
Introduction to Silverlight

Announced at the Mix ’07 conference in May of 2007, Silverlight took the world by storm with a
vision of Adobe Flash–like Rich Internet Applications (RIAs) built using a standards-based, open
approach with HTML and XAML using tools like Visual Studio .NET and the new Microsoft
Expression Blend. The idea for Silverlight is nothing new; Microsoft had been talking about a
technology called WPF/e for the previous 8 or 10 months. Interestingly enough, there was so
much confusion around what WPF/e meant, the name needed to change to something completely
different, a name that did not associate WPF/e with the smart client, next-generation UI platform
Windows Presentation Foundation (WPF). The idea was to tack the letter “e” on the end of WPF
to convey Windows Presentation Foundation Everywhere. But this was simply not the case. This
WPF is a core part of .NET 3.0 and has a 30MB runtime that requires a Windows-based desktop to
run. WPF/e was a 2MB download, ran in the browser, and ran on multiple platforms. And multiple
platforms here does not mean Windows XP and Windows Vista; it means Windows and Apple
Macintosh. It means the Safari web browser on an Apple Macintosh being served up from an
Apache web server running on Linux. Yes, you read that correctly, Linux, Mac, Safari, and Windows,
too. There are other significant differences as well, which you’ll learn about throughout the next
few chapters. Needless to say, the name WPF/e was not going to adequately represent this amaz-
ing new technology, so Silverlight was announced as the new name at Mix ’07. This chapter does
two basic things: 

❑ It gives you an introduction to Silverlight.

❑ It sets the groundwork with the essentials on creating Silverlight applications that will
help you move on to the next chapter and the rest of the book.

What Is Silver light?
Silverlight is simply a web-based platform for building and running RIAs. The web-based plat-
form part of that equation is essentially the plug-in that runs inside the web browser. Silverlight
applications execute within a browser plug-in that installs onto the local machine via the web
browser in the exact same manner you install Adobe Flash to run Flash-based animations on web

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 1

CO
PYRIG

HTED
 M

ATERIA
L



pages. The Silverlight plug-in supports all of the wow factor that you’d expect from an RIA, such as vec-
tor-based graphics and animations, full video integration, and even high-definition video. You can boil
down the coolness of Silverlight to the following bullets:

❑ It’s a cross-platform, cross-browser platform for delivering RIAs.

❑ It supports playback of Windows Media video and audio files on PC and Mac with no depend-
ency on Windows Media Player.

❑ Using XAML, HTML, and JavaScript, it delivers rich multimedia, vector graphics, animations,
and interactivity beyond what AJAX can deliver.

❑ The installation package is less than 2MB.

❑ The same XAML created for Silverlight can be used in WPF applications with no changes.

The Silverlight player (or plug-in, or control — those terms are used interchangeably in the book and
you will see those variances when others talk about Silverlight as well) itself is a completely standalone
environment; there is no dependency on the .NET Framework on the client, on the .NET Framework
on the server, or even on a specific version of the .NET Framework. The initial association to the .NET
Framework comes from the fact that you are using eXtensible Application Markup Language (XAML)
to build the user interface for Silverlight applications, which is of course the foundation of the rich
WPF applications built on .NET 3.0. The XAML is downloaded to the browser and executes within the
Silverlight runtime on the client. When the XAML is running in the Silverlight player in the web browser,
you can access all of the Silverlight objects via JavaScript code that lives in your HTML page. Figure 1-1
demonstrates this interaction between the web browser, the Silverlight player, the XAML, and the
HTML page.

You might be asking why Microsoft is pushing out another web-based, client-side technology. There is
already ASP.NET, and the ASP.NET AJAX Extensions have been released as well. The simple answer is
that users are demanding an even richer experience on the web. Even though AJAX does a lot for
improved user experience — the postback nightmare of Web 1.0 is finally going away — it does not do
enough. There is demand for a richer, more immersive experience on the web. This has been accomplished
with WPF on the rich client side. WPF gives a unified approach to media, documents, and graphics in a
single runtime. The problem with WPF, as stated earlier, is that it is a 30MB runtime that runs only on
the Windows OS. Microsoft needed to give the same type of experience that WPF offers, only in a cross-
platform, browser-delivery mechanism. So what Microsoft did was take the concept of a plug-in model
like Adobe Flash, mixed it with the WPF declarative language in XAML, and came up with a way to
develop highly rich, immersive, Web 2.0 applications.

