
1

CHAPTER ONE

REQUIREMENTS MANAGEMENT IN A
PROJECT MANAGEMENT CONTEXT

Alan M. Davis, Ann M. Hickey, and Ann S. Zweig

Project success is the result of proper planning and proper execution. Fundamental to

proper planning is making sure that the work to be performed by the project is well

understood and that the amount of work is compatible with available resources. Require-

ments management is all about learning and documenting the work to be performed by the

project, and ensuring compatibility with resources. A well-executed on-time project that

does not meet customer needs is of no use to anybody.

Requirements

Requirements define the desired behavior of a system1 to be built by a development project.

More formally, a requirement is an externally observable characteristic of a desired system.

The two most important terms of this definition are externally observable and desired. Externally

observable implies that a customer, user, or other stakeholder is able to determine if the

eventual system meets the requirement by observing the system. Observation here could

encompass using any of the five senses, as well as any kind of device or instrument. Next,

a requirement must state something that is desired by some stakeholder of the system.

Stakeholders include all classes of users, all classes of customers, development personnel,

managers, marketing, product support personnel, and so on. It is not so easy to determine

1 A system is any group of interacting elements that together perform one or more functions. The

elements could be electronic hardware, mechanical devices, software, people, and/or any physical

materials.

CO
PYRIG

HTED
 M

ATERIA
L

2 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

if a candidate requirement is a valid requirement from this perspective. In fact, the only

way to make the determination is to ask the stakeholders. The word desired was chosen

purposefully and is meant to encompass both wants and needs (see Wants vs. Needs later in

the chapter).

Requirements Management

This chapter is all about how project managers and analysts manage requirements. Require-

ments management is the discipline of

• learning what the candidate requirements are—the learning aspects of requirements man-

agement are generally called elicitation;

• selecting a subset of those candidate requirements that are compatible with the project’s

goals, budget, and schedule—the selecting aspects of requirements management are gen-

erally called triage;

• documenting the requirements in a fashion that optimizes communication and reduces

risk—the documenting aspects of requirements management are generally called require-

ments specification; and

• managing the ongoing evolution of those requirements during the project’s execution.

On large projects, the individuals who perform requirements management are generally

called analysts, requirements analysts, requirements managers, requirements engineers, sys-

tems analysts, business analysts, problem analysts, or market analysts. In companies that

mass-market the products of their development projects, these individuals are generally

within the marketing organization of the company. In companies that build custom products

for their customers, these individuals are generally within either the marketing or the de-

velopment organizations of the company. In IT organizations where the products of devel-

opment projects are used within the company, these individuals are within the IT

organization itself and interface with the internal customers, or are within the internal cus-

tomer organization and interface with the IT organization.

On smaller projects, the project manager often performs a majority of the requirements

management activities because these strategic activities are so critical to project success.

Requirements Management and Project Management

Much of requirements management can be thought of as part of (or preceding) project

planning, because one goal of requirements management is the decision concerning what

system is to be built. However, because needs of customers are often in constant flux,

requirements must be addressed throughout the project. At project inception, the project

manager is often intimately involved in defining requirements. Because any subsequent

change to requirements affects project scope, the project manager tends to stay involved in

the requirements management process throughout development.

Project management of requirements activities is unique among most project respon-

sibilities because of two factors: (1) the strong customer focus and (2) the ‘‘softness’’ of the

discipline. In most aspects of project management, the constraints upon the task are pre-

Requirements Management in a Project Management Context 3

defined, known, and finite. The project manager’s job is to control the project in such a

way that the short-term and long-term project goals are achieved. In the case of require-

ments, none of that is true. The stakeholders who are the source of the requirements may

not be available when needed. Even worse, their needs are constantly in flux. The very act

of asking the stakeholders for their needs induces the stakeholders to conceive of new re-

quirements hitherto not thought of. Every time a requirement is stated, the stakeholders will

think of many more. Every time a prototype is constructed and demonstrated to the stake-

holders, they will think of dozens of additional requirements. The phenomenon is likened

to a continuous application of Maslow’s hierarchy of needs. Every time any need is satisfied,

more needs appear. Thus, the actual performance of requirements management causes the

project to expand in scope.

Most activities being planned, controlled, and monitored by project management tend

to appeal to the left side of the brain. Everything is (or should be) well defined, concrete,

measurable, and to a large degree controllable. Requirements management requires a large

dose of both left-side and right-side brain function. For example, the skills required to

perform requirements elicitation primarily reside in the right side of the brain. Such skills

deal with communication, feeling, and listening. On the other hand, the skills needed to

record and manage the changes to requirements (including the use of so-called requirements

management tools) reside primarily in the left side of the brain. These skills deal with

specification, attention to detail, and precision. For this reason, requirements management

is more like project management than like the other tasks performed by the individuals

reporting to the project manager. Requirements management, like project management,

require a very diverse set of skills.

Types of Requirements

We defined a requirement as an externally observable characteristic of a desired system.

Although this sounds fairly specific, in practice requirements come in a wide variety of flavors

and serve a wide variety of purposes. The following sections describe some of this richness.

User/Customer vs. System (Problem vs. Solution)

Some authors demand that requirements describe a problem purely from the perspective of

the customer and must omit any reference to any solution system. Other authors demand

that requirements specifically describe the external behavior of the solution system itself

(IEEE, 1993). We have found that most practitioners divorce themselves from either extreme

and recognize that as the requirements process proceeds, requirements naturally evolve from

descriptions of the problem to descriptions of the solution. When requirements are stated

in terms of the problem without reference to a solution, they look like this:

We need to reduce billing errors by 50 percent.

When requirements are stated in terms of the external behavior of the solution, they look

like this:

4 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

FIGURE 1.1. SYSTEMS ARE COMPOSED OF SYSTEMS.

The system shall provide an ‘‘audit’’ command, which verifies the accuracy of bills.

There is only a fine line separating the problem and the solution. In the preceding examples,

one could argue that the former is actually within the solution domain. After all, reducing

billing errors is just one way of trying to accomplish some real goal, such as increasing

collections, increasing revenue, or maximizing cash flow.

Lauesen (2002) differentiates between user requirements and system or software re-

quirements. He states that user requirements are supposed to address just the needs of the

user, and system or software requirements are supposed to address the expected behavior

of the solution system. However, he also correctly points out that in practice, most require-

ments describe external behavior of the solution system anyway, and that the term user

requirements is generally applied to any requirements that are written in a language that

users can understand.

Systems of Systems vs. Single Systems

By their very nature, systems are composed of other systems, as shown in Figure 1.1. For

such systems, requirements are written for every system, usually starting with the top one.

When requirements are written for the topmost system, they are written from a perspective

outside that system, thus ensuring that all its requirements are externally observable. After

these requirements are documented in a system requirements specification, system design (generally

not considered part of requirements) is performed to decompose the system into its constit-

uent subsystems and then to document those subsystems. Then requirements are written for

Requirements Management in a Project Management Context 5

each subsystem, from a perspective outside each of those subsystems, and the process repeats

itself. As we get toward the lower-level systems, the system requirements are often replaced

with two documents, a software requirements specification and a hardware requirements specification,

each of which defines the requirements for its part of the system.

When a system is simple enough to not require decomposition into subsystems, the most

common approach is to write a system requirements specification for the overall system, allocate

each of the requirements to either software or hardware or both, and then proceed to write

a software requirements specification and a hardware requirements specification.

When a system is composed entirely of either software or hardware, just one document

is usually written—either a software requirements specification or a hardware requirements

specification.

Primary vs. Derived

Thayer and Dorfman (1994) differentiate between requirements that are defined initially

and requirements that are derived from those original requirements because of design de-

cisions. For example, once the decision is made to include this requirement:

The system shall provide service x to the customers.

it becomes evident that we must also include this requirement:

The system shall bill the customers for using service x.

Project vs. Product

IEEE Standard 830 (1993) and Volere (Robertson and Robertson, 2000) make a clear

distinction between requirements that constrain the solution system itself, for instance:

When the button is pressed, the system shall ignite the light.

and requirements that constrain the project responsible for creating the product, for instance:

The product must be available for commercial sale no later than April 2004.

IEEE Standard 830 calls the former product requirements and the latter project requirements. Volere

differentiates between two types of product requirements: functional and nonfunctional; and

three types of project requirements: project constraints, project drivers, and project issues.

