
Part I

PowerShell for
Exchange

Fundamentals

Chapter 1: Getting Started with Windows PowerShell

Chapter 2: Using Exchange Management Shell

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

Chapter 4: Working with User and Group Objects

Chapter 5: Public Folders

c01.indd 1c01.indd 1 12/17/07 3:19:21 PM12/17/07 3:19:21 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 12/17/07 3:19:23 PM12/17/07 3:19:23 PM

 Getting Started with
Windows PowerShell

 Windows PowerShell is the next - generation command - line shell and scripting language for
Windows. Exchange Server 2007 is the first Microsoft application to utilize Windows PowerShell
for deployment and administration. This chapter introduces Windows PowerShell and explains
the basic concepts you ’ ll need to know to use Windows PowerShell effectively.

 The first section, “ What Is Windows PowerShell? ” includes command shell history and describes
the features that make Windows PowerShell the ideal management platform for Exchange
Server 2007.

 The section that follows, “ Windows PowerShell Basics, ” covers the fundamentals of Windows
PowerShell. This section describes the components of Windows PowerShell and how to find
commands and then learn how to use them.

 To understand Windows PowerShell and its benefit to Exchange administrators, this chapter
covers the following key areas:

 Command shells vs. Graphical User Interfaces

 Windows PowerShell components

 Windows PowerShell built - in help

 Composing commands using pipelines

 What Is Windows PowerShell?
 Windows PowerShell is a new command - line shell and scripting language for Windows. It was
designed by Microsoft specifically to give administrators an extensible command shell for
managing Windows environments with greater control and flexibility. This section includes a brief
discussion of some traditional administrative interfaces to help you understand why there is a

❑

❑

❑

❑

c01.indd 3c01.indd 3 12/17/07 3:19:23 PM12/17/07 3:19:23 PM

Part I: PowerShell for Exchange Fundamentals

4

need for an advanced interface like Windows PowerShell. What follows is a discussion of the main
features that set Windows PowerShell apart from other management interfaces and make it the most
powerful administrative interface that Microsoft has ever produced.

 Shell History
 Before there was the Graphical User Interface (GUI), there was the Command Line Interface (CLI). The
CLI was born of a need to quickly interact with the operating system at a time when computers were
mostly controlled using punch card or paper tape input. The first CLIs used teletype machines to enter
commands directly into the computer for execution, with the results returned to the operator as printed
output. Teletypes were later replaced with dedicated text - based CRT terminals that offered an even
greater advantage in speed and the amount of information available to the operator.

 All CLIs rely on a program that interprets textual commands entered on the command line and turns
them into machine instructions. This program is known as a command - line interpreter or shell. Every
major operating system includes some sort of shell interface. UNIX administrators may be familiar with
several shells (SH, KSH, CSH, and BASH) as well as the text processing languages AWK and PERL.
Windows users may also be familiar with cmd.exe , the Windows command - line interpreter and the
Windows Script Host for running scripts.

 All these shells make possible direct communication between the operating system and the user.
They include built - in commands and provide an environment for running text - based applications
and utilities.

 When Shells Are Better than GUI Interfaces
 GUI interfaces came later in computer development and opened the door to less-technically-advanced
users looking for a more “ comfortable ” way to interact with the operating system. Although they
provide a simple - to - use interface, GUI applications are prone to user error because their use requires
direct interaction between the user and the interface through menus, controls, and fields. For each
administrator in the organization to complete the same tasks as all other administrators, they must
learn and then use the correct menu choices and controls in order to get consistent results.

 GUI - based management programs also constrain administrators to predetermined properties and
controls. They lack provisions for special or one - off tasks because they are designed and written with
specific functionality that is appropriate for general purposes.

 Shells offer a powerful solution for overcoming these GUI shortcomings by providing a method to
gather commands into a batch file, also known as a script, and then run them as if they had been entered
one at a time at the command line. Administrators create and run scripts to automate everyday tasks and
resolve difficult issues GUI interfaces are not designed to handle. Scripts allow a reliable, sustainable
method for administering an environment.

 Once a script has been written and proven to work for its intended purpose, it can be distributed
throughout an organization and used as needed by any administrator, with expected and consistent
results. Examples of some common script solutions you might find in most organizations are used for
unattended machine deployments, user account provisioning, and nightly database backups.

c01.indd 4c01.indd 4 12/17/07 3:19:23 PM12/17/07 3:19:23 PM

Chapter 1: Getting Started with Windows PowerShell

5

 Common Shell Limitations
 The traditional shells mentioned earlier offer an administrator greater control and flexibility for tackling
everyday or even unusual management tasks, but they all suffer from significant drawbacks.

 Command shells operate by executing built - in commands that run within the process of the shell, or
by executing a command or application in a new process outside of the shell. Many applications lack
command - line equivalents for controls found in their GUI management programs. And the number
of built - in commands offered by most shells is usually small, requiring more applications and utilities
to run outside the shell to accomplish critical tasks. Most organizations lack the resources to develop
special applications and utilities on their own and may struggle to accomplish more complex tasks using
available commands alone.

 Another drawback shared by most shells is the way in which they handle information. The results of
running a command or utility is returned as text to the command line. If you need to use this text as
input for another command, which is common in scripting, it has to be parsed. Parsing is the process of
evaluating text and extracting the meaningful values in a form that can then be properly interpreted by
another command. Parsing is prone to error and can be time consuming because the format required for
preparing the textual input can vary greatly between different commands, applications, and utilities.

 One final limitation to consider is the lack of integration between a shell and the scripting languages you
would use in that shell. For example, Windows Script Host provides a method for implementing a
variety of scripting languages from the command line (via cmd.exe), but it is not integrated with
cmd.exe and is thus not interactive. It also lacks readily accessible documentation from the command
line as you would find in many other shells and scripting environments.

 The Power Behind PowerShell
 What sets Windows PowerShell apart from all other command shells is that it is built on top of .NET
Framework version 2.0. Windows PowerShell exposes .NET classes as built - in commands. When these
commands are executed they create a collection of one or more structured objects as output. Instead of
text, all actions in Windows PowerShell are based on .NET objects.

 Windows PowerShell objects have a specific type based on the class used to create them. They have
properties (which are characteristics) and methods (which are actions you can take). Because objects
have a defined structure, a collection of objects created by one command can be passed to another
command as input without the need for parsing the data in - between.

