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  1.1.   INTRODUCTION 

 The ATP - binding cassette (ABC  ) proteins represent a highly diversifi ed 
superfamily in all living kingdoms, with 49 human proteins, 14 of which are 
associated with various diseases  (1, 2) . They are found in all animal and plant 
species from prokaryotes to eukaryotes, and their functional characteristics 
are extended from ion transport to macromolecule effl ux  (3, 4) . Although dif-
ferences are observed in their functions, substrate specifi cities, molecular 
mechanisms, and  in vivo  localizations, they share a high degree of sequence 
and structural homology  (5) . The best known and best characterized of them 
is P - glycoprotein (P - gp; subfamily B, member 1: ABCB1), which is encoded 
by the  MDR1  (now  ABCB1 ) gene, located on chromosome 7 in humans. It is 
the fi rst eukaryotic ABC member identifi ed and was discovered by Juliano 
and Ling  (6)  because of its implication in multidrug resistance (MDR) of 
cancer cells to chemotherapy  (7) . It consists of two halves that share a high 
degree of similarity. Each homologous half contains six hydrophobic trans-
membrane domains (TMDs) and a relatively hydrophilic intracellular loop 
encoding an adenosine triphosphate (ATP  ) binding site (nucleotide - binding 
domain [NBD]). By extruding cytotoxic drugs out of the cells before they 
reach their cellular target, P - gp expression leads to failure of AIDS and cancer 
chemotherapy  (8) . It is now recognized that several causes can explain its 
overexpression, such as gene amplifi cation and gene polymorphisms. The 
studies on  ABCB1  polymorphism and its functional consequences have 
become a major topic of research  (9, 10) . In addition, many studies have shown 
that P - gp is expressed in several normal tissues (e.g., intestinal epithelial cells, 
blood – brain barrier [BBB], and placenta.) and that its primary function is to 
prevent the uptake of toxic compounds from the gut into the body, to expel 
them in the bile or urine, and to protect some very sensitive organs, such as 
the brain, from them  (11) . P - gp is also involved in other physiologic processes, 
such as control and regulation of apoptosis, stress, hypoxia, stem - cell differen-
tiation, cellular immune response, or plasma membrane dynamic  (12 – 14) .  

  1.2.    P  -  gp  170: FROM GENE TO PROTEIN 

  1.2.1.    ABCB 1 Gene: Structure, Regulation 

  MDR  or  ABCB  genes constitute a small family in which two genes are closely 
related in humans ( MDR1  and  MDR2 , now  ABCB1  and  ABCB4 ) and in 
rodents ( mdr1, mdr2 , and  mdr3 )  (15) . Full - length cDNAs for human  ABCB1  
and rodent  mdr1  and  mdr3  genes were shown to confer an MDR phenotype 
to drug - sensitive cells after DNA - mediated transfer. The proteins encoded by 
the human  MDR2  gene and by its mouse counterpart are specifi cally involved 
in phosphatidylcholine translocation between plasma membrane leafl ets  (16) . 
The human  MDR  genes are adjacent to each other on the long arm of chro-
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mosome 7, distant by 330   kpb.  ABCB1  and  ABCB4  coding sequences are 76% 
identical.  ABCB1  gene has been shown to contain 29 exons and 28 introns 
(one of them longer than 40   kbp) with a total span greater than 120   kbp  (17) . 
The degree of  ABCB1  gene amplifi cation tightly parallels the expression of 
the MDR phenotype in cell lines selected for resistance. Chromosomal rear-
rangements have been observed in several cell lines and clinical samples. For 
instance, translocation has been observed between chromosomes 4 and 7; the 
resulting somatic cell hybrids showed an overexpression of  ABCB1 , and this 
translocation provides a model for activation of  ABCB1   (18, 19) . Nevertheless, 
amplifi ed genomic regions are not observed in all resistant cell lines. In the 
human  ABCB1  promoter (Fig.  1.1 ), analysis of sequences upstream from 
 ABCB1  - coding regions has revealed that two distinct transcription start sites 
can be used, respectively located 136 and 140   bp upstream from the fi rst ATG 
  codon. The proximal site is used in most MDR cell lines and normal tissues 
 (20 – 22) . Two other minor transcription start sites are located about 100   bp 
downstream from these promoters. The proximal promoter (P1) spans the 
region from  – 198 to +43. It is TATA - less and contains two Y - box consensus 
sequences ( – 113 to  – 118), at least two GC boxes, and other GC - rich regions 
which may bind Sp1 factors. In this downstream promoter, sequences from  – 6 
to +11 (relative to the P1 transcription start site) are suffi cient for proper 
transcriptional initiation. This transcription start site has a strong homology 
with the initiator ( Inr ) sequence of the murine terminal deoxynucleotidyl 
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     FIGURE 1.1.     Schematic illustration of the human  MDR1  gene promoter used in 
MDR cells. The positive transcription factors YB - 1 (Y - box protein 1  ) and MEF1 
(MDR1 promoter - enhancing factor  ) bind to Y - box elements (or CCAAT - box like  ). The 
complex formed with transcription factors NF - kB/c - Fos also negatively regulates these 
regions. This complex is only detected in sensitive cells. GC boxes are recognized by 
transcription activators NF - Y and Sp1, activated by signal transduction pathways 
involving AMPc - dependent kinases (PKC). The Inr sequence ( − 6 at +11) is suffi cient 
to promote transcription in the absence of TATA box promoters  .  
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transferase gene  (20) . The  Inr  sequences are located at the transcription 
start site and can direct transcription from a RNA polymerase II promoter in 
the absence of a TATA box. Recently, some authors have shown the role 
of the highly structured 5 ′  end region of  ABCB1  mRNA in P - gp overexpres-
sion  (23) .   

 The transcriptional regulation of  ABCB1  gene expression is highly regu-
lated by complex events and several signaling pathways. For example,  ABCB1  
gene transcription requires transcriptional factors and coregulators such as 
p53, c - myc, c - jun, HIF - 1, and CtBP1. Altered methylation of the human 
 ABCB1  promoter is sometimes associated with acquired MDR  (24 – 26) . 
Moreover,  ABCB1  gene expression can also be regulated by different physi-
ological processes, including differentiation factors (retinoic acid, sodium 
butyrate), steroid hormones (estradiol), and environmental stress (thermic 
and osmotic shock, low external pH). Antitumoral agents can also induce 
 ABCB1  gene expression in human and rodent cell lines by transcriptional 
regulation. Overexpression can also result from spontaneous selection of 
mutants overexpressing P - gp rather than a direct induction of its expression 
 (27) . 

