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CHAPTER 1

REAL NUMBERS AND LIMITS OF
SEQUENCES

1.1 THE REAL NUMBER SYSTEM

During the 19th century, as applications of the differential and integral calculus in
the physical sciences grew in importance and complexity, it became apparent that
intuitive use of the concept of limit was inadequate. Intuitive arguments could lead
to seemingly correct or incorrect conclusions in important examples. Much effort
and creativity went into placing the calcutus on a rigorous foundation so that such
problems could be resolved. In order to see how this process unfolded, it is helpful
to look far back into the history of mathematics.

Approximately 2000 years ago, Greek mathematicians placed Euclidean geometry
on the foundations of deductive logic. Axioms were chosen as assumptions, and the
major theorems of geometry were proven, using fairly rigorous logic, in an orderly
progression. These ancient mathematicians also had concepts of numbers. They
used natural numbers, known also as counting numbers, the set of which is denoted
by

N={1,2,3,...,n,n+1,...}
This is the endless sequence of numbers beginning with 1 and proceeding without
end by adding 1 at each step. Also used were positive rational numbers, which we
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4 HEAL NUMBERS AND LIMITS OF SEQUENCES

denote as
Q= {%‘p,qu}.

These numbers were regarded as representing proportions of positive whole numbers.

Members of the Pythagorean school of geometry discovered that there was no
ratic of positive whole numbers that could serve as a square root for 2. (See Exercise
1.11.) This was disturbing to them because it meant that the side and the diagonal
of a square must be incommensurable. That is, the side and the diagonal of a square
cannot both be measured as a whole number multiple of some other line segment, or
unit. So great was these geometers” consternation over the failure of the set of rational
numbers to provide the proportion between the side and the diagonal of a square that
confidence in the logical capacity of algebra was diminished. Mathematical reasoning
was phrased, to the extent possible, in terms of geometry,

For example, today we would express the area of a circle algebraically as A = nr?,
We could express this common formula alternatively as 4 = Zd?, where d is the
diameter of the circle. But the ancient Greeks put it this way: The areas of two circles
are in the same proportion as the areas of the squares on their diameters. The squares
were constructed, each with a side coinciding with the diameter of the corresponding
circle, and the areas of the squares were in the same proporticn as the areas of the
circles. Much later, in the 17th century, Isaac Newton continued to be influenced
by this perspective. In his celebrated work on the caleulus, Principia Mathematica,
we can see repeatedly that where we would use an algebraic calculation, he used a
geometrical argument, even if greater effort is required. The reader interested in the
history of mathematics may enjoy the book The Exact Sciences in Antiquity by Otto
Neugebauer [15] and the one by Carl Boyer [3], The History of the Calculus.

It took until the 19th century for mathematicians to liberate themselves from their
misgivings regarding aigebra. It came to be understood that the real numbers, the
numbers that correspond to the points on an endless geometricat line, could be placed
on a systematic logical foundation just as had been done for geometry nearly iwo
thousand years earlier. Most of the axioms that were needed to prove the properties of
the real number system were already quite familiar from the arithmetic of the rational
numbers. There was one crucial new axiom needed: the Completeness Axiom of the
Real Number System. Once this axiom had been added, the theorems of the calculus
could be proven rigorously, and future development of the subject of Mathematical
Analysis in the 20th century was facilitated.

Although we will not attempt the laborious task of rigorously proving every
familiar property of the real number system, we will sketch the axioms that summarize
familiar properties, and we will explain carefully the completeness axiom. With the
latter axiom in hand, we will develop the theory of the calculus with great care.
Students interested in studying the full and formal development of the real number
system are referred to J. M. H. Olmsted’s book [16], or to a stylistically distinctive
classic by E. Landau [12].
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In addition to the set N of natural numbers, we will consider the set Z of inregers,
or whole numbers. Thus

Z={0,+1,42,..} = {+n|n e N} U{0}.

We need also the full set of rational numbers:

Q={§|p,q62,q%0}-

We list in Table 1.1 the axioms for a general Archimedean Ordered Field . You
will observe that the set @ is an Archimedean ordered field. However, the set R of
real numbers, which we will define in Section 1.3, will obey all the axioms for an
Archimedean ordered field together with one more axiom, called the Completeness
Axiom, which is not satisfied by Q.