 Windows PowerShell includes a fully integrated and intuitive scripting language for managing .NET
objects. The language is consistent with higher - level languages used in programming .NET. Those
administrators familiar with the C# programming language will find many similarities in the grammar,
syntax, and keywords used by the Windows PowerShell scripting language.

 Windows PowerShell includes more than 130 built - in commands for performing the most common
system administrative tasks. The commands are designed to be easy to understand and use because they
share common naming and parameter conventions. Learning how to use one command makes it easy to
understand how similar commands are also used.

c01.indd 5c01.indd 5 12/17/07 3:19:24 PM12/17/07 3:19:24 PM

Part I: PowerShell for Exchange Fundamentals

6

 Because Windows PowerShell is fully extensible, software developers can create their own custom
built - in commands to handle those administrative tasks not already addressed in the default built - in
command set. Exchange Management Shell is an example of Windows PowerShell extended to include
more than 500 built - in commands.

 Windows PowerShell not only allows access to the local disk drives as a file system, but it also exposes
the local Registry, certificate store, and system environment variables and allows you to navigate them
using the same familiar methods you would use for navigating a file system. Windows PowerShell also
provides additional data stores for variables, functions, and alias definitions used inside the shell.

 GUI management applications can be built on top of Windows PowerShell. Software developers can
ensure that all administrative functions found in a GUI management application built on Windows
PowerShell have a corresponding scriptable equivalent in the Windows PowerShell CLI. Exchange
Management Console is an example of a GUI management application built on top of Windows
PowerShell.

 PowerShell Basics
 You may be asking yourself why a book about Exchange Management Shell is spending so much time in
the beginning talking about Windows PowerShell. Because Exchange Management Shell is built on top
of Windows PowerShell, you need to understand the basic concepts and components of Windows
PowerShell first.

 The Command - Line Interface
 Windows PowerShell operates within a hosting application. The default application is powershell.exe ,
a console application that presents a command line to the user. To start PowerShell from the Start menu
select All Programs Windows PowerShell 1.0 Windows PowerShell. This opens Windows
PowerShell with the default console application as shown in Figure 1 - 1 .

 Many first - time users of Exchange Management Shell may be confused when after opening the default
Windows PowerShell console application that they are unable to run any Exchange - specific commands.
This is because Exchange Management Shell is an extension of Windows PowerShell. The default
Windows PowerShell hosting application does not include any Exchange - specific commands. Windows
PowerShell is extended by the use of a component called a snap - in. A snap - in provides a method for
loading custom PowerShell commands and functionality contained in an application extension file.

 To start Exchange Management Shell from the Start menu, select All Programs Exchange Server 2007
 Exchange Management Shell. The target definition for this program shortcut contains the following

underlying command line:

C:\WINDOWS\system32\WindowsPowerShell\v1.0\PowerShell.exe -PSConsoleFile
”C:\Program Files\Microsoft\Exchange Server\bin\exshell.psc1” -noexit -command “.
’C:\Program Files\Microsoft\Exchange Server\bin\Exchange.ps1 ’ ”

c01.indd 6c01.indd 6 12/17/07 3:19:24 PM12/17/07 3:19:24 PM

Chapter 1: Getting Started with Windows PowerShell

7

 While invoking Windows PowerShell, this command specifies a console definition file identified by
the PSConsoleFile parameter. The exshell.psc1 file contains a pointer to the Exchange
Management Shell snap - in definition stored in the Registry at HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\PowerShell\1\PowerShellSnapIns\Microsoft.Exchange.Management
.PowerShell.Admin .

 The ModuleName value stored in this location contains the path to the application extension
file Microsoft.Exchange.PowerShell.Configuration.dll , located in the %ProgramFiles%\
Microsoft\Exchange Server\Bin directory. Windows PowerShell loads this .dll file to make the
Exchange commands available.

 In addition to loading the snap - in for Exchange Management Shell, the underlying command also uses
the command parameter to specify additional commands to run at startup, in this case the script file
 Exchange.ps1 . This script file contains definitions for aliases, functions, and variables specific to

Figure 1-1

c01.indd 7c01.indd 7 12/17/07 3:19:24 PM12/17/07 3:19:24 PM

Part I: PowerShell for Exchange Fundamentals

8

Exchange management. It also defines the appearance of the command - line prompt and the initial
welcome banner shown in Figure 1 - 2 .

 As you can see, the appearance of the Exchange Management Shell is a bit different from the default
Windows PowerShell console application, yet all the functionality of the core shell remains intact.
Because Windows PowerShell is hosted in a console application, all the familiar properties and controls
for a console application are available. Later in this section you learn how to set up your Exchange
Management Shell for the best user experience when following the examples in this book.

Figure 1-2

 Cmdlets
 The most basic component of Windows PowerShell is the built - in commands, called cmdlets
(pronounced command - lets). Almost all the work done through Windows PowerShell is done through
the use of cmdlets. Cmdlets are similar to built - in commands found in other shells; for example, the
built - in command DIR found in cmd.exe . In Exchange Management Shell, cmdlets that perform a
specific administrative function are often referred to as tasks.

 All cmdlets share the same basic structure. They have a name and take one or more parameters as input.
Entering the name of a cmdlet, followed by any necessary parameter names and values, will result in the

c01.indd 8c01.indd 8 12/17/07 3:19:25 PM12/17/07 3:19:25 PM

Chapter 1: Getting Started with Windows PowerShell

9

 Windows PowerShell commands are case - insensitive. The examples given in this section use the default
form of capitalizing the first letter of each distinct word in the command elements. Only spelling and
syntax count when entering Windows PowerShell commands.

 Cmdlet Names: The Verb - Noun Pair
 Cmdlet names always take the form of two or more words, separated by a dash or hyphen (-).
The first word is known as the verb and refers to an action the cmdlet will take. The second word or
group of words is known as the noun, and refers to the target of the verb. The verb and noun describe
the action and the target of the action. Using this convention for naming cmdlets makes discovering and
learning cmdlets more intuitive.

 Cmdlet nouns may contain multiple words but have no spaces between them.

 Common Verb Names
 Microsoft has produced a list of common verb names recommended for use by software programmers
developing Windows PowerShell cmdlets. This helps maintain a well - known list of verb names an
administrator needs to know when learning about cmdlets. Here are some common verb names used in
Exchange Management Shell cmdlets and what they do:

 Get : The Get verb retrieves information about the target of the cmdlet. In the previous example,
 Get-ExchangeServer , the cmdlet retrieved information about Exchange servers.

 Set : The Set verb sets a condition or makes a configuration change to the cmdlet target.

