Chapter 1

Linear Algebra, Projections

1.1 Introduction

Suppase thal each element of o population possesses a nwmerical characieristic
a, and another numerical characteristic 4. It is often desirable to study Uhe
relationship between lwo such variables . and ¢ n order Lo beller understand
how values of .« allect ¥, or Lo predict y, given the value ol . For example, we
may wish Lo know the ellect of amount @ of fertilizer per square meler on the
vicld # of a evop in kilograms per syuare meler. Qv we might like Lo know the
relationship hetween a man’s height ¢ and that of his fathor .

TFor cachh value of the independent variable 2. the dependent variable YV
may be supposed to have a probability distribution with mean g(z). Thus,
for exanple, ¢g{0.9) is the expected vield of a crop using fortilizer level & =
0.9 (kg s/m°).

Definition 1.1.1. For cach 2 & £ suppose ¥ is a raadom variable with distri-
bution depending on x. Then,

glxy  EY|x} for zC D
is the regression function for ¥ on .

Often the domain I will be a subset of the real line, or even the whole
real line. However, 12 could also be a finite set, say {1,2,3}, or a countably
ifinite set {1,2, ...}, The experimenter or statistician would like to determine
the fiunction g, nsing sample data consgisting of pairs {a,. ) for 2 = 1,00 5.
Unlortunately, the number of possible functions ¢{x) is so large that in order to
make headway cortain simplifying models for the torm of g{z) mmst be adopted.
10 is supposed that g{(#) is of the form glae) At Ba | Ca® or gfa) = AZ*+Bor
glz) = Alogr+ B, and, so on, then the problem is reduced to one of idensifying
a [ew parawclers, here labeled as A, B, €0 In each of the thiree forms for gla)
given above, ¢ is linear in Lhese parametors,
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In one of the simplest cases we might consider a model for which g{x) =
C 4 Dz, where C and D are unknown parameters. The problem of estimating
g(xz) then becomes Lhe simpler one of estimaling the two parameters ' and 7.
This model may not be a goed approximation of the true regression funetion,
and, if possible, should be checked for validily. The crop vield as a function of
ferfilizer level may well have the form in Figure 1.1.1.

Yield

T T T T T
0.0 0.5 1.0 1.5 2.0

Fertilizer Level

Figure 1.1.1: Regression of yield on fertilizer level

The regression function g would be better approximated by a second degree
polynomial g{x) = A + Bz 4 Cz?. Howcever, if attention is confined to the 0.7
- 1.3 range, the regression function is approximately linear, and the simplilying
model g{x) = €+ D, called the simple lincar regression model, may be used.

In attempting to understand the relationship between a person’s helght Y
and the heights of his/her father (2} and mother {x2) and the person’s sex
{rz), we might suppose

E(Y|x,mu,23) = g((l’,‘| . :1!53,11?3) =gy + Sz + Fxe + Saay {1.1.1)

where 2y s 1 [or males, 0 for females, and 3y, 51, 32, Fa are unknown parameters.
Thus a brother would be expecled to be Js laller than his sisier. Again, this
model, called a multiple regression model, can only be an approximation of the
true regression funclion, valid over a limiled range of values of #;,22. A more



L2, VECTORS, INNER PRODUCTS, LENGTHS 3

Table 1.1.1: Height Data

Individnal Y 1 Tw o Ey
1 685 70 62 1
2 725 7Y 66 |
3 70.0 68 67 1
1 710 72 64 1
5 65.0 66 60 1
6 64.5 71 63 0
7 67.5 714 68 0
8 61.5 65 65 O
9 63.5 70 614 0O
10 63.5 69 65 0

complex model might suppose
_L)‘(ff,] e .I.-;;} .*)'ll | _,J)| Ty | .di’. o 4 H; Fy 4+ .{)'.4.1-1 - i j,-', Ly + ')J{,'J'.'] Y]

This model is nonlinear in (£, wa,:03), but lincar in the 3's. 1 is the linearily
in the 3's which makes this model a fnear statistical model.

Consider the model (1.1.1), and suppose we have the data of Table 1.1.1 on
(Y,x), %2, 2q) for 10 individuals. These data were collected in a class taught by
the author. Perhaps the student can colleei. similar dava in his/her elass and
compare results.

The statistical problem is to determine estimates J’U, J‘l 32 d; 50 that the
resulting funcvion gz, @0, 23) = J’U + 111 a ’izrz | 31!1 15 In sole seuse a
good approximalion of g{@q, x2,:x3). For this purpose, it is convenient Lo wrile
the model in veclor [orm:

E(Y) = _,-'30){0 + S1xp + Foxs + _,(?;;Xg

where x 18 the column vector of all ones, and Y and %, %2, Xy are the column
vectors in Table 1.1.1.

"This formulation of the model suggests that finear algebra may be an inipor-
tant tool in the analysis of linear statistical models. We will therefore review
such material in Seetion 1.2, emphasizing geometric aspects.

1.2 Vectors, Inner Products, Lengths

Let 2 {omega) be Lhe collection of all nw-tuples of real numbers for a positive
integer n. In applicaiions £2 will be the sample space of all possible values of
the observation vecior y. "Though ¢ will be in one-to-one correspondence to
Enclidean n-space, it will be convenient to consider elements of §2 as arrvays all
of the same configuration, not necessarily column or row vectors. For example,
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in application to what s nsnally called one-way analysis of variance. we might
have 3, 4, and 2 obscrvations on three different levels of some Lrealmen. effect.
Then wo might take

o e tha
a1 Hew o Hon
AN TR

Haz

y:

and {2 the collection of all such y. While we could casily reforin y into a cohunn
vector, it s often convenient, to preserve the form of y. The lerm “n-tuple”
means that the n elements ol a veclor ¥ € £ are ordered.

Ohnega becomes a linear space if we deline ay for any y & O and any real
wuniber @ to e the element of Q given by multiplying each component of y by
e, and if for any two clements vy, ¥z € £ we deline ¥y, + y2 o be the vector
in £2 whose ith component is the swin of Lhe ith components of 'y, and ya, for
i=1,...,1.

Omiega becomes an iner product space if for each x.y € @ we deline the
funetion

T

Mx.y)— Z Filhi
1

where X — {ry,. et aud ¥ = (g1 . w8 is the collection ol n-
dimensional column veclors then fi(x, ¥y} = x'y, in matrix notation. The inner
product A(x, ¥) (oftca called the dot product} is usually wrilten simply as (x,
¥ We will use this nolation. The inver product is often called the dot prod-
net, written in the form x - y. Since there is a small danger of confusion with
the pair (x, y}, we will wse bold parentheses to anphasize that we mean the
inmer product. Since bold symnbols are uol easily indicated on a chalkboard or
in student notes, iU is important. thal the meaning will alimost always be clear
fram the conlext. The lnuer product has the propertios:

(X.y) = (yX}
(ax.y) = a(x,y}
(X'I - Xz-y] - (X],y:] 1 I{X‘_),y}

for all vectors, and real munbers o,

We define x1? = (x.x) and call ||x|| the (Euclidean) fength of x. 1hus
x = (3.4,12) has length 13,

The distance belween vectors x and v is the longth of x -y, Veciors x and
y are said Lo be orfhogonal il {(x,y) = 0. We wrile x L y.

For example. il the sample space 1s the collection of arcays meationed above,
then

100 010
_jzoep o0 30
=13 0 YT oy

3
] -0
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are orthogonal, with squared lengths 14 and 36. Tor  the collection of 3-tuples,
(2,31} L( 1,1, 1).

The [ollowing theorem is perhaps the most important of Lhe entire book. We
credit. it to Pythagorus (sixth century B.C.}, though he would not, of course,
have recognized it in this form. (The author was several years younger than
Pythagorus, but knew him well)

Pythagorean Thearem: Lel vi.....v; be mutually orthogonal vectars in
@ Then

k
:ZH‘%Hj
1

2 . . _ :
Proof. |23 vi]|” = (kv Zhvi) = S vevy)
= vavi) =2 vl

RZ
> v
1

i

Definition 1.2.1. The projection ol a veclor y on a vector x is the vector y
such that

1. ¥ = bx [or some constant O

2. (v —¥) L x {equivalently, (7, x) = (¥, x)}.

Equivalenlly, ¢ is the projection of y on the subspace of all veclors of the
form ax, the subspace spanned by x (Figure 1.2.1). To be more preeise, these
properties deline othogonal projection. We will use the word projeclion to mean
orthogonal projecltion. We wrile p(y|x) Lo denole this projectlon. Students
ghould not confuse this with conditional probability.

Let us Lry to lind the constant b. We need (3, x) = (bx,x) = b{x, x} = {y.x}.
Henee, if x = 0, any & will do. Otherwise, b = {y, x)/||x||?. Thus,

N { 0 forx 0

Y= (v, x}/|xi|*lx,  otherwise

Here 0 is the vector of all zeros. Note that if x 18 replaced by a muliiple ax of
x, for a /() then ¥ remains the same though the eoefficiont. b is replaced by &/a

1 1
Example 1.2.1. Tet x = [ 2|,y = | ~6]. Then (x,¥) = I8, ||x||* -
| 5
3 -2
6G.hb=18/6=3 y=3xs=|-6}.y—y=| 0] Lx
3 2

Theorem 1.2.1. Among afl multiples ax of &, the projection ¥ of 4 on © is the
closest vector to .
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.
=

Figure 1.2.1: Projection of y onto x

Proof. Simee (y - ¥} | (¥ —ox) and (y — ax} = (y — ) + (¥ — ax), it follows
that

ly —ax|* = ly = 91* + Iy — ax|*.

This is obviously mivimum for ax =¥ U

Smeev I ([vy—¥%)andy =9+ (y —¥), the P)’tlld&()lt‘dn Theorem implieg
that {7 - 317+ iy = 91 Since 917 =3I = (y. 20/ x|, this iaples
that |ly]|? = (y.x)%/||x]i%, with equdl;t_y il and ooly if ||y — ¥|| = 0, so that,
equivalently, v is a multiple of x. This is the famous Cauchy-Schwars Tnequality,
usually written as {y. x}2 < |ly[|?||x]|%. The inequalily is best understood as the
result of the equality implied by the Pythagorean Theorvem.

Definition 1.2.2. Let A be a subset of the indices of the components of a vector
space $2. The indicotor of A is the veclor Iy € Q2. with components which are 1
lor indices in A, and 0 otherwise.

The projection ¥ 4 of ¥ on the vector T4 is therefore 14 for

b= (y,14)/La? = (Z ?h:) /N(A), where N{A) is the number of indices

pCA
in 4. Thus, & = §a, the mean of the y-values with componcnts in A, For
example, if {2 is the space of four-component row vectors, ¥ = {3,7,8, 13},
and A ig the indicator Indicator veclor of Lhe second and fourth componentis.
ply|La) = (0.10,0,10).
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Prohlem 1.2.1. Let (} be the collection of oll fine-tuples of the form
_ {1 o¥n
Y= (!}12 (27 ZUM)
10 5 1
L”'X_(-z ; 3)’3’_(9 4 n)

(a) Bind (2, ). |2 I5I%, 5 ~ plylx). andy — 3. Show that x L (y - ).
wnd ||yl = |77 + |ly — ¥

(h) Tetw = (_

72 = 9

n']
a %] U) and 7 = 3x + 2w. Show that {w.x) - 0 and that

x||? 1 4||wl|2. (Why must this be truc?)

(¢} Lelx,.x2.x3 be the indicators of the first, second and third columns. Find
pylx;) fori— 1,23,

Problem 1.2.2. s projection a Hnear transformation in the sense that pley'x)
= eply|x) for uny real number of Prove or disprove. What is the relationship
between plylx) and ply|ex) for e£0%

Problem 1.2.3. Let ix|* = 0. Use caleulus to prove that ||y —bx||? is mindrsam
for b - (y. )/ |xII%

Problem 1.2.4. Prove lhe converse of the Pythagorcan Theorem.  That s,
lx+¥lI? = |1x|I* + ||¥||? implies that x L y.

Problem 1.2.5. Skeich o picture and prove the parallelogram laun

lx + v+ ix = i = 2(x]1* + Iy |

1.3 Subspaces, Projections

We begin the diseission of subspaces and projections with a number of defini-
tions of great iImportance to onr subscquent disenssion of linear mmodels. Alinost
all ol the definitions and the theorems which [ollow are usually included in a
first conrse in matrix or linear algebra. Such courses do not always include
discussion of orthogonal projection, su this material may be new Lo the student.

Definition 1.3.1. A suhspace of i a anbset of 2 which is closed under
addition and scalar multiplication.

That is, V' < @ ig a subspace il for every x C ¥V and overy sealar a,ax ¢ V
and if for everv vy, vo € Vv + vy & V.

