of residences,
factories, offices, hospitals, schools, and various types of buildings; and
heating of International Space Station (ISS) and many special facilities

1.2.5 Applications in Safety Protections for Unwanted Combustion

Knowledge of turbulent and multiphase combustion is also very useful for various
fire and hazard prevention systems, such as:

• Fire prevention for forest fires
• Fire prevention for building fires
• Reduction of industrial explosions
• Reduction of susceptibility for deflagration-to-detonation transitions (DDT)

and shock-to-detonation transition (SDT) leading to catastrophic hazards
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1.2.6 Applications in Ignition of Various Combustible Materials

Many safety protection systems depend upon the reliable ignition of various
combustion materials, for example

• For safety enhancement under emergency situations
• Inflation of airbags during, collisions automobile
• Actuation of ejection pilot seats and other emergency escape systems
• Fire extinguishment by strong-flow gas generators

1.2.7 Applications in Emission Control of Combustion Products

The success of emission control of combustion products depend strongly upon
the knowledge of the turbulent and multiphase combustion with application in
different aspects, such as:

• For reduction of pollutants generated from combustion
• Reduction of formation of NOx, SOx, and CO2

• Reduction of formation of particulates such as soot and coke
• Control of the temperature and chemical compositions of combustion

products

1.2.8 Applications in Active Control of Combustion Processes

To achieve better combustion performance and to reduce combustion instabilities
in various propulsion systems, certain active control systems can be employed:

• To enhance combustion efficiencies of reactors by external energy sources,
such as acoustic energy emission

• To enhance combustion efficiencies of certain systems with injection of
nanosize energetic particles

1.3 OBJECTIVES OF COMBUSTION MODELING

With significant advancements in computational power and numerical schemes in
recent years, simulation of complicated combustion problems could be tractable.
Several major objectives for combustion modeling are listed below

• To simulate certain turbulent combustion processes involving single and/or
multi-phase combustible materials

• To develop predictive capability for combustion systems under various oper-
ating conditions

• To help in interpreting and understanding observed combustion phenomena
• To substitute for difficult or expensive experiments
• To guide the design of combustion experiments
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• To determine the effect of individual parameters in combustion processes
by parametric studies

1.4 COMBUSTION-RELATED CONSTITUENT DISCIPLINES

The science of turbulent and multiphase combustion often involves inticate inter-
coupling and interactions between many constituent disciplines. Background in
the following areas would be very helpful for scientists and engineers to acquire
and to apply to various unresolved combustion problems

• Thermodynamics
• Chemical kinetics
• Fluid mechanics
• Heat and mass transfer
• Turbulence
• Transport phenomena
• Statistical mechanics
• Instrumentation and diagnostic techniques
• Quantum chemistry and physics
• Materials structure and behavior
• Mathematical and statistical theories
• Numerical methods
• Design of combustion test apparatus
• Data analysis and correlation methods
• Safety and hazard analysis

1.5 GENERAL APPROACH FOR SOLVING COMBUSTION PROBLEMS

For solving combustion problems, one can consider the following methods:

• Theoretical and numerical methods
• Experimental methods
• Any combination of the above methods

A theoretical model for a combustion problem consists of a set of govern-
ing equations that must be solved with multiple input parameters and initial and
boundary conditions, as shown in Figure 1.4. As one can observe, there is a
significant level of coupling between the intermediate solution from governing
equations and the input parameters, such as reaction mechanism, turbulence clo-
sure conditions, and diffusion/transport mechanisms. The major output of the
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Figure 1.4 General structure of a theoretical model.

model consists of flame structure, speed, surface area, burning rate, flow field
structure, and the like.

A combustion problem can be solved by using different numerical approaches.
Currently there are three major categories of such approaches: Reynolds average
Navies-Stokes (RANS) simulation, large-eddy simulation (LES), and direct
numerical simulation (DNS). A discussion of these methods is provided in
Chapter 4. The effect of these different numerical approaches on the final
solution can be seen in Figure 1.5, which shows the predicted results for a
diffusion flame. Currently RANS is most commonly employed in industry,
but its range of validity is limited. DNS is the most detailed, but it is too

(a) (b) (c)

Figure 1.5 Predicted results for a diffusion flame by using (a) DNS, (b) LES, and
(c) RANS (from Givi, 2009; http://cfd.engr.pitt.edu/).
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computationally demanding for most realistic engineering problems. LES is a
compromise between the two and provides excellent reliability and applicability.

1.6 GOVERNING EQUATIONS FOR COMBUSTION MODELS

1.6.1 Conservation Equations

The five groups of conservation equations consist of:

1. Conservation of mass (continuity equation)
2. Conservation of molecular species (or conservation of atomic species)
3. Conservation of momentum (for each independent spatial direction)
4. Conservation of energy
5. Conservation of angular momentum

These equations are used together with the transport equations and the
equation of state to solve for flow property distributions, including temperature,
density, pressure, velocity, and concentrations of chemical species. Note that the
conservation equation of angular momentum is not often used unless the
problems involve external torque with significant amounts of swirling or with
polar fluids flowing in magnetic fields.

1.6.2 Transport Equations

Transport equations are usually required for turbulent combustion problems. They
include:

1. Transport of turbulent kinetic energy
2. Transport of turbulence dissipation rate (or turbulent kinetic energy dissi-

pation rate)
3. Transport of turbulent Reynolds stresses
4. Transport of probability density function
5. Transport of moments such as

˜u′′Y ′′
i , Ỹ ′′2

i , T̃ ′′2, u′Y ′
i , Y ′2

i , T ′2, etc.

1.6.3 Common Assumptions Made in Combustion Models

Certain commonly used assumptions are listed below. Renders must recognize
that some of these assumptions can be relaxed nowadays due to the advancements
in numerical predictive schemes and/or the availability of thermal and transport
property data.

• Reacting fluid can be treated as a continuum.
• Infinitely fast chemistry (chemical equilibrium) can be applied for high-

temperature combustion problems.
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• Simple, one-step, forward irreversible global reaction can sometimes be
applied for less comprehensive models.

• Ideal gas law can be used for low pressure with moderately high temperature
reacting flow problems

• Lewis, Schmidt, and Prandtl numbers may be assumed equal to 1, under
certain combustion conditions.

• Equal mass diffusivities of all species was used by many researchers when
there were no diffusivity data available.

• Fick’s law of species mass diffusion can be assumed to be valid in many
circumstances.

• Constant specific heats of the gas-phase species had been assumed when no
thermal data were available.

• Reacting solid surfaces are sometimes assumed to be energetically homo-
geneous.

• Uniform pressure can be assumed for the region having low-speed combus-
tion situations.

• Dufour and Soret effects are often assumed to be negligible
• Bulk viscosity is often assumed to be negligibly small.
• Under certain conditions, negligible combustion-generated turbulence can

be assumed.

These assumptions must be examined for validity before they are adopted in
modeling work.

1.6.4 Equation of State

The simplest equation of state is that for an ideal gas. The ideal gas law,
which applies to both pure components and mixtures, has been established from
empirical observation and is accurate for gases at low density or up to tens of
atmospheric pressure for most compounds. For nondissociating molecules, this
relationship holds for low to moderate pressures.

pV = nRuT = m
Ru

Mw
T = mRT (1.2)

where Ru is the universal gas constant [= 8.3144 J/(mol K)]
Other Forms of Ideal Gas Law

ρ = m

V
= p

RT
= pMw

RuT
= p

RuT

N∑
i=1

Yi

Mwi

(1.3)

c = n

V
= p

RuT
= p

RT Mw
(1.4)
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In terms of specific volume v, the ideal gas law can be written as:

pv = RT where v = V

m
(1.5)

1.6.4.1 High-Pressure Correction

Van der Waals Equation of State The van der Waals equation of state is one
of the best-known generalized equations of state. It is essentially a modified
version of the ideal gas law, expressed by Equation 1.5, except that it accounts
for the intermolecular forces that exist between molecules (represented by the
term a/υ2) and also corrects for the covolume, b, occupied by the molecules
themselves. The van der Waals equation of state is:

(
p + a

v2

)
(v − b) = RT (1.6)

where a and b are evaluated from the general behavior of gases. These constants
are related to the critical temperatures and pressures of pure substances by

a = 27

64

R2T 2
c

pc

and b = RTc

8pc

(1.7)

If a is equal to 0, then the van der Waals equation of state is called the
Noble-Abel equation of state.

p = RT

(v − b)
(1.8)

Redlich-Kwong Equation of State The Redlich-Kwong equation of state (and
many of its variants) is representative of the commonly used empirical cubic
equations of state. It is considerably more accurate than the van der Waals
equation and has been shown to be very successful not only for pure substances
but also for mixture calculations and phase equilibrium correlations. The original
Redlich-Kwong equation is given as

p = RuT

v − b
− a

v (v + b) T
1/2

(1.9)

where

a = 0.42748R2
uT

2.5
c

pc

and b = 0.08664RuTc

pc

(1.10)

The values of critical pressure (pc) and critical temperature (Tc) for various
hydrocarbon fuels are listed in Kuo (2005), Appendix C.