 New : The New verb creates a new instance of the cmdlet target.

 Remove : The Remove verb deletes the cmdlet target.

❑

❑

❑

❑

Figure 1-3

execution of the cmdlet. For example, the cmdlet Get-ExchangeServer returns a list of all Exchange
servers in the organization in a formatted list as shown in Figure 1 - 3 .

c01.indd 9c01.indd 9 12/17/07 3:19:25 PM12/17/07 3:19:25 PM

Part I: PowerShell for Exchange Fundamentals

10

 The Get verb is the most common verb used in Exchange Management Shell cmdlets. It is also known
as the default verb. When a cmdlet noun name is entered without a verb, Windows PowerShell assumes
that the Get verb was implied and runs that cmdlet. In the preceding example, entering
 ExchangeServer instead of Get-ExchangeServer would yield the same results.

 Noun Names
 Nouns always represent the target of the cmdlet, in other words the thing on which the cmdlet will act.
Noun names are usually straightforward and simply describe the target item. For example, consider the
cmdlet Get-ClusteredMailboxServerStatus . From looking at this cmdlet ’ s name you should be able
to figure out that its purpose is to retrieve the status of Clustered Mailbox Servers. When you apply this
logic to other cmdlet names you quickly begin to understand how easy it can be to discover and
learn cmdlets.

 Another concept of noun names you should understand is that many cmdlet names share the same
noun. For example, there are 10 different cmdlets that all affect mailbox items. Here are examples of just
a few of these cmdlets:

 Get-Mailbox is used to retrieve information about one or more mailbox - enabled users.

 Set-Mailbox is used to change configuration settings for one or more mailbox - enabled users.

 New-Mailbox is used to create a new mailbox - enabled user.

 Move-Mailbox is used to move one or more mailboxes from one mailbox database to another.

 As you can see, these examples all use a common noun name, yet each cmdlet yields very different
results when it is coupled with a different verb name.

 Parameters
 Parameter names are preceded by a dash or hyphen (-) and can be made up of a single word or multiple
words with no spaces between them. Parameter names are typically followed by one or more values that
are used either to provide input data for setting property values or to dictate the behavior of the cmdlet.
Parameters that dictate behavior act as switches and typically do not require an input value.

 Parameters have certain characteristics that determine how they are used. You can find out these
characteristics via the built - in help information for each cmdlet that is readily available from the
command line. Later this section covers how to get help and how to interpret that information to
know how to use parameters effectively.

 Parameter Input Values
 Parameter input values are typically integer (numbers), string (words), or Boolean (true or false) data
types. Other more specialized data types are also possible as defined by the class the cmdlet represents.
For example, many cmdlets specific to Exchange Management Shell have data type input values specific
to Exchange configuration components. The parameter data type is set when the cmdlet is defined.
Windows PowerShell validates parameter input values as the cmdlet executes. If an invalid value is used
or the format of the input data does not meet the cmdlet ’ s specification, the cmdlet fails to execute. For
example, if a parameter takes as input an integer value, but a string value is entered instead, the cmdlet
fails with an error that states the wrong data type was used.

❑

❑

❑

❑

c01.indd 10c01.indd 10 12/17/07 3:19:25 PM12/17/07 3:19:25 PM

Chapter 1: Getting Started with Windows PowerShell

11

 In Figure 1 - 4 , the Set-Mailbox cmdlet is being used to set the ProhibitSendQuota attribute on
mailbox - enabled user John Doe. The expected data input type for parameter ProhibitSendQuota
is an integer value or integer value with a standard byte size abbreviation as a suffix. Because an
alphanumeric string value (somestring) was entered instead, the command fails to execute and the
error message shown describes the exact cause for the error. The solution is to provide the input value in
the correct format, in this case 2GB to specify a ProhibitSendQuota value of 2,147,483,648 bytes.

Figure 1-4

 Single - word string values can be entered as is, but string values that contain multiple words with spaces
must be encapsulated in single or double quotes. Some parameters take as input multiple values. Each
value must be separated by commas. When entering multiple string values with spaces, encapsulate
each value in quotes, and separate each value with commas.

 In Figure 1 - 5 , the Set-User cmdlet is being used to set the multi - valued attribute OtherHomePhone with
two separate string values that both contain spaces.

Figure 1-5

 Some parameters support wildcards as input. Windows PowerShell handles wildcard matching so all
cmdlets that accept wildcard input behave the same way. The most commonly known wildcard you will
find useful is the asterisk or star (*). The asterisk wildcard can be used to stand for zero or more
characters in a string.

c01.indd 11c01.indd 11 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Part I: PowerShell for Exchange Fundamentals

12

 For example, the Get-Service cmdlet is used to gather information about services and supports
wildcards for the Name parameter used to identify those services. Using the asterisk wildcard you can
generate a list of all services with names that match the given pattern, as shown in Figure 1 - 6 for services
that begin with Net .

Figure 1-6

 Most cmdlets that use the Identity parameter support wildcards as input. Also most cmdlets that use
the Get verb and the Identity parameter support a default value of * for the Identity parameter.
This means that when you enter the cmdlet name without any parameters or values, it is implied you
want to gather information about all the possible matches.

 For example, typing and entering Get-Mailbox returns information about all mailbox - enabled accounts.
In large organizations this could result in thousands of matches so cmdlets like Get-Mailbox limit the
results to 1,000 matches. This can be increased by including the ResultSize parameter with an
appropriate higher value.

 In Figure 1 - 7 , Get-Mailbox is used to retrieve all mailboxes in the organization.

Figure 1-7

c01.indd 12c01.indd 12 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Chapter 1: Getting Started with Windows PowerShell

13

 Optional and Required Parameters
 Cmdlets may have some parameters that are not required to be used each time the cmdlet is run and are
considered optional. You will find that most cmdlets have at least some optional parameters, especially
cmdlets that modify items, because not all properties of an item require changing at the same time. This
allows you to use only the optional parameters necessary to make the desired changes while leaving out
all other optional parameters.

 Then there are other parameters that must always be used when the cmdlet is run. You will find that
most cmdlets that take an action such as creating, modifying, or removing items have at minimum one
required parameter to identify the items on which to take action. If any required parameters are left out
when running a cmdlet, Windows PowerShell prompts the user to enter an input value for each of the
missing required parameters.