Much agreement exists in the industry that product requirements are requirements, but

little agreement exists concerning whether project requirements are really requirements. We

happen to believe they are not requirements, but it is only a semantic issue. The fact is that

during requirements activities, the team will need to perform trade-off analyses between

both types of ‘‘requirements.’’

6 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

Behavioral vs. Nonbehavioral

Some requirements describe the inputs into and the outputs from a system, and the rela-

tionships among the inputs and outputs. Others describe general characteristics of the system

without defining inputs, outputs, and their interrelationships—that is, the functions that the

system is intended to support. The former requirements are called behavioral requirements,

although they have also been called functional requirements by the Robertsons (2000) and Davis

(1993). The latter requirements are called nonbehavioral requirements, although they have also

been called developmental quality requirements by Faulk (1997) and by the quite ambiguous and

almost deceptive term nonfunctional requirements, by the Robertsons (2000) and Davis (1993).

Following are examples of behavioral requirements:

When the button is pressed, the system shall ignite the light. If the power is on and the

on-off button is pressed, the system shall turn power off. When the user enters the

command xyz, the system shall generate the report shown in Appendix H.

Examples of nonbehavioral requirements include all aspects of performance, reliability,

adaptability, throughput, response time, safety, security, and usability, and they include such

requirements as the following:

The system shall handle up to 25 simultaneous users. All reports shall be completely

printed by the system within five minutes of the request by the user. The user interface

shall conform to Microsoft standard xxx.

Wants vs. Needs

Many requirements writings seem to imply that one of the responsibilities of the analyst is

to remove from consideration any requirements that are deemed to be ‘‘wants’’ rather than

‘‘needs’’ of the customers/users (IEEE, 1983; Swartout and Balzer, 1982; Siddiqi and Shek-

aran, 1996). Common wisdom and experience contra indicates this. Marketing studies have

shown that people decide to buy or use a system because it satisfies their wants as well as

their needs.

Requirements vs. Children of Those Requirements

When requirements are documented, they often are recorded more abstractly than is desir-

able, for example,

The system shall be easy for current system users to use.

This may be sufficient for early discussions, but it must be refined before the parties should

agree to the effort. The most common way to do this is to document the refined require-

ments as subrequirements of the parent requirement, as in the following:

Requirements Management in a Project Management Context 7

The system shall be easy for current system users to use.

(a) The system shall include conventional keyboard and mouse.

(b) The system shall exhibit the same ‘‘look and feel’’ of the existing legacy system.

Requirements should be refined whenever a discussion arises concerning the meaning or

implications of a requirement.

Original Requirements vs. Modified Requirements

According to Standish Group Reports (1995), 58 percent of all requirements defined for

software-based systems will change during the development process. According to Reinertsen

(1997), a similar rate of change occurs for all products in general. This constant flux requires

us to recognize that requirements evolve not only toward increasing detail but also toward

altered functionality. We must clearly differentiate between requirements that were originally

documented and requirements that become apparent only after development began.

Requirements in One Release vs. Requirements in Another

Almost all products evolve. Many requirements stated for, and implemented in, release n

will undergo change in subsequent releases. This observation makes it clear that we must

record the relationship between specific requirements and specific product releases.

Requirements Activities

Three distinct types of activities are performed under the auspices of requirements: elicita-

tion, triage, and specification. The following subsections elaborate on these.

Elicitation

The first major set of activities within requirements management is called elicitation. Elici-

tation is the process of determining who the stakeholders are and what that they need—in

other words, what their requirements are. Some of these needs can be ‘‘gathered’’—that is,

they are known and understood by the stakeholders, and all the analyst needs to do is ‘‘pick

them up’’ from the stakeholder. Others may surface only as the result of stimulating the

stakeholders; this type of activity most closely corresponds to the dictionary definition of

‘‘elicitation.’’ Other requirements need to be learned through study, experimentation, read-

ing, or consultation with subject matter experts. Still others are discovered via observation.

Regardless of the process used, and regardless of what the activity is called, the analysts

must find out what the stakeholders needs are. Elicitation includes not just obtaining the

needs but also analyzing and refining those needs to improve the team’s understanding of

them. Once elicited, analyzed, and refined, these needs should be recorded as a list of

candidate requirements, as shown in Figure 1.2

8 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

FIGURE 1.2. ELICITATION CREATES A LIST OF CANDIDATE REQUIREMENTS.

The user starts the RLM by placing it within the border of a defined lawn and pressing BEGIN MOWING from the Main Menu.

The RLM shall determine if it is in a defined lawn. If not, the RLM shall sound the error tones and display the message MOWER NOT IN
RECOGNIZED LAWN on the first line and RETURN on the second line.

If correctly placed, the RLM shall beep once and wait for the user to step back beyond the safe distance range. After the user has moved
beyond this range, the RLM shall move to a starting location within the lawn and begin mowing.

While mowing, the RLM’s panel shall display nothing except in the event of an error condition, dump or refueling required, or an obstacle
comes within the minimum safe distance.

The RLM shall check the grass height, grass type, grass density, and moisture of the lawn to determine the settings proper for cutting.
Adjustments to the blade position and speed shall be made as required. When a swath is properly cut, the RLM shall move to an uncut area.

The cutting pattern shall begin with the perimeter of the lawn and work inward to the lawn’s center. Each pass shall overlap the previous pass
by a width less than or equal to 33% of the RLM’s swath but greater than or equal to 25% of the RLM’s swath.

During avoidance maneuvers, the RLM may, for the sake of fuel efficiency, temporarily shut off its blades if over an area that has been
properly cut. Obstacle avoidance is discussed in Requirement 510.

The RLM shall shut off the blades if fouling occurs to the degree that the RLM may damage itself. Should blade fouling occur, the RLM shall
sound the error tones and display the message BLADES FOULED on the first line of the display. Should there be more than one blade . . .

This normal cutting pattern may be altered by obstacle avoidance maneuvers but shall resume when avoidance maneuvers are complete.

The individual who conducts elicitation is generally called an analyst. An experienced

analyst is adept at using a wide variety of elicitation techniques and possesses the sensitivities

and skills necessary to assess the political, technical, and psychological characteristics of a

situation to determine which elicitation technique to apply (Hickey and Davis, 2003; and

Hickey and Davis, 2003a). Some of the classic techniques used during elicitation are as

follows:

• Interviewing is the process of repeatedly prompting one or more stakeholders to verbalize

their thoughts, opinions, concerns, and needs. The most effective prompts are open-ended

questions, which force the stakeholder to think and respond in nontrivial ways. For ex-

ample, prompts such as these are open-ended: ‘‘Would you please elaborate upon the

problems you are experiencing now?’’ and ‘‘Why do you consider this a problem?’’ Other

important aspects of effective interviewing include listening, taking notes, and playing

back what you heard to verify that it was what was intended. Because over half of

communication among individuals is nonverbal (Knapp and Hall, 1997), face-to-face

interviewing is best. However, interviewing can also be performed over a telephone,

though less efficiently. Gause and Weinberg (1989) provide a wealth of ideas on how to

perform interviewing.

• Brainstorming is the process of gathering multiple stakeholders in a room, posing an issue

or question, encouraging the stakeholders to express their ideas aloud, and having those

ideas recorded somehow. The reason for demanding that ideas be expressed aloud is to

encourage people to piggyback their own ideas on top of others’ ideas. Criticism is gen-

erally discouraged. A wide range of variations of such meetings exists. Some variations

Requirements Management in a Project Management Context 9

enforce anonymity via a tool; some have stakeholders record their own ideas, while others

utilize a single scribe to record all ideas; and some discourage voicing the ideas aloud.

• Conducting collaborative workshops involves gathering multiple stakeholders together in struc-

tured, facilitated workshops to define the requirements for a system. Workshops may run

from several hours to several days. During the workshops, facilitators lead stakeholders

through a series of preplanned activities designed to produce the requirements delivera-

bles needed. For example, participants may brainstorm on a variety of issues; create or

review models, prototypes, or specifications; or negotiate and prioritize requirements. JAD

(Wood and Silver, 1995) is probably the most widely known type of collaborative work-

shop, but there are many other variations, some of which use collaborative tools to

increase efficiency (Dean et al., 1997). Gottesdeiner (2002) provides the best compendium

of ideas on how to use collaborative group workshops for requirements elicitation.

• Prototyping is the process of creating a partial implementation of a system, demonstrating

it to stakeholders, and perhaps allowing them to play with it. The bases for prototyping

are that customers (a) can often think of new requirements only when they can visualize

more basic requirements and (b) often can identify what they don’t want more easily

than what they do want. Davis (1995) provides the best overall summary of prototyping

techniques and effects.