 Basal transcription of the human  ABCB1  gene is controlled by a negative 
regulation involving a GC - rich region, located from  – 56 to  – 45 and from  – 110 
to  – 103. Moreover, the region containing Y - box and GC elements seems essen-
tial for activation of  ABCB1  after UV irradiation, suggesting a cooperative 
interaction between these boxes  (28) . A CAAT element binds two transcrip-
tional factors, NF -  κ B and c - Fos (bases  – 116 to  – 113) in cells such as MCF7 
cells  (29) . This protein complex is absent in MCF7 doxorubicin - resistant cells; 
and consequently, it has been suggested that it inhibits  ABCB1  gene expres-
sion in sensitive parental cells. Conversely, the proximal promoter also 
contains different sites recognized by transcriptional activators, such as Sp1 -
 activated by AMPc - dependent   kinases  (29) . The transcriptional factor Y - box -
 binding protein 1 (YB - 1  ) accumulates in the nucleus of MDR cells, where it 
binds to Y boxes and might also activate  ABCB1  transcription. In sensitive 
counterparts, this factor is only detected in cytoplasm  (30, 31) . These Y boxes 
are also involved in the overexpression of  ABCB1  gene in HL60 vincristine -
 resistant cells  (32) , by the mean of MEF - 1 transcriptional factor ( MDR1  
promoter - enhancing factor); the interaction is also absent in sensitive cells 
 (33) .  In vivo  studies have shown that  RAS  and  RAF  oncogenes can regulate 
human P - gp expression. 

 The transcription rate of the  ABCB1  gene can also be modulated by p53 
itself or by p53 family members in response to a large subset of stimuli. For 
example, in the  ABCB1  gene promoter, an Sp1 binding site is present and 
binds the promoting transcription heteroduplex Sp1 - p53, modulating the 
expression of  ABCB1  gene, when cells are treated with pro - apoptotic agents. 
Several studies suggested that p53 could be a potent repressor of  ABCB1  gene 
transcription when activated by cytotoxic agents. Nevertheless, the repression 
is dependent on the interaction of p53 with other transcription factors; whereas 
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the interaction of p53 with an  ABCB1  promoter, via a novel p53 DNA binding 
site (the HT site), leads to a direct repression of transcription  (34) . Another 
study showed that the reintroduction of wild - type p53 in doxorubicin resistant 
cells confers a sensitive phenotype that is correlated with a decrease in their 
tumorigenicity  (35) . On the other hand  , p53 can inhibit P - gp function by medi-
ating the inhibition of protein kinase C - alpha (PKC -  α )   promoter activity, 
because PKC -  α  can phosphorylate and activate P - gp  (36) . Other members of 
the p53 family (namely p63 and p73) can regulate the transcription of the 
 ABCB1  gene, but a differential regulation can be observed. In fact, p63 and 
p73 regulate the majority of p53 target genes, but transient transfection assays 
demonstrated that p63 and p73 activated rather than repressed  ABCB1  tran-
scription. This upregulation is DNA binding - dependent but not through the 
HT site; p63 and p73 interact with the  ABCB1  promoter via the alternate 
p63/p73 element, APE    (37) . 

 The human  ABCB1  gene promoter presents many regulating sequences 
that are bound by several different kinds of transcription factors. Analyses 
point out specifi c sequences upstream from the  ABCB1  gene such as, the 
inverted CCAAT sequence, also called the Y box ( − 82 to  − 73), which binds 
the NF - YA transcription factor to regulate  ABCB1  expression in a positive 
way  (38) . This sequence is also involved in the binding of another transcription 
factor, CCAAT/enhancer binding protein beta (C/EBP β ). Cotransfection 
assays by either C/EBP β  or C/EBP β  - LIP (a dominant - negative form of C/
EBP β ) in the breast cancer cell line MCF - 7 and its doxorubicin resistant 
variant MCF - 7/ADR have shown that mutations inside the Y box abolished 
 ABCB1  expression by C/EBP β . The binding of C/EBP β  to another sequence, 
AP - 1 box ( – 123 to  – 111), negatively regulates the expression of the  ABCB1  
gene  (39) . The mechanisms of  ABCB1  activation by C/EBP β  also involve 
interactions with Y - box - associated proteins and differential sequences binding 
in a certain cellular biochemical context. Some Y - box - associated proteins, such 
as the YB - 1,   also regulate the transcription of genes involved in cell growth, 
DNA replication, and DNA repair. Finally, a study has identifi ed a cis - regu-
lating element for  ABCB1  gene transcription  (40) . These authors character-
ized the invMED1 sequence in the 5 ′  - fl anking region of the human  ABCB1  
gene; this one interacts with a nuclear protein, LRP130, and stimulates the 
transcription of  ABCB1  in CEM leukemia cells. Interestingly, the level of 
LRP130 did not vary with the resistance level, but its binding intensity is vari-
able with the  ABCB1  gene expression. Furthermore, as this invMED1 sequence 
is also located in promoter regions of other  MDR  - related genes, the invMED1/
LRP130 couple could be a potential central regulator of the transcription of 
these genes. Another protein frequently mutated in cancers, the transcription 
factor c - myc, is also a strong activator of  ABCB1  transcription. It acts by 
binding the E - box motif (namely, CACGTG), which is localized within the 
proximal promoter of the  ABCB1  gene ( − 272,  − 444). In neuroblastoma, a 
childhood cancer, the overexpression of the neuronal variant N - myc ( MYCN   ) 
enhances  ABCB1  gene expression and constitutes a marker for poor prognosis 



22 THE P-GLYCOPROTEIN 170

 (41) . Indeed, N - myc overexpression is frequently associated with the MDR 
phenotype and high expression of  ABCB1  in neuroblastoma metastasic 
tumors. Epigenetic changes in histone H3 methylation induced by cytotoxic 
drug treatments have been shown to be responsible for the  ABCB1  gene 
overexpression in cancer - resistant cells  (42) .  