 The Identity parameter is one of the most common required parameters, typically used by cmdlets
that need as input the name of the object on which to take some action. For example, the Set-User
cmdlet modifies attributes on an existing user account in the Active Directory directory service.
The Identity parameter is required when using Set-User and is used to identify the user account
on which the changes are to be made.

 In Figure 1 - 8 , the Set-User cmdlet is being used to set the Department attribute, but the Identity
parameter was not used to name the target user so the shell prompts the operator for the missing value.

Figure 1-8

 Positional and Named Parameters
 Another parameter characteristic to consider is whether a parameter is positional or named. A positional
parameter can be used without actually entering the parameter name, as long as the input value is in the
position where the parameter name would normally have been used. Positional parameters are
designated with a number, starting with position 1, then position 2, and so on. Using positional
parameters effectively can be a real time - saving practice.

c01.indd 13c01.indd 13 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Part I: PowerShell for Exchange Fundamentals

14

 For example, the Identity parameter is typically a positional parameter used in position 1 after the
cmdlet name. The Get-Mailbox cmdlet uses the Identity parameter in position 1 to identify the
mailbox - enabled user for which to retrieve information. In Figure 1 - 9 , you can see that the results of
running the Get-Mailbox cmdlet with and without the Identity parameter name are identical as long
as the input value is supplied in the first position after the cmdlet name.

Figure 1-9

 If a parameter is not positional, then it is named. To use a named parameter you must always enter the
parameter name followed by the input value. The order in which you enter named parameters and their
input value on the command line does not matter because the shell ’ s command parser interprets the
command in total before execution.

 Parameter Shortcuts
 Another time - saving feature you may find useful is parameter name shortcuts. When entering the name
of a parameter, you need to supply only enough of a parameter ’ s name to disambiguate it from any
other parameter name. In the following example the first command uses the Set-User cmdlet to set the
 Manager attribute on user account John Doe to his manager Jane Doe . -ma is enough information for
the shell to interpret the parameter name Manager so the command succeeds. In the second command,
-po is being used to refer to the PostalCode parameter. However, -po is ambiguous and also matches
parameter PostOfficeBox . In this case the command fails with the error shown Figure 1 - 10 .

Figure 1-10

c01.indd 14c01.indd 14 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Chapter 1: Getting Started with Windows PowerShell

15

 The solution is to provide enough of the parameter name to make it unique, in this case posta would be
enough to disambiguate PostalCode from PostOfficeBox .

 Discovering Commands and Getting Help
 Now that you have learned the basic concept of using cmdlets, we ’ ll discuss how to go about
discovering cmdlets and learning how to use them.

 Even with more than 500 cmdlets in Exchange Management Shell, finding the right cmdlet to accomplish
a task is easier than you might think. Earlier in this section you learned that a cmdlet ’ s name is typically
descriptive of the cmdlet ’ s purpose. Using this knowledge along with some simple commands, you can
quickly and easily find any cmdlet.

 Using Get - Help to Find Cmdlets
 Windows PowerShell provides powerful built - in help information available directly from the command
line. Most cmdlets have some level of help content stored in a cmdlet help file that can be accessed from
the command line using the Get-Help cmdlet. You don ’ t need to know where the help file is or how to
get to help information for a specific cmdlet; PowerShell works out these details as part of built - in help.

 Besides displaying cmdlet help information, Get-Help is a powerful tool for finding cmdlets based
on ambiguous name matching. When supplied with a specific and unique cmdlet name as input to the
Name parameter, Get-Help displays the help information for that cmdlet. But if the input is ambiguous,
 Get-Help displays a list of all cmdlets that are a close match.

 Using this approach you simply need to supply enough of the possible cmdlet name to generate a list
of cmdlets from which to choose. For example, say you would like to learn about cmdlets that are used
for managing Exchange databases but you don ’ t know the exact names, or even which cmdlets might
be available. The command shown in Figure 1 - 11 generates a list of cmdlets that contain the word
 database .

Figure 1-11

c01.indd 15c01.indd 15 12/17/07 3:19:27 PM12/17/07 3:19:27 PM

Part I: PowerShell for Exchange Fundamentals

16

 In this example for Get-Help and for those that follow later in this section, input values are used
without specifying the parameter Name . Because Name is a positional parameter (for position 1),
it is not required to be named as long as the input value appears on the command line in the first
position after Get-Help .

 Using the whole word database produces a list of cmdlets that have at least the word at the beginning
of the noun name. But can you be sure that this is a list of every cmdlet possible that can be used to
manage databases? Luckily, Get-Help supports the use of wildcards to search for matching cmdlet
names. To display a list of cmdlets that have the word database anywhere in the cmdlet name, add the
 * wildcard to the beginning and end of the name. This causes Windows PowerShell to return a list of all
possible matches as shown in Figure 1 - 12 .

Figure 1-12

 This produces a comprehensive list of all available cmdlets that deal with the management of Exchange
databases. Now you would simply need to select the most likely cmdlet for accomplishing a given task
based on how closely the cmdlet name describes what the cmdlet does, then access the help information
for that cmdlet to learn how it is used. For example, if you want to learn how to create a mailbox
database, the cmdlet New-MailboxDatabase is the most likely choice.

 Another simple way to use Get-Help is with the Role parameter. Exchange Server 2007 architecture
allows for the installation of different server roles on a given server to match the needs of an
organization ’ s messaging system. There are five server roles, and by specifying a wildcard role value
with the Role parameter, Get-Help displays a list of all cmdlets used to manage that role. For example,
to display all cmdlets used to manage the Mailbox server role, the command shown in Figure 1 - 13 would
be used.

c01.indd 16c01.indd 16 12/17/07 3:19:27 PM12/17/07 3:19:27 PM

Chapter 1: Getting Started with Windows PowerShell

17

 The other possible role values you can use with the Role parameter are:

 client for Client Access Server

 hub for Hub Transport server

 um for Unified Messaging server

 edge for Edge Transport server

 Using Get - Command to Find Cmdlets
 In addition to the Get-Help cmdlet, the Get-Command cmdlet is very useful for discovering cmdlets
and other Windows PowerShell command elements such as functions, aliases, applications, and
external scripts.

 Running Get-Command without any parameters produces a list of every available cmdlet. With more
than 500 available cmdlets in Exchange Management Shell, this extensive list is not very efficient for
discovering individual cmdlets. The parameters for Get-Command allow you to refine the list into
something comprehensive. Using the Name parameter you can supply enough of the cmdlet name with
wildcards to create a list of ambiguous matches similar to the previous example using Get-Help .