Table 1.1 Archimedean Ordered Field

An Archimedean Ordered Field F is a set with two operations, called addition and multi-
plication. There is also an order relation, denoted by a < b. These satisfy the following
propertics:

1.
2,
3

Closure: f a and b are elements of F,thena + b € Fand ab € F.
Commutativity: If @ and b are elements of I, then a + & = b + 2 and ab = ba.

Associativity: 1f a, b, and ¢ are elements of I, then a + (b + ¢) = (@ + ) + c and
a(be) = {ab)e.

. Distributivity: 1f a, b, and ¢ are elements of F, then a(b + ¢) = ab + ac.

5. Identity: There existelements Dand 1inFsuchO+a=aand la =a, foraHa € F.

Moreover, 0 # 1,

. Inverses: if a € F, then there exists —a < F suchthat —a+a = 0. Also, foralla # 0,

then there exists ! = % & F such that a% =1,

. Transitivity: f o < band b < e, thena < c.

8. Preservation of Order: if a < bandif ¢ € F, then @ + ¢ < b 4 e, Moreover, if ¢ > 0,

10.

then ac < be.

. Trichoiomy: For all g and b in F, exactly one of the following three statements will be

true: a < b, or & = b, or o > b (which means b < a).

Archimedean Property; 1f € > 0 and if M > 0, then there exists n € N such that
ne > M. (In this general context, N is defined as the smallest subset of F that contains
1 and is closed under addition.)

There 1s an old adage that loosely paraphrases the Archimedean Property found
in the table: If you save a penny a day, eventually you will become a millionaire (or
a billionaire, etc.).
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From the axioms for an Archimedean ordered field, many familiar properties of
the real numbers cuan be deduced. In particular, the behavior of alk the operations used
in solving equations and inequalities follows directly, with the exception that we have
not established yet that roots of positive numbers, such as square roots, exist. Here
we will concentrate on those properties that received less emphasis in elementary
mathematics courses.

The order axioms are particularly useful for analysis. In this connection, it is
important to make the follewing definition.

Definition 1.1.1 We define

a ifa >0,
la| = .
—a ifa<.

We think of || as representing the distance of a from 0 on the number linc, Note
that ja| is always nonnegative. The absolute value satisfies a vital inequality known
as the Triangle Inequality.

Theorem 1.1.1 Forallaandbin R, |a + b| < |a| + |b].

Proof: Observe that

—'[G'.| S a S |a|1
and
—[b] < b < b,
s0 that
—(ja| + b)) < a+b < |a| + [b]. (L.

Thus, ifa+b >0,
la +b=a+b<|a|+ b

Butif @ + & < 0, then from the first inequality in Equation (1.1), we obtain
la+ b = —(a+b) < |a| +[b].

We see that whether ¢ 4+ b is negative or nonnegative, we have in either case that
la+ 8| < |a] + [b|. u

Remark 1.1.1 If the student has not yet read the Introduction, including the discus-
sion of Learning to Write Proofs on page xxiii, this should be done now. 1t was
explained that in order to leamn to write proofs, the student must learn first how to
study the theorems and proofs that are presented in this book. Let us note how the
remarks made there apply to the short proof of the first theorem in this book.

First we read carefully the statement of Theorem 1.1.1. We note that this is a
theorem about absolute values, so we reread Definition 1.1.1 to insure that we know
the meaning of this concept. Since the absolute value of a number a depends upon
the sign of a, we should test the claimed inequality in the theorem with several
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pairs of numbers: two positive numbers, two negative nembers, and two numbers
of opposite sign. The reader should do this, with examples of his or her choice of
numbers, noting that the triangle inequality in real application gives either equality,
if the two numbers have the same sign, or else strict inequality, if the two numbers
have opposite sign. This gives us an intuitive appreciation that the triangle inequality
ought to be true. Now how do we prove it? Testing more examples will not suffice,
because infinitely many pairs are possible. Many correct proofs can be given, but we
will discuss the one chosen by the author.

The next step in writing a proof requires some playfulness or inquisitiveness on
the part of the student. In theoretical mathematics we are discouraged from following
rote procedures in the hope of finding an answer without thought. To bypass thought
would be {0 bypass mathematics itself. The student should not even consider such a
route, just as he or she should not substitute a pill for a good meal.