Definition 1.3.2. Lot xy, ..., x; be & vectors i an re-dimensional veclor space.
The subspace spenned by x4,. .., x;. 15 the collection of all vectors

v oobixy b | bexy

for all real numbers by, ... . he. We denole ihis subspace by £(xq,...,x).
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k
Definition 1.8.3. Vectors x1,....%; arve finearly independeni if > bix; = 0
i
implics b; =0 foré=1,..., k.

Definition 1.3.4. A basis for a subspace V of {1 is a set of lincarly independent
vectors which span V.

The proofs of Theorems 1.3.1 and 1.3.2 are omitted. Readers arc referred to
any ntrodnctory book on lincar algebra.

Theorem 1.3.1. Fvery basis for a subspace V' on Q) has the same nuwmber of
elements.

Definition 1.3.5. The dimension of a subspace V' of £2 is the munber of ele-
ments in each basis.

Theorem 1.3.2. Let vy,..., vy, be lincarly independent vectors in o subspace

V' oof dimension d. Then d = k.

Comment: Theorem 1.3.2 implies that if dim(V) = d then any collection of
o + 1 or more vectors In V omnst be lincarly dependent.  In parlicular, any
collection of n 4+ 1 vectors in the n-component space € are linearly dependent.

Definition 1.3.6. A vector y is orthogonal to a subspace V' of £ if y is orthog-
onal to all veetors in V. We write y L V.

Problem 1.3.1. Let Q be the space of all fowr-component row veetors. Lel x|
={1,1,1,1),xy = (1,1,0,0), %3 = (1,0, 1,0}, x4 - (7,4,9.6). Lef Vo = L(x1,%2),
Vj = ;C(X] 2 Xy X3) and V»; = ,C(X] 5 Xu, Xy, X4) .

(a) Find the dimensions of Vo and V.

(b) Find bases for Vu and Vi which contoin vectors with as maony zeros os
possible.

(¢} Give a veclor 2 # 0 which is orthogonal to all vectors in Vi,

(d) Since xq,%X9,%3, z are linearly independent, x4 is cxpressible in the form
YU b o+ ez Show that ¢ = 0 and hence that x4 € Vi, by delermining
> Show that ¢ = 0 and that Vs, by del
(x4, z}). What is dim{Vy)?

(e) Cive n simple verbal description of V.

o ¥ UYm
Problem 1.3.2. Consider the space 2 of arrays |ihe Yo and define

15
C,,Cy, Cy Lo be the indicators of the columns. Let V== L{C,, C,, Cy).

{a} What propertics must y satisfy in ovder thaty € V2 In order thaly L V'Y

(b} Find o veclor y which is orthogonal io V.
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y
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y-y
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Figure 1.3.1: Projection ol ¥ onto the Subspace V

The foliowing definition is perhaps the most ituportant in the entire book.
Tt serves as ihe foundation of all the leasi- squares theory to be disenssed iu the
following chaptoers.

Definition 1.3.7. The projection of a vector y on a subspace V of £ is the
veetor ¥y € Vosuch that {y — ¥} L V. The vector y — 3 = ¢ will be called the
residual vector for y relative to V.

Comment: The condition (y  ¥) t V is cquivalent to (y - ¥.x) =0 for
all x € V. Therelore, in seeking the projection ¥ of ¥ on a subhspace V' we seck
a veetor ¥ in ¥V which has the same inner products as y with all vectors in V
(See Figure 1.3.1).

If vectors x, ..., Xy, spab a subspace ¥ then a vector = C V is the projection
of y on Vil (z.x;) = (¥, x;) lor all i, since lor any vector x = Z?:_I hx; €V,
this implies that '

(2.%) = Y bitex,) = (. 3 b ) = (5.0

1L is tempting Lo allemptl to compute the projeclion ¥ of ¥y on ¥V by simply
summing the projections ¥, = p(y!x;). As we shall see, this is only possible in
some very special cases. Al this point we have not established the legitimacy of
Definition 1.3.7. Does such a veclor ¥ always exist and, if so, is it unigne? We do
know that the projection oulo a one-dimensional subspace, say onto V' = £{x},
for x # 0, does exist and is unique. In fact,

y =, x)/|Ix[I}x if x#0
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Example 1.3.1. Consider ihe sixs-component space €2 of the problem above,

6 4 7
and let V= £{C,Cu. Cy). Tet y - 0 8
5

[t 18 casy to show that the vector ¥y — > n(y|C,) - 7TCy +6Cy +7Cs salislies
the conditions for a projection onto V.

As will soou be shown, the represcutalion of ¥ as the sum of projections on
linearly independent veclors spanning the space is possible because C), Cy, and
Cy are mutually othogonal.

We will lirsl show unigueness ol the projeciion. Existence is more dithcult.
Suppose y1 oand o are two such projections of ¥ onto V., Then, yy —y2 € V
and {y) —y2) = (y —y2)— (¥ — %1} is orthogonal wo all vectors in ¥V, in particular
o itself. Thus |7 —¥2||* = (¥ — ¥2.¥1 — ¥2) = 0, unplying ¥, — ¥+ = 0, that
5, ¥1 = y2.

We have yvel Lo show ihai ¥ always exisis. Tn the case thai it doces exist (wo
will show that it always exists) we will write ¥ = p{y|V).

If we are [ortunate cnough Lo have an erthogonal basis (a basis of mutually
orthogonal veclors) [or a given subspace V), il Is eagy to find the projection.
Students are warned that thiz method applies ondy for an orthogonal hasdis. We
will later show thal all subspaces possess such orthogonal bases, so that the
projection ¥y = ply|¥) always exisls.

Theorem 1.3.3. Let vi.....vy b an orthogonael bosis for V. o subspace of
£, Then '

k.
ply[V) =3 plylva)

il
FProof. Let y; pylv,) = byvy for by (y.v,)/hvill? Since ¥, is a scalar
multiple of v, it is orthogonal to v; for § # 4 Lrom the commeni on the
previous page, we need only show that 37y, and y. have the same inner product
with cach v, since this implies that they have the samne inner product with all
x £ V. But

(Z Vi, VJ-) = Z bi(viovy) = billvi I = (v, v,

]
Example 1.3.2. Lot
7 1 2
¥ = 0 v, = 1], w,; = 1 V.- ﬁ(vl,vzj
2 1 -1
Then, vy | vy and
9 19 3 4 7
olV) =3 = sty btviva) = () vk (v = (3]« [ 2) - o
‘ b 3 2 1
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Then, (y,v,) = 9. {y,v,) = 12, (¥.v1) = 9, and (¥.ve) = 12, The residual
{
vector is y — y = | —1 |, which is orthogonal Lo V.
1
Would this same procedure have worked if we replaced this orthogonal bagis
vy, vz for V by a nonorthogonal hagis? To experiment, let. us leave v in the new
basis, but replace vo by vz = 2vy — va. Note that £(v,vy) = L(vi,ve) = V,

0
and that (vy.vg) £ 0. 3 remaing the same. vy = 2vp — vy = [ 3| .3y —
3
0 3
f—;v;; 1],and ¥, +¥: =14 ], which hag inner products 11 and 24 with v,
4
3 4
and vy ¥ 1] = 4 |, which is not arthogonal Lo V. Therefore, $1 4+ ¥3
4 2

is not the projection of y on V = £{v,,v3).

Since (¥ ¥} L ¥. we have, by the Pythagorean Theorem,

I =1y 91902 = 1y 9171 191 2
U
JT o2 ] ) e .
Iyl =53, 942 = 54 S =n gy 902 H ] =2
1

Warning: We have shown thal when v,. .., vy are mulually orthogonal the

projection ¥ of ¥ on the subspace spanned by v, ..., v Is -1 p{y|v;). This
is true for all ¥ only if vi,. ... v, are miinally orthogonal. Students are asked
to prove the “only™ part in Problem 1.3.7.

Every subspace Voof £ of dimension >0 has an orthogonal basis (actually
an infinity of such bases). We will show thal such a basis exists by using
Gram Schmidt orthogonalization.

Let xq, ..., x4 be a basis for a subspace V., a k.dimengional subspace of €.
For 1 <4§ <k let V, — L(x1,...,3} sothat V) €V, C - C ¥}, are properly
nested subspaces. Let

vy =x3, ve =X — p(xavy)

Then vy and vp span Vo and are orthogonal. Thus p(xg|Ve) = plxz|vi) |
p(xy|ve) and 1.34 vy = x3 — plxg|V2). Coulinuing in this way, suppose we
have defined vy, ..., v; to be mutually orthogonal vectors spanning V;. Define
Vi1  Xep1 —pi{xg 0 |Vi). Then vy L Vi, and hence vy, ... vy are mutnally
orthogonal and span V. Sinee we ean do this for each 4 < & 1 we get the
orthogonal hasis v,.. ., vy for V.

I vy, .., v} is an orthogonal basis for a subspace V' then, since y =
V) = X?_] pylvyand plylvy)  byvy with by — [(y, v}/ |[v; 2], it follows

ply
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hy the Pythagorean Theorem that

IS IS I3
a2 — 2 _ P 2 2 P
0% = loyvi 07 = D0l = D (v IIvsl
=1 =l =1
Of course, the basis {vy.. ... vi} can be made iote an erthonormal basis (all
veetors of length one) by dividing each by ite own length. TF {vi. .. vi} Is

. - : ¥ & —k *
such an o_rthouormal. basis then y = p(y|V) = >y ply|vi) =3 1y, vi)v,
¥ = Zf":l(y,_vf)z, The function “gr” in R and S-Plus determines U and
textbfR [or given X,

Example 1.3.3. Consider R4, the gpace ol [our-component column vectors. Let

11 4 8
. . — 11 0 10

us apply Gramw Schmidt orthogonalization to the cohunns ol X = 15 12 ol
1 5 8 10

a matrix chosen carctully by the author to keep the arithimnetic simple. Lot the
[owr cohunus be xy,...,%y4. Define vy = x5, Let

-2 2
12 —2 24 | 32 -2
v X —vy vy - X —V] Vg -
2 2 v 9 El 3 FRAIETAL 9
2 2
and
2
B 28 (-16)  (—=24) 1 |-2
Vi =X, 1 Vi 16 Vo 16 Vil = )
2

We can multiply these v, by arbitrary counstants to shplify them with-
out losing their orthogonalily. For example, we can deline vy = v, /||vill,
so that up, ug. Uz, @y are unil length orthogonal vectors spanning £, Then
U = (uy,u5. ug,u4) is an orthogonal matrix. The vector U is expressible in
the form U = XR, where R has «eros below the diagonal. Since T = U'1J ..
UXR.R ! =UX, and X = UR !, where R has zeros below the diagonal
(see Sectiorn 1.7).

As we consider lincar models we will often begin with o model which supposes
that Y has expectalion § which lies in a subspace V5. and will wish Lo decide
whether this vector lics in a smaller subspace V1. The orthogonal bases pro-
vided by the [ollowing theorem will be usciul in the development of convenient,
formulas and in the investigation of the distributional properties of estimalors.

Theorem 1.3.4. Let VI © Vo C 1 be subspaces of § of dimensions 1 < ny <
ne < n. Then there exist mudually orthogonal vectors vy, ..., vy, such that
Vi Vy, span Vi i =1,2.
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Proof. Lot {x,...,Xp, } be a basis for V. Then by Gram Schmidt orthogonal-
ization there exisls an orthogonal basis {vi,..., v, Flor Vi Tel X, 41,0 .. Xy
be chosen consecutively from V5 so thal vy,..., vy Xng 11,00 Xy, are linearly
independent. (Tf this could not be done, Vs would have dimension less than g}
Then applying Gram Schmidl orthogonalization 10 X, | 1,. .., Xn, we have an
orthogonal basis for V2. Repeating this for V, replaced by @ and vy, ..., v,
by vi....,v,, we get Lthe theorem.

O

For a nested sequence of subspaces we can repeat this theorem conscculively
Lo gel Theorem 1.3.5

Theorem 1.3.5. Let Vi C Vy < -+ © Vi © 82 = Vi be subspoces of Q

of dimensions 1 < vy < ng <2 -+ <l 9y, <m0 ngpr. Then there erists an
r}rfhr)qonrrﬂ basis vi,.... vy, for §1 such that vy,..., vy, 8 a basis for V; for

We can therefore write for any y € €2,

Mg

1) =3 ‘”y ‘h“ for =1, k]
AF
and
: = (y Vj)2
ply|Vi))® = AL for i=1,...,k+ 1

The v ean be chosen to have length one, so these last formulag simplify still
turther.

Thus, the definition of the projection ply|V) has been justified. Fortunately,
it 1% wot necessary to find an orthogonal bagis in order to find the projection
in the general case that the hasis vectors (xq,. ... %) are not orthogonal. The
CGram—Schinidt method is useful in the development of nonmatrix formulas for
regrossion cocfficionts.