Soave-Redlich-Kwong and Peng-Robinson Equations of State The Soave’s mod-
ified RK equation or (SRK) and the Peng-Robinson equations of state are both
“cubic” equations of state developed to improve the Redlich-Kwong form. Both
approaches have used the same method to set the parameters a and b. That is,
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TABLE 1.1. Summary of Four Common “Cubic” Equations of State and their
Constants

Equation u w b a

Van der Waals 0 0 RuTc

8Pc

27

64

R2
uT

2
c

Pc

Redlich-Kwong 1 0 0.08664RuTc

Pc

0.42748R2
uT

2.5
c

PcT 0.5

Soave or Soave-
Redlich-Kwong
(SRK)

1 0 0.08664RuTc

Pc

0.42748R2
uT

2
c

Pc

[
1 + f (ω)

(
1 − T 0.5

r

)]2

where f (ω) = 0.48 + 1.574ω − 0.176ω2

Peng-Robinson 2 –1 0.07780RuTc

Pc

0.42748R2
uT

2
c

Pc

[
1 + f (ω)

(
1 − T 0.5

r

)]2

f (ω) = 0.37464 + 1.5423ω

−0.26992ω2

Note: Values of ω for various substances can be found in Appendix A of R.C. Reid, J. M. Prausnitz
and B.E. Poling, The Properties of Gases and Liquids , 4th ed., McGraw Hill, 1987.

both the first and second partial derivatives of pressure with respect to specific
volume are set to zero, as was done previously for the Redlich-Kwong equation
of state. For brevity, the cubic form of the equations and their coefficients are
provided in Table 1.1 for common cubic equations of state.

The last four equations of state discussed above can be classified as cubic
equations of state; that is, if expanded, the equations would contain volume
terms raised to the first, second, or third power. These equations (containing two
parameters a and b) can be expressed by the following equation:

p = RuT

v − b
− a

v2 + ubv + wb2 (1.11)

More detailed discussion of the equation of state and the mixing rules for
multi-component mixtures are given in Appendix A of Kuo (2005).

1.7 DEFINITIONS OF CONCENTRATIONS

There are four ways to express concentration of various species in a multicom-
ponent gas mixture:

1. Mass concentration ρi is the mass of the i th species per unit volume of
mixture or solution;

2. Molar concentration Ci ≡ ρi/Mwi is the number of moles of the i th species
per unit volume.

3. Mass fraction Yi ≡ ρi/ρ = mi/mt is the mass of the i th species divided by
the total mass of the mixture.
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4. Mole fraction Xi ≡ Ci/C is the molar concentration of the i th species
divided by the total molar concentration of the gaseous mixture or liquid
solution.

Mole Numbers: Gaseous molecules and atoms are conveniently counted in
terms of amount of substances or mole numbers. One mole (1 mol) of compound
corresponds to 6.02252 × 1023 molecules (or atoms). Avogadro’s number (NA)
is therefore 6.02252 × 1023 molecules/mol.

Mole Fractions:

Xi = ni

N∑
i=1

ni

= ni

n
(1.12)

Mass Fractions:
Yi = mi

N∑
i=1

mi

= mi

m
(1.13)

Average Molecular Weight:
The mole fraction Xi and mass fraction Yi are related by:Xi = Yi

(
Mw/Mwi

)
,

where Mw is the average molecular weight of the multicomponent gas mixture
in the control volume. It can be evaluated by:

Mw =
N∑

i=1

XiMwi = 1

/
N∑

i=1

(Yi/Mwi ) (1.14)

The relationship’s between Yi and Xi are given below.

Yi = Mwini

N∑
j=1

Mwj nj

= MwiXi

N∑
j=1

MwjXj

= MwiXi

Mw
(1.15)

Xi = Yi

Mwi

Mw = Yi

Mwi

/
N∑

j=1

Yj

Mwj

(1.16)

Fuel-Oxidant Ratio, F/O:

F
/
O ≡ F

O
= mass of fuel

mass of oxidant
(1.17)

Equivalence Ratio:

φ = (F/O)

(F/O)st

⎧
⎨
⎩

0 < φ < 1 fuel-lean
φ = 1 stoichiometric condition

1 < φ < ∞ fuel-rich
(1.18)
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TABLE 1.2. Definitions of Mass Fractions, Mole Fractions, Molar Concentrations,
and Useful Relations

Quantity Physical Definition Mathematical Expression

Mass fraction, Yi Mass of i th species/Total Mass Yi = mi/mt

Mole fraction, Xi Moles of i th species/Total
number of moles

Xi ≡ ni/ni = Yi

(
Mw/Mwi

)

Molar concentration, Ci Moles of i th species/Total
volume

Ci ≡ ni/Vt = ρ (Yi/MWi )

= ρ
(
Xi/Mw

)

The next sections provide readers with basic definitions of many important
parameters utilized in the conservation equations as well as various forms of
these equations in different coordinate systems. The detailed derivation of these
conservation equations is given in Kuo (2005), Chap. 3. The physical meaning of
various terms in the conservation equations are also described in these sections.

1.8 DEFINITIONS OF ENERGY AND ENTHALPY FORMS

Several definitions of energy are useful in the conservation equations. It is very
important to have a clear understanding of the physical meaning and mathematical
expression of each of these energy forms as well as their relationships with
each other. Sensible internal energy of i th species (es,i) can be determined with
temperature measurements; therefore, it is called sensible. When the heat of
formation of the i th species is added to the sensible internal energy, their sum is
represented by ei as shown in Table 1.3. The total internal energy of the i th species
(et,i) includes sensible, kinetic, and chemical energies. The total nonchemical
energy (etnc,i) includes sensible and kinetic energies only, as shown in Table 1.3.
The same definitions are used for enthalpy terms.

TABLE 1.3. Definitions of Internal Energy and Enthalpy Forms of the i th Species

Quantity Internal Energy Enthalpy

Sensible

es,i =
T∫

Tref

Cv,idT + es,i

(
Tref
)

︸ ︷︷ ︸
=−RuTref/Mwi

hs,i =
T∫

Tref

Cp,idT + hs,i

(
Tref
)

︸ ︷︷ ︸
=0

Sensible +
chemical ei = es,i + �h0

f,i =
T∫

Tref

Cv,idT + �eo
f,i hi = hs,i + �h0

f,i

Total
et,i = ei + ujuj

2
ht,i = hi + ujuj

2
Total non-

chemical
etnc,i = es,i + ujuj

2
htnc,i = hs,i + ujuj

2
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The enthalpy and internal energies are related by:

es,i = hs,i − pi/ρi (1.19)

ei = hi − pi/ρi (1.20)

hi = hs,i + �h0
f,i =

T∫

Tref

Cp,idT + hs,i

(
Tref
)

︸ ︷︷ ︸
=0

+�h0
f,i (1.21)

The sensible internal energy is defined to satisfy hs,i = es,i + pi/ρi . The sen-
sible internal energy for the i th species is defined as:

es,i =
∫ T

Tref

Cv,idT + es,i

(
Tref

)
(1.22)

Since at reference temperature of 298.15 K, the sensible enthalpy is defined
to be zero, that is, hs,i

(
Tref
) = 0, we can conclude from Equation 1.19 that

es,i

(
Tref
) = −pi/ρi = −RuTref/Mwi . Thus,

ei = es,i + �eo
f,i = hi − pi

ρi

= hs,i + �ho
f,i − pi

ρi

= es,i + �ho
f,i (1.23)

Therefore,
�eo

f,i = �ho
f,i (1.24)

The mass-based enthalpy of formation of the k th species (�ho
f,i) is related to

the molar enthalpy of formation (�h
o,m
f,i ) by Equation 1.25.

�ho
f,i = �h

o,m
f,i /Mwi (1.25)

The negative value of the enthalpy of formation indicates that when 1 mole of
i th species is formed from its elements at the standard state of Tref = 298.15 K and
p = 1 bar, there is exothermic heat release. The standard state of an element is the
stable form of that element at room temperature and 1 bar pressure. For example,
H2(g), O2(g), N2(g), Hg(l), C(s, graphite) are called elements in thermochemical terms.
Heats of formation of various compounds are tabulated in various sources. For
example, see Kuo (2005), Chap. 1.