We see by playing with the definition of absolute value that [a| must be equal to
either g or —a. This reminds us of what we observed when checking pairs of specific
numbers of the same or opposite sign, as explained above. The playfulness appears
when we choose to write this as —la| < g < |a| for all @, even though the truth of
this double inequality hinges upon a being equal to either the teft side or the right
side. Then we do the same for b, recognizing that a and b do play symmetrical roles
in the statement of the theorem. Then we add the two double inequalities, obtaining
Equation (1.1}, The remainder of the proof unfolds from censidering that the value
of fa + b| hinges upon the sign of & + b.

This analysis of the proof of the triangle inequality is representative of what the
student should do with each proof in this book, and with each proof presented in
class by his or her professor. Take a fresh sheet of paper and write out a full analysis
of the proof, including the perceived rationale for the course that it takes. Work on
this until you are sure you understand correctly. If in doubt, ask your teacher! This
is the way to learn advanced mathematics, and it is what the student must do to learn
to prove theorems,

EXERCISES

1.1 Let ¢ > . Determine how large n € N must be to ensure that the given
inequality is satisfied, and use the Archimedean Property 1o establish that such n
eXist.

a) 1 <e?

b) & <e?

¢) % < €7 (Assume that /n exists in R.)
1.2 Prove the uniqueness of the additive inverse —a of a. (Hint: Suppose that

z+a=0=y+a

and prove that x = y.)

1.3  Use the Axiom of Distributivity to prove that al} = 0 for all ¢ € R, and use
this to prove that (—1){(—1} = 1.
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1.4 Provethat (—1ja = —aforalle € R.
1.5  Prove the uniqueness of the muliiplicative inverse a~! of a forall a # 0 in R.

1.6 Prove: Forall ¢ and b in R, |ab| = |e}[b|. (Hint: Consider the three cases a
and b both nonnegative, a and b both negative, and « and b of opposite sign.)

1.7 Prove: Foralla,b,cin R,
la —¢| < |a—b|+ b~
{Hint: Use the triangle inequality.}

1.8 Lete > 0. Find anumberd > 0 small enoughsothat|a—b| < dand |c—b| < &
implies |a@ — ¢| < e.

1.9 {Prove: Foralleand bin R,
|lat — o} < |a - bl.

Intuitively, this says that |a| and |b} cannot be farther apart than ¢ and b are. (Hint:
Wriie |a| = |(a — b) + b| and use the triangle inequality. Then do the same thing for
|5}.)

1.10 Prove or give a counterexample:
a) fa<bande < d,theng —c < b—d.
by ifa<bandc <d thena+c < b+d.

1.11 1 This exercise leads in three parts to a proof that there is no rational number
the square of which is 2. The reader will need to know from another source that each
rational number can be written in the form % in lowest rerms. This means that m
and n have no cernmon factors other than +1.

a) If m € Z is odd, prove that m? is odd.

b} If rn € Z is such that m? is even, prove that mn is even.

¢} Suppose there exists % € (3, expressed in lowest terms, such that

(2)'-

Prove that 7 and n are both even, resulting in a contradiction.

(Hint: For this problem, if the student has not taken any class in number
theory, the following definitions may be helpful. A number n is called even
if and only if it can be written as rn = 2k for some integer k. A number n
is called add if and only if it can be written as n = 2k — 1 for some integer
k.)

1.2 LIMITS OF SEQUENCES & CAUCHY SEQUENCES

By a sequence z.,, of elements of a set S we mean that to each natural number r € ¥
there is assigned an element z,, € 5. Unless otherwise stated, we will deal with
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sequences of real numbers. We can think of a sequence as an endless list of real
numbers, or we could equivaiently think of a sequence as being a function whose
domain is N and whose range lies in R, Tt is very important to define the concept of
the limit of a sequence. Intuitively, we say that o, appreaches the real number L
as n approaches infinity, written z,, — L € R as n — oc, provided we can force
|y, — L| to become as small as we like just by making » sufficiently big. This is also
written with the symbols lim,, .., z,, = L. The advantage of writing the definition
symbolically as follows is that this definition provides inequalities that can be solved
to determine whether or not z,, — L.