In order for ¥ = hixy + -+ + dexp to be the projection of ¥ on V =
Llxq, ... %) we need (y,x;) — (¥.x;) for all 2. This leads to the so-called
normal equations

k
(v.x;) = ij(xj,x.,:) =(y,x;) lor i=1,....k
1

1t is convenient to write these & simubtaneous linear equations in matrix form:

M b =1,

kxk kxk
where M Is the malrix of inner products among the x; veetors, b is the column
veclor of b's, and U is the &x1 column vector of inner pl(){lu{ ts of ¥ wiih the
%;. 10 € is tuken Lo be the space of n-component colunn veelors, then we
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can write X = {xy,...,xy ), and we get M = X'X, U - X'y, so the norinal

equations arc:

Mb .. (X'X)b— X'y = U

Of conrse, il M = ((%,,%;)) has an inverse we will have an explicit solution
b=M"'U

of the normal equalions. 1L will be shown in Section 1.6 that M bas rank & if
and only if xy.....x; are linearly independent. Thus b = M~'U if and only if
Xy, ..., Xy are lincarly independent.

Tn the case that the elemoents of €0 are not column veclors, we can always
rewrite its clenents as cohinmn vectors, and the malrix M will remain unchanged.
Thus, in the general case M possesses an inverse il and only i the vectors
X)....,X; are linearly independent. Of course. even in Lhis case with 2 = 1%,
the space of n-component coluinn vectors, X = (%), ..., xx). being n x k. does
not have an inverse unless 7= k. Tn applications we always have n > k.

I the computation on M = XX it makes lit{le senge to write X on its side
as X', then X, and then to carry out the computation as the mltiplication
of two matrices, nnless the computer sofiware being used requives this. The
matrix M is the matrix of inner products, and U is a vector of inner products,
and this viewpoint should be emphasized.

Example 1.3.4. Let y, v, and vo be as in Example 1.3.3. Lel x; = v, and
Xp = 2v| + vz. Then

7 1 1
y= |0 x; = |1 Xy =
2 1 1

and V = £{v,,va) = £{x.x3). We compule
_ |3 6 (xi, ¥} [9

M= {6 18] - U [(xzﬁ v |s0)
T T R 1 G -2

M =%ls 376|2 1]

o 1 8] T
b=M"U=c1 =15

and ¥ = ply|V) = —x| + 2% = , a5 belore.

—_ = -

I is easy Lo compute lengths of ¥ and of y — y. Lirst,

liﬁ:
I3 — (v.9) = (y, > ij_f) = bily.x;) =b'U.
L
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Figure 1.3.2: Projection of ¥y onto the Subspace V

By the Pythagorcan Theorem,

Iy %I lyl* =Nyl

For Example 1.3.3, [|¥|]* = by, x1) + bafy. x2) = (=1)(9) + 2(30) = 51.

The projection ¥ = p(y|V) is the closest vector in IV to y, sinee for any other
veelor w e V),

ly =wli* =y =)~ =w)li? ~lly %1 Iy -w|”

by the Pythagorean Theoroin, and the facts that (y —w) e ¥V and (y —y) | V.
Thus ||y ~ w||* is minimized for w € V by taking w = y {Figure 1.3.2).

Tor this reason, the vectors b and § are said to have beon obtained by the
principle of least squares,

Problem 1.3.3. Let Q.Cy, Cqo, Cy be defined as in problem 1.3.2. Let V.
LIC,Cz,Cy)
G It 8§
12 ]

(a} Fory=1{4 7 findy = plyV)y — 3. lylI2 vy vl%.
<1

{(b) Give a general nonmalriz formula for ¥ - p(yiV) for any y.
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Problem 1.3.4. Let x; = (1,1,1,1Y, %2 = (1,1,3.4). ¥y = (1.9,5,5) {so
these are column vectors). Let V' = L£0x, x2).

(a) Findy =ply|V) ande=y — y.

(b) Find y1 = p(y|xs) and 3o = ply|xs) and show thet ¥y # 31 + ya.

(c) Verify thate 1L V.

(d) Find |yl |y 2. und verify that the Pythagorean Theorem, holds.
Comgride |¥||? divectly from ¥ and also by using the formula ||3|* = U'b.

{e} Use Gram-Schmidt orthogonalization to find four mutually orthogonal

non-zeve veclors vi,va, va, Va, such that V = L(vy,va). Hint: You can
chovse x3 and x4 arbitrarify, us fong us X1, X2, X3, x4 are linearly indepen-
denl.

(f} Express y and y in Levms of the viinpart{e)..

{9) Lel w = (2,8,1,2). Show thet w € V and verify that |ly — w|* =
by — ¥|| + |7 — w||?. {Why must this equality hold?)

(h) (Impeortant! Docs p(ylx1) = y1 7 Is this true for any y¥ That is, do we
oblain the same vector by (1) first projecting y on V', then projecting this
veclor on Xy as by (2) projecting g direetly on xq ¥ ?‘(’;r'fbf’bfr)r'{* generally,

i V' ois a subspoce, and Vi a subspoce of V', does p{p(y|V)|WV1) = ply|V71)7
Hint: Use an argument based erdrely on mner products.
Problem 1.3.5. Lty = (yi.... ) X = {e,..oomp), T = (1.1, end

= £{J,x).

{(a) Use Gram Schwidl orthogonalization on the vectors J, x {in his order)
to find orthogonal vectors J, X* spanning V. Erpress x* in {erms of J and
x, then find by, by such thet vy = bpJ 4+ bix. 1o simplify the notalion, let
v =y-ply =y -uJ,

Sey s (5 y")  (XNY) - Y (@ =B — D (@ -2y W)
= Z:vwi — iyn,

Spe = (XX =D (o - Ba =Y at

Sy = (VY = Y =9 = Y — )

(h) Suppose y = ply|V) = apd + a1x*. Find formulas for ay and ag in lerms
of §. 5y, and Sy

(c} Fapress x* in lerms of J ond @, and use this lo determine formulas for
by and by so thel ¥y = bod + b X,
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{d} Frpress

912 and |ly - §I? in terms of 5. Sy, Seey and Sy

{e) Use the jormula b = MU for b = {bg, b)) and verify that they are the
same as those found in (c).

{

AR Iy - $12. Verify

1 . .

X = 9 J‘”ld a‘f}:“]?beUeblalluyE
3

that [|¥7])* = boly, J) + bi(y.x) and that {y —y) L V.

{f} Fory =

e et argl ]

{g) Plot the four (x,,y;) poinds and the least-squares line obtained in (f).

Problem 1.3.6. fel xy,..., Xi be o basis of o subspace V. Suppose thai

ply|V} = Zi-"=lp(y|xj) for every wector y € €2 Prove that xy, ..., X are

matually orthogonal. Thnt: Consider the vector y = x; for coch 1.

Problem 1.3.7. Consider the collection H of afl real-valued functions on the
wnidl snterval U = [0, 1] having the property f[}] e de < oc. Define the inner
product (f,g) - fDi F(Yg(m) de. Such an inner product space, with the correct
definition. of the integral, and o more subtle property colled completeness, is
colled o Hilbert space after the great German mothematicion, David Hilbert,
af the late wincteenth and early twenticth centwrics. The Hilbert spoce H s
not finite dimensional, but our projection theory still applies because we will be
wnterested in projections on finide dimensional subspaces. Consider the funclion
hix) = /7 for * € U. For each non-negative integer k define pp(r) — xf.
The functions h. po. pr.pe delermine corresponding poinis h,pg, pi,p2 n H.
Define Vi = L{po.Prs-- . pr). and hy = p(h|Vy). The point hy corresponds
to o polynomiol hy of degree k on [0, 1] Though there is a subtle difference
between the poind funclions k, p, hue. and the corresponding points h, py, by in
H, we will ignore this difference. Let By = ||h— by ||* be the measure of error
when the funclion hy is used to approvimate h.

(@) Pind the functions by, for k - 0,1,2. Plot h and these three functions on
the same ores. Hint: The inner products (ps,py) ond (p:, D) are casy to
delermine as functions of © and §, so that the matrices M and U are casy
to determine. If possible use cract arithmetic,

(8} Evelucte By, for k2 0,.1,2.

{c) Find the Taylor approvimation b* of h, using constant, tineor, and
quadratic terms, and expanding abowt w = 1/2. Show thal the error ||h -
hy||? is smaller than the error |h — h7||2.

(d) Repeal {a} and (6) for h{z) = 1/{(1 + z). Hint: Let ¢ = (h,pg) =
Iy b(@ypr(z)dr. Then ey = J; 2f 71 - B da = (1/k) - cro.
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Table 1.4.1: Regression of % of Wormy Frnit on Size of Apple Crop

X Y Y gy
Troe 100°s of | Percent | Esi. of | Dev. from
Number Fruit Wormy | BE{VIX) Regr.
1 8 59 o6.14 2.86
2 6 a8 D817 - 017
3 Il O D310 2.00
4 22 53 41.96 11.04
) 14 50 50.06 .06
fi 7 45 47.03 -2.03
7 13 43 46.01 3.01
bl 24 42 30.94 2.06
9 Y 30 45.00 —6.00
10 24 35 40.95 2.95
11 26 30 37.91 —7.91
12 40 27 23.73 3.27
Z N - 90w T Z Y2 = 20,522
X =19 (VY in 24,300
ST X2 5,256 YNXY — 9,324
SV = 540 OXXYTY) /= 10,260
Yo 45 (SUX)/n 4,332

1.4 Examples

Tn this section we discuss four real data examples, formmlate them in lerms
of vector spaces, and carry out some of the computations. At this polul we
consider only ways of deseribing observed vectors y in terms of o fow other
Veetors X, ..., Xy,

Example 1.4.1. Tn their elagsic hook Stotisticad Methods for Research Workers,
Snedecor ad Cochran (1980, p. 162) present the data of Table 1.4.1 accompa-
nicd by this comnnentary:

"Regression of injured fruit. on crop size. 1L s rather generally
thought that the nlensity of the injury by codling moth larvae is
greater oun apple trees bearing a small crop. Apparently the den-
sity of the flying moths is uerelaled Lo the size of the crop on a
tree so Lhal the chance of attack [or any particular friit is aug-
mented if there are fow fruits in the tree. The dala in table 6.0
are adapled from the rezulls of an experiment containing cvidence
aboul this phenomenon. The 12 trees were all given a calyx spray of
lead arsenale followed by fine cover sprays made up of 3 pounds of
managanese arscnate and 1 quart of fish oil per 100 gallons. There
is a decided tendency for the percentage of wormy fruits to decrease
as Lthe number of apples in the tree increases.”
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&0
1

Ferent Wormy
40
1

=
20

Equation of Line: y = 64.247 - 1.013 x
Error SQS =274
Correlation Coef. = -0.881

x = Size

Figure 1.4.1: Regression ol perceniage of wormy apples on size ol apple crop.
From Stalistical Methods for Research Workers, by G. W. Snedecor (1976), lowa
State Press

m=X;—X yu=Y-Y
St o924 y? = 12220 oy = —926
b= wy/ S x? — 936/924 — --1.13 (% wormy)
V= ¥ 4+ 5(X — X) =45 — 1.013(X — 19) = 61.247 — 1103
ST 1222 (0 936)%/924 . 27888

82, =Sd2  /(n—2) = 273.88/10 = 27.388

T

The line on the scatter diagram of Figure 1.4.1 was oblained as follows.
Suppase we try to approximate y by a linear function g(x) = by + 2. One
pogsible criterion for the choice of ithe pair (bo,by) is Lo choose thai pair for
which

Q= Qo br) = 3 _lye = (bo + )

i=1

is minimum. T we deline y and x; as 12-component column vectors of y and x
values, and xg as the 12-component vector of all enes, then

Q = |ly — (boxo + bix )2,

so that @ is minimized for bgxg + b1x) = ¥, the projection of ¥ onto £(xe. x1 ).
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Table 1.4.2: Sindent Height Data
X ¥y v e
170621  6¥.5 63.66 --0.16
173661 725 7232 0.18
| 6367 | 70.0  GO.87 0.13
172641 710 7078 (122
I 66 601 650 6537 -—-0.37
171630 645 63.80 (1L65
174680 67.0 6799 (149
165650 615 61.29 0.29
170640 6350 6374 - 0.25
169650 635 G363 0.13

Thus, for X = (x0.x, ). M =X'X, U = X'y,

b - (b“) _M 'U
E!J_

The matrix X is the [2x2 matrix whose fivsl column elements are all ones, and
whose second colnmn 15 the column labeled X an Table 14,1, The column vector
v was labeled ¥V oby Snedecor. ¥ and e =y — ¥ were labeled Y oand d, ..

i o AT + _ 3 |:' 1: F
M [u _28} M- — [n,nuu{) 0.020 ;m} U= {)40}

228 5256 —0.020 563  0.001 082 9324

49471 . _ s L
b=M"U= {‘il me.j] iy |2 = 25,522 |7 - 26,248 |y —¥|[* =274
Notice that ||¥[]* — ||¥|I* + lly  #[1%, as should be the ease, by the Pythagorean

FTheorem. Shple computations verify that e = v — ¥ is orthogonal to xq and
xp, lhat is, Y e, — Dand Y e - O

Here we have chosen to use the more general matyix formmlas in order to
delennine by and by even though noumatrix formulas were developed in Prob-
lem 1.2.3. A cowplete discussion of the simple lincar regression model will be
included laier.