  1.2.2.    ABCB 1 Gene Polymorphisms 

 The expression level and function of  ABCB1  gene also depends on some gene 
polymorphisms. During the last decade, several single - nucleotide polymor-
phisms (SNPs) have been identifi ed in the coding region of the gene  (15, 43) . 
The fi rst studies carried out in normal human patients showed signifi cant cor-
relations between polymorphisms in exon 26 (C3435T) of  ABCB1  and expres-
sion levels and functions of  ABCB1   (44) . Some other polymorphisms may be 
associated with altered  ABCB1  expressions and/or P - gp functions; they can 
be associated with altered drug metabolisms and/or pharmacokinetics and 
have an impact on drug effi ciency and toxicity. In the context of rheumatoid 
arthritis, a study showed that the  ABCB1  genotypes 3435CC and 3435TC 
result in lower probabilities of remission after treatment with methotrexate 
and glucocorticosteroids, compared with patients with the 3435TT genotype 
 (45) . Other authors have shown that the  ABCB1  polymorphisms could be a 
risk factor for several other diseases such as renal epithelial tumor, bowel 
diseases, and Parkinson ’ s disease  (46 – 48) . On the contrary, Morita et al.  (49)    
did not observe differences in transcellular transport and intracellular accu-
mulation between cells with polymorphic variants (G2277T/A and C3435T) 
and cells expressing the wild - type genotype. 

 Furthermore, the C3435T polymorphism in exon 26 may affect the function 
of P - gp by infl uencing its expression level, thus modifying cancer prognosis in 
breast cancer (due to chemotherapy resistance)  (50, 51) . It may be one of the 
risk factors for susceptibility in upper aerodigestive tract cancers, which are 
associated with tobacco use and alcohol consumption  (52) . Furthermore, 
another variation, G1199A, appears to alter the transepithelial permeability 
and effl ux of fl uorescent substrates  in vitro . It confers more resistance to cells 
selected by cytotoxic agents such as vinblastine and vincristine  (53) . This 
feature could be an explanation for the relative interindividual difference in 
sensitivity to antineoplastic agents and drug resistance. In addition to the 
numerous SNPs identifi ed, insertions, duplications, or deletions of sequences 
in the  ABCB1  gene could also play a role in altered P - gp functions  (54) . For 
example, an increase of  ABCB1  DNA copy numbers leads to an enhanced 
P - gp expression, which is characteristic of drug - resistant cell lines in compari-
son with the drug - sensitive parental cell lines. A study based on the compari-
son of the SNPs occurring in the entire 200   kb of the  ABCB1  gene in fi ve 
different populations (Chinese, Malays, Indians, Caucasians, and African -
 Americans) has shown that a recent positive selection has occurred at the 
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human  ABCB1  gene locus. This positive and population - dependent selection 
confers a typical haplotype of the  ABCB1  locus in a given population and, 
consequently, a potential population - dependent susceptibility to MDR  (55) . 
Numerous correlations were observed between ethnicity - related polymor-
phisms and haplotypes in the human  ABCB1  gene. For example, Kimchi -
 Sarfaty et al.  (56)  identifi ed that the 3435C    >    T occurred in 24.2% of the U.S. 
population and in 69.3% of the Ashkenazi - Jewish population. 

 It appeared that genotype analysis of  ABCB1  SNPs is becoming increas-
ingly important in identifying genetic variants underlying susceptibility to 
human disease. Recent results suggested that  ABCB1  polymorphisms might 
infl uence the intracellular concentration of cyclosporine, a P - gp substrate pre-
venting graft rejection after solid organ transplantation. The  ABCB1  1199A 
carriers presented a 1.8 - fold decreased cyclosporine intracellular concentra-
tion, whereas the 3435T carriers showed a 1.7 - fold increase. In contrast 
61A    >    G, 1236C    >    T, and 2677G    >    T polymorphisms did not modify cyclospo-
rine intracellular and blood concentrations  (57) . Nevertheless, opposite results 
appeared to be likely due to differences in cancer types  (58, 59) . Future 
research on  ABCB1  polymorphism will allow to better understand the factors 
that contribute to interindividual variability in drug exposure, response, and 
toxicity  (10, 43) .  

  1.2.3.    P  -  gp  Structure 

 The human  ABCB1  gene encodes P - gp, a protein of 170   kDa containing ~1280 
amino acids (approximate mass of 170 – 180   kDa). It is organized in two homol-
ogous halves, corresponding to duplication of an ancestral gene and/or fusion 
of two ancestral molecules. A structural model for the glycoprotein was pro-
posed by Jones and George  (60) . It was obtained from hydropathy plots and 
computer prediction algorithms (Fig.  1.2 ).   