Was the Name Silverlight a Surprise?
For the true It-Getters out there (It-Getters are the “ones who get it”), the new name
Silverlight was not such a huge surprise. For the previous months of Community
Technology Previews (CTPs) of WPF/e, the JavaScript file that contained the core logic
to create the browser object that actually runs the WPF/e code was named agHost.js.
For the savvy web surfers out there, you might recognize “ag” as the Internet domain
suffix for Antigua and Barbuda. But in terms of agHost.js in a WPF/e project, the
“ag” represented the atomic symbol for silver. If you are a developer and a chemist,
you might have recognized this. I am not so sure anyone ever actually did, but it does
show how clever these names really are.

2

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 2



Figure 1-1

The big picture of Silverlight from an architectural perspective is in Figure 1-2. Each area is covered in
more detail as you read along in the book, but the important thing to note now is that in using JavaScript
you have access to the entire document object model (DOM) of the HTML page that Silverlight is running,
which includes Silverlight objects themselves.

Figure 1-2

As mentioned earlier, Silverlight is fully supported across multiple browsers and operating systems. The
current status for browser and OS support is identified in Table 1-1.

Silverlight 1.0

2D Graphics

Animations

Input (mouse, keyboard, ink)

Media (WMV, WMA, MP3)

Imaging (JPEG, PNG)

Text

HTTP Downloader

XAML Parser

JavaScript DOM

Operating System (Macintosh, Windows)

Brow
ser Plug-In

Ja
va

Sc
rip

t Silverlight

XA
M

L

Render

Events Raised

Method Call

3

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 3



Table 1-1: Browser and Operating System Support for Silverlight

What Does DOM Really Mean?
Those new to the web world and programming web pages might not understand what the DOM actu-
ally is. In order to effectively work with elements in HTML or XML (the document), the information in
the web page needs to be represented in a way that allows programmatic access the document’s contents.
This document object is the root node and object structure that represents the HTML in the page, and
each node or object can have its own properties, methods, and events. Using languages like JavaScript
(or even VBScript if you are using Internet Explorer), you can access these nodes and objects via code to
manipulate them. This is what is commonly known as client-side scripting. 

For example, the following code shows how to use the getElementById method to return an HTML
element that has an ID property set, and then some JavaScript updates the content of the div element.
When accessing elements via the DOM programmatically, an element must have an ID assigned.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Page 1</title>
</head>

<body>
<div id=”message”></div>
<script type=”text/javascript”>
document.getElementById(“message”).innerHTML = “This is DOM access”;

</script>
</body>

In Chapter 4, you learn more about the DOM and interacting with page elements using JavaScript.

Browsers

Note that when the Silverlight runtime is installed,
a browser plug-in that exposes the Silverlight
control is installed. Based on the platform, the
control is packaged differently. On Windows,
Internet Explorer uses an ActiveX, COM-based
model to host Silverlight controls In all other
combinations of browsers and platforms the
Netscape plug-in technology is used to host
Silverlight controls.

Internet Explorer 6 and 7 (Windows)

Firefox 1.5.0.8, 2.0+ (Windows and Mac, with
Linux support announced)

Safari 2.0.4+ (Mac)

Konqueror, WebKit, and Opera are being looked
at by the Mono team and Novell.

Operating Systems Windows XP SP2

Windows Vista

Mac OS X (10.4.8+)

Moonlight, a Linux-based version of Silverlight,
is being created by the Mono team at Novell.
BSD and Solaris are being discussed for future
support, but are not currently available..

4

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 4



Silver light Versions Explained
If you have been following Silverlight, you might be a little confused over the versions that are available: 

❑ Currently, Silverlight 1.0 is the first version of Silverlight and supports the JavaScript program-
ming model that is described in the previous section. This means that your language choice is
simple — JavaScript. You use JavaScript to interact with Silverlight objects that are executing
within the Silverlight player in the browser. 

❑ Silverlight 1.1 supports the .NET Framework. This means that you can use any Common
Language Runtime (CLR) language to code Silverlight applications, and you have the full
power of the .NET Framework to interact with Silverlight objects. 