The mass-based constant-pressure heat capacities (Cp,i) of the i th species is
related to the molar heat capacities (Cm

p,i) by:

Cp,i = Cm
p,i/Mwi (1.26)

For a perfect diatomic gas:

Cm
p,i = 3.5Ru and Cp,i = 3.5Ru/Mwi (1.27)

In many combustion problems, the change of Cp,i with T is quite significant
in chemically reacting flows. Cp,i values usually are tabulated as polynomial
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functions of temperature (see JANAF tables compiled by Stull and Prophet,
1971). Usually the Cp increases with temperature due to an increase in the
stored internal energies of different modes, including vibrational, rotational, and
translational modes at higher temperatures. Near room temperature, the molar
heat capacity of diatomic gases such as N2 and H2 are very close to 3.5Ru;
however, their heat capacities increase rapidly at high temperatures.

The mass-based and molar-based constant-volume specific heats are related to
the constant-pressure specific heats by:

Cv,i = Cp,i − Ru/Mwi or Cm
v,i = Cm

v,i − Ru (1.28)

The constant-pressure heat capacity of the mixture Cp is defined by:

Cp =
N∑

i=1

Cp,iYi =
N∑

i=1

Cm
p,i

Yi

Mwi

(1.29)

The constant-volume heat capacity of the mixture Cv is defined by:

Cv =
N∑

i=1

YiCv,i =
N∑

i=1

Yi

Cm
v,i

Mwi

(1.30)

The specific enthalpy of the mixture is defined by:

h =
N∑

i=1

hiYi =
N∑

i=1

Yi

(∫ T

Tref

Cp,idT + �ho
f,i

)
=
∫ T

Tref

CpdT +
N∑

i=1

Yi�ho
f,i

(1.31)
The specific internal energy of the mixture e = h − p/ρ can be written as:

e =
N∑

i=1

Yi

⎛
⎜⎜⎜⎜⎝

∫ T

Tref

Cp,idT

︸ ︷︷ ︸
hs,i

− RuT/MWi︸ ︷︷ ︸
pi/ρi

+�ho
f,i

⎞
⎟⎟⎟⎟⎠

=
N∑

i=1

Yiei =
N∑

i=1

Yi

⎛
⎜⎜⎜⎜⎝

∫ T

Tref

Cv,idT − RuTref/MWi

︸ ︷︷ ︸
es,i

+�ho
f,i

⎞
⎟⎟⎟⎟⎠

(1.32)

=
∫ T

Tref

CvdT − RuTref/Mw

︸ ︷︷ ︸
es

+
N∑

i=1

Yi�ho
f,i

Table 1.4 summarizes the definitions of different from of energy and enthalpy
of the mixture containing multi-component chemical species.
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TABLE 1.4. Definitions of Different Forms of Energy and Enthalpy

Quantity Energy Enthalpy

Sensible

es =
T∫

Tref

CvdT + es

(
Tref
)

︸ ︷︷ ︸
=−RuTref/Mw

hs =
T∫

Tref

CpdT + hs

(
Tref
)

︸ ︷︷ ︸
=0

Sensible +
chemical e = es +

N∑
i=1

Yi�ho
f,i h = hs +

N∑
i=1

Yi�ho
f,i

Total
et = e + ujuj

2
; j = 1, 2, 3 ht = h + ujuj

2
; j = 1, 2, 3

Total
nonchemical

etnc = es + ujuj

2
; j = 1, 2, 3 htnc = hs + ujuj

2
; j = 1, 2, 3

1.9 VELOCITIES OF CHEMICAL SPECIES

In a multicomponent system, various chemical species move at different average
velocities. For a mixture of N species with respect to the stationary coordinate
axis, the local mass-average velocity v can be defined as:

v =

N∑
i=1

ρivi

N∑
i=1

ρi

=

N∑
i=1

ρivi

ρ
=

N∑
i=1

Yivi (1.33)

The local molar-average velocity v∗ can be defined as

v∗ =

N∑
i=1

Civi

N∑
i=1

Ci

=

N∑
i=1

Civi

C
=

N∑
i=1

Xivi (1.34)

The molar-averaged velocity v* differs from the mass-averaged velocity v in
both magnitude and direction. Often we are interested in velocity of a given
species with respect to the bulk mass-averaged or molar-averaged velocity rather
than with respect to stationary coordinates. Therefore, two diffusion velocities
are introduced.

• Mass diffusion velocity of the i th species is defined as:

Vi ≡ vi − v (1.35)
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Vi

vi

Vi
*

v*

v

Figure 1.6 Vector description of various local velocities in a multispecies system.

TABLE 1.5. Definitions of diffusion velocities

Quantity Physical Definition Mathematical Expression

Mass diffusion
velocity of i th

species

Vi ≡ vi − v, where v is
local mass-average
velocity v =

N∑
i=1

ρivi

N∑
i=1

ρi

=

N∑
i=1

ρivi

ρ
=

N∑
i=1

Yivi

Molar diffusion
velocity of i th

species

V∗
i ≡ vi − v∗, where v∗
is local molar-average
velocity v∗ =

N∑
i=1

Civi

N∑
i=1

Ci

=

N∑
i=1

Civi

C
=

N∑
i=1

Xivi

• Molar diffusion velocity of the i th species is defined as:

V∗
i ≡ vi − v∗ (1.36)

These diffusion velocities indicate average motion of component i relative to
the local motion of the mixture in the control volume. These velocity components
are shower in Fig. 1.6 and also summarized in Table 1.5.

1.9.1 Definitions of Absolute and Relative Mass and Molar Fluxes

Absolute mass or molar flux of species i is a vector quantity denoting the mass
or number of moles of species i that passes through a unit area per unit time.
They are defined as:

ṁi ≡ ρivi (mass flux) (1.37)

ṅi ≡ Civi (molar flux) (1.38)
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Relative mass and molar fluxes are defined as:

Ji ≡ ρi (vi − v) = ρiVi (1.39)

J∗
i ≡ Ci

(
vi − v∗) = CiV∗

i (1.40)

In a multicomponent system, the relative molar flux J∗
i and absolute molar

flux ṅi are related to each other. From the definitions of v∗ and J∗
i

J∗
i ≡ Ci

(
vi − v∗) = Civi − Ci

C

N∑
j=1

Cj vj (1.41)

From the definitions of ṅi and Xi

J∗
i = ṅi − Xi

N∑
j=1

ṅj (1.42)

Summation of Equation 1.42 from i = 1 to i = N gives

N∑
i=1

J∗
i = 0 (1.43)

Fick’s Law of Diffusion In a binary system with two chemical species, species
A always diffuses in the direction from high concentration of A to low concen-
tration of A, and species B always diffuses from high concentration of B to low
concentration of B. The binary mass diffusivity can be expressed by DBA or DAB

with dimensions of (L2/t), usually given in (m2/s). Fick’s first law of diffusion
in terms of molar diffusion flux J∗

A for the binary system is:

J∗
A = −C DAB ∇XA (1.44)

Equation 1.44 states that species A diffuses in the direction of decreasing mole
fraction of A. This is similar to heat transfer by conduction in the direction of
decreasing temperature. Molar flux relative to stationary coordinates can now be
given as the sum of two molar fluxes

ṅA = CAv∗ − C DAB ∇XA (1.45)

The first term represents the molar flux of A from the bulk motion of the fluid,
while the second term with the minus sign represents the relative molar flux of A
resulting from the diffusion of species A. In terms of mass flux relative to station-
ary coordinates, Fick’s law also can be written as the sum of two mass fluxes:

ṁA = ρAv − ρDAB∇YA (1.46)

where JA = −ρDAB∇YA
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Note that the mathematical form of Fick’s law of mass transport for a constant
density situation in the transverse direction (y-direction) of a binary system is
similar to Newton’s law of momentum transport and Fourier’s law of energy
transport in the transverse direction.

qy = −α
∂

∂y

(
ρCpT

) (
Fourier’s law for constant ρCp

)
(1.47)

τyx = −v
∂

∂y
(ρvx) (Newton’s law for constant ρ) (1.48)

JAy = −DAB
∂

∂y

(
ρA

)
(Fick’s law for constant ρ) (1.49)

Mass diffusivity DAB for binary mixtures of nonpolar gases (without any
dipole moments) is predictable within about 5% by kinetic theory. For a nonpolar
gas containing two molecular species A and A* with the same mass mA and the
same size and shape, with constant temperature T and molar concentration C,
the random motion molecular velocity relative to fluid velocity v has an average
magnitude:

u =
√

8 kBT

πmA

(1.50)

where
kB = Boltzmann constant = Ru/NA

with the Avogadro’s number, NA = 6.02252 × 1023 molecules/mol, and universal
gas constant, Ru = 8.3144 J/(mol · K). A schematic representation of the bulk
and random velocities is shown in Fig. 1.7.