• Questionnaires are composed of series of questions that are then distributed to many stake-

holders. Their responses are then collected, compiled, and analyzed to arrive at an un-

derstanding of general trends among the stakeholders’ opinions. Unlike interviews and

brainstorming, questionnaires assume that the relevant questions can be articulated in

advance. For this reason, they are most effective at confirming well-formulated hypotheses

concerning requirements, rather than assisting with the requirements synthesis process

itself.

• Observation is an ethno-methodological technique where the analyst observes the users and

customers performing their regular activities. In such cases, the analyst is passive and

aims to not affect the activities in any way. It is the ideal technique for uncovering tacit

knowledge possessed by the stakeholders. The best survey of techniques involving obser-

vation can be found in Goguen and Linde (1993).

• Independent study includes reading about problems and solutions, performing empirical

studies, conducting archeological digs (Booch, 2002), or consulting with subject matter

experts. Independent study is effective when others have addressed a similar problem

before but the problem is relatively new to you.

• Modeling involves the creation of representations of the problem or its solutions in a

notation that increases communication and provides fresh insights into the problem or

solution. A wide range of modeling approaches exist, including object diagrams, data

flow diagrams (DFD), the Unified Modeling Language (UML), Z, finite-state machines

(FSMs), Petri nets, the System Description Language (SDL), statecharts, flowcharts, use

cases, decision tables and trees, and so on. See (Davis, 1993; Kowal, 1992; Wieringa,

1996) for descriptions of most of these modeling notations. Although each provides the

analyst with unique insights into the problem or its solution, the largest benefit often

comes from using more than one. This is because each induces the analyst to ask (or

answer) a certain class of questions, and the combination of multiple models induces

more questions than the sum of using each one separately.

10 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

FIGURE 1.3. TRIAGE BALANCES A SEESAW.

Triage

It is a rare project that has sufficient resources to address all the candidate requirements.

To overcome this problem, project managers or teams need to conduct a scoping exercise

typically called triage. Triage is the process of determining the appropriate subset of candidate

requirements to attempt to satisfy, given a desired schedule and budget (Davis and Zweig,

1990; Davis, 2003). It is an activity conducted for an individual project that is quite similar

to the performance of portfolio management, in which a set of projects are competing for

the same finite set of resources and the project manager must choose from among them.

See Chapter 2 in Meredith and Mantel (2003).

Triage is conducted in a formal meeting, usually led by the project manager, product

manager, or independent facilitator. The participants must include representatives of at least

three groups:

• Primary stakeholders need to determine the relative priority of candidate requirements and

ensure that the voices of all classes of users and customers are expressed. Ideally, these

representatives should be customers and users themselves, but often they are composed

of marketing personnel, analysts, or subject matter experts.

• Development needs to be present to ensure that the requirements selected for inclusion in

any release are reasonable relative to the realities of schedule and budget demands.

• Financial support must also be present. Otherwise, it is too easy for the other two parties

to solve the triage problem by simply increasing available budgets.

Triage can be conducted by viewing the problem as one of balancing a multiarmed seesaw

(see Figure 1.3). The three arms are the selected candidate requirements, the available

budget, and the desired schedule. These three variables must be repeatedly manipulated

until they are in balance. In this case, balance implies that there is a reasonably acceptable

probability that the selected requirements can be satisfied by the project within the budget

and schedule. Although the traditional development project manager’s goal is to ensure

Requirements Management in a Project Management Context 11

FIGURE 1.4. ADDITIONAL SEESAW ARMS.

Source: Adapted from Meredith and Mantel, 2003.

completion on schedule and within budget, an even more responsible project manager takes

a larger view. Just because the selected requirements can be built within the budget and

schedule constraints does not mean that the project should be undertaken. A responsible

project manager thus considers additional arms of the seesaw, which capture the risks as-

sociated with and the effect on achievement of business goals of the selected requirements.

Thus, if the product is to be sold externally, additional arms include aspects of marketing,

finance, personnel, and other factors as shown in Figure 1.4, adapted from Chapter 2 of

Meredith and Mantel (2003). If the product is to be used internally, fewer factors must be

considered, as shown in Figure 1.5.

The result of triage is a pruned version of the list shown in Figure 1.4. Although most

practitioners think of this as a pruned list, a more reasonable way to visualize it is as the

full original list, with each requirement annotated by whether or not it is included in the

next release, as shown in Figure 1.6.

12 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

FIGURE 1.5. ADDITIONAL SEESAW ARMS FOR INTERNAL DEVELOPMENT.

Specification

Once a subset of requirements is selected and agreed to by all parties, those requirements

need to be refined and documented. This process is often called requirements specification.

Forms of Specification. A variety of common practices exist in the industry for documenting

requirements, including the following:

• A polished word-processed document. Such a document typically follows one of the many

standards available in the industry (e.g., IEEE, 1993 and Robertson and Robertson 2000)

and is typically called a software requirements specification (SRS). Like all technical documents,

it is composed of chapters and paragraphs. The biggest advantage of this approach is

that all parties can read the document with a minimum of training. On the other hand,

the biggest disadvantages are that (a) often many resources are expended polishing the

noncritical parts of the document, (b) triage is almost impossible, (c) natural language

can prove to be ambiguous, and (d) it is awkward to annotate each requirement in situ.

This is a popular approach for constructing large embedded real-time critical applica-

tions, where ‘‘critical’’ usually means life-critical, financial-critical, or security-critical.

• A hierarchical list of requirements. Whether the list is packaged within the constraints of a

formal SRS or not, it appears as a two-dimensional table, with each row corresponding

to a single requirement and each column corresponding to an attribute of that require-

ments, including a unique identifier, the text, the priority, estimated development cost,

and so on. The biggest advantages of this approach are that (a) all parties can read the

list with a minimum of training, (b) fewer words means less time spent polishing, (c) triage

13

FI
G

U
R

E
1.

6.
TR

IA
G

E
C

R
EA

TE
S

A
LI

ST
O

F
SE

LE
C

TE
D

C
A

N
D

ID
A

TE
R

EQ
U

IR
EM

EN
TS

.

Th
e

us
er

 s
ta

rts
 th

e
R

LM
 b

y
pl

ac
in

g
it

w
ith

in
 th

e
bo

rd
er

 o
f a

 d
ef

in
ed

 la
w

n
an

d
pr

es
si

ng
 B

EG
IN

 M
O

W
IN

G
 fr

om
 th

e
M

ai
n

M
en

u.

Th
e

R
LM

 s
ha

ll
de

te
rm

in
e

if
it

is
 in

 a
 d

ef
in

ed
 la

w
n.

 If
 n

ot
, t

he
 R

LM
 s

ha
ll

so
un

d
th

e
er

ro
r

to
ne

s
an

d
di

sp
la

y
th

e
m

es
sa

ge
 M

O
W

ER
 N

O
T

IN

R
EC

O
G

N
IZ

ED
 L

AW
N

 o
n

th
e

fir
st

 li
ne

 a
nd

 R
ET

U
R

N
 o

n
th

e
se

co
nd

 li
ne

.

If
co

rre
ct

ly
 p

la
ce

d,
 th

e
R

LM
 s

ha
ll

be
ep

 o
nc

e
an

d
w

ai
t f

or
 th

e
us

er
 to

 s
te

p
ba

ck
 b

ey
on

d
th

e
sa

fe
 d

is
ta

nc
e

ra
ng

e.
 A

fte
r

th
e

us
er

 h
as

 m
ov

ed

be
yo

nd
 th

is
 ra

ng
e,

 th
e

R
LM

 s
ha

ll
m

ov
e

to
 a

 s
ta

rti
ng

 lo
ca

tio
n

w
ith

in
 th

e
la

w
n

an
d

be
gi

n
m

ow
in

g.

W
hi

le
 m

ow
in

g,
 th

e
R

LM
’s

pa
ne

l s
ha

ll
di

sp
la

y
no

th
in

g
ex

ce
pt

 in
 th

e
ev

en
t o

f a
n

er
ro

r
co

nd
iti

on
, d

um
p

or
 r

ef
ue

lin
g

re
qu

ire
d,

 o
r

an
 o

bs
ta

cl
e

co
m

es
 w

ith
in

 th
e

m
in

im
um

 s
af

e
di

st
an

ce
.