Example 1.4.2. Now cousider the height data of Table 1.1, Lot us try Lo ap-
proximate the 10-component vector ¥ with a vector ¥ contained in

L{xg. %), %2,X3), where xg is the 10-compounent coluin vector of ones and
Xy, %, X3 are as given o Table 1.1.1. The approxination voctors are given

in Table 1.1.2.

1t} 693 f314 5
695 48,796 44,977 349
644 44,977 41.524 319

] 349 319 D

M:
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10,927,530 —55.341  — 108,380 — 150,056
—55, 341 1, 626 898 1,077

-1 -5
M™ =1 josas0 sos 2631 3158 | MY
150,054 1. 077 3. 158 4:3. 7849
667.5 7702
s 6380 T
U-Xy= |gooss| P 1 oam D e el - 0.08575
347.0 5.872

The height y seews to be predicted vory nicely by ry {father’s height), o
{iother’s height), and @y (sex). We must be cantions, however, in interpreting
such an analysis based on 10 observations with 4 independent variabics, Prodice-
Lions of Lheights for other people, based on the coefficionts determined for Lese

dala, should not be expected to be as good,

Table 1.4.3: Numbers of Mice Inoculated for Three Sirains
Days to Death 9D 11C  DSCL Total

2 6 [ 3 10

3 4 3 5 12

4 9 3 5 17

5 8 £ ] 22

G 3 6 19 28

7 | 14 23 38

8 1 22 33

9 4 11 18

10 6 14 20

1 2 7 9

12 3 8 Ll

13 | 4 5

14 1 |
Total 31 60 133 224
X 125 442 1037 1604
3T X? S61 3602 8961 13,124

Example 1.4.3. {(Irom Snedecor, 1967, p. 278):

EXAMPLE 10.12.1 The mnnbers of days survived by mice inoc-
waled with three strains of Lyphoid organisis are sununarized in
the following frequency distributions.  Thus, with straing 9D, 6
tmice survived for 2 days, 4 mice for 3 days, and s0 o, We have
= 31, 0e = 60,n3 = 133, N = 224, The purpose ol the analysis
s Lo estimate and compare the mean munbers of days to death [or
the {hree strajns.
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Since the variance [or strain 9D looks much smaller than for the other strains,
it seemns wise lo caleulate 57 separately for each strain, rather than use a pooled
§% [rom the analysis of variance.

The calculations are given under Table 1.4.3. Again from (1967) consider
the variable days to deaih for three strains of typhoid organism. T.et ¥ be the
table with threc eolumns, having the days to death for 31 mice on 9B in columm
I, for 60 mice on 11C in column 2, and 133 mice on DSCT in columm 3. Thus
¥ has 224 components. Let y;; be the jlh compeonent in the ith colmnn of y.
Let x7. %2, %3 be the indicators of columng 1, 2, 3. The best approximation to
¥ by vectors in £(x, X2, %3) = V in the least-squares sense is

3 3
y=pIV) = plylx) =) px
i=I i=I
The second equality follows by the orthogonality of x), %2, %3. The symbol 1
denctes the mean of the values of v in the ith colump. Thus § is the array with
31 s in column 1, 60 g2's in cohumn 2, 133¢%5's in columm 3. Tasy computation
(remembering, for example, thal 4 occurs nine times in colurmm 1} shows that

DYy 125, ) Yy =442, and Yy = 1,037,
i J J
We lind § = 4.032,4; = 7.367,53 = 7.797, and the ervor sum of squares
lell® = Slwy — w)* = 127842, |¥[* = Somy] = 11,8145.58, and [ly|? =
i i

o = 13,124,

g

Example 1.4.4. The following dats were given in a problom in Dixon and
Massey (1957, p. 185):

The drained weight in ounces of frozen apricots was measured for
various types ol syrups and various concenlrations of syrup. The
original weighis of the apricots were the same. Difllerences in drained
weights would be altributable to diflerences in concentrations or type
of syrups.

Syrup Composition
2/3 Bucrose  1/3 Sucrose  All
All 1/3 Corn 2/3 Corn  Corn

Sucrose Syrup Syrup Syrup .
Conc. 30 | 28.80 28.21 29.28 29127 28.853
of 40 [29.12 28.64 29.12 30.24| 29.280
sSyrup 50 | 29.76 30,40 29.12 28.32] 29.400
y 29.227 29,083 29.173 29,227

¥ =29.178
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Let y be the 3x4 matrix of drained weights. Let ns approximate ¥ by a linear
combination of indicator vectors for rows and cohumns. Define R, to be the

indicator of row ¢ and C; lo be the indicator of column 7. Thus, for example,

0000 0010
R.=(1 1 11 and Ci; = :
g 0 0 0 0010
g 0 1 0
Take V - £{R),Re, R4, C),...,C4). Define xy Lo he the 3x4 vector of all

ones. Thenxy 3 R, - 3 Cy. Let . 5,4 and 4 be the means of the éth row,
- -

3
the jth cohumm, and all the 3y, respectively. It s not difficult to show that V
has dimension 4 {3 1 -6, and that ¥y — 3+ ¥r | ¥¢, where

20.178 20178 29.178 29.178
20178 2917 20.178 20.173],
20178 29178 29178 29.178

Yo = P(Y|X0) = . X0 =

VR = Z('ﬂz‘-. - E;E‘)Ri

—{.32hF —0.325 -0.325 —0.325
0.102 0.102 0.102 0.1021] |
(.222 .222 0.222 (.222
Yo = Z(ﬂ.j —4.)C,
0.049 0.095 - 0.005 {3.049
= 0049  --0.085 -0.005 0.04%
0.G649 0.095 0.005 (1049

Notice that ¥y. ¥k, and ¥¢ are orthogonal and that the ¥ element of ¥ is

Vij 0.1 (B — g+ {5 — 4.} Therelore
(28,002 28758 28.848  28.902
o= 29329 20186 20276 20.329
120449 20.306 20.396 29.449
[—0.102 —0.348 0432 0.218
e=| 0.209 0546  0.15  0.911
| 0311 1.094 0276 1129

Iurther computation gives



21 CHAPTER 1. LINEAR ALGEBRA. PROJECTIONS

Iyll* =" u7, - 10,221
]

I91* = 3ol + lyrl” + I¥c

=g (12) +4 Z(;t}:. —g.)+3 Z(ﬂ._;‘ —g.)

2

= 10, 215.92 + 0.66+0.01 = 10, 216,62
lefl* = lly — ¥II* = 4.38

showing again thal the Pylhagorean Theorcm holds.

Later, after we formulate probability models, and diseuss their properties, we
will be able Lo draw hurther conclusions aboul the contributions of concentration
and composition to variation in drainage weight.

1.5 Some History

In his scholarly and fascinating history of the development of siatistics before
1900, Stephen Stigler (193G) begins his (irst chapier, entiiled “Teast Squares
and the Combination of Observalions.” wilh the [oilowing:

The method of least-squares was the dominant theme — the Ieifmotif
of nincteenth-centiury statistics. In several respects it was to statis-
lics what the caleulus had been to mathematies a century carlicr.
“PProofs™ of the moethod gave direction to vhe development of staiis-
tical theory, handbooks explaining its nse gnided the application of
the higher methods, and disputes on the priority of its discovery sig-
naled the intellectual community’s recognition of the method’™s walue,
Like the caleulus of mathemaiics, this “caleulus of observations™ did
not spring into existence without antecodents, and the exploration of
iks subtleties and potential took over a century. Throughout muck of
this tie stalistical methods were referred to as “the combination of
observalions™. This phrase caplures a key ingredient of the roethod
of least squares and deseribes a coneept whose evolution paced the
method’s development. The method itsell lirst appeared in print in
1805.

Reprinted by permission of the publisher from HISTORY OF STATTSTICS:
T MEASUREMENT OF UNCERTAINTY BEFORT: 1900, by Stephen M.
Stigler, pp 11-12, Cambridge, Mass.: The Belknap Press of Tlarvard University
Press, Copyright ©1986 by the Prestdent and Fellows of Harvard Caollege.
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Stigler refers to Adrien-Marie Legendre (1752-1833), who in 1805 wrote an
cight page book Nowvelles mélhodes powr le détermination des

arbites des coméles (New methods for the deterination of the orbit of the
plancts), with a nine page appendix, “Sur la wéthode des maindres quarres™ (On
the method of least squares). Legendre began the appendix with a stalement
of his objective; here is Stigler’s Lranslation:

Lo most investigations where the objeet is to dednee the most acen-
rate possible results from observational measurcments, we are led to
a systemn of equations ol the form

E=aibedey+ fat---

in which . b, ¢, f, ... are known coeflicicnts, varving from one equa-
tion to the other, and x, ¥, z, ... are known quantitics, to be deter-
mined by the condition that cach value of £ is rednced cither to
zero, or to o very small quantity {(Legendre, 18305).

In today’s notation we might make the substilulions F = —s;, —a =Y, b=
Xy, ® = F.e = wu, Yy Fa, oten, and write the model ag ca=hnd-cyy - - F
or Y, s Frp o+ O d s;orevenas Y = ix + -0 Fexs+e =X e

Again in Stigler’s translation, Legendre wrote

Of all the prineiples that can be proposed for this purpose, T think
there is none more general, more exaet, or more easy to apply, than
that which we have used in this work; it consists of naking the
sum of squares of the errors a minimum. By this method, a kind of
equilibrium is established among the errors which, since it prevents
the extremes from dominating, is appropriate for revealing the state
of the systews which most nearly approaches the truth.

Legendre gave an example using dala [rom the 1795 survey of the French
meridian are, in which there were 11 = b chservations and k& = 3 unknown
purm‘rl(‘.tcrs.

Though Carl Friedrich Gauss claimed in 1809 ihal he had used the method
of least squares as early as 1795, it seems clear fror published writings that
Legendre shonld be given credit for the first. development of least sgnares.

The statistical problem solved by Legendre had been faced earlier by as-
tronomer Joham Tobias Mayer (1723- 1762), waibematician Leenhard Euler

(1707-1783) and scientist and malhematician Pierre-Simon Laplace {1749-
1827) i1 considering astronomic data. We will illustrate their earlier solutions
on some data coneerning the motion of Saturn sindied by Laplace in 1787,
Table L5.1 is taken from Stigler’s book.

Using Legendre’s notation, these eighteenth century scienlists considered the
problem of solving the “equalions”

Eizmag+mwtbuwt+oyrdiz (=1,...,24] (1.5.1}
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given by setting the E;'s all equal to zero. Observations were made on 24 oc-
casions when Saturn, the reoon, and earth were alisned over 200 years. The
dependent variable a; was the difference betwoeen the observed longitude of Sat-
urn and that predicted by Laplace’s theory. The measurements by, ¢, d: were
simple funcilions ol obscrvallons made on the orbit of Salurn al those Umes.

They knew {or would have kuown) that those 24 equations in four unknowns
(2, 2, %, ) had no single solutions and that therelore all the £;%s could nol be
made zero. Mayer's idea was Lo reduce bis collection of equations Lo a number
cgnal to the nmamber of unknowns by adding across equations. Tn Mayer’s case
he had 27 equations with three unknowns, so he grouped the 27 equations into
three groups of 9 each, and stnply added coellicients 1o gel 3 equations in three
unkoowns. As applied to the data of the Table 1.5.1 we conld add the first 6,
next 6, ete. to get 4 equations i four unknowns. Mayer chose the subset of
cqualions to add according to the sizes of the coctlicients, grouping large a;’s
together, the next smallest together, and so on.

Euter had awvailable ohservations on Saturn and Jupiter for the years LoR2-
1745 (n = 75) and had & 6 unknowns. Tle did not combine observations as did
Mayer but iustead tried to solve for his unknowns by nsing some periodicity of
the coofficients to reduce the number of unknowns and hy considering small sets
ol obwervaiions; trying to verify solutions on other small sets. He was largely
unsuceesstil, and wrote (Stigler's translation)

Now, from these equations we can conclude nothing: and the reason,
perhaps, is that T have tried Lo satisfy several observations exactly,
whereas T shonld have only salislied Lhen approximately:; and this
crror has then multiplied itsell.