The frequency of molecular collisions per unit area (Z) on a stationary surface
exposed to the gas is

Z = 1

4
ñu (1.51)

where ñ represents molecules per unit volume, which is constant since the molar
concentration C is constant and ñ = C × NA. The mean free path l from kinetic
theory is

l = 1√
2πd2

Añ
(1.52)

v

u 

Figure 1.7 Schematic representation of bulk and random velocities.
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where dA is the diameter of the molecule A. The new molar flux equation cor-
responds to Fick’s law of diffusion in the y-direction, with DAA∗ approximately
given by

DAA∗ = 1

3
ul (1.53)

Substituting for u and l into Equation 1.53, we have

DAA∗ = 1

3

√
8 kBT

πmA

1√
2πd2

Añ
= 2

3

√
k 3
B

π3mA

T 3/2

d2
A

1

ñkBT
(1.54)

Further substitution using the perfect gas law p = CRuT = ñkBT allows cal-
culation of an approximate value for DAA∗ from

DAA∗ = 2

3

√
k 3
B

π3mA

T 3/2

pd2
A

∝ T 3/2

p
(1.55)

DAA∗ represents the mass diffusivity of a mixture of two species of rigid
spheres of identical mass and diameter. Calculation of DAB for rigid spheres of
unequal mass and diameter results in

DAB = 2

3

(
k 3
B

π3

)1/2 (
1

2mA

+ 1

2mB

)1/2
T 3/2

p

(
dA + dB

2

)2 (1.56)

1.10 DIMENSIONLESS NUMBERS

Mass diffusivity (D), momentum diffusivity (ν), and thermal diffusivity (α) all
have the same dimensions. Schmidt number, Prandtl number, and Lewis number
can then be defined as the ratios between these quantities (see Table 1.6).

Sc ≡ ν/D (1.57)

Pr ≡ ν/α (1.58)

Le ≡ α/D (1.59)

1.11 DERIVATION OF SPECIES MASS CONSERVATION EQUATION
AND CONTINUITY EQUATION FOR MULTICOMPONENT MIXTURES

We start with a mass balance over an infinitesimal differential fluid element in
a binary mixture to derive the mass conservation equation of each species in
a multicomponent mixture. We then apply the law of conservation of mass of
species A to a volume element �x�y�z fixed in space through which a binary
mixture of A and B is flowing (see Fig. 1.8).
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TABLE 1.6. Definitions of Three Important Dimensional Numbers

Quantity Physical Meaning Mathematical Definition

Schmidt number Ratio of momentum transport to mass
transport

Sc ≡ ν/D

Prandtl number Ratio of momentum transport to
thermal transport

Pr ≡ ν/α

Lewis number Ratio of thermal transport to mass
transport

Le ≡ α/D

y

x

z

Δz

Δyx
mΑx

Δx

•

x+Δx
mΑx
•

Figure 1.8 Fixed infinitesimal control volume �x�y�z through which a fluid is
flowing.

The rate of accumulation of mass of species A is:

∂ρ
A

∂t
�x�y�z

The rate of mass of species A flowing into the control volume due to the
x -direction mass flux at the x station is:

ṁAx|x �y�z

The rate of mass of species A flowing out of the control volume due to the
x -direction mass flux at the x + �x station is:

ṁAx|x+�x �y�z = ṁAx|x �y�z + ∂ṁAx

�x
�x�y�z

Within this infinitesimal control volume, species A can be produced by chem-
ical reactions at a net rate of ω̇A (kg m−3s−1). The net rate of production of
species A by chemical reactions is:

ω̇A�x�y�z
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Adding the input and output terms in the y and z directions and dividing the
entire mass balance by �x�y�z, it yields:

∂ρ
A

∂t
+
(

∂ṁAx

∂x
+ ∂ṁAy

∂y
+ ∂ṁAz

∂z

)
= ω̇A (1.60)

which is the mass conservation equation of species A in a binary mixture.
Equation 1.60 can be rewritten in a vector form as:

∂ρ
A

∂t
+ (∇ · ṁA

) = ω̇A (1.61)

where ṁA = (
ṁAx, ṁAy, ṁAz

)
is the mass flux vector with ṁAx, ṁAy, ṁAz compo-

nents in rectangular coordinates.
Similarly, the mass conservation equation of species B is

∂ρB

∂t
+ (∇ · ṁB

) = ω̇B (1.62)

When the equations of continuity for components A and B are added together,
the result is

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.63)

which is the equation of continuity for the mixture. This equation makes use of
the relation ṁA + ṁB = ρv and the law of conservation of mass in the form
ω̇A + ω̇B = 0, since the combustion process does not produce or destroy mass.
The combustion process converts one group of species (reactants) into another
group of species (products).

Substituting the mass flux term (ṁA) in Equation 1.61 by using Fick’s law
shown in Eqaution 1.46, we have:

∂ρ
A

∂t
+ ∇ · ρ

A
v = ∇ · ρDAB∇YA + ω̇A (1.64)

Using the relationships that ρi = Yiρ and vi = v + Vi for a multicomponent
system, Equation 1.61 can be generalized into this form:

∂ (ρYi)

∂t
+ ∇ · [ρYi (v + Vi )] = ω̇i (1.65)

The divergence form in Equation 1.65 can be reduced to the Euler form by
first expending parts of the terms on the left-hand side

ρ
∂Yi

∂t
+ Yi

∂ρ

∂t
+ Yi∇ · (ρv) + ρv · ∇Yi + ∇ · (ρYiVi ) = ω̇i (1.66)

Then, using the overall continuity equation, the Euler form is obtained

ρ
∂Yi

∂t
+ ρv · ∇Yi + ∇ · (ρYiVi ) = ω̇i i = 1, 2, . . . , N (1.67)
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In a general multicomponent system, there are N equations of the Euler form.
All values of Yi are considered as unknown in the numerical solution. It is not
necessary to solve all N partial differential equations for Yi , since

∑N

i=1
Yi = 1 (1.68)

This allows one of the N species conservation equations to be replaced by the
above algebraic Equation 1.68.

Usually N − 1 independent equations for Yi are solved with other conservation
equations for the chemically reacting mixture.

Using CA for molar concentration and �̇A for the molar rate of production
per unit volume, the continuity (or mass conservation) equation for species A
can be written as:

∂CA

∂t
+ ∇ · ṅA = �̇A (1.69)

Substituting the molar flux equation yields

∂CA

∂t
+ ∇ · CAv∗ = ∇ · CDAB∇XA + �̇A (1.70)

In a generalized form, the species conservation equation for the i th species in
terms of molar concentration can be written as:

∂Ci

∂t
+ ∇ · ṅi = �̇i (1.71)

Substituting the molar flux equation yields

∂Ci

∂t
+ ∇ · Civ∗ = ∇ · CDim∇Xi + �̇i (1.72)

In the Equation 1.72, Dim is the mass diffusivity of the i th species with respect
to the rest of the mixture.

A detailed treatment of diffusion velocity representations and mass diffusivities
is given in Chapter 2, where the equations for Dim are also shown. It is also
shown that a correction velocity Vc is required in order to satisfy the overall
mass conservation. By summing over all the species from 1 to N , the summed
species conservation equation is:

N∑
i=1

∂ (ρYi)

∂t
+

N∑
i=1

∇ · [ρYi (v + Vi )] =
N∑

i=1

ω̇i (1.73)

Taking the summation inside, we get:

∂

∂t

⎛
⎝ρ

�
�
��

N∑
i−1

Yi

=1
⎞
⎠+ ∇ ·

⎡
⎣ρ

⎛
⎝v

�
�
��

N∑
i−1

Yi

=1

+
N∑

i=1

YiVi

⎞
⎠
⎤
⎦ =

�
�
��

N∑
i−1

ω̇i

=0
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or
∂ρ

∂t
+ ∇ · (ρv)

︸ ︷︷ ︸
=0

+∇ ·
[
ρ

(
N∑

i=1

YiVi

)]
= 0

This equation implies that the next relationship must be satisfied by the dif-
fusion velocity definition to achieve overall mass conservation:

N∑
i=1

YiVi = 0 (1.74)

Readers should refer to Section 2.1 of Chapter 2 to understand the requirement
for a correction velocity and the derivation of the expression for a correction
velocity. For convenience, the correction velocity expression is given next:

Vc = −
N∑

i=1

YiVi (1.75)

With this correction velocity, the species conservation equation then becomes:

∂ (ρYi)

∂t
+ ∇ · [ρYi (v + Vi + Vc)] = ω̇i (1.76)

Different models for Vi by using multicomponent species diffusion, the
Hirschfelder-Curtiss approximation, Fick’s law, the constant Lewis number for
the i th species, or unity Lewis number approaches are shown in Table 2.1 of
Chapter 2.