In this book we concentrate on Silverlight 1.0, because it is in full release. Figure 1-3 compares
Silverlight 1.0 and 1.1.

Figure 1-3

Copy .NET for Silverlight
ASP.NET
AJAX Libs

<asp:xaml>
<asp:media>

Common Language Runtime

XAML

Data WPF for Silverlight

Dynamic Languages BCL

LINQ LINQ-to-XML

Ruby Python

Extensible Controls

Generics Collections

Presentation Core

UI Core
2D Vectors
Animation

Text

Images
Transforms

Inputs
Keyboard

Mouse
Ink 

Media
WMV/VC1

WMA
MP3

Controls
Layout
Editing

DRM
Media

Web Services

REST
RSS

SOAP

POX
JSON

Server

Integrated
Networking

Stack

DOM
Integration Installer JavaScript

Engine

Browser Host

Silverlight 1.0

Silverlight 1.1

Legend

5

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 5



In Chapter 6 you get more insight into the next release of Silverlight and how having access to the CLR
will impact your Silverlight development.

Getting the Silver light Plug-In
The first time you navigate to a web page that contains a Silverlight application, the Silverlight player is
not installed automatically; the installation is similar to the Adobe Flash experience. There is a nonintru-
sive image on the page where the Silverlight content is placed to run that gives a link to download the
player. Silverlight has two different prompts for install — the standard install and the in-place install: 

❑ In a standard install, the Get Microsoft Silverlight image tells you that you need to install
Silverlight to complete the experience on the web page you have arrived at. Figure 1-4 demon-
strates a page with the standard install images.

Figure 1-4

6

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 6



❑ Once you click the Get Microsoft Silverlight install image, you are taken to the Silverlight install
page on the Microsoft site, as Figure 1-5 demonstrates.

Figure 1-5

❑ Once you click the Install Now button, you are prompted to either download or install the
Silverlight player in the same manner you would get any download from the web. Once you
have successfully installed the Silverlight player, you are shown the Welcome to Silverlight page
(Figure 1-6), which has a nice animation that shows off the capabilities of Silverlight. There is
also a convenient link back to the page that had the Get Silverlight prompts, so the flow of your
experience is fairly seamless.

❑ If a page is using the in-place install, the image is slightly different, and the experience is differ-
ent as well. During an in-place install, the download begins without having to navigate to a spe-
cial download page. Figure 1-7 shows the in-place install image. Notice the difference from the
standard install image in Figure 1-4.

7

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 7



Figure 1-6

Figure 1-7

After the Silverlight player is installed, you never have to install it again. Silverlight also has built into it
the knowledge of updates, so once a new version of Silverlight is available, you are asked if you would
like to install the update to get the latest version of the player.

8

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 8



Getting the Silver light SDK
To actually build Silverlight applications, you need more than the Silverlight player itself. If you have
not arrived at a page where you are prompted to install the Silverlight runtime, you can easily get it
on the Silverlight SDK page. There are also supporting files, help files, samples, and quick starts in 
the Silverlight Software Development Kit (SDK) that will give you the files you need to start build-
ing Silverlight applications. To get the SDK, go to http://www.silverlight.net/getstarted/
default.aspx, shown in Figure 1-8.

Figure 1-8

On the Silverlight SDK page, you can download all of the tools that you use to create Silverlight 1.0 or
1.1 applications: 

❑ Runtimes:

❑ Silverlight 1.0 for Mac and Windows

❑ Silverlight 1.1 Alpha for Mac and Windows 

9

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 9



❑ Developer Tools:

❑ Microsoft Visual Studio Beta 2 

❑ Microsoft Silverlight Tools Alpha for Visual Studio 

❑ Designer Tools:

❑ Expression Blend

❑ Expression Encoder

❑ Expression Design 

❑ SDKs:

❑ Microsoft Silverlight 1.0 Software Development Kit (SDK) 

❑ Microsoft Silverlight 1.1 Alpha Software Development Kit (SDK) 

If you need to install the 1.0 runtime, you should do that from this page. You should also download the
Microsoft Silverlight 1.0 SDK. You need this to get the files and examples required to learn Silverlight.
The SDK download is a standard MSI package.  It installs the files necessary to create Silverlight applica-
tions, including the project templates for Visual Studio. Figure 1-9 is what the folder structure for the
installed SDK looks like.