Thus, the most prolific of mathematicians, perhaps the greatest of analysts,
failed cven to proceed as far as Mayer.

In 1787 Laplace, enlogized by Poisson in 1827 as “the Newton of Trance”
(Stigler, 1986, p. 31}, and perhaps the greatest contributor to probability and
statistics hefore 1900, considered the Saturn data of Table 1.5.1. Taplace re-
dueed the 24 equations in four unknowns to 4 equations. The first new cguation
way the sun of all equations. The second was the difference beiween the sumn of
the first 12 and the s of the scoond 12, The third was the s of cqnations 3,
4, 10, 11,17, 18, 23. 24 mirmms the sum of equations 1, 7, 14, 20, the fourth was
ihe smn of equations 2, 8, 9, 15, 16, 21, 22 minns the sum of equations 5, 6, 13,
19, Stigler describos some of Laplace’s motivation, which now secms quite valid:
Laplace obtained his fth cquation by mnltiplying the original ith cquation by a
constant £;; and then adding over ¢ TTis jth equation was therefore

(}= Z kg + o Z by by |y Z ki + 2z Z by pih (1.5.2)
i i i i

Laplace’s k;; were all 1, —1 or 0. Mayer’s had all been 0 or 1. Legendre showed
that the method of least squares leads 1o laking &y = 1, ki = b ki — ¢ ki
{){-..j.
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In general, with modern notation, the four simultaneous equations of {1.5.2)
may be written as

K'Xb =K'y, (1.5.3)

where X and y are respoetively 1 by 2 and 4 by one malrices. Thus,
b=(K'X) 'Ky, (1.5.4)

whenever the inverse exisis.

The colurm in Table 1.5.1 “TTalley Residual™ had been derived by Tidunnd
Halley in 1676 vsing a different. theory. Details are omitied.

Tn 1804 Causs showed the conneciions among normally distributed errors,
nmost probable parameter values (maximum likelihood estimates) and least
squares. In 1810 Laplace published his central limit theorem and argued that
this could justify the assumption of normally distributed errors, henee least
sguares. Laplace showed in 1811 that. al least, asymptotically, least squarces
estimators are normally distribnted, and they are less variable than other linear
estimators, i.c .. solutions of (1.5.1). Normality of the errors was not needed.

In 1823 Gauss showed that the asymptotic argument was nnnecessary, that
the variability of the solutions to (1.5.1) conld be studied algebraically, and
that least squares estitnators had least variability, We will niake this procise in
Sections 1.3 aaud 1.4 with a discussion of the famons Ganss- Markov Theorem.
The least squares theory and applications developed by Legendre, Gauss and
Laplace were widely published. Stigler cites a compilation by Mansticld Morri-
man in 1877 of “writings related to the method of least squares”™ | inclnding 70
titles hetween 1805 and 1834, and 179 hetween 1835 and 1864,

Problem 1.5.1. Let x3 = (11, 010, 13,0001) = (1,1, 1,0},

Xg = (w21, a9, ag, 00 ) = {0, 1,1, 1. and X the 4 © 2 walviz wnih these veclors
as cobuanns. Lel y = {yoy2,us.m0) = (3.6, 4,2, Suppose we wish to find b
and bo such thel gy = byry; + oo i “close Lo7 yy for each i Thel 4s, we want
=4 — W o be zero or smoll for euch i

{n} Use the method suggested by the technique Mayer used. That is, roduce the
problem to the solution of two lnear cquations e 2 wnknouns by surmaning
the first two, and also by summing the lost two cquations, Find the matric
K of equation (1.5.1), the vesulling vectors b and y = Xhb.

(b} Repent (a) by choosing K in a manner similar to the method of Laplace,
delermining one equalion by samnving voer all four, the other by toking
the difference belween the sumn of the first fwo end the sum of the last two.

{v} Repeat (a} for the case that K X,

(d) Euvaluale the evror sum of squares ||y — ¥||? for each of (a), (b}, (). Are
you surprised thel the evrov sum of squares s smallest for (¢)¥
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1.6 Projection Operators

The purpose of this scetion is to stady the transformalion £ ¥y — ¥ which
transtforms a vector ¥ € {2 info its projection ¥ on a subspace ¥V,

In applications a vector y will be observed. The model under consideration
will specity that y - @ + ¢, for # € V., a known subspace of §3, with ¢ a randorm
vector, both ¢ and ¢ imknown. We will usually estimate § by the projection of
v onto V. We should therefore understund the properties of this projeclion as
well as possible.

The translonueation £ @y — p(y|V) for a subspace V' is linear, since
Play|V} = aply|V) and p(y1 + y2lV) = ply1]|V) + plyz|V). (The student
should check {his.)

Since y = ply|V) lwplies ithal p{¥|V) = 3, the projection operator P is
idempotenl, i.e ., £ = P, 1n addition, £ is sell-adjoini, since for each x,y € €2,
(Px,y) = (I’x. Py) = (x. Py}.

If §1 is the space of n-component column vectors, this means P may be
represenied as a symmelric malrix, a projeclion matriz. Thus, for this cage the
projection operator onto V is an 1 % n mwalrix Py such thal

P, =P, and P} =P,

For V. L{xy,...,x} with x,...,x linearly independent. column vectors, we
have
p(y|lV) = Xb = X(X'X)"'X'y,
where X = (x7.....xz), so thal
Py = X(X'X)~IX.

1t is ecasy to cheek that Py is symmetric and idempotent.

Example 1.6.1. For simplicity we will refer to a projection operator as o pro-
jection.

1 00 in
(1} P = {0 | 0| = projecltion outo the linear subspace of veclors |
a 00 0

1 0

spanned by (0] and |1

0 ]

(2) P = 1J,J, = projection onto J,,, the colunn vector of n 1s. 'Then
Px =, where x = (x, L, )/||[ T/ = (3 ) /n.

3) P=1, - %J”J; projection onto the subspace of column vectors whose
components add to zero, ie., are orthogonal to J,,. P adjusts ¥ by sub-
tracting v from all cornponents. Py is the vector of deviations vy, — .

(4) P = vv'/|vli? - projection onto the one-dimensional snhspace £(v).
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/2 1/2 0 1
(5) P=|1/2 1/2 0] = projection onto the subspace spauned by | 1| and
0 0 1 {
0 n (- y2)/2
O, Thus, PP |ye| = [{y +1)/2
| s Wi

Problem 1.6.1. Show thal for VV{L = XMBR with B nonsingular, X{X'X) ' X/
ek WLk R

remains unchanged if X is reploced by W. Thus, P is o function of the subspace
spanned by the columns of X, not of the particular bosis chosen for this subspace.

Theoremn 1.6.1. fef A be o lnear operator on & which is idempotent and
self-adjoint. Then A is the projection operator onto the range of A.

Proof. We must show that for all y € 2, and x C R Range of A, (Ay.x) =
(v.x). Ilx C Rthen x Az for some z € £}, But (Ay,x) = [y, Ax) by self-
adjointness (symmetry) and Ax = Adz = Az = x beeause A s idempolead,

0

Problem 1.6.2. Prove that the projection operclor onio VL1, the collection of

vectors in § orthogonal To V', ds 1 — Dy (T 45 the idenlidy fransformation. ]

Subspace ¥y © V' : Let V' he a subspace of @ and let ¥y be a subspace of V.
Lel P and Fj be the corresponding projection operators. Then

(J} PP{] = PU and (2) F’“P = J{].

Equivalently, if ¥ - p(ytV) and yo = P{yjVp) then (1) p(yo|V) = Fo and
(2) p(¥|Ve) = ¥u. 1L is easy Lo check these equalitics by mevely noting in
(1) that yp € V and (v, 3g) = (v, ¥) lor aJl v € ¥, and in {2) that ¥, € Vo and
(v, ¥0) ={v.¥) lor all v € V.

Example 1.6.2. Wo will use Gram—Schmidt 5-1’lus and orthogonalization to
determine an orthogonal bagis for the cohunn space Voof the matrix W. 5-Plus
print-out follows.

> gramschmidt # A function defined by the author.

function(W)

{n=din(W)[1]

k = dim(w) [2]

B = matrix{(W[, 11)

for(j in 2:k) {

matrix(WL, j1)

= cbind(B, v - B %+*% matrix((t(B) %*% v)/diag(t(B} %*% B)))

fl

apply(B#B,2,sum) # Vector of squared lengths of
the columns of B.

H o=
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H = diag(1/C"0.5)

K =B %*% H

list(B, K) # The result is a list. The collection of columns
# of B is an orthogonal basis for V. The columns of K

# are the same as those of B, except that they have been

# normalized to have length one.

}

> X
(.11 [,2] [,3] [,4]

[1,3 1 1 1 8
[2,] 1 2 3 2
[3,] 1 3 1 1
(4,] 1 4 2 0
[5.] 1 5 5 4

> W = cbind(¥,c{2,4,1,0,8)) #Add a column to X sc that
#it has rank b.

> G = gramschmidt (W)
> G1 = B{[1]1); G2 = G[[2]]

> Bl #The ceollection of columns of G1 is an
#orthogonal basis for the column space of W.

(.11 (21 [,31 [.4] [,5]
1,1 1 -2 0.0 2.200 -0.2641

[2,] 1 -1 1.3 -2.438 0.0704
[3,] 1 0 -1.4 -0.267 0.8098
i4,] 1 1 -1.1 -0.952 -G.7746
(5,] 1 2 1.2 1.467 0.1584

> G2 #The columns of G2 have length one,
#z0 G2 is an orthonormal matrix.

(,11  r,21  [,3] [,4] (,5]
[1,] 0.447 -0.632 0.000 0.5904 -0.2268
[2,] 0.447 -0.316 0.518 -0.6543 0.0605
[3,] 0.447 0.000 -0.5568 -0.0716 0.6955
(4,1 0.447 0.316 -0.438 -0.2556 -0.6653
[5,]1 0.447 0.632 0.478 0.3910 0.1361

> t{G1)Y*UG1 #Inner product matrix. Off-diagonal
#terms are very close to zero.
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[,1] [,2] [,3] (,4] (.51
[1,] 5.00e+000 0.00e+000 6.66e~016 ~-5.55e-016 -b.56e-016
{2,] 0.00e+000 1.00e+001 6.66e-016 -9.99e¢-016 ~1.33e-015
(3,1 6.86e-016 6.66e-016 6.30e+000 -6.22e-016 -1.57e-015
[4,] -5.55e-016 -9.99e-016 -6.22e¢-016 1.39e+001 2.91e-015
[5,] -5.55e-016 -1.33e-015 -1.57e-015 2.91e-015 1.36s8+000

> t{G2) %62 #Very close to the identity matrix.

[,1] [,2] {,3] [,4] [,5]
[1,] 1.00e+000 2.71e-020 1.24e-016 -8.6%e-017 —-2.17e-016
[2,] 2.71e-020 1.00e+000 7.02e-017 ~5.27e-017 -3.64e-016
[3,1 1.24e-016 7.02e-017 1.00e+000 -8.01e-017 -5.25e-016
[4,] -8.69e~017 -5.27e~017 -8.01e-017 1.00e+000 6.92e-016
[6,] -2.17e-016 -3.64e-016 -5.35e-016 6.92e-016 1.00e+000

>y = X V*% matrix(c(6,5,4,3)) #A vector in the column

#space of X.
>y

[,1]
[t,1 33
(2,1 34
(3,1 28
(4,1 34
(5,1 63

> P3 = G2[,1:3]%+% t{G2[,1:3]) #Projection cnte the space V3
#spanned by the first 3 columns of X {(and of G1 and G2J.

> P3

[,11 [,2] [,3] [,4] [,5]
[1,] 6.00e-001 ©.4000 0.2000 -2.04e-017 -0.2000
{2,] 4.00e-001 0.5683 -0.0888 —-1.27e-001 0.2476
3,1 2.00e-001 -0.0889 0.5111 4.44e-001 -0.0667
(4,] -2.04e-017 -0.1270 0.4444 4.92e-001 0.1905
[6,] -2.00e-001 0.2476 -0.0667 1.90e-001 0.8286

> sum{diag(P3))
(1] 3 #3ince P3 is projection onto V3 and dim(V3} = 3.

> P3%x%P3 #5howing that P3 is idempotent. It is symmetric.

[,1] [,21 [,32] [,4] [,5]
[1.] 6.0e-001 0.400¢ 0.2000 -5.10e-017 -0.2000
[2,]1 4.0e-001 0.5683 -0.0889 -1.27e-001 0.2476
[3,1 2.0e-001 -0.0889 0.5111 4.44e-001 -0.0667
[4,] -5.1e-017 -0.1270 0.4444 4.92¢-001 0.1905
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[5,] -2.0e-001 0.2476 -0.0667 1.30e-001 0.8288
> yhat = P3 %%} y  #Projection of y onto V3.