Th
e

R
LM

 s
ha

ll
ch

ec
k

th
e

gr
as

s
he

ig
ht

,
gr

as
s

ty
pe

,
gr

as
s

de
ns

ity
,

an
d

m
oi

st
ur

e
of

 t
he

 la
w

n
to

 d
et

er
m

in
e

th
e

se
tti

ng
s

pr
op

er
 f

or
 c

ut
tin

g.

Ad
ju

st
m

en
ts

 to
 th

e
bl

ad
e

po
si

tio
n

an
d

sp
ee

d
sh

al
l b

e
m

ad
e

as
 re

qu
ire

d.
 W

he
n

a
sw

at
h

is
 p

ro
pe

rly
 c

ut
, t

he
 R

LM
 s

ha
ll

m
ov

e
to

 a
n

un
cu

t a
re

a.

Th
e

cu
tti

ng
 p

at
te

rn
 s

ha
ll

be
gi

n
w

ith
 th

e
pe

rim
et

er
 o

f t
he

 la
w

n
an

d
w

or
k

in
w

ar
d

to
 th

e
la

w
n’

s
ce

nt
er

. E
ac

h
pa

ss
 s

ha
ll

ov
er

la
p

th
e

pr
ev

io
us

 p
as

s
by

 a
 w

id
th

 le
ss

 th
an

 o
r e

qu
al

 to
 3

3%
 o

f t
he

 R
LM

’s
sw

at
h

bu
t g

re
at

er
 th

an
 o

r e
qu

al
 to

 2
5%

 o
f t

he
 R

LM
’s

sw
at

h.

D
ur

in
g

av
oi

da
nc

e
m

an
eu

ve
rs

,
th

e
R

LM
 m

ay
,

fo
r

th
e

sa
ke

 o
f

fu
el

 e
ffi

ci
en

cy
,

te
m

po
ra

ril
y

sh
ut

 o
ff

its
 b

la
de

s
if

ov
er

 a
n

ar
ea

 t
ha

t
ha

s
be

en

pr
op

er
ly

 c
ut

. O
bs

ta
cl

e
av

oi
da

nc
e

is
 d

is
cu

ss
ed

 in
 R

eq
ui

re
m

en
t 5

10
.

Th
e

R
LM

 s
ha

ll
sh

ut
 o

ff
th

e
bl

ad
es

 if
 fo

ul
in

g
oc

cu
rs

 to
 th

e
de

gr
ee

 th
at

 th
e

R
LM

 m
ay

 d
am

ag
e

its
el

f.
Sh

ou
ld

 b
la

de
 fo

ul
in

g
oc

cu
r,

th
e

R
LM

 s
ha

ll
so

un
d

th
e

er
ro

r t
on

es
 a

nd
 d

is
pl

ay
 th

e
m

es
sa

ge
 B

LA
D

ES
 F

O
U

LE
D

 o
n

th
e

fir
st

 li
ne

 o
f t

he
 d

is
pl

ay
. S

ho
ul

d
th

er
e

be
 m

or
e

th
an

 o
ne

 b
la

de
 .

. .

Th
is

 n
or

m
al

 c
ut

tin
g

pa
tte

rn
 m

ay
 b

e
al

te
re

d
by

 o
bs

ta
cl

e
av

oi
da

nc
e

m
an

eu
ve

rs
 b

ut
 s

ha
ll

re
su

m
e

w
he

n
av

oi
da

nc
e

m
an

eu
ve

rs
 a

re
 c

om
pl

et
e.

14 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

can be performed easily, and (d) it is trivial to annotate the requirements. On the other

hand, the biggest disadvantage is that natural language can prove to be ambiguous.

• Few or no documented requirements. In this scenario, documentation of requirements is seen

as a detractor from getting the product out. In effect, the code is the requirements, or

more correctly, the code implies the requirements. The biggest advantage of this ap-

proach is that (in theory) no time is required to write or review the requirements, and

thus total development time can be reduced by, say, 15 percent. However, this advantage

does not come without the considerable risk of building the wrong product altogether.

The proponents of this approach possess a variety of motivations. For example, some of

those in the entrepreneurial world feel that getting to market fast with an innovative

product is so critical to its market success they cannot afford to spend the time ‘‘inves-

tigating’’ the requirements—and they may be right! Meanwhile, those in the agile de-

velopment community (Cockburn, 2002; Highsmith and Cockburn, 2001) claim that they

build such small increments of the product, and if they make a mistake in such an

iteration, it is easy to back it out and try again. Justification for recording requirements

can be found in Hoffman and Lehner (2001).

• The model is the requirements. In some industries, requirements are not documented in natural

language but are instead captured adequately in a model (see previous discussion of

models). For example, in some business applications, a majority of the requirements can

be captured using use cases, data flow diagrams, and entity relation diagrams. In some

user-interface-intensive applications, a majority of requirements can be captured using

use cases. And in some real-time systems, a majority of the requirements can be captured

using Petri nets, finite-state machines, or statecharts. The unified modeling language

(UML; Booch, 1999) is an attempt to capture all these models in one notation. The

biggest advantage to this approach is that systems people (on the IT side and the customer

side) can read the notations easily. The biggest disadvantages are that (a) nonsystems

people on the customer side have difficulty understanding the notations; (b) no model is

sufficient to represent all requirements, so they must be augmented in some way (for

example, few of the aforementioned notations provide the ability to capture nonbehav-

ioral requirements as described previously); (c) triage is likely to be difficult; and (d) it is

almost impossible to annotate individual requirements.

• The prototype is the requirements. In this case, a prototype system is constructed and the

customer likes it. Then the real system is constructed to mimic the behavior of the

prototype. The biggest advantage to this approach is that customers can witness the

intended system’s behavior first hand. The biggest disadvantages are that, (a) by defini-

tion, a prototype does not exhibit all the behaviors of the real system, so it must be

augmented in some way, (b) triage is likely to be difficult, and (c) it is almost impossible

to annotate individual requirements.

All of the approaches can be followed in an incremental manner (i.e., document a little,

build a little, validate a little, then repeat) or a full-scale manner (i.e., document a lot, build

a lot, validate a lot). Table 1.1 summarizes the advantages and disadvantages of the five

approaches. In this table, notice that just because a technique has more check marks in its

Requirements Management in a Project Management Context 15

TABLE 1.1. DISADVANTAGES OF VARIOUS REQUIREMENTS DOCUMENTATION
APPROACHES.

Disadvantages

Documentation Approach

Document List Few/None Model Prototype

Natural language is
inherently ambiguous

� �

Challenging for
multinational efforts

� �

Notation not already known
by customer

�

Difficult to annotate
individual requirements

� � � �

Difficult to select subset of
requirements for inclusion

� � � �

Insufficient to represent all
requirements

� �

Could imply unintentional
requirements

�

High risk of building the
wrong product

�

Risk of incurring
unnecessary up-front
(perhaps nonrecoverable)
costs

� � � �

Could be challenging to
maintain

� � � �

Difficult to trace to origins
and be traced from
downstream entities

� � �

Difficult to diagnose reasons
for misunderstandings

�

column does not necessarily make it a worse approach; each comes with its own inherent

risks. Only the project manager can decide which risks are worth taking.

As requirements are documented using any of the precedinig approaches, disagreements

will naturally arise concerning what individual requirements mean. In such cases, three

solutions exist: (a) document the requirement in less ambiguous terms but using the same

general approach, (b) supplement the requirement with another approach that has less am-

biguity, and (c) refine the requirement into its constituent subrequirements, as described

previously.

Attributes of a Specification. As work proceeds on requirements, they should evolve toward

increased value to the project team. That means they should become less ambiguous, more

correct, more consistent, and more achievable. For a more complete list of attributes that

16 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

requirements should exhibit see Davis (1995). The activities involved in determining if the

requirements are evolving toward increased quality are generally called validation and verifi-

cation, or V&V for short (Wallace, 1994). There appears to be some confusion within the

industry concerning the differences between the two terms as applied to requirements, for

example, see Christensen and Thayer (2001), Leffingwell and Widrig (2000), Wiegers (1999);

and Young (2001). The confusion arises from the use of the terms in latter phases of system

development. In later phases, verification of that phase’s output is the process of ensuring that

the output is correct relative to the outputs of the previous phase, and validation of that

phase’s output is the process of ensuring that the output is correct relative to the require-

ments (IEEE, 1986). Since requirements are usually considered the first phase of a system

development life cycle, those definitions do not apply. However, if you consider that these

words imply that verification ensures that the product is being built right and validation

ensures that the right product is being built (Boehm, 1982), then we can extrapolate their

meanings to requirements, as follows:

• Requirements verification ensures that the requirements themselves are written in a quality

manner.