Definition 1.2,1 A sequence x,, - L € Rasn — oc if and only if forall ¢ = (),
there exists N € N corresponding to e such that

n>N=jr,— L <e

If there exists a number L such that x,, — L, we say x, is convergent. Otherwise we
say that x,, is divergent.

See Exercise 1,12,
Bl EXAMPLE 1.1
We claim that if 2, = L, then z,, — 0.
Proof: Lete > 0. Weneed N € N such that n > N implies

l—[J|<ef.
T

That is, we need to solve the inequality 1 < e. Multiplying both sides of this
inequality by the positive number 2, we see that % < n. That is, if we pick
N € Nsuchthat N > 2, then

1 1
n2N —= —<—<e
- n- N ¢

We know that such an IV exists in N since € and 1 are both positive. Thus there
exists N € Nsuchthat N1=N > % by the Archimedean Principle. =

The student should note that the value of V does indeed correspondtoe. If e > 0
is made smaller, then NV must be chosen larger.

B EXAMPLE 1.2

Let |r] < 1. We claim that 7 — O as n — 0.
Lete > 0. Weneed to find N € N such that » > N implies

[P® — 0| = |r|* < e
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In the special case in which r = §, it would suffice to take V = 1. So suppose
r # 0. Then we need to solve
1" 1
— >
Il €

Note that we do not proceed by taking nth roots of both sides of this inequality,
since we have not yet established the existence of such roots for all positive
real numbers, Since Ir| < 1, 1?1[ =1+ p > 1 forsome p > 0. Thus

() e

=(1+p)(1+p)---(1+p)
=1"+np+---+p"
> np.

By transitivity of inequalities, it would suffice to find V € N such that Np > %

Such integers N exist because of the Archimedean property. So pick N € N

such Np > % and we find that n > N implies np > Np > % so that

[r® - 0] = |r|® < e

Notice that if x, is convergent, then after some finite number N of terms, all
subsequent terms are bunched very close fo one another: in fact, within € of some

number L. This motivates the following definition and theorern.

Definition 1.2.2 A sequence z,, is called a Cauchy sequence if and only if, for all
e > 0, there exists N € N, corresponding to €, such that n and m > N implies
len —&m| < €

Theorem 1.2.1 If z,, is any convergent sequence of real numbers, then x,, is u
Cauchy sequence.

Proof: Suppose zy is convergent: say £, — L. Let ¢ > 0. Then, since £ > 0
as well, we see there exists N € N, corresponding to ¢, such that n > N implies
|tn — L| < §. Then, if n and m > N, we have

|Zn — &m| = Hzn — L) + (L — 2m)]
S tx'n - LI + ’L - -T;\fu|

<E+E_
2 2—6.

Remark 1.2.1 We make some remarks here 1o help the student to write his or her own
detailed analysis of the proof of Theorem 1.2.1, as recommended in the introduction,
on page xxiii. The student should begin with the intuitive understanding that if
&y — L, then z, will be very close to L for alt sufficiently big 7. The point is that
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we want both x, and x,,, 10 be so close to L that z,, and z,, must be within € of one
another. The student should use visualization to recognize that since &, and x,, can
be on opposite sides of L, we will need both z,, and 2, to be within 3 of L. Then the
triangle inequality for real numbers assures that z,, and 25, are no more than € apart.
The student should write a careful analysis of every proof in this course, whether
proved in the text or by the professor in class.

B EXAMPLE 1.3

We claim the sequence x,, = (—1)"*! is divergent.

In fact, if @, were convergent, then x, would have to be Cauchy. But
[y — Tpy| = 2, forali n. Thus, if O < € < 2, it is impossible to find N € N
such that n and m > N implies |z, — 2m| <€

Definition 1.2.3 A sequence r,, is called bounded if and only if there exists M € R
such that |z, | < M, foralin e N,

Theorem 1.2.2 If x,, is Cauchy, then x.,, must be bounded,

Remark 1.2,2 Observe that if z,, is convergent, then it is Cauchy, so this theorem
implies that every convergent sequence is bounded.