Figure 1-9

To view the samples that ship with Silverlight, you can browse to the community gallery at
http://silverlight.net/community/communitygallery.aspx. Here you can view and download
all of the samples built on Silverlight.  Most of the samples are built by Microsoft, but there are also
community contributions as well. Because Silverlight 1.0 is based on HTML, JavaScript, and XAML,

10

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 10



you do not need to execute the samples within the context of a web server like IIS. So when you
download a sample and run it locally, in each of the project folders there is a Default.html file that
you can simply double-click to run the sample. (Note that the Internet Explorer security warning
will appear because you are running pages with ActiveX on them locally.)

In Figures 1-10, 1-11, and 1-12, I have highlighted some of the more impressive examples of what you
can do with Silverlight. The Page Turner example in Figure 1-10 demonstrates the ability to flip and
skew images to mimic the real-life behavior of turning pages in a book.

Figure 1-10

The Grand Piano Player example shown in Figure 1-11 mimics the playing of a keyboard by mapping
keys of the piano to their corresponding keyboard values.

Shown in Figure 1-12, SilverPad, an interactive application, lets you view the results of XAML that you
add dynamically to the editor area of the application.

11

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 11



Figure 1-11

Figure 1-12

12

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 12



Now that you have seen some real-life examples of how powerful Silverlight is, you can start to learn
more about building Silverlight applications in the next sections and, subsequently, the next chapters.

Building Silver light Applications
Now that you have the Silverlight player installed and you have the SDK, you can start building
Silverlight applications. There are several ways to create Silverlight applications:

❑ Visual Studio 2008 Silverlight project template. (These templates target Silverlight 1.1 only.)

❑ Visual Studio 2005 with the Silverlight 1.0 project templates installed from the Silverlight 1.0 SDK

❑ Expression Blend 2.0 using the Silverlight 1.0 and Silverlight 1.1 project templates

❑ Using any text editor to create the HTML, XAML, and JavaScript needed to run a Silverlight 1.0
application

Because this book is focused on Silverlight 1.0, we are going to look at building Silverlight applications
using Visual Studio 2005 with the project templates from the SDK. The project template is installed when
you run the initial SDK install.  If you chose not to install the project template during the install, there is a
package you can run from the Microsoft Silverlight 1.0 SDK from the Start Menu that will install it for you.

To start, open Visual Studio 2005 and hit Ctrl+Shift+N to open the New Project dialog. Select Visual C#
Projects, because there is no template for Visual Basic in the SDK. Even if you are a hard-core VB devel-
oper, it does not really matter what language the template is under because you are only using HTML,
JavaScript, and XAML to build Silverlight 1.0 applications. The New Project dialog should look some-
thing like Figure 1-13, with the Silverlight Javascript Application template under My Templates. This is
the template extracted from the zip file you copied to the templates’ folder previously.

Figure 1-13

13

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 13



Change the Name of the project to HelloSilverlight, as Figure 1-13 shows, and click the OK button to
create the solution. You should be looking at Visual Studio now, with a Solution Explorer that looks
similar to Figure 1-14.

Figure 1-14

Table 1-2 outlines the files in the solution, along with their definitions.

Table 1-2: Default Files in a Silverlight Project and Their Descriptions

File Description

Default.html Default HTML file that hosts the Silverlight player and contains refer-
ences to the JavaScript files required by the Silverlight player.

Default.html.js The JavaScript file associated with the Default.html file. 

Scene.xaml The default XAML file that contains the objects and elements that make
up the user interface that plays in the Silverlight player that is embedded
in Default.html.

Scene.xaml.js The JavaScript file for the control events specified in the XAML file. This
can be likened to the code behind file of a .CS file.

Silverlight.js The core JavaScript library that ensures the Silverlight player is on the
client machine and then creates the Silverlight object that runs in the page.

14

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 14



Now that you have a little bit of an understanding of the files in the solution, go ahead and run the proj-
ect to see how the default Silverlight template works. You should see a web page with a button on it. If
you click the button, you should see something similar to Figure 1-15.

Figure 1-15

If you look at the HTML (Listing 1-1) in the Default.htm file, you will notice that there is no ActiveX
control on the page. There are, however, several references to JavaScript files that contain the code that
is needed to create the instance of the Silverlight player in the HTML page. 