• Requirements validation ensures that the requirements as documented reflect the actual needs

of the users/customers.

Then, to verify the quality of requirements, the following attributes must be addressed:

• Ambiguity is the condition in which multiple interpretations are possible given the identical

requirement. Ambiguity is inherent to some degree in every natural-language statement.

Thus, the parties can easily spend their entire project budget attempting to remove every

bit of ambiguity. A more successful project will reword or refine a requirement only when

the potential for adverse consequences is evident if the requirement stays as is. Another

way to decide on whether a requirement statement is ‘‘good enough’’ is to determine if

reasonable, knowledgeable, and prudent individuals would make different interpretations of the

requirement.

• An SRS is inconsistent if it contains a subset of requirements that are mutually incompat-

ible. For example, if two requirements are incompatible, or are in conflict with each

other, then the SRS is inconsistent. Furthermore, an SRS should also be consistent with

all other documents that have been previously agreed to by the parties.

• Requirements should also be achievable, which means it is possible to build a system with

available technology, and within existing political, cultural, and financial constraints.

To validate requirements, the following attribute must be addressed:

• A requirement is correct if it helps to satisfy some stakeholder’s need. Obviously, if a

candidate requirement fails this test, it should be triaged out of the product.

Requirements Management in a Project Management Context 17

Variations of Requirements Management Practices

Requirements management practices vary based on many aspects of the project. Let’s look

at some of these aspects and see how they effect requirements management.

Size of iterations

All product development efforts are iterative because as soon as customers start using any

product, new requirements appear, thus driving another iteration. The differences lie in how

big each iteration is and whether or not the team tries to satisfy ‘‘all the known require-

ments’’ in each iteration. As iterations increase in size (either in terms of elapsed time or

sheer number of requirements), risks increase. In particular, the risks that increase include

the likelihood of exceeding the budget, of completing after the desired delivery date, and of

failing to meet customer needs. On the other hand, as iterations decrease in size, the effort

for overhead tasks become a larger proportion of the total effort. With larger iterations,

more effort must be expended during the requirements phases of each iteration.

Relationship of Iterations to Planning

In some cases, an entire product’s requirements are explored and documented at project

inception, and a product rollout strategy is developed that incorporates successively larger

subsets of requirements in each iteration. In other cases, limited requirements activity occurs

up front. The initial product is released primarily to acquire requirements feedback. Each

successive iteration’s requirements are defined based on the feedback acquired from the

previous iteration.

Use of Throwaway Prototypes

Any iteration can be prefaced with the construction of a prototype. The purpose of the

prototype is to remove the risk of building the wrong iteration. By seeing a prototype,

stakeholders can provide valuable feedback concerning whether or not the development

team is on the right track. Such an approach reduces the risk of the next iteration. When

a prototype is used, minimal requirements effort is expended at project inception. Most

requirements are defined after the initial prototype but before the development for the first

real iteration begins.

Manufacturing Needed

Some systems require a manufacturing phase after development. This is primarily a function

of the media involved. Pure software systems require no manufacturing (other than the trivial

creation of CD-ROMs), whereas systems that include physical components do. When man-

ufacturing is required, care must be taken during requirements elicitation and specification

to ensure manufacturability and testability.

18 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

Research Needed

Some systems require research, invention, or innovation prior to starting the development

activities. Usually, requirements are difficult to express when innovative research is needed.

In such cases, a set of goals is stated (which are rarely termed requirements). Then the

research is performed. Requirements efforts do not commence in earnest until after the

research effort is complete.

Management Demand for Sequentiality.

If management enforces the idea that no task may be started until the previous task is

completed, then elicitation must be completed before triage begins, and triage must be

completed before specification can begin. Only the most conservative of management or-

ganizations still adhere to this ancient custom.

Iterative Nature of Requirements Process Itself

Hickey and Davis (2002) describe requirements as an iterative process where each iteration

uncovers additional requirements, and changes the current situation. These changes to the

situation, and the new requirements uncovered, drive the analysts to modify their approach

for the next iteration. This is a more realistic view of the requirements process than at-

tempting to do all elicitation on one phase.

Software-Intensive Applications

Traditionally, software had been developed using large iterations, with all the planning up

front, with the assumption of high sequentiality. This approach was termed the waterfall

model. It is typically represented by a linear PERT chart, as shown in Figure 1.7. Figure

1.8 shows where the requirements activities are performed during the development.

More modern software development projects use the so-called iterative model of soft-

ware development (also called incremental). There are two general ways to plan the re-

quirements for each iteration: by fixed time and by logical functionality sets. In the former,

the length of time for each iteration is set in advance, and then the requirements are

managed to ensure that only those requirements that can be satisfied in that time frame are

included. Iteration length varies typically from a few weeks to a few months. In the latter

way, logical subsets of requirements are grouped together and each iteration is scheduled

to be reasonable with respect to the functions it is satisfying. In either case, the iterative

method is typically represented as shown in Figure 1.9. Figure 1.10 shows where the re-

quirements activities are performed during the development.

A more recent approach to software development is generally called agile. The agile

movement (Cockburn, 2002; Highsmith and Cockburn, 2001) proposes a significant de-

crease in the power of project management and general management, and instead pushes

many responsibilities down to the individual contributors. Readers wishing to learn the

details of agile development should refer to the sources cited in the previous sentence. Here

we discuss the implications of agile methods on requirements management itself. Instead of

attempting to elicit requirements at the beginning of the development process, agile devel-

Requirements Management in a Project Management Context 19

FIGURE 1.7. A WATERFALL MODEL.

FIGURE 1.8. REQUIREMENTS ACTIVITIES WITHIN A WATERFALL MODEL.

20 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

FIGURE 1.9. AN ITERATIVE DEVELOPMENT MODEL.

opment recommends that systems be built immediately. Agile developers construct iterations

of the system in rapid succession, even as short as every day. A customer is required to be

on-site with the development team at all times. Thus, requirements elicitation is performed

constantly and is based primarily on the stimulation resulting from seeing system iterations.

The omnipresent customer also has exclusive authority to select which requirements to

include in each iteration. Thus, elicitation and triage are performed constantly, and speci-

fication is not performed per se.

Agile development is a reaction by software developers to what they perceive as too

much control. The fact is that software development is difficult, and it requires a great deal

of coordination. Agile development is likely to work well in situations where (a) the require-

ments are not changing, (b) there is only one customer (or there are more than one customer,

but no conflicts exist among the stakeholders), (c) the problem is relatively simple, so that

few misunderstandings concerning requirements are likely to arise.

Maintenance Projects

Once a system is deployed, the life of the system, in the eyes of the user, has just begun.

Now that the user has had an opportunity to put the product through its paces, there will

likely be plenty of feedback regarding the software. This feedback falls into two general

categories: (a) failures of the product to meet the intended requirements and (b) requests for

new features. The demand for new features will accelerate in any system that is being used

(Belady and Lehman, 1976). Rather than allowing the system to be under constant flux,

system evolution should be managed as a series of well-planned releases. The length of time

between subsequent releases is a function of (a) the rate of arrival of new requirements, (b)

21

FI
G

U
R

E
1.

10
.

R
EQ

U
IR

EM
EN

TS
A

C
TI

V
IT

IE
S

W
IT

H
IN

A
N

IT
ER

A
TI

V
E

D
EV

EL
O

PM
EN

T
M

O
D

EL
.

22 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

the overhead involved in producing and maintaining a release, and (c) the demand for early

satisfaction. As each new requirement is discovered, it should be annotated just like the

original requirements and documented in the same way that all previously approved re-

quirements were. When the time arrives to initiate development of a new release, a triage

meeting should be held. In principle, the management of post-deployment maintenance

releases is no different than the management of predeployment iterations.

After a requirement is approved for a new release, multidirectional traces should be

maintained between the change request, the new requirement, and all changes to the prod-

uct and its documentation made in response to the change request. This enables the de-

velopment team to (a) undo the changes if they prove erroneous and (b) reconstruct the

history of changes made to the product.

Even with the best of processes in place, a product’s entropy increases as it evolves

(Lehman, 1978). The length of time that a system can survive is a function of the resiliency

of the original architecture and the number of changes made over time. shows how the

same system could last 7, 12, or 18 years before its entropy renders it no longer maintainable,

based solely on the quality of the original architecture.