> cbind(y,yhat)

[,11 [,2]
f1,1 33 26.4
(2,1 34 41.3
(3,1 28 28.8
(4,1 34 36.9
[5,] 63 58.6

> t(X[,1:3)) %*%(y-yhat) #Showing that {(y - yhat) is
[,1] torthogonal to V3.

[1,] 7.i1le-01B

[2,] 7.11e-015

[3,1 -1.42e-014

> M= t(X[,1:3]) ¥%=+% X[,1:3] #Inner prodnct matrix

> M #for the first 3 columns of X.
[,1] [,2] [,3]

[1,] E 15 192

[2,] i5 & 43

(3,1 12 43 40

> MI = solve(M) #MI i3 the inverse of M.

> K [,1:3]) Y% MI %% t(X[,1:3}) #Same as P3.
[,1] {,2] {.3] [,4] [,5]
(1,1 6.00e-001 0.4000 ©.2000 1.26e-015 -0.2000
[2,] 4.00e-001 0.5683 -0.0889 -1.27e-001 0.2478
[3.,] 2.00e-001 -0.0889 0.5111 4.44e-001 -0.0667
[4,] -3.89e-016 -0.1270 0.4444 4.92e-001 0.18056
[5,1 -2.00e-001 0.2476 -0.0667 1.%0e-001 0.8286

Direct Sums Tn regression analysis and, in particular, in the analysis of vari-
anece, it will often he possible to decompose the apace €2 or a subspace ¥V ointo
smaller subspaces, and therefore to increase understanding of the variation in
the observed variable, If these smaller subspaces are mutnally orthogonal, sim-
ple computational formmlas and nsetul intepretations ofteu result.

For any linear model it will be convenicnt to decompose €2 into Lthe subspace
V, and the error space V' 5o thal every observalion veclor y is the sum of a
vector in V and a vector in V1.

In Exarnple 1.4.4 V may be decomposed into the spaces Vi -~ £(xg), Vi =
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{EI a; Ry Z; a; = 0} Vo= {Z: bCl 500 — ﬂ}, so that every vector in V is
the sum of ils projections onto these Lhree orthogonal subspaces. 1 lollows that
every veclor ¥y in £ is the swn of four orthogonal vectors, cach being the pro-
jection ol y onto one of the four orthogonal subspaces Vo, Vi, Vo, V1. These
subspaces were chosen for their simplicity,  As will be scen in later chapters,
Chapters 3 and 6 iv pacticular, the decomposition of V' oinlo orthogonal sub-
spaces, each of a relatively simple structure, provides increased understanding
of the variation in the components of y.

Definition 1.6.1. Subspaces V1, ..., Vi of £ are lincarly independent if x; € V;
fori=1,...,k and Zf__] x; = 0 huplics that x; = O fori=:1,.. .,k

Let M;; denote the property: Vi nV; = {0}, For ¢ # j linear independence
of Vi and V; is cquivalent to M;;. so that linear independence of Vi,..., Vi
implies M: [My; for all ¢ £ 7). However, M does not imply livear independence
ol ¥i...., V5. Students are asked to prove these statements in Problem 1.6.12.
Thus, lincar independence of subspaces is analogous 1o independence of events.
Pairwise independence does not imply independence of more than two events.

Definition 1.6.2. Lel V|,. ..,V be subspaces of . Then

b
V=<xix=> x,x, e V,i=1,...,k&
|

18 ealled the sum of Vi, .0 Vg, and is denoted by
V=W+Vet Ve

1f vhese subspaces are linearly independent, we will write
V=WVqWed-- 0V

We then sav that V is the direct sum of Vi, ..., V.. The use of the O symbol

rather than the + symbol imnplies that the correspouding subspaces are linearly
independenl.

Theorcm 1.6.2. The representation x = Zj; x; for x5 C Vi of clements x €
V=W + Vo4 + Vi is unigue of and only of the subspaces Vi,..., Vi are
linearly independent.

Proof. Snppose that these subspaces are linearly independent. Let x = Zi Xy =
ZI]‘ w; for x;.w; € Vii=1,...,k Then Zfﬂ {x; —w;) = 0 implying, by the
lincar independence of the Vi, thal x; —w; = 0 lor sach 4.

SuPpose that the representation is unique, lot v, € ¥ for £ = 1,.. .. &, and
tet Z;Tl v; = 0. Sinee 0 ¢ V; for cach 7, and 0 = 0 | - 4+ 0, it follows that
v; = 0 [or each ¢, lplying the independence of b, .00, Ve

O
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Theorem 1.6.3. If {vy|i = 1.....m} és 6 basis for V) for i = 1,... .k and
Vi,.... Vi are lincarly independent, then {vi|7 = 1, .00 = 1,.. .k} is a
basis fur V=V &5 - & V.

. I N L
Proof. Tor any x = Y| #; for x; € Vi, suppose x; = Z? bijvi;. Thus, x =
>, ; bijviy, sothe vy span Vo Lt Is enough then o show ihatl the v;; are inearly
independent. Suppose Zij ¢;;vi; = 0 for some ¢;;'s. By the independence of
Vieooo Wi, D0 ,Ciivig = 0 for each i. The independence of vyi..... Vi, then
implies ¢; =} for all § and <.
0

Corollary: IT V=1 &V 4.2V, then
dim (V) = dim(V)) + - - - + dim(V},).

Definition 1.6.3. TFor any subspace V of £}, the collection of all vectors in
) which are orthogonal to V is called the orthogonal complement of V. This

P
/

orthogonal complement will be denoted by Vo | read Svee-perp”.

It is casy to verify that V! is a subspace, and that Py = T — Py, Since
VNV ={0},¥L and V are linearly independent.

Theorem 1.6.4. Let Vi oand Vo be subspaces of §2. Then
(Vi + Vo)t - ViV and (VinW)t - v 4V,

Proof. We prove only the first eguality, The second is proved similarly, Suppose
v € (Vi + 14} . Then for cach clement x € V1 + Vo, it follows that v [ x. Tn
particular, v L x| for each x; € V|, and v 4 xg, lor each x9 € V5. Thus
vel! Ny and (Vi + 1) ¥ N
Hve VNV, then v 1 x,v L x forall x7 € Vi, x9 € Vo. It follows
that v | (X + boxz) for all scalars by, by, and all x; ¢ V1, xp € Vs, henee that
v (Vi 4 1) Thus, (Vi + )+ o Vo vt
|

Theorem 1.6.4 is the linear space version of DeMorgan’s Laws for scts:
(AU ~ANDBY and (A0 . AL B

Theorem 1.6.5. For eny subspace V' oand any x & §), there exist unigue ele-

ments X1, X such that x — x1 + xu,x1 = p(x|V) and x = p{x|V1).

Proof. For existence take x; — p{x|V),xs - x - xy. Uniqueness follows from
the lincar independence of V4 and V.

O

Example 1.6.3. Tet 2 be the space of 4-component row vectors. Lot % =
(LLL D%y = (1, 1,0,00,%xy = (1,0,1,00, %] - L{x;,x3), Vo = L£{x3). Then V,
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and Vo are lincarly independent, so that Voo VD Ve {{e 1 b+ b b |
¢, a)in, b, € Ry} has dimension 3.

1"”):IJ_ = {(‘}"1 -k, b'. _h”a‘ b C Rl }
V' = {{a.h, —a.c)|a.boeC Ry}

Vi (o, —a, ~aa)la € Ry}

s0 Lhat
Vi ViUt

In general, M- = Py + Py, only if V)oaud Vo are orthogonal. They are nol
orthogonal in this example. Verify this by projecting v (11, 4,3, 8) onto each
of Vi, ¥, and V.

Theorem 1.6.6. Let V' obe a subspace of 1) end lel Vy be a proper subsprce of
V. Let Vi = V! V. Then (1) Vy and Vi are mutually orthogonal subspaces,
( 2) Vo=V V7, and { RN = 1) Py P"U
Proof. Part (1) is obvious. To prove {2) let y € V7, and lel ¥o = p{y|Vo). Then
y=Yo+ (¥ -y Fo Vo, ¥y - o € VNVt Thus V C Vy= V. Since V O 1
and V O VLV oV @V implying that V- ¥ @ V.

To prove (3) vote Lhai, since Vi L Vi, ply |V} = p(yiVa) + p(x|V)) for all y.
Thus P = Py, + Py, and P‘«"] =P =y O

Tn fact, this theorem shows that 2 may he decomposed into three mataally
orthogonal subspaces ¥, Vi NV, and V4, whose direct sum is §2.

Problem 1.6.3. Let Q be Ruclidean 4-space (cobwomn veclors). Lel

| 1 |
X1 - I 4 Xy = 1 Xy = l
1]° 0 t
I 0 0

and let Vi) = L{x4) Jor x4 = 3x3 — 2x0, V' = L(x),x2.x3). Find Py, Py and

0
Py, for V| = lq-,' nv. Fory - 14 find p(y Vo), ply V1), p(y[V).
1
Theorem 1.6.7. Lot Vi, .. Ve be mudwelly orthogonal subspaces of §3. et

V=V & -5V Then ply|V) - }_:T plyiVi) for all y < (L

Proof. Let 3, = p(y|V). We nmst show thar for each

x C Viy.x) = (Zi” j}.;,x), Since x ¢ V,x = Zk

;1% for some x; € V5 or
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j=1,....k Thus

(S50 (E5.550) 5500

1 i=lI LETY t—1 i—1

k
- Z(j}fxr} : Z(y X'f-) = (y X'«’-) = [y‘XJ

i i- 1

The third equality follows fromn the orthogonality of the subspaces. The loarth
follows from the definition of y,.

O

V)= ’;cp(y Vi1, and by the
Pythagorean Theorem, ||y||* = Z;]‘ Hp(y|VO|l%. In applying this Lo the analysis
ol variance we will frequently make such a decomposition of the squared length
ol the obsorvalion vector y. bn facl, the aualysis of variance may be viewed as
tlie decomposition of the squared lengtl of a vecior into the sum of the squared
lengitis of several veclors, using Lthe Pylhagorean heorem.

[ the ease that Vo= £ we see that y = ply

Example 1.6.4. Lel {2 be ihe space of 2x3 matrices. TLet Ry Ry be the
row indicalors and lel Cp, Cz, Cy, be the cohunn indicators. Let xy - Y. R,

Z‘_}. C; be the matrix of all ones. Define V) = L(x0). Ve = LR BNV Ve =
L£{C1.Cy, C3) M Vit. Tois easy to show that Vi = {vlv = Y aRia | a2 =0}
and Ve = {vlv 30,C4 300 - 0}, Lor example, 5 _); i
subspaces Vo, Ve, Ve are Bnearly independent and 11111’(.11;111}-‘ orthogonal. Lel
V= Vy Vg Vo Then ply|V) - %ot ¥r | ¥ where 3o = ply|Vo) =
yxo.¥r - p(yIVa) - X0 - v )Ry, and ye o ply|Ved) = 3.y, —i.)C;.
Then, since 82 ViO Ve TVe TV s the decomposition of € into fowr mutually
orthogoual subspaces, y — yo | ¥r+¥e + o, wheree =y —y = ply! V4, and

& Ve, The

2

Wil = I3ol® + l¥all® + igei” + lie wyol® =
Wal* =33 "7 ~8.)" I9cl*=2> #,  7)°

Definition 1.6.4. The nudl space of an m x n matric A is the collection of
vectors x € £, such that Ax = 0. We denole this noll space hy N(A). The
column (or range) space ol A ls C'(A) = {x|x == Ab lor some bi.

Theorem 1.6.8. Let A be an m x n omatrie. Then
N{A) - (AL and N{A)y- = C(A" (1.6.1)

Proof. w € N(A) & w L (row spacc ofA) < w L (column space of A') <
w ¢ ({A"Y'. The sceond statement of (1.6.1) follows by taking orthogonal
complements on both sides.

[
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Theorem 1.6.9. Let X be ann x k matric. Then C{X'X) = C{X').

Proof. w € C(X'X) implies the existence of b such that (X'X)}b = w =
X'{Xb), which implies w & C(X). Thus C(X'X) ¢ Ci(X). w e C(X)
implics that w = X'b for some b e £,,. Let b = p(b|((X)). Then X'b = X'b
and, since b € (/(X}, there exists v such that Xv . b. Then X'Xv = X'b =
X'b=w,s0 weC({XX) Thus ({X'X) D C{X). O

It is shown in most introdnctory courses in linear algehbra that the
dimensions of the row and column spaces of any matrix X are cqual,
and this common dimension is called the rank of X. We therefore
conclnde that X, X/, XX, and XX’ all have the same rank. In
particular, XX . M has full rank (is nonsingular) if and ouly if X
has full column rank, i.¢ ., has lincarly independent cohunns.