 During the year 2001, the bacterial P - gp homologue (MsbA) of  Escherichia 
coli  was the fi rst ABC transporter to be crystallized. Nevertheless, the described 
structure was controversial, and new structures of bacterial multidrug ABC 
transporter at high resolutions (3 Å ) were proposed  (61) . Among these is 
SAV1866, the bacterial P - gp homologue  (62) . On the other hand, since 1997, 
Rosenberg et al.  (63)  studied the structural organization of the P - gp. They have 
obtained low -  to high - resolution three - dimensional (3D) structures for P - gp 
using cryo - electron microscopy of two - dimensional (2D) crystals. During the 
year 2005, they obtained the fi rst 3D structure for an intact eukaryotic ABC 
transporter  (64) . It contains a wide hydrophilic pore (5   nm for internal diam-
eter and 10   nm for external diameter), closed on the internal cytosolic side, 
forming an aqueous compartment inside the hydrophobic membrane bilayer. 
This cup - shaped chamber has been proposed to include an opening allowing 
a lateral entry of drug substrates to be excluded. The accepted model for 
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      FIGURE 1.2.     Predicted membrane topology and three - dimensional structure of P - gp. 
(a) Each of both N -  and C - terminal halves are composed of 16   transmembrane anti-
parallel  β  - sheets and 6 cytoplasmic  α  - helices. The A, B, and C rectangles correspond 
to the ATP - binding domains. Adapted from Jones and George  (60) . (b) The single 
polypeptide chain is folded in two halves, each containing six transmembrane  α  - helices. 
The transmembrane  α  - helices are connected by extracellular or cytosolic loops, fol-
lowed, in cytosol, by large domains containing for each half a Nucleotide Binding 
Domain (NBD). Drawing with PyMOL.   
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human P - gp suggests that the single polypeptide chain is folded in two trans-
membrane domains (TMDs), each half containing six transmembrane  α  -
 helices. There is evidence that the two TMDs together constitute the drug 
transport pore. The transmembrane  α  - helices are connected by extracellular 
or cytosolic loops, followed by a large cytosolic domain containing an ATP -
 binding site  (65)  or NBD (NBD1 and NBD2 for the fi rst and the second half, 
respectively). Each NBD contains nucleotide - binding motifs, including Walker 
A (P - loop) and Walker B sequences, and the ABC signature motif (LSGGQ). 
A central sequence connects the two homologous halves of the protein and is 
called the  “ linker ”    region. The two halves share 43% sequence identity and 
78% similarity, and TMDs of these proteins display  β  - sheets rather than  α  -
 helices. The linker region also plays an important role in P - gp function. Its 
fl exible secondary structure is suffi cient for the coordinate functioning of both 
halves of P - gp, which are likely required for the proper interaction of the two 
ATP - binding sites. Both NBDs of P - gp can bind and hydrolyse ATP. 

 There is great evidence that for effi cient ATP hydrolysis, the two NBDs 
have to interact by forming a sandwich dimer so that the LSGGQ motif of 
one NBD comes into contact with the loop of the other NBD to form the 
nucleotide - binding pocket  (66) . Moreover, it is evident that the other trans-
membrane segments, such as segment 1  (67)  and segment 7  (68) , play roles in 
the drug - binding pocket, whereas a mutation in segment 6 (residue G346) 
affected drug transport in cells by a reduction in basal ATP hydrolysis, but had 
no effect on drug binding  (69) .  

  1.2.4.   Posttranslational Modifi cation 

  Phosphorylation.     The linker region (75 amino acids long: 633 – 709) contains 
phosphorylable serine residues (661, 667, 671, 675, and 683) recognized by 
different kinases, such as protein kinases C (PKC) and protein kinases A 
(PKA)  (70) . PKA inhibition does not infl uence P - gp expression and function, 
but P - gp phosphorylation by PKC modulates the activity of the pump  (71) . 
The fi rst studies have indeed reported that enhancement of PKC activity by 
phorbol esters increased the resistance level of cells and reduced drug 
accumulation  (72) . 

 Since phorbol ester treatment increases P - gp phosphorylation, these results 
suggest that phosphorylation may enhance drug effl ux. Ratsaninghe et al. have 
observed  (73)  differential expressions and activities of PKC and tyrosine 
phosphatase in MCF7 MDR cells in comparison to sensitive counterparts. This 
relationship of P - gp effl ux activity with decreased and with increased phos-
phorylation suggests that its activity may be modulated not only by kinases 
but also by phosphatases  (74) . Moreover, PKC inhibitors may directly interact 
with P - gp. On the contrary, other authors  (75)  concluded that phosphorylation 
did not play a signifi cant role in regulating P - gp activity in MCF - 7/ADR cells. 
As a conclusion, the mechanisms of P - gp inhibition by PKC inhibitors and the 
role of its phosphorylation remain unclear. PKC blockers may affect drug 
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transport both by (i) direct competition with transported drugs for binding to 
P - gp and (ii) indirect inhibition through a pathway involving PKC inhibition, 
but independent of P - gp phosphorylation  (76) . 

 Specifi cally, Ser - 661, Ser - 667, and Ser - 671 are, both  in vitro  and  in vivo , the 
major sites of phosphorylation, and they all occur within classical PKC con-
sensus motifs. The number and identity of the kinases that phosphorylate P - gp 
in MDR cells remained uncertain for a long time   (77)  . It seems most likely 
that P - gp is phosphorylated by one or more PKC isoenzymes   (78)  . In the PKC 
family, PKC -  α  phosphorylates and activates P - gp, whereas its inhibition by p53 
leads to decreased P - gp phosphorylation   (36)  . Previously, a critical role for the 
linker region Ser - 661 in the positive regulation of P - gp ATPase activity by 
PKC -  α  was suggested by the demonstration that mutation of this serine to 
asparagine abolished the enhancement of drug - stimulated P - gp ATPase activ-
ity by PKC -  α  in a baculovirus expression system   (79)  . Moreover, results on 
proteoliposomes containing P - gp suggest that differential phosphorylation 
patterns of the transporter could to be linked to environmental molecular 
composition (lipids, presence of detergents) and structure   (80)  .  