System Procurement

Many projects are commissioned to solve a problem by procuring, or acquiring, an available

system from a third party. In such cases, requirements should still be elicited as described

earlier. However, rather than performing an explicit triage step, the team generally priori-

tizes the elicited requirements and performs a ‘‘best fit’’ analysis with the available solutions.

Tool Issues

A requirements tool is a software application designed to assist the team in performing some

combination of requirements elicitation, triage, and specification. Here is a list of the kinds

of things such tools could do:

Elicitation

• Collect candidate requirements.

• Allow analysts to record lists of requirements as they are ascertained.

• Allow stakeholders to record their recommended requirements.

• Enforce discipline and/or protocol during elicitation sessions.

• Provide for anonymity during elicitation.

• Prompt for key missing information.

Triage

• Collect priorities and effort estimations.

• Allow analyst to record inclusion/exclusion of each requirement.

Requirements Management in a Project Management Context 23

FIGURE 1.11. LONGEVITY OF A PRODUCT IS A FUNCTION OF ORIGINAL
ARCHITECTURE’S RESILIENCY.

• Determine probability of completing a set of requirements within a given budget.

• Determine probability of completing a set of requirements within a given schedule.

• Allow analyst to refine requirements.

Specification

• Store requirements in a database.

• Determine ambiguities.

• Determine inconsistencies.

• Allow analyst to sort requirements based on multiple criteria.

• Allow analyst to cross-reference2 requirements among themselves.

• Allow analyst to cross-reference2 requirements to other products of the development effort

(e.g., tests, designs).

• Provide the stakeholders with a simulation of the requirements (i.e., a prototype of the

system).

2 Also termed ‘‘traceability.’’

24 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

Requirements tools range from such basic tools as spreadsheets and word processors to

extremely sophisticated tools such as special-purpose requirements-based simulation tools.

In general, they fall into the following categories:

• General-purpose tools that happen to be useful during requirements activities. Word processors allow

you to record requirements in natural language either in paragraph form or tabular form.

Spreadsheets and databases provide the same capability but also give you the ability to

easily define and record attributes such as effort, priority, and inclusion easily. Examples

of these tools are Microsoft Word or any other word processor, Microsoft Excel or any

other spreadsheet, and Microsoft Access or any other database.

A majority of projects use these low-cost tools because they are already readily avail-

able on desktops with no additional cost. They also present no learning curve for the

analysts, stakeholders, or project managers.

• Meeting facilitation tools. These tools are particularly helpful during elicitation. They enable

stakeholders to record their suggested requirements easily, and even anonymously. They

help to keep the discussion on-topic, can sort and filter the candidate requirements easily,

and in some cases, can populate a requirements database tool. Two examples of such

tools are Ventana’s GroupSystems and Meetingworks’ Connect.

Facilitation tools have had surprisingly little impact on most companies. Analysts

performing elicitation tend to either interview stakeholders or hold group sessions without

tools.

• Requirements database and traceability tools. These tools include a database view that is already

populated with common requirements attributes. They provide special sorting and filter-

ing capabilities unique to requirements management. Many also provide a word-

processed view, so you can update requirements in either the word-processed view or

the database view and the other updates automatically. Furthermore, all of these tools

make cross-referencing and establishing relationships among requirements easy. Some of

these tools are integrated into a full development environment, thus facilitating referenc-

ing to and from requirements, designs, and tests. Examples of these tools include

RequisitePro from IBM Rational Software, Caliber RM from Borland Software Corpo-

ration, and DOORS from Telelogic.

Approximately 25 percent of all software development projects use requirements

database and traceability tools. They significantly reduce the effort expended by analysts

in recording and maintaining requirements, but have little impact directly on the stake-

holders. One of their biggest advantages is to the project manager who can make intel-

ligent and useful queries such as ‘‘Which requirements are high priority, included in the

next release, and which are related to software components that Sally is working on.’’

• Requirements risk analysis tools. These tools help the project manager assess the likelihood

that the selected requirements will be completed on schedule and within budget. Ex-

amples include OnYourMark Pro from Davis and the EstimatePro from Software Pro-

ductivity Solutions, and part of Caliber RM from Borland Software Corporation.

These tools have been in existence only since the late 1990s. Early adopters have

started experimenting with them, but their adoption has been slow. The primary bene-

factor is the project manager and, indirectly, the company.

Requirements Management in a Project Management Context 25

• Requirements simulation tools. These tools allow the requirements analyst to simulate the

requirements after they have been written. In all cases, the requirements must first be

written in a relatively formal notation. One example is Statemate Magnum from I-Logix.

These tools have been in existence since the early 1970s. All of the vendors have

had a hard time finding their niche. The primary benefactor of such tools appears to be

the engineering analyst.

In summary, requirements tools can assist analysts in all aspects of requirements man-

agement. But no tool makes any aspect of requirements management easy. Elicitation still

requires great listening skills. Triage still requires great diplomacy, and specification still

requires incredible precision. The tools simply offload the more mundane aspects of the

discipline.

Trends in Requirements Management

Research

The field of requirements research is one of the most active in universities. Recent research

surveys (Finkelstein, 1994; Hsia et al., 1993; van Lamsweerde et al., 2000; Nuseibeh et al.,

2000; and Potts, 1991) have defined the following trends:

• Data and process modeling is viewed as a critical activity in requirements. Much of the

research since the 1970s has focused on the creation and analysis of modeling notations

and techniques. Two somewhat contradictory trends occurring in this area include (1)

the increasing emphasis on object-oriented modeling notations (e.g., UML) that focus on

the system and (2) the recognition that modeling cannot focus on the system in isolation

but must occur in an organizational context (Nuseibeh et al., 2000; Goguen and Jirotka,

1994; and Zave and Jackson, 1997). More recent emphasis has been on techniques to

detect errors in models. See the special issue of the Requirements Engineering Journal guest

edited by Easterbrook and Chechik (2002).

• Increasing formality to improve the quality and testability of requirements specifications has

been a goal of requirements research (Hsia et al., 1993), especially for process control

and life- and safety-critical systems (van Lamsweerde et al., 2000). For example, in the

area of reactive systems for process control, specification notations and languages such

as SCR Heninger, 1980), CORE (Faulk, 1992), and RSML (Leveson et al., 1994) have

been developed to support automated consistency and completeness checking. Formal

specification languages such as Z (Spivey, 1990) and others are designed to support re-

quirements verification, visualization, and simulation.

• Viewpoints explicitly capture different perspectives or views of multiple stakeholders. View-

point integration can be used to check for consistency and aid in the resolution of conflicts

among stakeholders (Easterbrook, 1994; Nuseibeh and Easterbrook, 1994). The earliest

references to using viewpoints date back to 1981 (Orr, 1981).

• Since the beginning of requirements research, attempts have been made to reduce ambiguity

in requirements. Obviously, the aforementioned activities of modeling and increasing

26 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

formality are aimed at this goal. Additional research has been done to either reduce or

detect ambiguity in natural-language specifications. This includes work as early as 1981

(Casey and Taylor, 1981) and extends to the current day (Duran et al., 2002).

• Goal-oriented requirements elicitation takes an organizational approach to completeness and

consistency checking of requirements by explicitly identifying and representing organi-

zational goals for the system, and then checking the requirements against those goals

(van Lamsweerde et al., 2000). Research in this area has resulted in a variety of methods

and notations for representing, analyzing, and resolving conflicts between goals including

KAOS (Dardenne et al., 1993; van Lamsweerde et al., 1998) and NFR (Mylopoulos,

1992).

• Behavioral requirements have always been the primary emphasis in requirements re-

search. However, nonbehavioral requirements have also been addressed for many years and

continues to be the focus of many research efforts. Some efforts have spanned the wide

range of nonbehavioral requirements, for instance Chung et al. (1993), Chung (2000),

Cysneiros and Leite (2002), Kirner and Davis (1995) Mostert and van Solms (1995), and

Mylopoulos (1992), and others emphasize specific kinds of nonbehavioral requirements

such as security (Shim and Shim, 1992), safety (Berry, 1998; Hansen et al., 1998), and

performance (Nixon, 1993).

• Scenarios are concrete descriptions of the sequence of activities that users engage in when

performing a specific task (Carroll, 1995). Studies have shown than scenarios are ex-

tremely useful for requirements elicitation when users are having difficulty specifying goals

or using more abstract modeling techniques (Weidenhaupt, 1998; Jarke, 1999; van Lams-

weerde, 2000). Scenarios have also proven useful in systems design and testing, for ex-

ample, in user interface design (Carroll, 1995), and for generating test cases (Hsia, 1994).