Listing 1-1: HTML from the Default.htm File That Hosts the Silverlight Control

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 
Transitional//EN” “http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HelloSilverlight</title>

<script type=”text/javascript” src=”Silverlight.js”></script>
<script type=”text/javascript” src=”Default.html.js”></script>
<script type=”text/javascript” src=”Scene.xaml.js”></script>

15

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 15



Listing 1-1: (continued)

</head>

<body>
<div id=”SilverlightControlHost”>

<script type=”text/javascript”>
createSilverlight();

</script>
</div>

</body>
</html>

The embedded script in the <body> tag contains a call to the JavaScript function createSilverlight(),
which is located in the default.html.js file, is listed in Listing 1-2, and is responsible for creating the
Silverlight object in the HTML page.

Listing 1-2: The createSilverlight Function

function createSilverlight()
{

var scene = new HelloSilverlight.Scene();
Sys.Silverlight.createObjectEx({

source: “Scene.xaml”,
parentElement: 
document.getElementById(“SilverlightControlHost”),
id: “SilverlightControl”,
properties: {

width: “400”,
height: “400”,
version: “0.9”

},
events: {

onLoad: 
Sys.Silverlight.createDelegate
(scene, scene.handleLoad)

}
});

}
The core code in the JavaScript file is the call to Sys.Silverlight.createObjectEx. This function,
shown in Figure 1-16, is responsible for creating the actual Silverlight object and returning it to the page.
It also makes sure that the Silverlight control is installed on the client computer, so when it creates the
object and accepts the parameters passed in, there are no errors. 

16

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 16



Figure 1-16

The Sivlerlight.js file is the core JavaScript needed to instantiate and run the Silverlight player in the
browser. It is required in any Silverlight applications you create.

Creating the Silverlight Object in HTML
There are other ways to create the Silverlight player; you do not have to use the method that the default
template uses. You can simply use the object or embed tag in your HTML page to get a Silverlight player.
The HTML in Listing 1-3 demonstrates using the object tag to create an instance of a Silverlight player
named silverlight1.

Listing 1-3: Creating a Silverlight Control Using the object Tag in HTML 

<object
type=”application/ag-plugin”
id=”silverlight1”
width=”350”
height=”350”>
<param name=”background” value=”#ffebcd” />
<param name=”enableFramerateCounter” value=”true” />

17

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 17



Listing 1-3: (continued)

<param name=”enableHtmlAccess” value=”true” />
<param name=”initParams” value=”paramValue1, paramValue2” />
<param name=”maxFrameRate” value=”30” />
<param name=”onError” value=”myErrorHandler” />
<param name=”onLoad” value=”onLoad” />
<param name=”source” value=”HelloSilverlight.xaml” />
<param name=”windowless” value=”true” />

</object>

The object tag works only in Internet Explorer browsers, whereas the embed tag is used for Firefox
and Macintosh browsers. The HTML listed in Listing 1-4 is an example of creating a Silverlight player
instance using the embed tag.

Listing 1-4: Creating a Silverlight Control Using the embed Tag in HTML 

<embed
type=”application/ag-plugin”
id=”silverlight1”
width=”350”
height=”350”
background=”#ffebcd”
enableFramerateCounter=”true”
enableHtmlAccess=”true”
initParams=”paramValue1, paramValue2”
maxFrameRate=”30”
OnError=”myErrorHandler”
OnLoad=”onLoad”
source=”HelloWorld.xaml”
windowless=”false”
/>

The obvious observation is that you would probably not want to do this yourself, because you are limit-
ing yourself to a specific browser type by using embed or object tags. Your best bet is to use the tech-
nique in the default Silverlight project template, which uses generic JavaScript to call the createObjectEx
function in the Silverlight.js file. This ensures you are not making any mistakes in how the Silverlight
player is created in the client browser.

Silverlight Object Attributes
In the various examples you have just read about that create the Silverlight player in the browser, you’ve
seen that you can also pass parameters to the object during its creation to set various properties on the
control. Table 1-3 (which paraphrases a table that can be found online at http://msdn2.microsoft.com/
library/en-us/bb412394.aspx) lists the attributes you can use on the Silverlight control when you are
creating it.