Problem 1.6.4. Let 82 Ry, For cach subspoce give the corvesponding projec-
tion matrix P. For each verify that P is idempotent and symnoetric,

() Li{x} forx=(1.0,—1V.
(b)) L{xi,x2) forx, =(1,1,1),%x; = (1,0.1).

Problem 1.6.5. for the subspece V = L(J,x) of Problem 1.3.5, whal is Py ?
(Note that L(J,x*) = V}. What is Py ? Let Vo = L(J) and V) = V V5
What is 14, ¥

Problem 1.6.6. Let Vi and Vo be subspaces of Q0 and let Vi, = Vi Vy, Under
what conditions does Py, = Py [y, 7 Always? Never?

Problem 1.6.7. Let V1, Vi, Vy be subspaces. Docs Vi N1{Va +V3) = (VN ) +
(ViNVy}in general? If nol, does this hold if Vo and Vs are linearly independent?

Problem 1.6.8. (a} For Evample 1.6.3 find siz mulvally orthogonal vectors
v fori=1,...,6 such thal

Vo = L(vi), Vr=L{v2), Vo =Llvavy), V' =Llvs vg)

(b) Fory = ié { 171:| find Yo, ¥n, Vo, v.0, compule heir lenglhs, and

verify that the Pythagorean Theorem holds.

Problem 1.6.9. [et A = ﬁ ; ;}

() Find a busis for the null space of A (sce Theorem 1.6.8).
{(b) Verify Theorem 7.0.9 for X A'.

Problem 1.6.10. lef vy, ..., v, be an orthogonal basis for 1.
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(@) Prove Puarseval’s Identity: For every x,y € 12

(x,y) = > (. vy, vi)/ v

i—=1

(b) Verify (a) for Q-= R?, vy = (1,1,1), vo = (1, 1,0},
Cs (L1, 2 x - (3.5.8)y (21,4,

Problem 1.6.11. Let Vi and Vo be subspaces of 0. Let Vo= V1 B Ve, Let
Py, Py, and By be the corresponding projection opervators. Suppose that Py =
Py, + Py,. (This means that Pyy = Pyy 4 Puy for everyy € 3.} Prove that
Vi L V. Hint: Consider Pyvy for vi € V1 and recall that (vq — ) L Vo,

Problem 1.6.12. Prove the statements made in the paregraph following Defi-
nition 1.0.1. To prove the last slalemend consbruct an example.

Problem 1.6.13. Let Vi, Vo, ...V, be mubually orthogonal subspaces, none
equal {0 £{0). Prove that they are linearly independent.

1.7 Eigenvalues and Eigenvectors

In this section we sumnmarize results concerning eigenthecry, Though this ma-
terial will not be heavily used in this course, it will be useful. Most proofs will
e omilled.

(1) Let A be an nexn matrix,. A real munber A and columin vectors v satisfy-
ing the equation Av -= Av will be called an cigenpair, with A an eigenvalue, and
v the corresponding cigenveclor. The words charueferistic and letent are oflen
used instead of eigen. Thus, an cigenvector v is transformed into o vector whose
direction remains the same, but whose length is multiplied by the correspoending
eigenvalue A.

(2) A symunetric matrix A has n real eigenvalues, though these may uot

LK T
all be distinci. Eigenvectors corresponding to different eigenvalues are orthog-
omal. T there exist k, but not more than &, independent vectors vi....,vg

corresponding Lo the sate elgenvalue A, then A i said to have mullipleity &,
and the equation det{A¥ — A} = 0 has root A of multiplicity k. In this case all
vectors in £{v,..., vi) are eigenveciors corresponding to A, and k such vectors,
Sy Wy, . ... Wp, which are mutually orthogonal, may be chosen.

Tf such tmutually orthogonal eigenvectors are chosen Jor each different eigen-
valie, then the entire collection uy.. .., u, of mutually orthogonal elgenvectors
corresponding Lo etgenvalues Ay, ..., Ay, where an eigenvalue is repeated & tinwes
if its muitiplicity is &, span n-space.

Tet A - diag{A), ..., An), the matrix with (i) element A;, off-diagonal ferms
0, and U = {(u,,...,u,). Then AU = UA, and il the u; are chosen to have
length ome,

UU=1, UAU=UTA=A, A= UAU"
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The representation A - UAT s called thoe speciral representation of Al

Recall that the trace of a square malrix A s the sum of its diagonal elements.
It is easy to show thal trace(BC) = trace{CB) whenever the matrix product
makes sense. Tt follows therefore thal whenever A has spectral representalion
A L UAWY, trace(A) = trace(AUU} = trace(A) = Y Ay, Similarly, det{A) =
det{U) det(A) det(U") = (1} dei{fA)(+1} =] As.

Since, for any » x 5 malrix C = (ey... ., ¢4}
di 5
D= Cbh = Zcidi:\
d;: i=

we Ly expross A in the form

!
'I_l] L
- r . }
A=UAU =(Qu,.... )| @ | = E RV RIS
' 1
uﬂ'.
The malrices u,u; = P; are projections onto the one-dimensional subspaces
w Ly { 5
L{u,). If thiere are v different cigenvalues with multiplicities &y, ..., k. then the

I?; corresponding to the saane cigenvahie may be summied to get the reprosen-

Lation of A,
A=) AT
1

where P’; is the projection onto the A -dimensional subspace spauned by the
cigenvectons corresponding Lo Aj,

{3} By definition a square matrix A is positive definite if the gquadrasie
function Q(x} = x’Ax =1 for all x # 0. It is non-negative defiuite if Q{x) = 0
for all x.

Example 1.7.1. Terv — {111 1), v = {1, —1,0,0), vy = (1. 1,-2,0),
vy (L, L1, 3). These v, are nntnally orthogonal. Tet P, be projection ento
L{v;}. Thus.

P; V;.VEfQEV;.HS.

Lot

o

¢ al ]
|

[

%)

A = 8P, 4 8Py | 12Py =

r
|

(]

—_

=

[ N

L2 2 2 2

Working backwards from A, the roots of the fourth degree polynomind det(AL -
A) =0 nre A = 8,8,12,0 with correspoding cisenveetors wy, wy, Wy, Wi
The veciors wi, ws way be arbitrarily chosen veetors in £{vy, vy ), the subspace
onlo which 17} + P3 projects. They may be chosen to be orthogonal, and conld
be chiosen Lo be vy and vy wy and wy are nonzero veetors in £(vg) and £{v4),
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respectively, The lengths of cigenvectors are arbitrary. Siuce one eigenvalue is
0. A has rank 3. The determinant of A is the product of its clgenvalues, 0 in
this cage. The trace of A is the sum of its eigenvalues, 28 in this cxample.

Let w; - v /]|vi]l; so these u; have Iength oue. Let U = (ug,uy, uz, uy)
and A . diagl3,8.12,0). Then AU = UA, U is an orthogonal matrix, aud
A = UAU’. Herc

M1/2 /2 VG 1/(2v3)
U |12 o VAV VRV I OAVEY
B RYE: 0 -2/6 1/(24/3)
[1/2 0 0 —/3/2
[ 0 0 0 4 8/V2 12/v6 0
6 &8 0 0 1 —8/v2  12/46 0
A = ‘ AU = '
00 12 0 4 0 -21/v/6 0
o0 0 0 1 0 0 0
(8 0 -2 2
DT R -1
UAUT=1 5 9 10 2| =4
| 2 2 2 2

Consider the quadratic forwm
Q(x) =x"Ax = 8;5% — da g + ey + 8:}:3 — Awgay + Arara
+ 1(]'::..";-‘: — degwy + ‘2:1?3,

Sinee

4 1
A= AP Q) =3 N P =3 Aillasl,
i1

i1

where 2 -2 Pixo (v x)/[[vill?|vi, and thercfore |87 = (v x)? /|| val*
Sinee one eigenvalue is zevo, the others positive, A is nonnegative definite and
(x) > 0 for all x. A is not positive definite since Qfvy) — (1

These computations ean be handled easily using R or S-Plus nsing the func-
tion Y eigen”.

> eigen(h)

$values:
11 12 8 8 0  #The order is different but the eigenvalues
#and the corresponding eigenvectors are the same.
$vectors:
L, 1] [.2] [,3] [,4]
[1,] -4.0826e-001 7.071le-001 -0.5 ~-0.28868
(2,] -4.0826e-001 -7.0711e~-001 -0.5 -0.28868
(3,1 8.1650e-001 -1.4634e-016 -0.5 -0.28868
(4,1 -1.9429¢-016 1.2561e-016 -0.5 0.86603
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Using the representation A = 377w above il is easy to show that a
s(uare symumetric matrix A is posiltive definite il and only 17 its eigenvalues are all
positive, non-negative definite if and only if ils eigenvalues are all nonnegative.

If A is non-negative definite we can write A1/2 = (.liag(/\i’fzi .. )\}1/ 2]7 80
A = UAU = UA'EAYZU L (UAVZ(UAY2Y = BB for B = UALYZ
The decomposition A = BB’ is quite useful. Tt is not unigne, sinee if C is
any orthonormal matrix (satisfying CC’ == I}, then (BC){BC) = BCC'B’ =
BB = A,

Letting € = UA'/2U7 - X)\_:ﬂPi, we get - C, with A C'C. C2
The matrix C iz the unigue syimunetric square root of A.

Lelling ¥y = U’x for U as defined above, we get

i
Qx)=x"Ax = (UyYA(Uy) =y U AUy = y'Ay = z%iy.'f
1

(1) Let Py be the projection operator onto a subspace Voot £, Then for
X € V, Prx = x s0 that all veetors in V' oare cigenvectors of Py with cigen-
values 1. For x € V', Pyx - 0, so that all vectors in V4 are cigemvectors of
PPy with cigenvalue 0. The eigenvalue | has multiplicity equal to the dimension
ol ¥, while the cigenvalue 0 has multiplicity cqual to dim(V4) ~ n - dim{V').
Since [row (2) trace{A} = 37 A, the trace of a projection matrix is the dimen-
sion of Lthe subspace outo which it projects.

Partitioned Matrices (Scher, 1977):

A B]7' [A'Y\FE'F -FE tore E=D-BAT'B
B; D = . ) ]F'r E L N wllers F:A_]_B

Singular Value Decomposition (Scber, 1977, p. 392): For X an nox k& matrix
of tank r.n > k > 7, let the v positive eigenvalucs of XX be 0f > of =
<oz o2 > 0. Tet D be the diagonal malrix with diagonal (¢1,...,0,). Lel the
cigenveetor of XX/ corresponding to oF be p; for cach ¢, 1 < i < », and let
q; = X'p:/7;. Then q, is an eigenveclor of X'X corresponding to eigenvalue
a?. These vectors p; may be chosen (o be mutually orthonormal. 1L follows
that the g; are also orthogonal. Define

P=(p.....p), Q=(ai.....q,)) =D '"X.

Then X - PDQ = 5 U._,-_qu";-. Thus, the linear transformation Xx = y, taking
vectors x € fiy into . eolimn space of X, proceeds as follows. Q takes a
vector x € It with (x,q:) o into (e1,..., ). D then multiplies each ¢; hy
o P(DQ)x = Xx is then Y ¢;0,p;. a vector in the column space of X,

¥

Example 1.7.2. > ¥ = matrix(ec(1,1,1,1,1,1,2,3,4,5,1,3,1,2,5,6,
2,1,0,4),5)
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> X
{,11 [,21 [,3] [.4]

[t,] 1 1 1 6
[2,] 1
£3,] 1
4,] 1
1

2
3
4
[s,] 5

b = W
[ o R

W = svd{X}

> W

$d:

[1] 11.31442 5.00647 1.87972 0.62113 #The sigmas, square
#rcots of the eigen values of X’X.

$v: #The transpose of (. The rows of (] form an
#orthogenal basis for the row space of X.
(,1] (,2] (,3] [,4]

[1,] -0.18514 -0.018%64 -0.27068 -0.94451
[2,] -0.80544 -0.531496 -0.52255 0.27910
[3,] -0.53188 -0.245396 0.80148 -0.12060
[4,] -0.56238 0.810514 -0.10634 (.12444

$u: #The matrixz P. The columns of P form an orthogonal basis
#for the colummn space of X.
[,1] [.2] [,3] [.4]
[1,] -0.41511 0.812394 -(.33505 -0.063254
[2,] -0.36382 -0.039372 0.46601 -0.803283
[3,1 -0.27361 -0.209396 -0.60818 -0.166263
[4,] -0.32442 -0.526467 -0.40322 -0.111271
[65,1 -0.71778 -0.132103 0.37164 0.557413

> P = WHu

> D = diag(Wid)

#The 4 by 4 diagonal matrix with d on the diagonal.
> Q = t(Whv)

1l

H

t(P)Y*YP #The columns of P define an orthonormal basis for
#the column space of X.
[,1] [,2] [,3] [.4]
{1,7 1.0000e+000 1.4583e-016 ~2.47882-016 3.7161e-017
[2,] 1.4583e-016 1.0000e+000 2.3180e-016 -8.0983e-017
{3,1 -2.47886-016 2.3180e-016 1.0000e+000 8.4527e-017
[4,] 3.7161e-017 —8.0983e-017 §.4527e-017 1.0000e+000
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> Q %*%t(Q) #The rows of Q define an orthonormal basis for
#the row space of X.