Proof: We will show that every Cauchy sequence is bounded. In fact, takinge = 1,
we see that there exists N € N such that n and m > N implies [z, — x| < 1. In
particular, n > N implies

|Zal — |ox| < ||-73n| - |'3NH <len—znf<1
so that |i,} < 1+ |zn]. If we let
M =max {jzl, ..., |zv_al L+ |zN|},

making A the largest element of the indicated set of N numbers, then |z,,| < M for
alneN, n

B EXAMPLE 14

If &, = n, then x, is not convergent.

If x, were convergent, then a, would be bounded. But for all M > 0,
there exists i € N, corresponding to M, such that n > M by the Archimedean
Property. So x, is not bounded.

Itis alse convenient to define the concepts ¢, — oo and #, — —o0. However, oc
is not a real number, so we have not defined anything like |z,, — oc| and thus cannot
prove such a difference is less than e. (Compare this with the discussion on page 9.)
We adopt the following definition.
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Definition 1.2.4 We write xp, — oc if and only if for all M > () there exisis N € N
such that n > N implies v, > M. Similarly, we write x,, — —o0 if and only if for
all m < 0 there exists N € N such that n > N implies z, < m.

EXERCISES

1.12  § Use Definition 1.2.1 to prove that the limit of a convergent sequence z,, is
unique. That is, prove thatif x,, — L and x,, — M then L = M.

113 Let

o = 40 ifn<100,
" 1 ifn > 100.

Prove that x,, converges and find lim .

114 Letz, = % Prove &, converges and find the limit.

115 letzx, = %—nr: Prove x,, converges and find the limit.

1.16 Letzx, = ?111’ Prove z, converges and find the limit,
1.17 Letx, = Qen;"; Does x,, converge or diverge? Prove your claim.

1.18 Letx, = i'—l% Does z, converge or diverge? Prove your claim,

1.19 1§ Prove: If s, < t, < u, for all n and if both s, — L and u,, — L then
tn, — L asn — oo as well. (This is sometimes called the squeeze theorem or the
sandwich theorem for sequences.)

1.20 Prove or give a counterexample:
a) zp + yn converges if and only if both «, and y,, converge.
b} z,y, converges if and only if both x,, and ¥, converge.
¢} If .y, converges, then lim v, = lim 2, lim gy,

1.21 Letz, = 222 Prove x, converges, and find the limit.

122 { Suppose ¢ <z, < b for all n and suppose further that x,, — L. Prove:
L € {a,b. (Hint: If L < g orif L > b, obtain a contradiction.)

123 Suppose s, <1, < uy foralln, s, — a < b, and u, — b. Prove or give a
counterexample: lim, .o tn € [a, ).

1.24  For each of the following sequences:
i. Determine whether or not the sequence ts Cauchy and explain why.
ii. Find litng, 0 (2501 — Tnl.

8) z, ={(-1)"n

b) 2, =n+1
c):rn:n—lg
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d) =z, is described as follows:

112 _ 3
0:11 510} 3a§!1s15

1
11501 ,1,....

b 1

ST}
o e
| W

1 1
2 5’
1.25  { Prove: The sequence &, is Cauchy if and only if for all € > 0 there exists
N € Nsuch that for all £ > N, we have |74 — o] < e

1.26 Provethat if z, — oc then x,, is not Cauchy.

127 Letw, # 0, forall n € N. Prove: || — o if and only if -2 — D.

|C!3n|

1.3 THE COMPLETENESS AXIOM AND SOME CONSEQUENCES

Constder the following sequence of decimal approximations to +/2:

1=l =14 33 =141, 24 = 1414, .,

Each zj is a rational number, having only finitely many nonzero decimal places. For
each k, the last nonzero decimal digit of x, is selected in such a way that z2 < 2
yet if that last digit were one bigger the square would be larger than 2. The number
x2 cannot equal 2, since there is no v/2 in the rational number system. Naturally we
hope for x, to converge and for lim o, = V2. Indeed, 2 is a Cauchy sequence, We
can see this by observing that if . and . are greater than or equal to IV, then

Since the sequence of successive powers of —1-15 converges to 0, if € > 0 we can pick
N large enough to ensure that 14— < €.

Since there is no /2 in Q, there are Cauchy sequences in {Q that have no limit in the
set @ of rational numbers. It is reasenable, knowing from geometrical considerations
that there should be a /2 € IR, to select the following axiom as the final axiom for
the real number system.