  Glycosylation     The P - gp apparent molecular weight is reduced from 170   kDa 
to 140   kDa after enzymatic treatment with different glycosidases such as 
peptide - N - glycosidase F or endo -  β  - N - acetylglucosaminidase  (81) . The primary 
sequence of P - gp suggests that 10 putative N - glycosylation sites are present. 
Nevertheless, only three potential sites of extracellular N - glycosylation 
(residues Asn 91, 94, and 99) exist in the fi rst extracellular loop. In fact, 
glycosylation may contribute to a precise folding and a correct traffi cking of 
P - gp to the plasma membrane. It is fi rst synthesized in the endoplasmic 
reticulum (ER) as a core - glycosylated intermediate with a molecular mass of 
about 150   kDa. The carbohydrates are subsequently modifi ed in the Golgi 
apparatus to yield a protein of about 170   kDa that is consequently delivered 
to the cell membrane. Using the mutational studies, Loo and Clarke found 
that 10% of the point mutations affected the processing of P - gp. These mutants 
are retained in the ER as core - glycosylated intermediates associated with the 
molecular chaperones calnexin  (82)  and Hsc70  (83) . However, tunicamycin 
treatment inhibiting glycosylation of P - gp in MDR cells does not affect drug 
sensitivity, although the effi ciency in obtaining drug - resistant clones is 
drastically reduced  (84) . Thus, glycosylation seems to be involved in P - gp 
processing and/or stability. Transfection of MDR cells with wild - type ubiquitin 
or treatment with an N - glycosylation inhibitor increased the ubiquitination of 
P - gp and increased its degradation in the proteasome  (85) . On the other hand, 
Gribar et al.  (86) , using a vaccinia virus - based transient expression system, 
obtained HeLa cells expressing several types of P - gp mutants. First, HeLa 
expressing  “ P - gp - N/Q ”  (91, 94, 99N → Q) showed a 40% – 50% lower cell surface 
compared to HeLa cells expressing the wild - type protein, although the 
substrate specifi city of the pump was not affected. The reduced expression was 
not due to glutamine substitution but to sugar moiety deprivation; indeed, in 
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HeLa cells expressing a P - gp with the substitution 99N → D or with the 99N 
deletion, the level of cell - surface P - gp remained unchanged. In the same way, 
mutagenesis of the three sites in the human protein (Asn to Gln, Ala, or Asp) 
reduced the apparent molecular size to around 140   kDa, but did not modify 
the ATPase activity of the mutated P - gp, which remained able to confer drug 
resistance  (87) . Moreover, the nature and sequence of glycosylated chains are 
very complex. Recently, Greer and Ivey  (88)  have described several possible 
N - glycanic structures of overexpressed human P - gp. One of them contains a 
high - mannose complex oligosaccharide, while two other structures present 
terminal sialic acids. The  α 6 sialyl terminal groups and  β 1 – 6 branching glycans 
are highly expressed in cancers due to the regulation of acetylglucosaminyl -
 transferase V, which could include the glycosylation of P - gp  (89) .    

  1.3.   TISSULAR, CELLULAR, AND ORGANELLE EXPRESSION 
OF  P  -  gp  170 

  1.3.1.   Expression in Normal Tissues and Tumors 

 Several normal tissues express high levels of the  ABCB1  gene, such as apical 
membranes of epithelial cells from kidney proximal tubule, intestine, and 
lung.  ABCB1  gene is also found in brain microvascular endothelia, placenta, 
adrenal cortex, testis, uterus, lymphocytes, and hematopoietic cells  (90 – 92) . 
In such tissues, P - gp localization and its highly conserved structure during 
evolution suggest an important role for this protein in protecting mamma-
lian cells against various toxins and/or in transporting endogenous substrates 
 (93, 94) . 

 As a result of this tissue localization, P - gp functions in three main areas 
 (95) : (i) P - gp limits drug entry into the body after oral drug or toxin adminis-
tration as a result of its expression in the luminal (apical) membrane of entero-
cytes; (ii) once the xenobiotic has reached the blood circulation, P - gp promotes 
drug elimination into bile and urine as a result of its expression in the cana-
licular membrane of hepatocytes and in the luminal membrane of proximal 
tubule cells in the kidneys, respectively; (iii) in addition, once a xenobiotic has 
reached the systemic blood circulation, P - gp limits drug penetration into sensi-
tive tissues. In particular, in the blood brain barrier (BBB), P - gp is localized 
in both luminal and abluminal membranes of capillary endothelial cells, peri-
cytes, and astrocytes  (96) . This localization strongly suggests an important 
effl ux role of P - gp, restricting the penetration of drugs and toxic agents in the 
central nervous system, thus playing the role of a gatekeeper  (97) . Studies on 
knockout mice lacking P - gp have confi rmed these ideas since these animals 
show a disrupted BBB and can be up to 100 - fold more sensitive to several 
neurotoxic drugs  (98, 99) . Furthermore, the knockout mice studies have clari-
fi ed that MDR plays a more important role in preventing drug absorption and 
uptake in gut and brain than in drug excretion in the bile and urine  (100) . 
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 ABC transporters were often detected in a wide variety of stem cells, 
including melanoma and hematopoietic stem cells  (101, 102) . P - gp especially 
is expressed in primitive stem cells, including human CD34+ cells, which can 
be identifi ed by their ability to transport fl uorescent dyes that are P - gp sub-
strates, such as rhodamine 123  (103) . Maturation of these cells was accompa-
nied by a decrease in P - gp expression and functional activity. It was suggested 
that ABC transporters in human stem cells could act as protectors from genetic 
damage by naturally occurring xenobiotics  (104) . However, as initially 
described by Gottesman and Pastan    (105) , this constitutes a  “ double - edged 
sword ”  because the conserved expression of P - gp after the stem cells ’  malig-
nant transformation in acute myeloid leukemia could decrease sensitivity of 
leukemia cells to chemotherapy  (102) . Today, several therapeutic assays have 
been conducted using retroviral  ABCB1  gene transfer to convert drug -
 sensitive hematopoietic cells into drug - resistant cells, in order to protect 
normal cells from intensive cancer chemotherapy  (106) . The aim of this 
approach is to combine high - dose chemotherapy with transplantation of 
 ABCB1  - transduced hematopoietic stem cells; clinical benefi ts are under 
investigation. 

 A recent study  (107)  also reported expression and function of P - gp in 
human fetal neural stem/progenitor cells, hNSPCs. Data suggested that P - gp 
was functionally expressed in cultured hNSPCs and was downregulated during 
differentiation, indicating that  ABCB1  expression might be important in main-
taining hNSPCs in an undifferentiated state. Those data are corroborated by 
a recent review from Mizutani et al.  (108)  who reported that high expression 
of P - gp prevents stem - cell differentiation, leading to the proliferation and 
amplifi cation of this cell repertoire. Links between  ABCB1  expression and the 
differentiation stage were also investigated in neoplastic cells treated with 
all - trans retinoic acid (ATRA), which is used against certain forms of leuke-
mia. Data appeared controversial, as reported by Stromskaya et al.  (109) . The 
authors showed that increasing differentiation of leukemic cells (induced by 
RAR α  overexpression) induced an increase in  ABCB1  gene expression in 
cells from solid tumors. Nevertheless, it did not result in elevation of constitu-
tive P - gp functional activity, but it could participate in the control of P - gp 
induction. Sulov á  et al.    (110)  recently reported that combined treatment of 
P - gp positive cells with verapamil and ATRA induced a depression of P - gp 
expression and/or transport function whereas ATRA alone did not. Taken 
together, these data show that interconnections between retinoic acid -
 mediated differentiation and MDR regulation remain complex and dependent 
on the cell context. 