 The parameters Verb and Noun are used either alone or together to search for cmdlets with matching
verb and noun names. Wildcards are permitted for both of these parameters. The Name parameter

❑

❑

❑

❑

Figure 1-13

c01.indd 17c01.indd 17 12/17/07 3:19:27 PM12/17/07 3:19:27 PM

Part I: PowerShell for Exchange Fundamentals

18

cannot be used in conjunction with either the Verb or Noun parameters. In Figure 1 - 14 , Get-Command
is used with the Verb and Noun parameters to return a list of matching cmdlets.

 The CommandType parameter allows you to specify the type of command for which to return matches.
Possible values are Alias , Function , Cmdlet , ExternalScript , Application , and All . Using
 Get-Command in this way allows you to find these additional command elements that are not exposed
when searching for cmdlets using Get-Help . For example, the command in Figure 1 - 15 uses the
CommandType parameter to find external scripts that contain the word database somewhere in
their name.

Figure 1-14

Figure 1-15

 ExternalScript command elements are Windows PowerShell scripts located in the %ProgramFiles%\
Microsoft\Exchange Server\Scripts directory. In this example two scripts included with Exchange
Server 2007 match the search criteria for names that include database .

c01.indd 18c01.indd 18 12/17/07 3:19:28 PM12/17/07 3:19:28 PM

Chapter 1: Getting Started with Windows PowerShell

19

 Get-Command can also be used to return detailed information about the syntax of a given cmdlet using
the Syntax parameter. However, you may find the syntax information exposed in a cmdlet ’ s help
information to be more useful in the long run because it is accompanied by other help details.

 Using Help Information Effectively
 Cmdlet help information is very detailed and you may find it difficult to follow when you first start
learning about a given cmdlet. Luckily Get-Help makes it possible to access specific areas of help
information in varying degrees of detail. Using Get-Help effectively allows you to access the
information you are interested in without displaying the entire help information available for a cmdlet.

 There are three versions of Get-Help that display help information differently depending on how they
are used:

 Get-Help displays help information without pausing when the console display is full.
 Parameters are used with Get-Help to determine the type of information and detail level
 displayed. The basic syntax is Get-Help < cmdlet name > < parameters > .

 Help is a function based on Get-Help that displays help information one screenful at a time,
pausing when the console screen is full to allow the operator to advance the display either one
full page using the space bar, or one line using the Enter key. The parameters available for
Get-Help also work with Help . The basic syntax is Help < cmdlet name > < parameters > .

 -? is a pseudo - parameter that displays basic help information without pausing when the
 console display is full. -? takes no parameters as input like the other versions of Get-Help .
The basic syntax is < cmdlet name > -? .

 The information contained in cmdlet help files you will find most interesting is divided into six major
topics. By using certain parameters with Get-Help , you can display each of these topics in varying
degrees of detail:

 Synopsis: A brief description of the cmdlet and what it does.

 Syntax: One or more syntax diagrams that detail the use of the cmdlet and its input parameters.

 Detailed Description: A more detailed description than the synopsis.

 Parameters: A detailed description of each parameter and how they are used.

 Examples: One or more examples of how the cmdlet is executed.

 Related Links: The names of other cmdlets that may be related in some way to this cmdlet.

 The command Get-Help < cmdlet name > without any parameters displays the Synopsis, Syntax,
Detailed Description, and Related Links topics. This is the same information displayed when using the
command < cmdlet name > -? .

 The command Get-Help < cmdlet name > -Detailed displays additional information about the
cmdlet including descriptions of each parameter (but not details) along with the Examples topic.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 19c01.indd 19 12/17/07 3:19:28 PM12/17/07 3:19:28 PM

Part I: PowerShell for Exchange Fundamentals

20

 The command Get-Help < cmdlet name > -Full displays the entire contents of the help file for the
cmdlet including detailed information about each parameter.

 The command Get-Help < cmdlet name > -Examples displays the Examples topic along with the
Synopsis topic.

 The command Get-Help < cmdlet name > -Parameter < parameter name > displays the detailed
information about the specified parameter. Wildcards are permitted.

 Although the descriptions and examples included in the help files are useful, you may find that the most
beneficial information for learning how to use a cmdlet are the details contained in the Syntax and
Parameter topics.

 Syntax Details
 The information included in the Syntax topic contains one or more syntax diagrams showing how the
cmdlet and its parameters are used. Some cmdlets can have more than one syntax diagram depending
on how the parameters work in combination with each other.

 For example, the Get-PublicFolderDatabase cmdlet has three distinct syntax diagrams in its help file.
Each diagram shows a different way to run the cmdlet depending on the parameters being used:

Get-PublicFolderDatabase [-Identity < DatabaseIdParameter >] [-DomainControll
er < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status < SwitchPara
meter >] [< CommonParameters >]

Get-PublicFolderDatabase -Server < ServerIdParameter > [-DomainController < Fq
dn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status < SwitchParameter >
] [< CommonParameters >]

Get-PublicFolderDatabase -StorageGroup < StorageGroupIdParameter > [-DomainCo
ntroller < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status < Swit
chParameter >] [< CommonParameters >]

 The Get-PublicFolderDatabase can be used with the Identity parameter to identify a
specific database, the Server parameter to specify the server where the database is located, and the
StorageGroup parameter to specify the storage group that holds the database. Each of these parameters
is exclusive and cannot be used in combination with one another, therefore the separate syntax diagrams
are necessary to show how each is used.

 Parameter Details
 Two levels of parameter details can be displayed using Get-Help . The Detailed parameter causes the
output to include the name and description of each parameter, but omits technical details. The Full
parameter results in the display of all parameter details. To display the full details of a single given
parameter, the Parameter parameter is used followed by the name of the parameter. The Detail , Full ,
and Parameter parameters cannot be used in conjunction with one another.

c01.indd 20c01.indd 20 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Chapter 1: Getting Started with Windows PowerShell

21

 Parameter details describe whether the parameter is required or optional and if it is positional or named.
They also describe whether the parameter has a default value and if it accepts pipeline input and
wildcard characters. For example, the parameter details for the Identity parameter as used with the
 SetMailbox cmdlet contain the information displayed in Figure 1 - 16 using Get-Help and the
 Parameter parameter.

 As you can see in these details, the Identity parameter is required (true) and positional
(for position 1), has no default value, and accepts pipeline input (true) but not wildcard
characters (false).