18

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 18



Table 1-3: Object Attributes for the Silverlight Control

In addition to the object tag parameters in Table 1-3, the object tag also supports a set of optional
parameter attributes for the control. Table 1-4 (which paraphrases a table that can be found online at
http://msdn2.microsoft.com/library/en-us/bb412394.aspx) lists the optional parameter tags that
map to properties on the Silverlight control.

Table 1-4: Optional Parameter Tags for the Silverlight Control

Parameter Tag Type Description

background String or hexadecimal The background color of the rectangular
region that displays XAML content. The
default value is null, which is equivalent
to the color white.

enableFramerateCounter Boolean Indicates whether to display the current
frame rate in the hosting browser’s status
bar. The default value is false.

enableHtmlAccess Boolean Determines whether the hosted content in
the Silverlight control has access to the
browser DOM. The default value is true.

initParams String Specifies an optional set of user-defined ini-
tialization parameters.

maxFramerate Integer Specifies the maximum number of frames
to render per second, which defaults to 24.

Tag Type Description

Type String The MIME type for the installed plug-in.

Id String Gives the Silverlight control a unique identifier, because there can be multiple
controls on a page.

width String The rectangular width that displays the Silverlight content in pixels. You can
also specify the width as a percentage of the displayable area of the tag contain-
ing the Silverlight control — for example, “40%“.

Height String The rectangular region that displays the Silverlight content in pixels. You can
also specify the height as a percentage of the displayable area of the tag contain-
ing the Silverlight control — for example, “50%“.

19

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 19



Table 1-4: (continued)

Adding Multiple Silverlight Objects to a Page
Just like any other element or object on an HTML page, you can run multiple Silverlight players on a
page as well. To enable multiple Silverlight players on a page, make sure there is a unique <div> tag
with a unique ID representing the player you are creating.

<div id=”SilverlightControlHost”>
<script type=”text/javascript”>

createSilverlight();
</script>

</div>

In the default createSilverlight function, the name of the <div> element is hard coded, as demon-
strated in Listing 1-5.

Listing 1-5: createSilverlight Function Showing the createObjectEx Method Call

function createSilverlight()
{

var scene = new HelloSilverlight.Scene();
Sys.Silverlight.createObjectEx({

source: “Scene.xaml”,
parentElement: 
document.getElementById(“SilverlightControlHost”),
id: “SilverlightControl”,
properties: {

width: “400”,
height: “400”,
version: “0.9”

},
events: {

onLoad: 

Parameter Tag Type Description

onError String Specifies the JavaScript error handling function for the
OnError event. The default value is default_error_
handler.

onLoad String Specifies the JavaScript event handling function for the
OnLoad event. null is the default. 

source String Specifies the XAML content that is rendered.

windowless Boolean Determines whether the Silverlight control displays as a
windows-less control. The default value is false.

20

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 20



Notice the XAML file is also hard coded, as is the control host you are attempting to pass the
Silverlight player back to. To ensure there are no errors, you may want to consider creating a generic
createSilverlight function that accepts parameters for the information that you need to make
unique, as the code in Listing 1-6 demonstrates.

Listing 1-6: Sample of Parameterized createSilverlight Function

function createSilverlight(xamlFile, hostId, controlId, height, width)
{

var scene = new HelloSilverlight.Scene();
Sys.Silverlight.createObjectEx({

source: xamlFile,
parentElement: 
document.getElementById(hostId),
id: controlId,
properties: {

width: height,
height: width,
version: “0.9”

},
events: {

onLoad: 

As you can see, adding multiple Silverlight players to a page is pretty simple, and in many cases, will be
the default scenario.

Resizing a Silverlight Control
The Silverlight control provides both resize capabilities and full screen mode. When the control is dis-
played in embedded mode, it is playing in the default height and width specified when it was created.
In embedded mode, the OnResize event fires, which allows you to write code that resizes the player
and the elements in the player. 

The JavaScript in Listing 1-7 shows how to define an OnResize event for a Silverlight control.

Listing 1-7: Resizing a Control Using the OnResize Event

// function call from the OnResize event
function ResizeControl(width, height)
{

// Reference the control in the DOM
var control = document.getElementById(“silverlight1”);

// Set the size
control.width = width;
control.height = height;

}

21

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 21



Whenever the actualHeight or actualWidth property of the Silverlight control changes, the OnResize
event occurs. An effective way to assign a function to this event is during the control’s creation. For
example, you can assign the ResizeControl function in the createSilverlight function described
earlier in this section:

silverlightObject.content.onResize = “ResizeControl”

When resizing a Silverlight control or when switching to full screen mode, the performance of any run-
ning video or animations should not be affected. 