Completeness Axiom of R. Every Cauchy sequence of real numbers has a limit in
the set R of real numbers.

In Example 1.10 we will see that in fact the completeness axiom does imply that
there exists a v/2 in R.

Remark 1.3.1 In books that use a different but equivalent version of the Complete-
ness Axiom, the statement that every Cauchy sequence of real numbers converges to
a real number is called the Cauchy Criterion for sequences.

Definition 1.3.1 The set R of real numbers is an Archimedean ordered field satisfving
the Completeness Axiom.

Thus a sequence of real numbers converges if and only if it is Cauchy. We re-
mark that it can be proven, although we will not do so here, that any two complete
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Archimedean ordered fields must be isomorphic in the sense of algebra. The inter-
ested reader can find a proof in the book [16] by Olmsted. On the other hand, the
reader can find an explicit construction of a set having all the properties of 4 complete
Archimedean ordered field, beginning from the natural numbers, in the book [12] by
Landau.

In the next chapter, after studying the Intermediate Value Theorem, we will see
casily that R, with the Completeness Axiom, does possess an {/p foreach p > 0 and
foralln € N. Mostof the current chapter, however, will deal with other consequences
of completeness, that we will begin exploring right now.

Definition 1.3.2 A number M is called an upper bound for a set & C R if and only
iffor all a € A we have o < M. Similarly, a number m is called a lower bound for
A if and only if for all @ € A we have a > m. A set A of real numbers is called
bounded provided that it has both an upper bound and a lower bound. A least upper
bound for a set A is an upper bound L for A with the property that no number L' < .
is an upper bound of A. A least upper bound is denoted by lub( A).

Note that not every subset of R has an upper or a lower bound. For example, N
has no upper bound, and Z has neither an upper ner a lower bound. It is important
to bear in mind also that many bounded sets of real numbers have neither a largest
nor a smallest element. For example, this is true for the set of numbers in the opern
interval (0,1). The reader should prove this claim as an informal exercise.

Theorem 1.3.1 If a nonempty set S has an upper bound, then S has a least upper
bound L.

Remark 1.3.2 If S has an upper bound, then its least upper bound is denoted by
lub{$). If lub(S) exists, then it must have a unique value L. The reader should prove
that no number greater or smaller than L could satisfy the definition of lub(S).

Proof: Since § # ), there exists s € §. Select any number ¢y < s so that ay is
too small to be an upper bound for 5. Let by be any upper bound of §. We will use
a process known as interval halving, in which we will cut the interval [a1, b1] in half
again and again without end. The midpoint between a, and b; is Ql%—’l.

i. If 2242 is an upper bound for S, then let b, = @tb gnd let ap = ;.

ii. Butif 9121’51 is ot an upper bound for S, then let a2 = »‘1-‘-;—”-‘- and let b = by,
Thus we have chosen [az, b2] to be one of the two half-intervals of [a1,b1], and we
have done this in such a way that b, is again an upper bound of .5 and a3 is too small
to be an upper bound for S. Now we cut [a3, bg] in half and select a half-interval of
it to be [as, b3 in the same way we did for [az, b2]. Note that

bi—a
ff’f"_“fﬂzi—;ﬁfﬂ*’o
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as ¥ - pc. Thus if € > 0, there exists N € N, corresponding to ¢, such that
|ty — an| < € But,if n > N, then ¢, and b, € lan,bn], so nand m > N implies
|an, = @ | < € and also by — by, | < e. Thus a, and by, are Cauchy sequences. Hence
a, — @ and b,, — b, for some real numbers ¢, b. By Exercise 1.22, a and b are in
[an, by, forall N. Thus 0 < |a —b| < ¢, foralte > 0. Thus |a — b =0and a = b.
We claim that the number I = @ = b is the least upper bound of §. Note that for
each k we have aj, < L < by, since for all j > k we have a; and b; € [ay, bi)-

First, observe that if s £ S, then s << L, In fact, if we did have s > L, then, since
by, — L, for some big enough value of k we would have b — L| < |s — L] and so
by < 5. But this is impossible, since by, is an upper bound of 5. Thus s < Land L
is an upper bound of 5.