 P - gp is also expressed in the cancer cells that have developed drug resis-
tance  (111) . It corresponds to the fi rst known function of this protein, described 
in 1976 by Juliano and Ling  (6) . Certain tumors originating from tissues with 
naturally high levels of P - gp expression may be intrinsically drug resistant (e.g., 
colon, kidney, pancreas, and liver carcinoma)  (112, 113) . On the other hand, 
tumors with low basic levels of P - gp expression (such as hematological malig-
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nancies) sometimes display a marked increases after chemotherapy  (114, 115) ; 
this phenomenon is associated with acquired resistance. There is a poor under-
standing of events leading to overexpression of  ABCB1  in response to 
chemotherapy. An induction of P - gp by chemotherapeutic agents has been 
suggested, although the mechanism of this induction remains unclear  (12) . 
Upon exposure to both endogenous and exogenous stresses (metabolic modi-
fi cations, hypoxia, chemotherapy), cancer cells are committed to adaptation. 
Enhancement of  ABCB1  expression constitutes one part of the response.  

  1.3.2.   Cellular Localization of  P  -  gp  

 Numerous studies have suggested a different intracellular localization of cyto-
toxic drugs between sensitive and MDR cells  (116 – 120) . Most of the drug 
accumulates in the nucleus of sensitive cells. In MDR cells overexpressing 
P - gp, the protein is mainly located in the plasma membranes of the cells, and 
altered drug distribution has been observed in resistant cells. The drug is 
largely excluded from the nuclei and is sequestered in perinuclear vesicles that 
move toward the cell periphery to create punctate cytoplasmic distribution 
patterns  (121) . The number of these drug - accumulating vesicles per cell seems 
to correlate with the level of drug resistance, as observed in an MDR Chinese 
hamster ovary cell line  (116) . Vesicle formation displays biphasic kinetics, with 
an initial rapid increase followed by a plateau where no further increase is 
observed. It has been suggested that a pH shift in various cytoplasmic organ-
elles might contribute to this intracellular redistribution of anticancer drugs 
 (122) . Owing to their positive electric charge at physiologic pH, most antican-
cer drugs (vinca alkaloids, anthracyclines) are accumulated under their proton-
ated form on the side of a membrane at which the pH is lower. This suggests 
that cationic molecules become  “ acid - trapped ”  in acidic cytoplasmic vesicles 
 (123) . 

 Several studies have tried to identify the drug sequestration compartments 
associated with P - gp function  (124) . Ferrao et al.    (125)  demonstrated the 
involvement of P - gp in drug compartmentalization in leukemic cell lines and 
patient samples, suggesting that cytoplasmic localization could be involved in 
the sequestration of doxorubicin in organelles, preventing it from reaching its 
nuclear targets. Moreover, it has also been detected in the nuclear membrane, 
in the cytosol  (126) , and in several cytoplasmic compartments of different cell 
lines, such as the Golgi apparatus  (127)  and the ER. A study suggested that 
P - gp was fi rst present in ER before moving to the Golgi and fi nally reaching 
the plasma membrane. Moreover, drug accumulation was raised when P - gp 
was localized in ER or in the Golgi rather than on plasma membrane  (128) . 
On the other hand, Bennis et al.  (129)  observed a preferential accumulation 
of doxorubicin in subcellular components distinct from nuclei in doxorubicin -
 resistant K562 cells. In cells transfected with the  ABCB1  gene, P - gp was 
detected in vesicles located around the periphery of the nuclei  (130) , suggest-
ing a mitochondrial pattern, while Gong et al.  (131)  have shown that 
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accumulation of daunorubicin occurred in mitochondria - like organelles in 
K562 - resistant cells. In addition, Munteanu et al.  (132) , then Solazzo et al. 
 (133) , independently demonstrated a mitochondrial P - gp localization by 
several methods and different specifi c monoclonal antibodies in K562 cells ’  
MDR variants, in MDR1 P1(0.5) hepatocarcinoma cells, and in  ABCB1  -
 transfected (PNA1)NIH/3T3 cells. The two groups have studied P - gp expres-
sion in whole cells by confocal microscopy and in purifi ed isolated mitochondria 
by western blot. They used functional assays on isolated whole mitochondria 
by fl ow cytometry (assays requiring different washing and centrifugations to 
eliminate debris and contaminations by other membranes such as plasma 
membranes) to verify that the mitochondrial P - gp was functional. In contrast, 
Paterson and Gottesman  (134)    did not observe P - gp in mitochondria of MCF - 7 
ADR and KB - V1 cells. Thus, the presence of P - gp in mitochondria is depen-
dent on the MDR cell origin.   

  1.4.    P  -  gp  170: A PROTEIN IMPLICATED 
IN NUMEROUS FUNCTIONS 

  1.4.1.   Multi - Molecule Transporter 

 As previously mentioned, P - gp was originally identifi ed in resistant tumor 
cells as part of the mechanism of MDR; but over the last decade, it has been 
demonstrated that P - gp is also expressed throughout the body to confer 
intrinsic resistance to the tissues by exporting unnecessary or toxic exogenous 
substances or metabolites  (135) . It is thought that MDR substrates enter the 
cell through the lipid bilayer by passive diffusion and bind reversibly to P - gp 
in the bilayer or on the cytoplasmic side of the cell membrane. Subsequently, 
P - gp utilizes energy from the ATP hydrolysis to transport MDR drugs out of 
the cell against a concentration gradient  (136, 137) . P - gp can interact mainly 
with two classes of compounds: The fi rst one, classically considered as 
substrates, are generally hydrophobic, positively charged or neutral, and 
include natural products, chemotherapeutic drugs, or steroids. The second 
group is constituted by modulators that are able to reverse MDR by 
blocking P - gp drug effl ux without being transported by the pump (see Part 
IV, Chapter  8 ).   