A summary of overall mass conservation equation (or continuity equation) in
different coordinate systems is given in Table 1.7.

TABLE 1.7. Equation of Continuity in Several Coordinate Systems

Rectangular coordinates (x, y, z):

∂ρ

∂t
+ ∂

∂x
(ρux) + ∂

∂y

(
ρuy

)+ ∂

∂z
(ρuz) = 0 (1.77)

Cylindrical coordinates (r, θ, z):a

∂ρ

∂t
+ 1

r

∂

∂r
(ρrur) + 1

r

∂

∂θ
(ρuθ ) + ∂

∂z
(ρuz) = 0 (1.78)

Spherical coordinates (r, θ, φ):b

∂ρ

∂t
+ 1

r2

∂

∂r

(
ρr2ur

)+ 1

r sin θ

∂

∂θ
(ρuθ sin θ) + 1

r sin θ

∂

∂φ

(
ρuφ

) = 0 (1.79)

ar ≥ 0, 2π ≥ θ ≥ 0.
br ≥ 0, 2π ≥ φ ≥ 0, π ≥ θ ≥ 0.
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A summary of species mass conservation equation in different coordinate
systems is given in Table 1.8.

In the model of Hirschfelder, Curtiss, and Bird (1954), an approximate diffu-
sion coefficient for i th species against the rest of the mixture is calculated by the
following equation:

D∗
im = (1 − Yi)

⎛
⎝Mw

N∑
j=1, j �=i

Yj

Mwj Dij

⎞
⎠

−1

= (1 − Yi)

N∑
j=1, j �=i

Xj/Dij

(1.80)

TABLE 1.8. Mass Conservation Equation for i th Species in Several Coordinate
Systems

Rectangular coordinates (x, y, z):

ρ

(
∂Yi

∂t
+ ux

∂Yi

∂x
+ uy

∂Yi

∂y
+ uz

∂Yi

∂z

)

+ ∂

∂x
(ρYiVix) + ∂

∂y

(
ρYiViy

)+ ∂

∂z
(ρYiViz)

+ ∂

∂x

(
ρYiVc,x

)+ ∂

∂y

(
ρYiVc,y

)+ ∂

∂z

(
ρYiVc,z

) = ω̇i

Mass diffusion velocities by Hirschfelder-Curtiss approximation:

Vix = −D∗
im

Yi

∂Yi

∂x
, Viy = −D∗

im

Yi

∂Yi

∂y
, Viz = −D∗

im

Yi

∂Yi

∂z

(1.81)

Cylindrical coordinates (r, θ, z):

ρ

(
∂Yi

∂t
+ ur

∂Yi

∂r
+ uθ

r

∂Yi

∂θ
+ uz

∂Yi

∂z

)

+1

r

∂

∂r
(rρYiVir ) + 1

r

∂

∂θ
(rρYiViθ ) + ∂

∂z
(ρYiViz)

+1

r

∂

∂r

(
rρYiVc,r

)+ 1

r

∂

∂θ

(
rρYiVc,θ

)+ ∂

∂z

(
ρYiVc,z

) = ω̇i

Mass diffusion velocities by Hirschfelder-Curtiss approximation:

Vir = −D∗
im

Yi

∂Yi

∂r
, Viθ = −D∗

im

Yi

∂Yi

r∂θ
, Viz = −D∗

im

Yi

∂Yi

∂z

(1.82)
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TABLE 1.8. (continued )

Spherical coordinates (r, θ, φ):

ρ

(
∂Yi

∂t
+ ur

∂Yi

∂r
+ uθ

r

∂Yi

∂θ
+ uθ

r sin θ

∂Yi

∂φ

)

+ 1

r2

∂

∂r

(
r2ρYiVir

)+ 1

r sin θ

∂

∂θ
(sin θρYiViθ ) + 1

r sin θ

∂

∂φ

(
ρYiViφ

)

+ 1

r2

∂

∂r

(
r2ρYiVc,r

)+ 1

r sin θ

∂

∂θ

(
sin θρYiVc,θ

)+ 1

r sin θ

∂

∂φ

(
ρYiVc,φ

) = ω̇i

Mass diffusion velocities by Hirschfelder-Curtiss approximation:

Vir = −D∗
im

Yi

∂Yi

∂r
, Viθ = −D∗

im

Yir

∂Yi

∂θ
, Viφ = − D∗

im

Yir sin θ

∂Yi

∂φ

(1.83)

1.12 MOMENTUM CONSERVATION EQUATION FOR MIXTURE

In this section we present the momentum equations in the form of partial differ-
ential equations. The basic assumption is that we are dealing with continuous,
isotropic, homogeneous, and Newtonian fluids. For Newtonian fluids, there is a
linear relationship between shear stress and rate of deformation. Readers inter-
ested in the derivation of the momentum equation by various approaches are
referred to Kuo (2005), Chap. 3.

For a Newtonian fluid, the stress tensor can be written as:

σij = −pδij + τij = −pδij +
[(

μ′ − 2

3
μ

)
∂uk

∂xk

δij + μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
(1.84)

In this constitutive relationship between stress and strain rate, the coefficient
μ is usually called the dynamic viscosity or the first viscosity and μ′ is called the
bulk viscosity. For monatomic gas mixtures, kinetic theory shows that μ′ = 0.
For most practical purposes, μ′ can be treated as zero. In Equation 1.84, the
Kronecker delta function, δij, is defined in such way that

δij =
{

1, i = j

0, i �= j
(1.85)

In Equation 1.84, the total stress tensor is expressed as a sum of the hydrostatic
pressure component and the viscous stress component, which is further expressed
in terms of the volume dilatation contribution due to (∂uk/∂xk) and strain-rate
tensor eij contribution, where

eij ≡ (
∂ui/∂xj + ∂uj/∂xi

)
/2 (1.86)
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The i th direction momentum equation can be written in the Euler form as:

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]

︸ ︷︷ ︸
Inertial
force

= ∂σji

∂xj

+ Bi = − ∂p

∂xi︸ ︷︷ ︸
Pressure
gradient
force

+ ∂τji

∂xj︸︷︷︸
Viscous
stress
force

+ ρ

N∑
k=1

(Ykfk)i

︸ ︷︷ ︸
Body
forces

(1.87)

This equation represents the balance of four different forces: inertial force,
pressure gradient force, viscous stress force, and body forces. The body forces
act on the control volume due to gravity or the Lorenz force acting in distance.
If the fluid mixture in the control volume consists of N species, the body forces
acting on different chemical species may differ. For example, some species could
be ionized. If the reacting mixture flows through a magnetic field, these ionized
species will experience Lorenz forces depending the degree of ionization and the
mass of each species. Thus, for a multicomponent system, we have

Bi = ρ

N∑
k=1

(Ykfk)i (1.88)

where fk,i is the force per unit mass of k th species in i th direction,
A summary of momentum conservation equation in rectangular, cylindri-

cal, and spherical coordinate systems are given in Table 1.9, Table 1.10, and

TABLE 1.9. Momentum Conservation Equation in Rectangular Coordinate
Systems (Modified* from Bird, Stewart, and Lightfoot, 1960)

In terms of viscous stress, τ :

x: ρ

(
∂ux

∂t
+ux

∂ux

∂x
+uy

∂ux

∂y
+uz

∂ux

∂z

)
=−∂p

∂x
+
(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
+Bx (1.89)

y: ρ

(
∂uy

∂t
+ux

∂uy

∂x
+uy

∂uy

∂y
+uz

∂uy

∂z

)
=−∂p

∂y
+
(

∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)
+By (1.90)

z: ρ

(
∂uz

∂t
+ux

∂uz

∂x
+uy

∂uz

∂y
+uz

∂uz

∂z

)
=−∂p

∂z
+
(

∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
+Bz (1.91)

In terms of velocity gradients for Newtonian fluid with constant ρ and μ:

x: ρ

(
∂ux

∂t
+ux

∂ux

∂x
+uy

∂ux

∂y
+uz

∂ux

∂z

)
=−∂p

∂x
+μ

(
∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2

)
+Bx (1.92)

y: ρ

(
∂uy

∂t
+ux

∂uy

∂x
+uy

∂uy

∂y
+uz

∂uy

∂z

)
=−∂p

∂y
+μ

(
∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2

)
+By (1.93)

z: ρ

(
∂uz

∂t
+ux

∂uz

∂x
+uy

∂uz

∂y
+uz

∂uz

∂z

)
=−∂p

∂z
+μ

(
∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2

)
+Bz (1.94)