Finally, we claim L is the least upper bound of 5, In fact, suppose L' < L. Then
since a; — L, there exists k such that I’ < ag. But ay, is not an upper bound of S.
Thus L’ cannot be an upper bound of 5. [

Remark 1.3.3 The preof of Theorem 1.3.1 is the most difficult proof presented thus
far in this book. It proceeds by the method of intervai-halving. This method can be
likened to the way that a first baseman and a second baseman in a baseball game will
attempt to 1ag a base-runner out by throwing the ball back and forth between them,
steadily reducing the distance between them until one baseman is close enough to tag
the runner. Interval halving is a very useful method of calculating roots of equations
with a computer, provided it is possible to tell from the endpoints of each half-interval
which half would need to contain the root. The student should take careful note of
how the method of interval-halving produces two natural Cauchy sequences, a, and
b, correspending ic the left and right endpoints of the selected half-intervals.

Corollary 1.3.1 [f § is any nonempty set of real numbers that has a lower bound,
ther S has a greatest lower bound.

For the proof see Excrcise 1.28 in this section.

Remark 1.3.4 If S has a lower bound, ther its greatest lower bound is denoted by
glb{5).

Since not every subset S C R has either an upper or a iower bound, least upper
bounds and greatest lower bounds do not exist in every case. Thus we introduce the
concepts of the supremum and the ifnfimum of an arbitrary set S C R.

Definition 1.3.3 Let § be any nonempty subset of E. Define the supremum of 5,
denoted sup(S), fo be the least upper bound of 8 if S is bounded above and define
sup(S) = o0 if' S has no upper bound. Similarly, define the infimum of S, denoted
inf(S), to be the greatest lower bound of S if S is bounded below, and define
inf(S) = —oo if § has no lower bound.

Thus
ub(S) if §is bounded above,

o0 if § is not bounded above

nis) - {
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and
nf(S) = gtb(S) %f S ?s bounded below,
—00 if S is not bounded below.

B EXAMPLE 1.5
Let S ={x|0<z <1} =(0,1}. Thensup(S) =1 and inf(S5) = O.

Proof: Clearly, | is an upper bound of §. But if M < 1, then there exists
x € §N (M, 1). Thus M cannot be an upper bound of 5. Hence ! is the least
upper bound of S. The argument for inf(S) is similar. »

B EXAMPLE 1.6

Observe that sup(N} = oo and inf(N) = 1. This follows because N has no
upper bound, but N does have a least element, namely 1.

Definition 1.3.4 We call a sequence x,, increasing provided x,, < T,y for all
n € N, and then we write this symbolically as

Tn /.

Similarly, we call x,, a decreasing seguence if ¥, = tny1 for all n € N, which we
denote by

Ty N -

In either case, we call x,, a monotone sequence. Similarly, if T, < Tpnyy for all
n € N, we write

Zn T

and call x,, strictly monotone increasing. And if £, > o1 for alin € N, we write

Tn |
and call x,, sirictly monotone decreasing.

Theorem 1.3.2 If x; is an increasing sequence, then xy, — sup{x,}. Similarly, if
xy is a decreasing sequence, then x;, — inf{z,}.

Remark 1.3.5 Ifsup{z,} = L, areal number, then this theorem says the increasing
sequence x, -—— L and this is an instance of convergence. But if sup{z,} = 2.
we write z,, — oc, but this is calied divergence to infinity. We do not consider the
latter circumstance as convergence because we cannot make |z, — oc| < e. In fact,
Ty, — 0C 18 meaningless, since 5o is not a real number and the arithmetic operations
of real numbers are not defined for oc. Similar remarks apply if z,, is a decreasing
sequence.
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Proof: Consider the case of x,, increasing. If {x,} is not bounded above, so that the
supremnum is infinite, we see that for all M € R there exists N such that z > M.
Then, n > N implies z, > x5 > M too, and we call this divergence of x,, to
infinity, denoted by z,, — oo.

Now suppose z, is bounded above, so sup{z,} = L is the least upper bound of
the set of numbers {x:,,}. We must show thatx,, — L. Lete > 0. Since L — ¢ < L,
I, — e cannot be an upper bound of {z,, }, so there exists N suchthat L > xx > L —e.
Thus for all » > IV we have

L—e<ay <2y <L,

so n > N implies |z, — L| < € thatis, =, — L.
The case in which x,, decreases is Exercise 1.29. ]

Corollary 1.3.2 A monotone sequence converges if and only if it is bounded.