 Learning More
 In addition to help information for individual cmdlets, there are several supplementary help files that
cover conceptual topics related to using Windows PowerShell. The names of the individual help files by
and large describe the topic they cover and are prefixed with the string about_ . To see a complete list of
available topics simply type the command shown in Figure 1 - 17 .

 To access the contents of one of these help files simply enter Get-Help about_ < topic name > . For
example, to read the help file that covers the usage of wildcards in Windows PowerShell, type Get-Help
about_wildcard .

 Using Tab Expansion to Enter Cmdlets and Parameters
 At this point you may be asking yourself how you will ever be able to remember exact cmdlet names
and type them in without making spelling mistakes. Fortunately that is not a problem once you
understand how to use the tab expansion feature of Windows PowerShell.

Figure 1-16

c01.indd 21c01.indd 21 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Part I: PowerShell for Exchange Fundamentals

22

 Most shells offer some form of automatic completion to take some of the drudgery and guesswork out of
entering certain command elements. Even cmd.exe offers automatic completion using the tab key when
typing directory paths and filenames. Windows PowerShell takes this feature to whole new levels of
functionality by providing tab expansion of cmdlet and parameter names as well.

 To use tab expansion when typing a cmdlet name, simply type the verb name followed by the hyphen,
then the first few letters of the noun name. When you press the Tab key, Windows PowerShell
automatically expands what you entered to the first matching cmdlet name. If there are other possible
matches, pressing the Tab key repeatedly cycles through the available choices. Pressing the Tab key
while holding down the Shift key causes Windows PowerShell to cycle backwards through the available
choices. The more characters you enter before pressing the Tab key make the search more specific and
narrows the number of possible matches.

 For example, say you need to run the cmdlet Get-MailboxFolderStatistics . This cmdlet is useful
for determining the size and number of items in given mailbox folders. Using tab expansion you can
enter this long cmdlet name with no mistakes and a minimal number of keystrokes using the following
procedure:

 1. Type get-ma and press the Tab key. This expands to Get-Mailbox . Notice the name
 automatically changes to the standard form of uppercase first letters.

 2. Now press the Tab key a second time. This time the cmdlet name expands to
 Get-MailboxCalendarSettings .

 3. Press the Tab key again and the name expands to Get-MailboxDatabase .

 4. Press the Tab key one last time to expand the name to Get-MailboxFolderStatistics .
To continue at this point simply hit the space bar and continue typing the rest of the command.

Figure 1-17

c01.indd 22c01.indd 22 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Chapter 1: Getting Started with Windows PowerShell

23

 Using this procedure you can enter complex, mistake - free cmdlet names using a minimal number of
characters and Tab keystrokes. One major benefit of tab expansion is you don ’ t have to remember exact
cmdlet names as long as you can enter at least the verb name followed by a few letters of the noun name.

 Tab expansion works for parameter names in the same manner. This works especially well when you
don ’ t know all the possible parameter names a cmdlet is using. To cycle through all the parameter names
type a hyphen and press the Tab key repeatedly. When the correct parameter name appears, continue
typing to enter the parameter value as applicable.

 Be careful when using this procedure because Windows PowerShell does not validate the parameter
names entered on the command line until the command is parsed at run time. Using tab expansion it is
possible to inadvertently enter the same parameter name twice, causing the command to fail.

 Using Cmdlet Aliases
 Windows PowerShell allows you to refer to cmdlets using a shorter, simpler name called an alias. The
default installation of Windows PowerShell comes complete with several predefined alias names that
approximate a similar function in other command shells.

 You may have already noticed that Windows PowerShell accepts dir as a command to display items in
the current location. There is no real cmdlet called dir , instead it is an alias for the underlying Windows
PowerShell cmdlet Get-ChildItem . Several other familiar command names have been defined as alias
names for the matching Windows PowerShell command. To see a list of all alias definitions, run
 Get-Alias .

 Windows PowerShell also allows you to define your own alias definitions using the New-Alias cmdlet.
The lifetime of alias definitions is linked to the lifetime of the current shell session. When the shell closes
the definition is lost. To learn more about aliases, type Get-Help about_Alias .

 Using Pipelines
 As mentioned earlier in this chapter, the results of running a Windows PowerShell cmdlet is a collection
of one or more .NET objects. These objects have a structure that describes the properties (attributes) of
the objects and the states (current value) of these properties. This feature of Windows PowerShell makes
it possible to take the results of one cmdlet and pass it via pipeline as input to another cmdlet for further
processing. Using a pipeline to pass data from one cmdlet to another is known as composition .

 The vertical pipeline operator (|) is used to instruct Windows PowerShell to pass the collected objects
from the command just prior to the pipeline to the next command. Commands can be constructed using
multiple pipelines to accomplish tasks too complex for a single cmdlet to accomplish alone.

 Some cmdlets that use the Get verb provide a way to limit the collection of objects based on a parameter
value that acts as a filter. The resulting collection can then be passed by pipeline to a cmdlet that uses the
 Set verb to modify one or more properties on each object. For example, the Get-User cmdlet includes
the OrganizationalUnit parameter.

 Say your organization has implemented Organizational Units as a way to contain all users located in
the same geographical office. A need arises to change the fax number attribute for all user accounts in the
same office. Using the Get-User cmdlet with the appropriate value for the OrganizationalUnit
parameter you can create a collection of user objects limited to the users in the office. By passing this

c01.indd 23c01.indd 23 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Part I: PowerShell for Exchange Fundamentals

24

collection to the Set-User cmdlet along with the appropriate value for the Fax parameter you can
change the fax number quickly and easily on every user account using a single command line.

 Commands that use multiple cmdlets and pipelines on a single line are often referred to as “ one - liners. ”
The following one - line command demonstrates the previous example for changing the fax number for
all users contained in the “ Denver ” organizational unit:

[PS] C:\ > Get-User -OrganizationalUnit “CN=Denver,DC=exchangeexchange,DC=local” |
Set-User -Fax 555-1234

 Whether there are 10 or 10,000 users in the organizational unit really does not matter in this example.
By collecting the user objects based on their organizational unit container with the first cmdlet, we are
able to modify the fax number on all users in bulk with the second cmdlet without additional complex
programming.

 Filtering Objects
 Not all cmdlets may provide parameters for filtering objects like the one shown in the previous example.
And though some cmdlets may provide a few filtering parameters, they may not provide a parameter
for the specific property you may need to use as a filter condition. That ’ s when you need to become
familiar with the Where-Object filter cmdlet.