Other scenario uses are described in an IEEE Transactions on Software Engineering special

issue on scenarios in (Jarke and Kurki-Suonio, 1998). Finally, scenarios are closely related

to the Jacobson’s use cases (Jacobson et al., 1992) in object-oriented analysis and the user

stories, which are a key component of XP (Beck, 2000).

• With the wide variety of requirements techniques now in existence, some researchers are

focusing on the criteria for technique selection. For example, Hickey and Davis (2003, 2003a)

describe the best way to select the right elicitation techniques. Similar research still needs

to be conducted for model selection.

• The field of software (design and code) reuse has settled into a status quo now; modern

programming languages include large libraries of reusable entities whose use has become

standard. However, requirements reuse has not yet reached this level of maturity. Perhaps

this is because reusing requirements has little direct benefit to increasing quality or pro-

ductivity. Instead, the real potential benefit of requirements reuse comes from the second-

order effect of reusing design and code components associated with the reused

requirements. See Castano and Antenellis (1993), Homod and Rine (1999), van Lams-

weerde (1997), and Maiden and Sutcliffe (1996) for some of the latest ideas on require-

ments reuse.

Practice

It is surprising how little of the current research in the requirements field is making its way

to practice (Davis and Hickey, 2002). From the inception of software engineering as a

Requirements Management in a Project Management Context 27

discipline in the 1970s until the current day, (a) the standard for documenting requirements

has been the word-processed SRS, (b) analysts in specialized applications have advocated

the use of models, and (c) a counterculture has existed that is firmly convinced that writing

requirements is primarily a waste of time.

In spite of the enormity of these invariants, a few changes have occurred. Two of these

changes are in the evolution of the modeling notations themselves. The first is the intro-

duction of new notations that provide unique perspectives of the system under specification.

Classic among these are the introductions of statecharts by Harel (Harel, 1988; and Harel

and Politi, 1998). Second is the tendency for the industry to move from sets of specialized

notations (which in theory force analysts to become skilled in multiple languages) to all-

encompassing notations (which in theory force analysts to become skilled in just one lan-

guage, albeit enormous), and back to the specialized languages in a cycle. We expect this

cycle to continue indefinitely into the future.

Another trend is in the isolation of optimal ‘‘starting points’’ for requirements activities.

For many years, analysts have struggled with the question of where to start because of the

sheer enormity of requirements. We have thus seen structured analysis (DeMarco, 1979)

augmented by events as starting points (McMenamin and Palmer, 1984), and object-oriented

analysis (Booch, 1994) augmented with use cases as starting points (Jacobson et al., 1992).

This trend will continue. Unfortunately, every situation demands starting points that are a

unique function of situational characteristics.

Summary

Project management cannot succeed without careful attention to requirements management.

Requirements management is responsible for determining the real needs of the customers,

as well as clearly documenting the desired external behavior of the system being constructed

by the project. If either of these goals is ignored, the project is guaranteed to result in failure.

References

Beck, K. 2000. Extreme programming explained. Boston: Addison-Wesley.

Belady, L., and M. Lehman.1976. A model of large program development. IBM Systems Journal 15 (3,

March): 225–252.

Berry, D. 1998. The safety requirements engineering dilemma. Ninth International Workshop on Software

Specification and Design. 147–149. Los Alamitos, CA: IEEE Computer Society Press.

Boehm, B. 1982. Software engineering economics. Upper Saddle River, NJ: Prentice Hall.

Booch, G., 1994. Object-oriented analysis and design. Redwood City, CA: Benjamin/Cummings.

———. Personal conversation with two of the authors; September 17, 2002, Colorado Springs, Col-

orado.

Booch, G., et al. 1999. The Unified Modeling Language user guide. Reading, MA: Addison-Wesley.

Borland Software Corporation, Inc. 2003. See www.borland.com/products or www.starbase.com/

products.

Carroll, J., ed. 1995. Scenario-based design: Envisioning work and technology in system development. New York:

Wiley.

28 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

Casey, B., and B. Taylor. 1981. Writing requirements in English: A natural alternative. 95–101.IEEE

Software Engineering Standards Workshop. Los Alamitos, CA: IEEE Computer Society Press.

Castano, S., and V. De Antonellis. 1993. Reuse of conceptual requirements specification. 121–124.

International Symposium on Requirements Engineering, January. Los Alamitos, CA: IEEE Computer Society

Press,

Christensen, M., and R. Thayer. 2001. The project manager’s guide to software engineering’s best practices. Los

Alamitos, CA: IEEE Computer Society Press.

Chung, L. 1993. Representing and using non-functional requirements: A process-oriented approach. Department of

Computer Science. PhD. thesis, University of Toronto.

Chung, L., et al. 2000. Non-functional requirements in software engineering. Norwell, MA: Kluwer.

Cleland, D., and L. Ireland. 2000. Project manager’s portable handbook. New York: McGraw-Hill.

Cockburn, A. 2002. Agile software development. Boston: Addison-Wesley.

Cysneiros, M., and J. Leite, 2002. Non-functional requirements: From elicitation to modeling lan-

guages. 699–700. Twenty-fourth International Conference on Software Engineering. Los Alamitos, CA: IEEE

Computer Society Press.

Dardenne, A., et al. 1993. Goal-directed requirements acquisition. Science of Computer Programming

20:3–50.

Davis, A., 1993. Software requirements: Objects, functions, and states. Upper Saddle River, NJ: Prentice Hall.

———. 1995. Software prototyping. Advances in Computers 40. 39–63. New York: Academic Press.

———. 2002. Requirements management. In Encyclopedia of software engineering. 2nd ed., ed. J. Marci-

niak. New York: Wiley-Interscience.

———. 2003. Secrets of requirements triage. Computer 36 (3, March): 42–49.

Davis, A., and A. Zweig. 2000. The missing piece of software development. Journal of Systems and

Software 53 (3, September): 205–206.

Davis, A., et al. 1993. Identifying and measuring quality in software requirements specifications. 141–

152. IEEE-CS International Software Metrics Symposium. Los Alamitos, CA: IEEE Computer Society

Press.

Davis, A., and A. Hickey. 2002. Requirements researchers: Do we practice what we preach? Require-

ments Engineering Journal 7(2):107–111.

Dean, D., et al. (1997–1998. Enabling the effective involvement of multiple users: Methods and tools

for collaborative software engineering. Journal of Management Information Systems 14 (3, Winter): 179–

222.

DeMarco, T. 1979. Structured analysis and system specification. Upper Saddle River, NJ: Prentice Hall.

Duran, A., et al. 2002. Verifying software requirements with XSLT. ACM Software Engineering Notes 27:

39 ff.

Easterbrook, S. 1994. Resolving requirements conflicts with computer-supported negotiation. In Re-

quirements engineering: Social and technical Issues, ed. M. Jirotka and J. Goguen. 41–65. London: Aca-

demic Press.

Easterbrook, S., and M. Chechik 2002. Guest editorial: Special issue on model checking in require-

ments engineering. Requirements Engineering 7(4):221–224.

Faulk, S. 1997. Software requirements: A tutorial. In Software Requirements Engineering, ed. R. Thayer

and M. Dorfman. 128–149. Los Alamitos, CA: IEEE Computer Society.

Faulk, S., et al.1992. The CORE method for real-time requirements IEEE Software (September): 22–

33.

Finkelstein, A.1994. Requirements engineering: A review and research agenda. 10–14. First Asia-Pacific

Software Engineering Conference. December. Los Alamitos, CA: IEEE Computer Society.,

Gause, D., and J. Weinberg 1989. Exploring requirements: Quality before design. New York: Dorset House.

Goguen, J., and C. Linde 1993. Software requirements analysis and specification in Europe: An over-

view. 152–164. First International Symposium on Requirements Engineering. Los Alamitos, CA: IEEE Com-

puter Society Press.

Requirements Management in a Project Management Context 29

Goguen, J., and M. Jirotka, eds.1994. Requirements engineering: Social and technical issues. Boston: Academic

Press.

Gottesdeiner, E. 2002. Requirements by collaboration. Reading, MA: Addison-Wesley.

Hansen, K., et al. 1998. From safety analysis to software requirements. IEEE Transactions on Software

Engineering 24 (7, July): 573–584.