 Drug transport involves two steps. First, there is a catalytic cycle of ATP 
hydrolysis, which drives transport. This involves low - affi nity binding of ATP 
to both NBDs, which induces the formation of a putative nucleotide sandwich 
dimer  (138) . Second, the drug is moved from the cytoplasmic side to the extra-
cellular side of the membrane. The P - gp drug - binding site is constituted by the 
transmembrane helices and is located within the cytoplasmic membrane 
leafl et. Three models of P - gp mechanisms of action (Fig. 1.3), not rigorously 
exclusive of each other, are currently reported: classical pump, vacuum cleaner, 
and fl ippase  (2) .   
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    FIGURE 1.3.     Different functional models of P-gp. (a) The pump model according to 
which P-gp may form a transmembrane pore, through which drugs expelled from 
MDR cells pass, thanks to the ATP hydrolysis energy. (b) In the vacuum cleaner 
model, drugs interact with the membrane lipids, then with P-gp, which turns inside 
the membrane and may also release drugs in the extracellular medium. 
(c)  “ Flippase ”  model: The drug inserted in the inner leafl et of the lipidic bilayer may 
be translocated ( “ fl ipped ” ) on the external leafl et from which it may slowly diffuse 
in the extracellular medium.   
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 In the classical - pump model, P - gp forms a pore composed of   the clustering 
of the 12 hydrophobic segments, and actively translocates (in an ATP -
 dependent manner) polar compounds out of the cell as the ion - translocating 
pumps  (105) . Evidence for the direct interaction of many of the substrates or 
reverting agents with the transporter has been obtained, such as drug - binding 
studies and photoaffi nity labeling experiments. The majority of experimental 
data strongly supports this drug - pump model  (137) . Drugs interact in cyto-
plasm with the transmembrane region of the two halves of P - gp (transmem-
brane segments 5 – 6 and 11 – 12  ), coming together to form a single, large, and 
fl exible drug - binding pocket, possibly containing several binding sites for the 
substrate  (8) . It seems that at least two molecules can simultaneously bind 
different overlapping regions. Then, P - gp expels the drugs directly into the 
extracellular medium due to the energy from ATP hydrolysis. Authors have 
demonstrated that the drug - stimulated ATPase activity was directly correlated 
to the ability of P - gp to transport these drugs  (139, 140) . Even if data concern-
ing the stoichiometry   of the exchange has remained controversial for a long 
time, probably because of the high basal ATPase activity  (141, 142) , it seems 
that one nucleotide is cleaved per P - gp molecule  (143) . Thus, the function of 
P - gp is associated mainly with a reduced accumulation of intracellular drugs 
by way of an active effl ux and/or by an intracellular redistribution of these 
drugs. No substrate - transporter binding that is able to transfer it to P - gp has 
been described. 

 According to the  “ hydrophobic vacuum cleaner ”  model, P - gp may detect 
and eliminate hydrophobic substrates directly from the lipid bilayer  (144, 145) . 
As most substrates are hydrophobic, it has been proposed that they fi rst equili-
brate between the aqueous internal compartment and the inner membrane 
leafl et before P - gp meets the substrate. In a second step, nucleotide binding 
and/or ATP hydrolysis causes conformational changes of the transporter, 
which subsequently can extract substrates from the inner leaf and pump them 
directly to the external aqueous medium  (146, 147) . This model is strengthened 
by data demonstrating unidirectional transport of fl uorescent P - gp substrates 
from the cytoplasmic leafl et of the plasma membrane to the external aqueous 
environment  (148) . 

 In the  “ fl ippase ”  model, P - gp encounters drugs in the inner leafl et of the 
plasma membrane and fl ips them to the outer leafl et from which they diffuse 
into the extracellular medium  (149) . This model is based on the analogy 
between amphipathic drugs and the normal phospholipids of membranes. 
Whereas the lateral mobility of phospholipids within the membrane is high, 
the spontaneous rate of fl ipping between the two leafl ets of the membrane is 
very low because the polar - heads groups of the phospholipids cannot be easily 
transferred across the hydrophobic internal part of the membrane, which is 
constituted by the acyl chains of the phospholipids. Although this model was 
initially only based on theoretical considerations, it received a considerable 
boost when Smit et al.  (150)  found that the murine  mdr2  P - gp is essential for 
the normal transport of phosphatidylcholine from the hepatocytes into bile. 
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According to this model, P - gp may fl ip drugs from the inner to the outer leafl et 
of the bilayer where they can partition with the aqueous phase. Recognition 
and binding of diverse sets of substrates must be associated with a preferred 
membrane location, determined by molecular properties and lipid interactions 
 (2, 151, 152) . It remains that it would be diffi cult to distinguish experimentally 
between the hydrophobic vacuum cleaner model and the fl ippase model.  

  1.4.2.   Lipid Transport 

 In agreement with this fl ippase function, a growing number of publications 
have reported a role of P - gp in phospholipid translocation. P - gp has been 
reported to regulate the translocation of phosphatidylcholine and phosphati-
dylethanolamine, as well as sphingomyelin and several other short - chain phos-
pholipid analogs  (108, 153) . This could explain in part the wide range of 
substrates recognized by P - gp, due to the different hydrophobic interactions 
inside lipid bilayers. More specifi cally, the simple glycosphingolipid (GlcCer) 
is a P - gp substrate candidate. It is synthesized from ceramide on the cytosolic 
surface of the Golgi apparatus and enters the outer leafl et of the plasma 
membrane. Interestingly, GlcCer levels are much lower in cells lacking MDR 
transporters  (154) . Nevertheless, it remains unclear whether P - gp translocates 
natural long chain lipids since  ABCB1  knockout transgenic mice have no 
detectable abnormality in lipid metabolism  (155, 156) . P - gp could also be 
involved in traffi cking cholesterol from the plasma membrane to the ER, even 
if it remains unclear whether the P - gp - facilitated cholesterol traffi cking 
is associated with its conventional drug transport activity  (154, 157) . 
Another study conducted by Garrigues et al.  (158)  suggested a coupling 
between the basal ATPase activity of P - gp and its intramembrane cholesterol -
 redistribution function. Data were fully consistent with the possibility that 
P - gp may actively translocate cholesterol in the membrane. Finally, P - gp -
 mediated cholesterol redistribution in the cell membrane makes it likely that 
the protein contributes to stabilizing the cholesterol - rich microdomains, espe-
cially rafts, and that it is involved in the regulation of cholesterol traffi cking 
in cells. Thus, P - gp activity is particularly sensitive to its lipid environment. In 
some cases, P - gp appears to be within specialized raft - like membrane micro-
domains, where its ATPase activity is fi ve times higher than in crude mem-
branes  (159, 160) . These observations remain controversial  (161) . More 
generally, P - gp retains its function in liquid - ordered cholesterol and sphingo-
lipid model membranes, and P - gp activity requires a microenvironment of raft 
microdomains or intermediate - density domains  (162, 163) .  