In full screen mode, the player is displayed in the full height and width of the screen’s resolution on top
of all other running applications. When the player goes from embedded mode to full screen mode, the
OnResize event does not fire, but the ActualHeight and ActualWidth properties do change. They will
reflect the height and width of your screen’s resolution.

Figure 1-17 demonstrates a Silverlight player embedded in the browser, and Figure 1-18 shows the same
Silverlight player in full screen mode.

Figure 1-17

22

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 22



Figure 1-18

Displaying in Full Screen Mode
To display a Silverlight player in full screen mode, the fullScreen property must be set to true. If the
fullScreen property is not set to true, the Silverlight control assumes its normal height and width and
displays in embedded mode. Note that only one Silverlight player can be in full screen mode at a time; if
a control is displayed in full screen mode, it must be returned to embedded mode before another control
can go to full screen. Listing 1-8 shows how to use JavaScript to get the Silverlight player into full
screen mode.

Listing 1-8: Using JavaScript to Get the Silverlight Player into Full Screen Mode

function GoFullScreen(sender, eventArgs)
{

host = sender.getHost();
host.content.fullscreen = true;

}

To use the function, you would need to specify an event on an XAML element. For example, because the
user needs to trigger the action to go into full screen, you might have a TextBlock or a Rectangle ele-
ment that indicates to users that if they click on the element, the browser goes into full screen mode.
Notice in the following XAML the call to the GoFullScreen function on the MouseLeftButtonUp event.

<Rectangle Height=“100“ Width=“100“
Canvas.Top=“100“ Canvas.Left=“100“
Fill=“Red“
MouseLeftButtonUp=“GoFullScreen“ />

23

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 23



Note that you cannot set the mode to full screen in the Loaded event of the control. It must be set in
response to user actions, such as the MouseLeftButtonDown, MouseLeftButtonUp, KeyDown, and KeyUp
events. The following code toggles the screen mode based on the MouseLeftButtonUp event:

function GoFullScreen(sender, eventArgs)
{

host = sender.getHost();
host.content.fullscreen = !host.content.fullscreen;

}

When a Silverlight player switches to full screen, the message demonstrated in Figure 1-19 is displayed
for several seconds, giving the user instructions on how to return to embedded mode. 

Figure 1-19

Once a Silverlight player is in full screen mode, keyboard events are prevented from being passed on to
keyboard event handlers in the application. The only valid keyboard input that is acted upon is the set of
keystrokes that return the Silverlight control to embedded mode. This limitation of keyboard input dur-
ing full screen mode is a security feature and is intended to minimize the possibility of unintended infor-
mation being entered by a user. The other way to return from full screen mode to embedded mode is to
simply use the following keystroke combinations:

❑ Windows — Esc, Ctrl+W, or Alt+F4 

❑ Macintosh — Esc 

24

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 24



Understanding XAML
The one file we have not touched on yet is the Scene.xaml file from the HelloSilverlight sample. The
XAML file is the most important part of the Silverlight application. It is the markup that defines what
should actually get displayed in the Silverlight player itself. The XAML in the Scene.xaml file is fairly
complex for your first Silverlight application, so we are not going to delve into the details of what the
XAML is actually doing. Over the next several chapters, you will get a better understanding of what XAML
can do for you in Silverlight, the various ways you can get XAML into the Silverlight player, and how
you can create very interactive user interfaces with not so complex XAML. For now, you’ll just get an
understanding of XAML and look at a couple of examples of how it can be used in Silverlight.