Harel, D.1988. On visual formalisms. Communications of the ACM 31 (5, May): 514–530.

Harel, D., and M. Politi 1998. Modeling reactive systems with statecharts. New York: McGraw Hill.

Heninger, K.1980. Specifying software requirements for complex systems: New techniques and their

application. IEEE Transactions on Software Engineering 6(1):2–13.

Hickey, A., and A. Davis. 2002. The role of requirements elicitation techniques in achieving software

quality. International Workshop on Requirements Engineering: Foundations for Software Quality (REFSQ). Los

Alamitos, CA: IEEE Computer Society Press.

———. 2003a. Requirements elicitation and requirements elicitation technique selection: A model of

two knowledge-intensive software development processes. Proceedings of the Thirty-Sixth Hawaii Inter-

national Conference on System Sciences. Los Alamitos, CA: IEEE Computer Society Press.

———. 2003b. Elicitation technique selection: How do the experts do it?’’ International Joint Con-

ference on Requirements Engineering (RE03). September. Los Alamitos, CA: IEEE Computer

Society Press.

Highsmith, J., and A. Cockburn. 2001. Agile software development: The business of innovation. Com-

puter (September): 120–122.

Hofmann, H., and F. Lehner 2001. Requirements engineering as a success factor in software projects.

IEEE Software 18 (4, July/August): 58–66.

Homod, S., and D. Rine. 1999. Building requirements repository using requirements transformation

techniques to support requirements reuse. World Multi-Conference on Systemics, Cybernetics and Informatics,

Volume 2.

Hsia, P., et al. 1993. Status report: Requirements engineering. IEEE Software 10 (6, November): 75–

79.

Hsia, P., et al. 1994. Formal approach to scenario analysis. IEEE Software 11(2):33–41.

IEEE. 1983. IEEE standard glossary of software engineering terminology. IEEE Standard 729. New York: IEEE

Press.

———. 1986. IEEE standard for software verification and validation plans. IEEE Standard 1012. New York:

IEEE Press.

———.1993. A guide to software requirements specifications. Standard 830-1993. New York: IEEE Press.

I-Logix Corporation. www.ilogix.com/products/magnum/index.cfm.

Jacobson, I., et al. 1992. Object-oriented software engineering. Reading, MA: Addison-Wesley.

Jarke, M., and R. Kurki-Suonio. 1998. Guest editorial: Introduction to the special issue. IEEE Trans-

actions on Software Engineering 24(12):1033–1035.

Jarke, M. 1999. Scenarios for modeling. Communications of the ACM 42(1): 47–48.

Kirner, T., and A. Davis. 1996. Nonfunctional requirements for real-time systems. Advances in Computers.

Knapp, M., and J. Hall. 1997. Nonverbal communication in human interaction. Austin, TX: Holt, Rinehart

and Winston.

Kotonya, G., and I. Sommerville. 1997. Integrating safety analysis and requirements engineering.259–

271. Fourth Asia-Pacific Software Engineering Conference. Los Alamitos, CA: IEEE Computer Society.

Kowal, J. 1992. Behavior models. Upper Saddle River, NJ: Prentice Hall.

Lam, W., et al. 1997. Ten steps towards systematic requirements reuse. 6–15. IEEE International Sym-

posium on Requirements Engineering. January Los Alamitos, CA: IEEE Computer Society Press. Also

appears in Requirements Engineering Journal 2(2):102–113.

van Lamsweerde, A. 2000. Requirements engineering in the year 00: A research perspective. Proceedings

of the 22nd International Conference on Software Engineering. 5–19. New York: ACM Press.

30 The Wiley Guide to Project Technology, Supply Chain & Procurement Management

van Lamsweerde, A., et al.1998. Managing conflicts in goal-driven requirements engineering. IEEE

Transactions on Software Engineering 24 (11, November): 908–926.

Lauesen, S. 2002. Software requirements: Styles and techniques. London: Addison-Wesley.

Leffingwell, D., and D. Widrig. 2000. Managing software requirements. Reading, MA: Addison-Wesley.

Lehman, M. 1978. InfoTech State of the Art Conference on Why Software Projects Fail. Paper #11, April.

Leveson, N., et al. 1994. Requirements specification for process-control systems. IEEE Transactions on

Software Engineering 20 (9, September): 684–706.

McMenamin, J., and J. Palmer. 1984. Essential systems analysis. Upper Saddle River, NJ: Prentice Hall.

Maiden, N., and A. Sutcliffe. 1996. Analogical retrieval in reuse-oriented requirement engineering.

Software Engineering Journal 11(5):281–292.

Meetingworks, Inc. 2003. www.meetingworks.com.

Meredith, J., and S. Mantel. 2003. Project management: A managerial approach. 5th ed. New York: Wiley.

Microsoft, Inc. 2003. www.microsoft.com..

Mostert, D., and S. von Solms. 1995. A technique to include computer security, safety, and resilience

requirements as part of the requirements specification. Journal of Systems and Software 31 (1, October):

45–53.

Mylopoulos, J., et al. 1992. Representing and using nonfunctional requirements: A process-oriented

approach. IEEE Transactions on Software Engineering 18(6, June): 483–497.

Nixon, B. 1993. Dealing with performance requirements during the development of information sys-

tems. 42–49. IEEE International Symposium on Requirements Engineering. Los Alamitos, CA: IEEE Com-

puter Society Press.

Nuseibeh, B., et al. 1994. A framework for expressing the relationships between multiple views in

requirements specifications. IEEE Transactions on Software Engineering 20 (10, October): 760–773.

Nuseibeh, B., and S. Easterbrook. 2000. Requirements engineering: A roadmap. Proceedings of the 22nd

International Conference on Software Engineering. 35–46. New York: ACM Press.

Opdahl, A. 1994. Requirements engineering for software performance, International Workshop on Re-

quirements Engineering: Foundations of Software Quality. June.

Orr, K. 1981. Structured requirements definition. Topeka, Kansas: Ken Orr and Associates.

Project Management Institute. 2000. A guide to the project management body of knowledge. Newtown Square,

PA: Project Management Institute.

Potts, C. 1991. Seven (plus or minus two) challenges for requirements research. Sixth International Work-

shop on Software Specification and Design. Los Alamitos, CA: IEEE Computer Society.

Rational Software Corporation, Inc. 2003. www.rational.com/products.

Robertson, J., and S. Robertson. 2000. Mastering the requirements process. Reading, MA: Addison-Wesley.

Reinertsen, D. 1997. Managing the design factory. New York: Free Press.

Shim, Y., H. Shim, et al. 1997. Specification and analysis of security requirements for distributed

applications. 374–381. Ninth IEEE International Conference on Software Engineering and Knowledge Engi-

neering. June. Skokie, IL: Knowledge Systems Institute.

Siddiqi, J., and C. Shekaran. 1996. Requirements engineering: The emerging wisdom. IEEE Software

13(2):15–19.

Software Productivity Centre, Inc. 2003. http://www.spc.ca/products/estimate.

Spivey, J. 1990. An introduction to Z and formal specifications. Software Engineering Journal 4:40–50.

The Standish Group. Undated. The CHAOS Chronicles www.standishgroup.com.

Swartout, W., and R. Balzer 1982. On the inevitable intertwining of specifications and design. Com-

munications of the ACM 25 (7, July): 438–440.

Telelogic, Inc. 2003. www.telelogic.com/products.

Thayer, R., and M. Dorfman 1994. Standards, guidelines, and examples on system and software requirements

engineering. Los Alamitos, CA: IEEE Computer Society Press.

Requirements Management in a Project Management Context 31

Ventana, Inc. 2003. www.ventana.com.

Wallace, D. 1994. Verification and validation. In Encyclopedia of Software Engineering, ed., J. Marciniak.

1410–1433. New York: Wiley.

Weidenhaupt, K., et al. 1998. Scenarios in system development: Current practice. IEEE Software 15(2):

34–45.

Wieringa, R. 1996. Requirements engineering. Chichester, UK: Wiley.

Wiegers, K. 1999. Software requirements. Redmond, WA: Microsoft Press.

Wood, J., and D. Silver 1995. Joint application development. 2nd ed. New York: Wiley.

Young, R. 2001. Effective requirements practices. Boston: Addison-Wesley.

Zave, P., and M. Jackson. 1997. Four dark corners of requirements engineering. ACM Transactions on

Software Engineering and Methodology 6 (1, January): 1–30.