  1.4.3.   Control and Regulation of Apoptosis 

 A growing number of publications debate about the role of P - gp in apoptosis 
 (164) . Of course, due to its drug effl ux function, P - gp exerts a strong down-
regulatory effect on drug - induced cell death, but it seems that this prevention 
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is not limited to this mechanism. Several works reported that P - gp might play 
a role in regulation of cell death against different stimuli. Robinson et al.  (165)  
showed that P - gp overexpression was associated with resistance to serum 
starvation - induced apoptosis in Chinese hamster ovary fi broblasts and that the 
resistance was reversed by verapamil, indicating that P - gp was required for 
this resistance. Other groups demonstrated that functional P - gp can confer 
resistance to a wide range of caspase - dependent apoptotic stimuli (death 
receptor ligation, UV radiation, etc.). Different mechanisms could underlie 
this function. It has been demonstrated that functional P - gp could inhibit 
activation of the caspase cascade (especially caspases 8 and 3), downstream 
FAS   ligation without disturbance of death - inducing signaling complex (DISC) 
  formation. The inhibition seemed to be dependent on ATP hydrolysis  (166) . 
By contrast, the caspase - independent apoptosis pathway was not affected by 
P - gp expression, suggesting a caspase - specifi c role for P - gp. Caspase inhibition 
could also be explained by an increase in intracellular pH due to expression 
of functional P - gp, while apoptotic events such as caspase activation need 
acidic pH  (164) . In addition, cellular stresses (tumor necrosis factor [TNF]  , 
FAS ligation, radiation) are often associated with ceramide generation, which 
can directly induce mitochondrial cytochrome  c  release. It has been demon-
strated that P - gp might both decrease ceramide production by reducing the 
availability of sphingomyelin and augmented ceramide glycosylation by trans-
locating glucosylceramide across the Golgi membrane, thus detoxifying and 
inhibiting their apoptotic functions  (167) . Recently, it was suggested that 
downregulation of P - gp consecutive to CIAPIN1 inhibition, a new apoptosis 
inhibitor, could sensitize leukemia cells to chemotherapeutic drugs by upregu-
lating the pro - apoptotic BAX protein  (168) . Similar results were obtained with 
hepatocellular carcinoma cells expressing the MDR phenotype. In this model, 
apoptosis could be restored by downregulation of P - gp expression  (169) . These 
data were corroborated by studies of the association between phosphati-
dylinositol 3 - kinase/AKT pathway and MDR of gastric cancer cells  (170) . It 
was shown that inhibition of P - AKT expression signifi cantly upregulates p53 
expression, and downregulates P - gp expression and  ABCB1  transcription.  

  1.4.4.    P  -  gp  Importance in Immune Response 

 Variable levels of P - gp expression have been reported in lymphocytes, ranging 
from 20% to 80% in B cells and from 30% to 100% in T cells. Thus, the link 
between P - gp expression and the function of lymphocytes remains controver-
sial  (171) . It has been shown that inhibition of P - gp effl ux by monoclonal 
antibodies or pharmacological inhibitors resulted in the reduction of NK and 
CD8+ cytotoxic activity. P - gp expression was also reported in skin dendritic 
cells. These cells are key players in the immune system with the capacity to 
support innate and specifi c immunity and to initiate primary immune responses. 
P - gp seems to be involved in dendritic - cell migration toward lymph nodes 
through afferent lymphatic vessels  (172) . One can hypothesize that P - gp could 
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modulate both NK and CD8+ activity and dendritic - cell migration by regulat-
ing cytokine transport, since it has been shown that IL - 1 β , IL - 2, IFN γ , and TNF 
could be transported across the cellular membrane out of activated lympho-
cytes  (164) . Nevertheless, the real place and biological relevance of 
P - gp implication in physiological immune system functions remains to be 
demonstrated. 

 Overexpression of P - gp was also found in lymphocytes from various auto-
immune diseases such as rheumatoid arthritis or systemic lupus erythemato-
sus. It may be due to a long - term use of drugs inducing P - gp expression  (173) . 
Persistence of activated cell compartments characterizing these diseases could 
induce P - gp expression. Another role for P - gp in autoimmune diseases was 
suspected with observations performed on  ABCB1  knockout mice. The animals 
have been reported to be more susceptible to infl ammatory bowel diseases. It 
has been suggested that P - gp, in regard to its gut localization, could prevent 
accumulation of infl ammation - inducing bacteria  (94) .   

  1.5.   CONCLUSION 

 Finally, since the discovery of P - gp (product of the  ABCB1  gene) in 1976 in 
cancer tissue, several thousands of articles have been published, showing the 
interest of the knowledge of its gene, its structure, and its role. From this 
amount of data, a more rational approach to P - gp inhibition should emerge. 
Recent studies have focused on  ABCB1  pharmacogenetics, which is involved 
in both drug pharmacokinetics and cancer MDR  (2, 10) . Nevertheless, numer-
ous data about P - gp remain partial and/or unclear. For instance, the mecha-
nism of P - gp - mediated drug transport is not yet completely elucidated, 
especially the coupling between ATP cleavage and transport; the molecular 
phenomena leading to  ABCB1  overexpression in response to chemotherapy 
is poorly understood; and the effects of various genotypes and haplotypes on 
P - gp function remain controversial. Today, we know that P - pg is present in 
normal cells and in tumor cells, where it plays a role to effl ux hydrophobic 
endogenous and exogenous compounds. P - gp is involved in numerous physi-
ological and pathologic pathways, in normal and cancer tissues; and the impli-
cation of P - gp in so many processes has opened several important new topics 
of investigation.  
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