If you are not familiar with WPF, you are probably not familiar with XAML. Since the dawn of Visual
Studio, way back around 1997 or so when when we used its precursor Visual InterDev, there was always
the promise of code and user interface design separation. This means that a developer can write code,
while a designer just works on the design and layout aspects of an application. This has never been real-
ized, mostly because a developer and a designer are always using different tools and different languages.
With the introduction of XAML, there was finally a unified markup that could not only describe what a
control is and how it fits into a page, but also how layout, and more importantly, the overall look and
feel of the controls on a page are defined. A designer can use XAML to create a mock-up of a page or an
application, and a developer can take that XAML markup and use it directly in his project files. Because
partial classes and code behind files in Visual Studio .NET allow you to separate the code logic from the
layout and control definitions, using XAML gives the opportunity to have this separation of the design
from the code. To give you an idea of how XAML works, look at the code in Listing 1-9. This is an XAML
snippet from a Silverlight application that shows Hello World in a TextBlock. 

Listing 1-9: Basic XAML to Display Hello World in a Silverlight Player

<Canvas x:Name=“parentCanvas“
xmlns=“http://schemas.microsoft.com/client/2007“
xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml“
Width=“640“
Height=“480“
Background=“White“
>

<TextBlock>Hello World</TextBlock>
</Canvas>

Listing 1-10 shows how the XAML can get more complex, demonstrating adding various animations to
the text block control. In this example, four different transforms are occurring:

❑ ScaleTransform — Stretches or shrinks an object horizontally or vertically.

❑ SkewTransform — Creates the illusion of three-dimensional depth in a two-dimensional object.

❑ RotateTransform — Rotates an object by a specified angle around the CenterX and CenterY of
an object.

❑ TranslateTransform — Translates, or moves, an object in the two-dimensional x-y coordinate
system.

25

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 25



Listing 1-10: XAML Showing a Custom Transform on a TextBlock Element

<Canvas
xmlns=“http://schemas.microsoft.com/client/2007“
xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml“
Width=“640“ Height=“480“
Background=“White“
>
<Canvas.Triggers>

<EventTrigger RoutedEvent=“Canvas.Loaded“>
<BeginStoryboard>

<Storyboard x:Name=“Timeline1“/>
</BeginStoryboard>

</EventTrigger>
</Canvas.Triggers>
<TextBlock Width=“349“ Height=“67“

Canvas.Left=“150“
Canvas.Top=“140“ Text=“Hello World“
TextWrapping=“Wrap“
RenderTransformOrigin=“0.5,0.5“
x:Name=“textBlock“>
<TextBlock.RenderTransform>

<TransformGroup>
<ScaleTransform ScaleX=“1“ ScaleY=“1“/>
<SkewTransform AngleX=“0“ AngleY=“0“/>
<RotateTransform Angle=“0“/>
<TranslateTransform X=“0“ Y=“0“/>

</TransformGroup>
</TextBlock.RenderTransform>

</TextBlock>
</Canvas>

Appendix B gives a more in-depth explanation of XAML and how you can use it to define and create
your Silverlight applications. You will also be getting your fair share of XAML throughout the book,
because it is how you will create most of the examples that we have defined. Tools like Microsoft
Expression Blend 2.0, Visual Studio 2005 with the Silverlight project support, and Visual Studio 2008 
are all Rapid Application Development (RAD) tools that you can use to create your Silverlight applica-
tions. The problem right now is that Microsoft Expression Blend 2.0 is really the only tool that gives you
a nice design-time experience, where you can drag and drop controls onto the design surface and switch
between the designer view and the XAML view. We know these problems will work themselves out. As
Silverlight matures and goes into a release stage, and as Visual Studio 2008 nears release, the appropriate
tools will be released that will let you design applications in a RAD fashion. The good thing about not
having the perfect tool right now to create Silverlight applications is that you are forced to type XAML,
which will give you the understanding you need to know what is happening behind the scenes of the
runtime player. 

26

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 26



Summary
This chapter gave you the groundwork you need to move forward in the book. You learned that Silverlight
is a rich platform for delivering next-generation RIAs based on XAML, HTML, and JavaScript. Using tools
like the Silverlight project template in the Silverlight 1.0 SDK, it is easy to get started writing Silverlight
applications. In the next chapter, you continue where you left off here with more information on creating
the user interface using XAML. If you ever need a reference on XAML, refer to Appendix B to find out
additional information on XAML.

27

Chapter 1: Introduction to Silverlight

28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 27



28401c01.qxd:WroxPro  9/12/07  9:36 PM  Page 28



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.10000
  /EncodeColorImages false
  /ColorImageFilter /None
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.10000
  /EncodeGrayImages false
  /GrayImageFilter /None
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /None
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