*These equation numbers are continuous with these in the main text
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TABLE 1.10. Momentum Conservation Equation in Cylindrical Coordinate
Systems (Modified from Bird, Stewart, and Lightfoot, 1960)

In terms of viscous stress, τ :

r:

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
− u2

θ

r
+ uz

∂ur

∂z

)

= −∂p

∂r
+
(

1

r

∂

∂r
(rτrr ) + 1

r

∂τrθ

∂θ
− τθθ

r
+ ∂τrz

∂z

)
+ Br

(1.95)

θ :

ρ

(
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
− uruθ

r
+ uz

∂uθ

∂z

)

= −1

r

∂p

∂θ
+
(

1

r2

∂

∂r

(
r2τrθ

)+ 1

r

∂τθθ

∂θ
+ ∂τθz

∂z

)
+ Bθ

(1.96)

z:

ρ

(
∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)

= −∂p

∂z
+
(

1

r

∂

∂r
(rτrz) + 1

r

∂τθz

∂θ
+ ∂τzz

∂z

)
+ Bz

(1.97)

In terms of velocity gradients of Newtonian fluids with constant ρ & μ:

r:

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
− u2

θ

r
+ uz

∂ur

∂z

)

= −∂p

∂r
+ μ

[
∂

∂r

(
1

r

∂

∂r
(rur )

)
+ 1

r2

∂2ur

∂θ2
− 2

r2

∂uθ

∂θ
+ ∂2ur

∂z2

]
+ Br

(1.98)

θ :

ρ

(
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uruθ

r
+ uz

∂uθ

∂z

)

= −1

r

∂p

∂θ
+ μ

[
∂

∂r

(
1

r

∂

∂r
(ruθ )

)
+ 1

r2

∂2uθ

∂θ2
+ 2

r2

∂ur

∂θ
+ ∂2uθ

∂z2

]
+ Bθ

(1.99)

z:

ρ

(
∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)

= −∂p

∂r
+ μ

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+ 1

r2

∂2uz

∂θ2
+ ∂2uz

∂z2

]
+ Bz

(1.100)

Table 1.11, respectively. In each of these tables, there are two sets of momentum
equations; the first set is written in terms of the viscous stress components, and
the second set is written in terms of velocity components with the constant den-
sity and constant viscosity assumptions. Readers interested in compressible fluids
and/or variable viscosity cases can substitute the constitutive relationship given by
Equation 1.84. The stress tensor components in different coordinate systems are
given in Bird, Stewart, and Lightfoot (1960), Chap. 3 and Kuo (2005), Chap. 3.

The term ρu2
θ /r in the r-direction momentum equation [Equation’s 1.95 and

1.98] is the centrifugal force. It gives the effective force in the r-direction
resulting from fluid motion in the θ-direction. This term arises automatically
on transformation from rectangular to cylindrical coordinates. The term ρuruθ/r
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TABLE 1.11. Momentum Conservation Equation in Spherical Coordinate Systems
(Modified from Bird, Stewart, and Lightfoot, 1960)

In terms of viscous stress, τ :

R:

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uφ

r sin θ

∂ur

∂φ
− u2

θ + u2
φ

r

)

= −∂p

∂r
+
(

1

r2

∂

∂r

(
r2τrr

)+ 1

r sin θ

∂

∂θ
(τrθ sin θ) + 1

r sin θ

∂τrφ

∂φ

− τθθ + τφφ

r

)
+ Br

(1.101)

θ :

ρ

(
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uφ

r sin θ

∂uθ

∂φ
+ uruθ

r
− u2

φ cot θ

r

)

= −1

r

∂p

∂θ
+
(

1

r2

∂

∂r

(
r2τrθ

)+ 1

r sin θ

∂

∂θ
(τθθ sin θ) + 1

r sin θ

∂τθφ

∂φ
+ τrθ

r

−cot θ

r
τφφ

)
+ Bθ

(1.102)

φ:

ρ

(
∂uφ

∂t
+ ur

∂uφ

∂r
+ uθ

r

∂uφ

∂θ
+ uφ

r sin θ

∂uφ

∂φ
+ uφur

r
+ uθuφ

r
cot θ

)

= − 1

r sin θ

∂p

∂φ
+
(

1

r2

∂

∂r

(
r2τrφ

)+ 1

r

∂τφθ

∂θ
+ 1

r sin θ

∂τφφ

∂φ
+ τrφ

r

−2 cot θ

r
τθφ

)
+ Bφ

(1.103)

In terms of velocity gradients of Newtonian fluids with constant ρ and μ:

R:

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uφ

r sin θ

∂ur

∂φ
− u2

θ + u2
φ

r

)

= −∂p

∂r
+ μ

(
∇2ur − 2

r2
ur − 2

r2

∂uθ

∂θ
− 2

r2
uθ cot θ − 2

r2 sin θ

∂uφ

∂φ

)
+ Br

(1.104)

θ :

ρ

(
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uφ

r sin θ

∂uθ

∂φ
+ uruθ

r
− u2

φ cot θ

r

)

= −1

r

∂p

∂θ
+ μ

(
∇2uθ + 2

r2

∂ur

∂θ
− uθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂uφ

∂φ

)
+ Bθ

(1.105)

φ:

ρ

(
∂uφ

∂t
+ ur

∂uφ

∂r
+ uθ

r

∂uφ

∂θ
+ uφ

r sin θ

∂uφ

∂φ
+ uφur

r
+ uθuφ

r
cot θ

)

= − 1

r sin θ

∂p

∂φ
+ μ

(
∇2uφ − uφ

r2 sin2 θ
+ 2

r2 sin θ

∂ur

∂φ

+ 2 cos θ

r2 sin2 θ

∂uθ

∂φ

)
+ Bφ

(1.106)
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in the θ-direction momentum equation Equations.1.96 and 1.99 is the Coriolis
force. It is an effective force in the θ-direction when there is flow in both the
r and θ directions. This term also arises automatically in the coordinate trans-
formation. The Coriolis force arises in the problem of flow near a rotating disk.
(See, e.q., Schlichting, 1968), Chap. 5.

In Table 1.10, the Laplacian operator (∇2) is given as:

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

(
∂2

∂φ2

)
(1.107)

1.13 ENERGY CONSERVATION EQUATION FOR
MULTICOMPONENT MIXTURE

The energy conservation equation requires the greatest attention because mul-
tiple forms exist. Note first that because of continuity, the relation shown in
Equation 1.108 (which may be used in all left-hand sides of enthalpy, energy, or
temperature equations) holds for any quantity f :

ρ
Df

Dt
= ρ

(
∂f

∂t
+ ui

∂f

∂xi

)
= ∂ρf

∂t
+ ∂ρuif

∂xi

(1.108)

In this equation, D/Dt is called the material derivative or substantial deriva-
tive. In the Lagrangian point of view, this time derivative is taken while following
the motion of the fluid particle with a fixed mass. In the Eulerian frame of ref-
erence, the D/Dt operator can be expressed by the sum of four terms on the
right-hand side of Equation 1.109, since there are four independent variables in
the Eulerian coordinates. Thus,

d

dt
≡ D

Dt
≡ ∂

∂t
+ u1

∂

∂x1
+ u2

∂

∂x2
+ u3

∂

∂x3
(1.109)

As shown in Table 1.4, there are eight different forms of energy for the gaseous
mixture. The energy conservation equation can be written in terms of any of these
eight forms. In addition, the energy conservation equation also can be given in
terms of temperature. Although there are many different choices for writing the
energy conservation equation, only one energy equation for the gaseous mixture
can be used since all forms of energy are interrelated. Readers can find the
detailed derivation of energy equation in Kuo (2005), Chap. 3. Next we present
different forms of energy equations.