(,1] [.2] [.3] [,4]
{1,1 1.0000e+000 -1.4417e-016 -1.3461e-016 4.30138e-017
[2,] ~1.4417e-016 1.0000e+000 ~1.8065e-016 9.6792e-017
[3,] -1.3461e-016 -1.8065e-018 1.0000e+000 -1.1267e-017

(4,] 4.9015%e-017 9.6792e-017 -1.1267e-017 1.0000e+000
> P Y% D Y Q #Showing that PDQ = X.
[,11 [,2] [,3] [.4]

[1,] 1 1 1 6.000e+000
[z,] 1 2 3  2.000e+000
[3.] 1 3 1 1.000e+000
{4,] 1 4 2 -3.439e-015
(5,1 1 5 5 4.000s+000
> PX = ¥ %% solve (v (XDU+LX0 Y%t (X)
> PX #The projection matrix onto the column space of X.

[,1] [,2] £,3] [,4] [,5]
[1,] ©0.948560 0.0137174 0.157750 -0.150892 0.0308642
[2,1] 0©.013717 0.9963420 -0.042067 0.040238 -0.00823056
[3,] 0©.157750 -0.0420668 0.516232 0.462734 -0.0946502
{4,] -0.1508%2 0.0402378 0.462734 0.857386 0.0905350
[6,] 0.030864 -0.0082306 -0.094650 0.030535 0.9814815
> PX Y% PX #Verifying that PX is idempotent.

(,1] [,2] [,3] [,4] [.5]
[1,] 0.948560 0.0137174 0.157750 -0.150892 0.0308642
[2,1 0.013717 0.9963420 -0.042067 0.040238 -0.0082305
[3,1 0.157750 -0.0420668 0.516232 0.462734 -0.0946502
(4,1 -0.150892 0.0402378 0.462734 0.557385 0.0905350
(5,1 0.030864 -0.0082305 -0.084650 0.0980535 0.9814815

Moore-Penrose or Pscudo-Inverse: The Moore-Penrose inverse or psendo-
inverse of the n % & watrix X is the & x » unique matrix X+ having the fonr
properties: (1) XTXX' = X*, (2) XX'X = X, (3} X*X is symmetric,
4y XX " s symmetrie. For any vector y € R, b = Xty is the unique vector
in Lthe row space of X such Lhat Xb is the projection of y on the column space
of X, If X is nonsingular then X+ = X7, The malrix XX is the projection
oulo the row space of X. The matrix XX is the projection onto the column
space of X, Il X has full column rank then X+ = (X'X)7I1X’. Tf V is the
cohumu space of X, and p(y|V) = X3, then 3 = X7y,

The Maoore-Penrose inverse may be uged fo find solntions to the linear equa-
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tion Xb - e. Tf this equation has a solution then ¢ is in the column space
of X. That is, there exists some w anch that Xw = ¢. Tet b = XTe. Then
Xb = XX Xw == Xw = ¢. The geveral solution to the equation Xb = ¢ is
given by b = Xte + (I, X*'X)d, for d any vector in ;. Taking d to be
any vector orthogonal to the row space of X, we gel the unigue solution X ¢
in the row space of X.

The pseudo-inverse is related to the singular value decownposition of X in
that X+ - Q'D~ P/,

Example 1.7.3. Let X be as defined in the S-Plus example above. Let W
= svd{X), P = W8u , and Q = transpose(WSv) be as delined there. S-Plus
print-out:

> XP = £(Q) ¥%*) diag(1/Wsd) ¥%*% t(P)

> XP #The Moore-Penrose inverse.
f,1] [,2] [,3] [,4] [,5]
(1,1 0.14814815 1.16049 0.345679 0.234568 -0.888889
[2,] 0.00068587 -0.46685 0.131230 0.135345 0.199588
[3,} -0.15089163 0.37357 -0.203932 ~0.109282 0.090535
[4,] 0.15843621 -0.175568 -0.019204 -0.068587 0.104938
> XP Y& X #Projection onto the row space of X.
#In this case this iz the 4 by 4 identity matrix.
[,1] [.2] [,3] [,4]
, 1.0000e+000  2.7756e-016 1.1102e-016 4.9960e-016
»] ~7.9472e-017 1.0000e+000 -5.2356e-016 -5.0459e-016
,1  2.7756e-017 -1.6663e-016 1.0000e+000 3.3307e-016
>3 —1.2143e-016 -1.4225e-016 -3.1572e-016 1.0000e+000
> X %*% XP #Projection onto the columns space of X. See above.
[,1] L,2] L,3] L,4] L,5]
{1,1] ©0.948660 0.0137174 0.167750 -0.150892 0.0308642
(2,1 0.013717 0.9963420 -0.042087 0.040238 -0.0082305
[3,] 0.167750 -0.0420668 0.516232 0.462734 -0.0946502
(4,] -0.150892 0.0402378 0.462734 0.557385 0.0905350
[5,] 0.030864 -0.0082305 —0.094650 0.0905356 0.9814815

For a full discussion see Regression and the Moore-Penrose Psendoinverse
by Arthur Albert (1972).

Triangular Decomposition:

Let A be a symmetric non-negative definite matrix. There exist an infinite
mumber of # x n matrices B such that BB’ - A. Perhaps the casicst such
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matrix to [ind is one ol the form (lower triangular)

-b]'[ 0 . 0
!’)21 f)zg e (}
0

)]

0

L(j'lt'l b:f.Z T hu cre )

The Cholesky decomposition is of the form A = C'C, with C wpper-
triangluar, so that €' = B. Elements of B may be found as follows: b3, = a1,
s0 b1 o Je. Then, sinee byyby = ay we have

b“ = uﬂ/bll for i= 2, ce- T
Suppose by has already been found for 7 = 100008 1 and 2 l,....u for
i
k=1, Then we can find by indnetively, Sinee, 37 bigbey apg. it follows that
i1

&1
F)“E-A_- — g Z bfj 'l‘}'leﬂ
=

172
Lol ‘
E : 2
b.ﬁ:k = gk — hh:ﬂr’
Since 3 by = ay lor @ > &, it follows shat
=1
k=1
N 4
b = | ay — 2 by | S for ik,
G=1

Repeating for cach b prodnees B,
To summarize:

(1} Cowmpute by = (u11)'=, Lot by = g /oy, and lot & = 2.

172
o !

(2) Let by (r}.k,k; > F)%c,j) . (A is non-negative definite if and only if
i=1

the term in parentheses is non-negative for eacly &)

f—1
(3) Let by, = (a.,-;,.; -5 b.,;v.,bkj)/b;,_;‘. for i = k.
il

(4) Replace & by & | 1 and repeat {2) and (3) mwil & > n.
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(5) Tt by - O ford < 4.
W any D o= 0dn step (3) shen set by = 0 for i = k.

All of this can be accomplished using R or $-Plus, nsing the funetion “chol”.
For example, lel. A be as in Example 1.7.1. More 5-Plus:

> A = matrix(c(8,0,-2,2,0,8,-2,2,-2,-2,10,2,2,2,2,2) ,4)

> A
(.11 [,2] [,3]1 [,41

[1,] 8 o -2 2
[z,] 0 8 -2 2
3,7 -2 -2 10 2
[4,] 2 2 2 2

> C = chol(A)
Warning messages:
Choleski decomposition not of full rank in: chol(4)

> B = t(C)

> B

,1] [,21 [,3] [,4]
[1,] 2.82843 0.00000 0 ¢
(2,1 0.00000 2.82843 0 0
[3,1 -0.70711 -0.70711 3 0
(4,] 0.70711 0.70711 1 O

> BY*%tL(B)

(.11 [,2] L[,3]1 [,4]
[1,] 8 0 -2 2
2,] 0 g8 -2 2
3,1 -2 -2 10 2
[2,] 2 2 2 2

A o
Problem 1.7.1. Lef A . (l]) “_>

(a) Find the eigenualucs Ay, Ay and corresponding length-one
cigentectors ), 1a for A.

() Define U and A as in Section 1.7 and show that
A =UAU and UU' =15,

(e} Give the projections PT and P57 of Section L7
and show that A — NPT + AP35
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(d} Ts A posilive definile? Why?

Problem 1.7.2. What are the eigenvalues and cigenvectors of the projection
matrices P oof examples 1, 2, 5. 4, 5 of Feample 1.6.27

Problem 1.7.8. For n x k matriz X of rank k, what are the eigenvalues ond
vectors for P — X(X'X)7'X'¢ What is det(P) if n > k? If n=k¥

Problem 1.7.4. Let nxn matriz A have nonzero eigenvedue M and correspond-
ing cigenuector v. Show that

{a} A~ (if it cxists) has on cigenvatue A7, eigenvector v.

() 1T — A has an eigenwalue 1 — X, elgenvector .

(c) For A =BC, CB has eigenvalur A, cigenvector Cuo.
Problem 1.7.5. Give 2x2 matrices which satisfy the following:

(a) Posttive definite.

(b} non-negative definite, but not posilive definile.

() Not non-negative definite.

Problem 1.7.6. et A be positive definite and let v C R,. Prove that (A +
v L ATHT s evv' AT for e = 1/(1 | vIAT L),

Problem 1.7.7. Determine whether the quadratio form Q{xy,wz,r3) = 228 +
2:{:% + 1]:{;% + 106w o — 2 3 — 2aaws @5 non-neyoltve definite. THint: What is
the matvir corresponuding to Q¥ One of s cigenvalues s 12.

o —
Problem 1.7.8. For A = [:L 1[}] find @ mairiz B such that A BB'.
2.1 -1
Problem 1.7.9. Let G = 13 0
1 4 4

(a) lise the formula for the inverse of partitioned matrices for the case that 4
s @ one by one mabvie Lo find G

(b} Use the formula for the inverse of partitioncd matrices for the case that A
is a two by two malrir to find G L.

5 -1
Problem 1.7.10. Lef X = | -1 5| . Eind the singular value decomposi-
2 2

tion of X. Also find the Moore-Penyose inverse X' and verify ity four defining
propertics.



1.7. FIGENVALUES AND EIGENVECTORS 49
Problem 1.7.11. Let A == UDV be the singulor value decomposifion of A.

Erpress the following matvices i terms of U, D, and V.

()
(t)
{c)

()
(f)
{q)

A'A
AA'
A~ {assuming A is nonsingular)

A" AA A noproducts). assuming A s sguare,

o the rase thot the singulor velues are a1 > 0 7 oz & -
. . : . - - f

shone that limy, o, A™ /ol - pip).

Projection onto the cobwmmn spuce of A,
Projection onto the vow space of A.

What are U, D, and V for the case that A == 45 an 1 nalric? What
is AtY

Problem 1.7.12. Let A be o symmelric noxon maltvic of rank one,

(a)

(b)
(c)

Problem 1.7.13. Lct G _

Sherir that A can be expressed in the form A .. ovv', for a real mumber
¢, vector v of length one.

Prove that either A or —A is non-negotive definite |
(ive the spectral decompaosition for A in terms of ¢ and v,
21 20
1 3 1 1
-1 =2 i -1
a 1 4 G

Use the partitioned matriv formule with A the two by fwo mabeie on the

1 —-17 27 -2
) 0 8 8 i}

ypner-feft hotwe that G ' = ‘8 .
upper-left to show that G (1/8) 5 13 23 9
-1 =12 =20 0
35 7 23 11 3
-7 11 19 M0 =11
Problem 1.7.14. Let A - | —23 19 33 19 =23
-11 10 19 R
31 11 =23 -7 35

(a)

{b)

Find the eigenvalues and corresponding eigenvectors for A, Hints: The
eigenvafues und eigenveclors consist entively of integers. Two of them are
any mulliples of (1, 1,01, 1, 1Y and (2, -1, 2, 1,2)). A has rank 3.

Whal are the eigenvalucs and cigenvectors of A2 and, more generally, of
Ang
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(¢} Whal is the delerminant of A¥
(1) Verify that that trace(A) is the sum of the vigenvobues.

{e) Let V obe the column spoce of A, What is the projection mabriz Py onto
V? Verify that Py is idempotent.

(f} What is the Moore-Penrose inverse of A¥

Problem 1.7.15. For X s in example 1.7.2, find X1, its Moore-Penrose
nuverse.