 Where-Object allows you to filter objects out of the command stream based on one or more test
conditions you specify in a script block. The test conditions are based on one or more of the objects ’
properties. Only the objects that meet the test conditions are passed on to the next command, while all
others are discarded. The most basic syntax of Where-Object is easy to learn:

 < command > | Where-Object { < test condition > } | < command >

 Where and “?” are both shorthand alias names for the Where-Object cmdlet.

 The test condition is an expression that resolves to either Boolean true or false. Only the objects that
resolve true when tested are passed down the pipeline to the next command. The syntax of the test
condition is made up of the following elements:

{ $_. < property name > < comparison operator > < value to test > < conjunction > $_. < property
name > < comparison operator > < value to test > ...}

 The first element $_ is a special variable (called an automatic variable) and is used to refer to objects
in the pipeline stream. Using a technique called dot notation a property name is appended to the
 $_ variable to refer to the specific object property to which the test applies. For example, $_.Identity
refers to an object ’ s Identity property.

 A comparison operator is used to set the condition of the test. Windows PowerShell supports a number
of named comparison operators. The most frequently used operators for comparing whole property
values are eq (equals), ne (not equals), lt (less than), and gt (greater than). The like and notlike
operators are used to compare string values using wildcard rules. To see a complete list of all comparison
operators type Get-Help about_Comparison_Operators at the command line.

c01.indd 24c01.indd 24 12/17/07 3:19:30 PM12/17/07 3:19:30 PM

Chapter 1: Getting Started with Windows PowerShell

25

 The value to test must be of the same data type of the property being tested. For example, if the property
data type is string, a string value enclosed in quotes must be used for the test. If the property data type is
integer, a numeric value must be used for the test and so on.

 While Windows PowerShell validates the syntax used inside the script block, the result of entering an
unknown property name or an invalid data type is a failure to pass any objects down the pipeline
without reporting any error to the operator.

 Multiple test conditions can be used in the same script block as long as they are separated by one or
more conjunctive or disjunctive operators:

 The and conjunction operator is used to compare the Boolean results of two or more test condi-
tions to render a concluding Boolean value. If any of the test conditions are true, a true is
returned.

 The or disjunctive operator is used to compare the Boolean results of only two test conditions. If
either one or both test conditions are false, a false is returned.

 Conjunctive and disjunctive groups of test conditions can be used in the same script block as
long as they are enclosed in parentheses.

 Now let ’ s look at a practical example of using Where-Object as a filter in the pipeline stream. Say that
you need to change the Manager property for several users based on the department to which they
belong (Engineering), and the office from which they work (the Dallas office) to show they report to
manager John Doe. The command would look like this:

[PS] C:\ > Get-User | Where-Object { $_.Office -eq “Dallas” -and $_.Department -eq
 “Engineering” } | Set-User -Manager “John Doe”

 After collecting all users with Get-User , the collection of objects is passed to Where-Object to apply
the test conditions on each object one at a time. The first test checks for the Office property equal to
 “Dallas” . The second condition checks the Department property equal to “Engineering” . If both test
conditions result in true, the object is passed to the next command. If one of the test conditions results in
false, the object is disposed. After processing all objects in the stream, they are passed to Set-User for
applying the modification.

 Finding Property Names and Data Types
 To use Where-Object effectively you need to know the available property names and data types for
the objects being passed by a given cmdlet. By passing the results of any cmdlet that uses the Get verb
to the Get-Member cmdlet you can generate a list of properties and their data type. For example,
the command in Figure 1 - 18 sends the objects collected by the Get-Mailbox cmdlet to Get-Member and
displays the objects ’ properties and their definition.

 It is important to know the exact name of each property used in the Where-Object script block.
Mistyping a property name results in a failure to pass any objects down the pipeline stream without
reporting any error to the operator.

❑

❑

❑

c01.indd 25c01.indd 25 12/17/07 3:19:30 PM12/17/07 3:19:30 PM

Part I: PowerShell for Exchange Fundamentals

26

 Controlling Output
 When you run a cmdlet in Windows PowerShell, the type of data displayed as output, if any, is
determined by the default format of the cmdlet. The output format is determined at the time the
cmdlet is created. Most cmdlets that use the Get verb have some form of default display formatting that
results in what the programmer determined the most useful information. For example, running the
Get-Mailbox cmdlet for a specific user results in the output shown in Figure 1 - 19 .

Figure 1-19

Figure 1-18

 At times you need to see more specific information not included in the default format. By using the
pipeline operator to pass objects to the Format-List and Format-Table cmdlets you can control a
cmdlet ’ s output to see either all properties or only those properties you specify.

c01.indd 26c01.indd 26 12/17/07 3:19:30 PM12/17/07 3:19:30 PM

Chapter 1: Getting Started with Windows PowerShell

27

 Format - List
 In the previous example Get-Mailbox displayed only those properties specified as default output for
the cmdlet. By passing the object to Format-List (or its alias name fl) without any additional
parameters, all properties are displayed in a list format as shown in Figure 1 - 20 .

 To display only specific properties, add the property names, separated by commas, after Format-List .
For example, if you only want to see the Name , Alias , and PrimarySMTPAddress properties for user
 jandoe , you would then run the command shown in Figure 1 - 21 .

Figure 1-20

Figure 1-21

c01.indd 27c01.indd 27 12/17/07 3:19:31 PM12/17/07 3:19:31 PM

Part I: PowerShell for Exchange Fundamentals

28

 Format - Table
 Format-Table (and its alias, ft) is similar to Format-List except it allows you to format output in
table format. Unlike Format-List , passing objects to Format-Table without any additional parameters
results in one of two displays. If the default format for displaying output is table format of select
properties, the default format is used for display. If the default format is a list of all properties, Windows
PowerShell attempts to display as many of the properties as possible in table format. This is usually very
impractical so Format-Table is typically used with a list of properties to display.

 If Format-Table is used in place of Format-List in the previous example, the resulting display would
look like Figure 1 - 22 .

Figure 1-22

 As more properties are specified, or if property values are longer than can be displayed on a single line,
Windows PowerShell truncates the output with ellipses to indicate more information is available as
shown in Figure 1 - 23 where the LegacyExchangeDN property has been added to the previous command.

Figure 1-23

c01.indd 28c01.indd 28 12/17/07 3:19:31 PM12/17/07 3:19:31 PM

Chapter 1: Getting Started with Windows PowerShell

29

 To change this behavior, add the AutoSize parameter to force Format-Table to change column widths
to make the most of the console screen width, and the Wrap parameter to wrap long values that won ’ t fit
on a single line to the next line. The addition of these two parameters to the previous example yields the
results shown in Figure 1 - 24 .