In terms of total energy (internal with chemical and kinetic) et , the energy
conservation equation can be written as:

ρ
∂et

∂t︸ ︷︷ ︸
Rate of accumulation
of internal
and kinetic
energy per unit
volume stored in
control volume

+ ρui

∂et

∂xi︸ ︷︷ ︸
Net rate of
energy
transported
out of
control volume
by advection

= −∂qi

∂xi︸ ︷︷ ︸
Net rate of heat
addition to
control volume
by conduction,
interdiffusion,
& Dufour flux

+ Q̇︸︷︷︸
Net rate of
external energy
input per unit
volume to
control volume

+ ∂σjiui

∂xj︸ ︷︷ ︸
Work done by
surface stress
induced forces on
control volume

+ ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)

︸ ︷︷ ︸
Body force work

(1.110)
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where qi is the i th component of the flux vector q, which contains conduction
heat flux, interdiffusion heat flux, and the Dufour heat flux; that is

q = qconduction + qinterdiffusion + qDufour

= −l∇T + ρ

N∑
k=1

hkYkVk + RuT

N∑
k=1

N∑
j=1

(
XjDTk

MwkDkj

) (
Vk − Vj

)
(1.111)

By neglecting the Dufour effect, qi can be written as:

qi = −l
∂T

∂xi

+ ρ

N∑
k=1

hkYkVk,i (1.112)

The kinetic energy equation can be written as shown in Equation 1.113, by
using the product of ui with the momentum conservation equation:

ρ
∂
( 1

2uiui

)

∂t
+ ρuj

∂
( 1

2uiui

)

∂xj

= ui

∂σji

∂xj

+ ρ

N∑
k=1

Ykfk,iui (1.113)

Substituting Equation 1.113 in Equation 1.110, we obtain a conservation
equation for sensible and chemical energy, e:

ρ
De

Dt
= −∂qi

∂xi

+ σji
∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i (1.114)

The equation for sensible internal energy es is:

ρ
Des

Dt
= −

N∑
k=1

ω̇k�ho
f,k

︸ ︷︷ ︸
ω̇T

−∂qi

∂xi

+ σji
∂ui

∂xj

+ Q̇ −
N∑

k=1

�ho
f,k

∂

∂xi

⎛
⎜⎜⎜⎝ρ Dk

∂Yk

∂xi︸ ︷︷ ︸
=−YkVk,i

⎞
⎟⎟⎟⎠

+ρ

N∑
k=1

Ykfk,iVk,i (1.115)

= ω̇T + ∂

∂xi

(
l
∂T

∂xi

)
+ σji

∂ui

∂xj

+ Q̇ − ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)

+ρ

N∑
k=1

Ykfk,iVk,i

In Equation 1.115, the source term due to heat released by chemical reactions
is ω̇T , and it is defined as:

ω̇T ≡ −
N∑

k=1

ω̇k�ho
f,k (1.116)
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The equation for total nonchemical energy (sensible + kinetic) energy etnc is:

ρ
Detnc

Dt
= ω̇T + ∂

∂xi

(
l
∂T

∂xi

)
+ ∂σijui

∂xj

+ Q̇ − ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)

(1.117)
+ ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)

The conservation equation for (sensible + chemical) enthalpy is:

ρ
Dh

Dt
= Dp

Dt
− ∂qi

∂xi

+τji
∂ui

∂xj

+
︸ ︷︷ ︸

�=Viscous dissipation

Q̇ + ρ

N∑
k=1

Ykfk,iVk,i

= Dp

Dt
+ ∂

∂xi

(
l
∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hkYkVk,i

)
+ τji

∂ui

∂xj

+ Q̇ (1.118)

+ρ

N∑
k=1

Ykfk,iVk,i

The conservation equation for total enthalpy (sensible + chemical +
kinetic energy) is:

ρ
Dht

Dt
= ∂p

∂t
+ ∂

(
τjiui

)

∂xj

+ Q̇ − ∂qi

∂xi

+ ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)

= ∂p

∂t
+ ∂

(
τjiui

)

∂xj

+ Q̇ + ∂

∂xi

(
l
∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hkYkVk,i

)
(1.119)

+ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)

The conservation equation for sensible enthalpy is:

ρ
Dhs

Dt
= ω̇T + Dp

Dt
− ∂qi

∂xi

+ τji
∂ui

∂xj

+
︸ ︷︷ ︸

�=Viscous dissipation

Q̇ −
N∑

k=1

�ho
f,k

∂

∂xi

⎛
⎜⎜⎜⎝ρ Dk

∂Yk

∂xi︸ ︷︷ ︸
=−YkVk,i

⎞
⎟⎟⎟⎠

+ρ

N∑
k=1

Ykfk,iVk,i

(1.120)
= ω̇T + Dp

Dt
+ ∂

∂xi

(
l
∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)
+ τji

∂ui

∂xj

+Q̇ + ρ

N∑
k=1

Ykfk,iVk,i
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The conservation equation for total nonchemical (sensible + kinetic energy)

enthalpy is:

ρ
Dhtnc

Dt
= ω̇T + ∂p

∂t
+ ∂

∂xi

(
l
∂T

∂xi

)
+ ∂τijui

∂xj

+ Q̇ − ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)

(1.121)
+ ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)

The energy conservation equation in terms of temperature can be very useful.
The enthalpy (sensible + chemical) can be written as:

h =
T∫

Tref

CpdT +
N∑

i=1

Yi�h0
f,i =

T∫

Tref

(
N∑

i=1

Cp,iYi

)
dT +

N∑
i=1

Yi�h0
f,i =

N∑
i=1

hiYi

(1.122)

Since the mass fraction of the i th species is an independent variable, the
fractional change in enthalpy (sensible + chemical) can be written as:

dh = CpdT =
(

N∑
i=1

Cp,iYi

)
dT (1.123)

dhk = Cp,kdT or
∂hk

∂xi

= Cp,k

∂T

∂xi

(1.124)

The constant-pressure specific heat of the i th species is a function of temper-
ature; therefore,

Cp = Cp (Yi, T ) and h = h (Yi, T ) (1.125)

By applying the chain rule, the time derivative and spatial gradients of the
enthalpy (sensible + chemical) can be written as:

∂h

∂t
= ∂h

∂T

∂T

∂t
+ ∂h

∂Yi

∂Yi

∂t
(1.126)

∂h

∂xi

= ∂h

∂T

∂T

∂xi

+ ∂h

∂Yk

∂Yk

∂xi

(1.127)

From Equation 1.123,
∂h

∂T
= Cp (Yk, T ) (1.128)

∂h

∂Yk

= ∂

∂Yk

(
N∑

k=1

hk (T ) Yk

)
=

N∑
k=1

(
Yk

�
�
��∂hk(T )

∂Yk

=0

+ hk (T )
∂Yk

∂Yk

)
=

N∑
k=1

hk (T )

(1.129)
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Therefore,
∂h

∂t
= Cp (Yk, T )

∂T

∂t
+

N∑
k=1

hk (T )
∂Yk

∂t
(1.130)

∂h

∂xi

= Cp (Yk, T )
∂T

∂xi

+
N∑

k=1

hk (T )
∂Yk

∂xi

(1.131)

The material derivative of enthalpy (sensible + chemical) can be written as:
Dh

Dt
= ∂h

∂t
+ ui

∂h

∂xi

(1.132)

Substituting Equations 1.130 and 1.131 into Equation 1.132, we have:

Dh

Dt
= Cp (Yk, T )

∂T

∂t
+

N∑
k=1

hk (T )
∂Yk

∂t
+ ui

(
Cp (Yk, T )

∂T

∂xi

+
N∑

k=1

hk (T )
∂Yk

∂xi

)

(1.133)
= Cp (Yk, T )

DT

Dt
+

N∑
k=1

hk (T )
DYk

Dt

Therefore,

ρCp (Yk, T )
DT

Dt
= ρ

Dh

Dt
− ρ

N∑
k=1

hk (T )
DYk

Dt
(1.134)

By substituting the species conservation equation, we have:

ρCp (Yk, T )
DT

Dt
= ρ

Dh

Dt
−

N∑
k=1

hk (T ) [ω̇k − ∇ · (ρYkVk)] (1.135)

Next, substituting the energy conservation equation Equation 1.118 into
Equation 1.135, we get:

ρCp (Yk, T )
DT

Dt
= Dp

Dt
+ ∂

∂xi

(
l
∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hkYkVk,i

)
+ τji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i −
N∑

k=1

hk (T )

[
ω̇k − ∂

∂xi

(
ρYkVk,i

)]

(1.136)
Equation 1.136 can be simplified by the following step:

ρCp (Yk, T )
DT

Dt
= Dp

Dt
+ ∂

∂xi

(
l
∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hkYkVk,i

)

+ τji
∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i −
N∑

k=1

hk (T )ω̇k

︸ ︷︷ ︸
=ω̇′

T

(1.137)

+
N∑

k=1

hk (T )
∂

∂xi

(
ρYkVk,i

)
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The last term on the RHS of Equation 1.137 can be written as:

N∑
k=1

hk (T )
∂

∂xi

(
ρYkVk,i

) =
N∑

k=1

∂

∂xi

(
ρYkVk,ihk (T )

)−
N∑

k=1

ρYkVk,i

∂hk (T )

∂xi

= ∂

∂xi

N∑
k=1

(
ρYkVk,ihk (T )

)−
N∑

k=1

ρYkVk,i

∂hk (T )

∂xi

(1.138)
Substituting Equation 1.138 into Equation 1.137, we get:

ρCp

DT

Dt
= ω̇′

T + Dp

Dt
+ ∂

∂xi

(
l
∂T

∂xi

)
+ τji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i

(1.139)
−

N∑
k=1

ρYkVk,i

∂hk

∂xi

where

ω̇′
T ≡ −

N∑
k=1

hk (T ) ω̇k = −
N∑

k=1

hs,k (T ) ω̇k −
N∑

k=1

�h0
f,k (T ) ω̇k (1.140)

By using Equation 1.124 and substituting it in Equation 1.139, we have:

ρCp

DT

Dt
= ω̇′

T + Dp

Dt
+ ∂

∂xi

(
l
∂T

∂xi

)
+ τji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i

(1.141)

−
(

ρ

N∑
k=1

YkVk,iCp,k

)
∂T

∂xi

Similarly, we can show that Equation 1.141 can be written by using constant-
volume specific heat:

ρCv

DT

Dt
= ω̇′′

T + ∂

∂xi

(
l
∂T

∂xi

)
+ σji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i

(1.142)

−
(

ρ

N∑
k=1

YkVk,iCp,k

)
∂T

∂xi

− RuT
∂

∂xi

(
ρ

N∑
k=1

YkVk,i

Mwk

)

where

ω̇′′
T ≡ −

N∑
k=1

ek (T ) ω̇k = −
N∑

k=1

es,k (T ) ω̇k −
N∑

k=1

�h0
f,k (T ) ω̇k (1.143)

All 10 forms of the energy conservation equation are summarized in
Table 1.12. These are most general forms of the energy conservation equations,
for which the specific heats are considered temperature dependent quantities.
Also, the fluid is considered compressible.
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TABLE 1.12. Energy Conservation Equation in Various Forms

In terms of energy:

et ρ
∂et

∂t
+ ρui

∂ei

∂xi

= −∂qi

∂xi

+ Q̇ + ∂σjiui

∂xj

+ ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)
(1.144)

e ρ
De

Dt
= −∂qi

∂xi

+ σji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i (1.145)

es

ρ
Des

Dt
= ω̇T + ∂

∂xi

(
l

∂T

∂xi

)
+ σji

∂ui

∂xj

+ Q̇ − ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)

+ρ

N∑
k=1

Ykfk,iVk,i

(1.146)

etnc

ρ
Detnc

Dt
= ω̇T + ∂

∂xi

(
l

∂T

∂xi

)
+ ∂σij ui

∂xj

+ Q̇ − ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)

+ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)
(1.147)

In terms of enthalpy:

ht

ρ
Dhi

Dt
= ∂p

∂t
+ ∂

(
τjiui

)

∂xj

+ Q̇ + ∂

∂xi

(
l

∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hkYkVk,i

)

+ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)
(1.148)

h

ρ
Dh

Dt
= Dp

Dt
+ ∂

∂xj

(
l

∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hkYkVk,i

)
+ τji

∂ui

∂xj

+ Q̇

+ρ

N∑
k=1

Ykfk,iVk,i

(1.149)

hs

ρ
Dhs

Dt
= ω̇T + Dp

Dt
+ ∂

∂xj

(
l

∂T

∂xi

)
− ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)
+ τji

∂ui

∂xj

+ Q̇

+ρ

N∑
k=1

Ykfk,iVk,i

(1.150)

htnc

ρ
Dhtnc

Dt
= ω̇T + ∂p

∂t
+ ∂

∂xi

(
l

∂T

∂xi

)
+ ∂τij ui

∂xi

+ Q̇ − ∂

∂xi

(
ρ

N∑
k=1

hs,kYkVk,i

)

+ρ

N∑
k=1

Ykfk,i

(
ui + Vk,i

)
(1.151)

(continued overleaf )
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TABLE 1.12. (continued )

Temperature

T, Cp

ρCp

DT

Dt
= ω̇′

T + Dp

Dt
+ ∂

∂xi

(
l

∂T

∂xi

)
+ τji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i

−
(
ρ

N∑
k=1

YkVk,iCp,k

)
∂T

∂xi

(1.152)

T, Cv

ρCv

DT

Dt
= ω̇′′

T + ∂

∂xi

(
l

∂T

∂xi

)
+ σji

∂ui

∂xj

+ Q̇ + ρ

N∑
k=1

Ykfk,iVk,i

−
(
ρ

N∑
k=1

YkVk,iCp,k

)
∂T

∂xi

− RuT
∂

∂xi

(
ρ

N∑
k=1

YkVk,i

Mwk

) (1.153)

In addition to the conservation equations shown in Table 1.12, there is a set of
independent equations for conservation of angular momentum. In the absence of
external torques, the angular momentum is automatically conserved since it can be
obtained by taking the moment of the linear momentum conservation equation.
If an external torque is present, the angular momentum conservation equation
cannot be obtained directly just by taking the moment of the linear momentum
conservation equation. Major applications of angular momentum conservation
equations include polar fluids in magnetic fields and combustion systems with
externally applied torque. Readers interested in the derivation of the angular
momentum conservation equation are referred to Yamaguchi (2008), Chap. 2.

1.14 TOTAL UNKNOWNS VERSUS GOVERNING EQUATIONS

Depending on the treatment of the diffusion velocity, the total number of
unknowns and required governing equations for combustion problems in laminar
flows are listed in Table 1.13 and Table 1.14.

TABLE 1.13. Unknowns versus Available Equations when the Fick’s Law Is Used
for Diffusion Velocity

Unknowns Equations

ρ,p, T,
ui = (u1, u2, u3),
Yk = (Y1, Y2 . . . . . . , YN)

1 continuity, 1 energy, 1 equation of state, 3
linear momentum, N − 1 species

conservation equation, and
N∑

k=1

Yk = 1

Number of unknowns = N+6 Number of equations = N +6
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TABLE 1.14. Unknowns versus Available Equations when the Hirschfelder-Curtiss
Approximation Is Used for Diffusion Velocity

Unknowns Equations

ρ,p, T,
ui = (u1, u2, u3),
Yk = (Y1, Y2 . . . . . . , YN)

Vk,i =
⎛
⎝

V1,1, V2,1 . . . . . . . . . . . . . . . .., VN,1

V1,2, V2,2 . . . . . . . . . . . . . . . .., VN,2

V1,3, V2,3 . . . . . . . . . . . . . . . .., VN,3

⎞
⎠

Xk = (X1, X2 . . . . . . , XN)

1 continuity, 1 energy, 1 equation of
state 3 linear momentum, N − 1
species conservation equation,
N∑

k=1

Yk = 1

3N diffusion equations for all
chemical species, and N
relationships between Xk and Yk

Number of unknowns= 5N +6 Number of equations = 5N +6

For turbulent reacting flows, the turbulent transport equations and closure
problems must be considerd.

HOMEWORK PROBLEMS

1. Show that the expression for the j th component of the correction velocity

Vc in the species conservation equation
∂ (ρYk)

∂t
+ ∇ · [ρYk (v + Vk + Vc)]

= ω̇k can be written as:

Vc,j =
N∑

k=1

Dk

MWk

Mw

∂Xk

∂xj

where Dk can be written in the following form, based upon the Hirschfelder
and Curtiss approximation for the diffusion velocity.

Dk = 1 − Yk

N∑
l �=k

Xl/Dlk

Start the problem by adopting the above equation for Dk and then substitute
the diffusion velocity into the following species conservation equation:

∂ρYk

∂t
+ ∂

∂xi

[ρ (ui + Vki) Yk] = ω̇k for k = 1, 2, . . . , N

2. Make sure that you understand the equivalence of these two forms of the
continuity equation:

∂ρ

∂t
+ ∇ · (ρv) = 0 and

Dρ

Dt
+ ρ∇ · v = 0.
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Also, express ∇ · v in terms of the density variations with respect to time in
order to understand the meaning of volume dilatation.

3. Show that the momentum equation given in vector form can be written as:

ρ
Dv
Dt

= ρ

[
∂v
∂t

+ (v · ∇) v
]

= ρ

[
∂v
∂t

+ ∇
(v · v

2

)
− v × (∇ × v)

]

= f + ∇ · σ = f − ∇p + ∇ · τ

where σ is the total stress tensor, τ is the viscous stress tensor, and f is the
body force.
In the Cartesian coordinate,

∇ · τ =
(

∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z

)
ex +

(
∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z

)
ey

+
(

∂τzx

∂x
+ ∂τzy

∂y
+ ∂τzz

∂z

)
ez

4. Familiarize yourself with the following vector algebra and a set of vector
identities involving del operators (∇). At the end of this list given in section
A.14 of Appendix A, there are several equations associated with the Gauss
divergence theorem. Make sure that you can to utilize them.