Figure 1-24

 Running Scripts
 As you learn to use Exchange Management Shell to manage your Exchange organization you will most
likely identify several command sequences that you run on a regular basis to accomplish some task.
Store these commands in a Windows PowerShell script file so you can run them all by simply executing
the script file. Use your favorite text editing software to create and edit script files. Windows PowerShell
script files use .ps1 as the file extension name.

 To run a script, type its name at the command line. You do not have to include the .ps1 file extension.
However, you do have to pay attention to the drive location where the script is stored and the current
location from which the script is being run. You must supply the full path to the script file even if the
script is stored in the current location. To tell Windows PowerShell the script is in the current directory,
either type the full path or use a dot and backslash (.\) to indicate the current directory as shown in this
example:

 [PS] C:\scripts > .\myscript

 Exchange Management Shell provides a default directory for storing several script files provided
with Exchange Server 2007. You do not have to provide the full path name when running any script
located in the %ProgramFiles%\Microsoft\Exchange Server\scripts directory because this path
is stored in the Windows system variable path statement as part of Exchange Server installation.
By placing your script files in this directory you can keep them in a known directory and run them from
any drive location without providing the full path.

 The chance that a script may include destructive code may raise security concerns among administrators.
Windows PowerShell provides a method for applying a security policy for controlling which scripts are
allowed to run on a machine. The execution policy determines whether or not scripts are allowed to run,
and whether they must include a digital signature that verifies the origin of the script and if it has been
tampered with in any way since it was digitally signed by its creator.

c01.indd 29c01.indd 29 12/17/07 3:19:31 PM12/17/07 3:19:31 PM

Part I: PowerShell for Exchange Fundamentals

30

 All scripts included with Exchange Server 2007 have been code signed by Microsoft to ensure the scripts
comply with the execution policy model for ensuring scripts can be accounted for before execution. The
default execution policy setting for Exchange Management Shell is RemoteSigned . This level allows you
to run scripts you create locally and warns you when scripts provided by Microsoft have been altered.

 To learn more about Windows PowerShell execution policies, type Get-Help about_signing .

 Preparing Exchange Management Shell
 Before continuing on to the rest of the book, take a moment to review the following procedure for
customizing your Exchange Management Shell console application. You ’ ll find these options convenient
when trying the examples shown in the following chapters.

 1. Navigate to the Exchange Management Shell shortcut: from the Start menu, select All
Programs Exchange Server 2007 and then right - click Exchange Management Shell and
select Properties.

 2. Select the Options tab and make the following modifications:

 a. To make it possible to select, copy, and paste text in the console screen, under Edit Options
click to select the QuickEdit Mode checkbox. With this option selected, you can select text
in the console window by dragging the left mouse button. Copy the selected text to the
clipboard using the right mouse button or by pressing Enter.

 b. The Insert Mode checkbox is typically already selected, but make sure it is checked as well.
This option allows you to paste text into the command line by positioning the cursor at the
desired position, then using the right mouse button to paste the contents of the clipboard.

 c. Under Command History set the Buffer Size to at least 100. This number determines the
number of commands stored in the console buffer. Previously entered commands can be
recalled by using the up and down cursor keys. Click to select the Discard Old Duplicate
checkbox to automatically discard any duplicate commands from the console buffer.

 3. Select the Layout tab and make the following modifications:

 a. Under Screen Buffer Size change the Height setting to 9,999. This setting determines the
number of lines of output held in the console buffer you can view using the console
window scroll control.

 b. Under Window Size, set the Width setting to a number between 80 and 120. This setting
determines the number of characters displayed across the console window. Though a
higher number setting allows you to type more characters before wrapping to the next
line, the default output format of most Exchange Management Shell cmdlets is based on an
80 - character display. If you change this number, make sure the value for Width under
Screen Buffer matches.

 4. Click OK to commit these changes and close Properties. The changes take effect the next time
Exchange Management Shell is started.

c01.indd 30c01.indd 30 12/17/07 3:19:32 PM12/17/07 3:19:32 PM

Chapter 1: Getting Started with Windows PowerShell

31

 Summary
 Windows PowerShell is the next - generation command - line shell and scripting language for
 Windows. Exchange Server 2007 is the first Microsoft application to utilize Windows PowerShell
for deployment and administration.

 Command shells provide a more flexible administrative interface compared to Graphical User
Interfaces (GUIs). Administrators use scripts to automate everyday tasks and resolve issues GUI
interfaces are not able to handle.

 Windows PowerShell is built on top of .NET Framework version 2.0 and exposes .NET classes as
built - in commands. Actions in Windows PowerShell are based on .NET objects that carry their
structure definition as well as the current state of their attributes. Windows PowerShell objects
have properties (which are characteristics) and methods (which are actions that you can take)
and can be passed from one command to another without the need for parsing.

 Exchange Management Shell extends Windows PowerShell to include more than 500 built - in
commands. Exchange Management Console is a GUI management application built on top of
Windows PowerShell.

 The most basic component of Windows PowerShell is the built - in commands called cmdlets.
Cmdlet names are made up of a verb name that identifies the action to take and the noun name
that identifies the object on which to take action. Cmdlets use named parameters to identify
individual properties or control how the cmdlet executes.

 Windows PowerShell includes a powerful help system available directly from the command line
that makes it easy to first discover and then learn how to use cmdlets.

 The Windows PowerShell tab expansion feature takes the drudgery and guesswork out of
typing commands by allowing you to automatically complete partially entered cmdlet and
parameter names using the Tab key.

 Windows PowerShell makes it possible to take the results of one cmdlet and pass it via pipeline
as input to another cmdlet for further processing. Using a pipeline to pass data from one cmdlet
to another is known as composition.

 Command sequences that are run on a regular basis can be stored in a Windows PowerShell
script file for execution. Sharing these scripts between all administrators in an organization
ensures consistent results.

 Further Reading
 If you want a more basic understanding of general Windows PowerShell usage outside of Exchange,
explore another fine Wrox publication:

 Professional Windows PowerShell ; Andrew Watt; ISBN: 978 - 0 - 471 - 94693 - 9; Wrox, 2004.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 31c01.indd 31 12/17/07 3:19:32 PM12/17/07 3:19:32 PM

c01.indd 32c01.indd 32 12/17/07 3:19:32 PM12/17/07 3:19:32 PM