Proof: Exercise 1.30.

One inconvenience in the concept of limit is that lim x,, does not exist for every
sequence x,. One may not be sure in advance whether a given sequence is convergent
or divergent. However, there are two related concepts called the Limit Superior * and
the Limit Inferior which are always defined.

Definition 1.3.5 Ler x,, be any sequence of real numbers. Denote T,, = {zy | k >
n}, which we call the nth tail of the sequence z,.

Note that
72T 2...0T, 2 ....

Define
iy, = inf(T};) and s, = sup(73).

It is easy to see that i, < gp, for all n. Moreover, as n increases, the set 75, of
which one takes sup or inf shrinks to a subset of what it was the step before. Thus
i, increases and s, decreases. Consequently, iy — sup{é, | » € N} and ¢, —
inf{s, | n € N}. Recall that this horizontal-arrow notation means convergence if the
sequence is approaching a real number, but it indicates a special type of divergence
if the sequence is approaching plus or minus infinity.

Definition 1.3.6 We define the limit superior of x,, by
limsup z, = inf{s, | n € N} = inf{sup(T},) | n € N}
and we define the limit inferior of x,,

lim inf x, = sup{t, | » € N} = sup{inf(7T},} | = € N},

“The lim sup and 1im inf appear only cccasionatly in this book, but the concepts arc presented because
they are intrinsically interesting. Also they are very useful to know for further study in graduate courses.
COn the other hand, the sup, inf, lub, and glb appear often and are nesded throughout this book.
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where T, is the nith tail of the sequence T,
Of course, lim sup and lim inf may be real numbers or they may be +oc.

Theorem 1.3.3 Let L. € R and let x,, be a sequence of real numbers. Then x, — L
if and only if imsup z, = L = liminf 2,,.

Proof: TFirst, suppose x, — L. Thus if € > 0 there exists N € N such that
n > N implies |z, — L| < ¢/2, which implies s,, = sup(T,) < L + ¢/2 and
in = inf(T) > L — §. Thus

L-Z<in<sn<L+s
which implies that |s, ~ L| < § < eand |i, ~ L| £ § < ¢ foralle > 0. Thus
sy — L =limsupzx, and i, — L = liminf z,,.

For the opposite implication, suppose limsup &, = liminfx, = L € R. Thus
there exists Ny such that n > N, implies sup{7,} < L + § and there exists N3 such
thatn > Np implies inf(T,) > L — §. Let N = max{Ni, Na}, and n > N implies
|z — L| < €/2 < €. Thus z, — L. ]

EXERCISES

1.28 { Prove Coroflary 1.3.1. (Hint: Let -8 = {—s | s € §}. Which theorem
can you apply to the set — ST

1.29 { Prove the case in which x,, decreases in Theorem 1,3.2,

1.30  { Prove Corollary 1.3.2.

1.31  Find sup(S) and inf{S) for each set S below, and justify your conclusions.
a) S={(-1)"|ne N}
b} S={(-1)"n|n e N}.
) S={xeRlz?<1}.

1.32  Suppose A and B are subsets of R, both nonempty, with the special property

thate < bforalla € A and for all b € B. Prove: sup(A4) < inf(B). (Hint: Every b
is an upper bound of A. So how does the sup{A) relate to each b € B?)

1.33 Prove that every real number M € R is both an upper bound and a lower
bound of the empty set, B,

134 letz, = ”‘—;—1 Show that x,, is convergent and find lim x,,. Juslify your
conclusions.

135 letz, = (1.5)", forall n € N. Find sup(7,,) and inf(T,,), where T,, is the
nth tail of the sequence, and explain. Find lim inf 2z, and lim sup .

1.36 Prove or give a counterexample: If x, increases and y,, increases, then
(#n + yn) is monoione.
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1.37 Prove or give a counterexample: if z, increases and yp, increases then {x,, —
1y ) 18 monotone.

1.38 Prove or give a counterexample: if x,, increases and y, increases then the
product (2, ¥, ) 18 monotene.

139 Prove: If x, is a constant sequence if and only if x, is both monotone
increasing and monotone decreasing.

140 letz, = %E Find inf(T,,), sup(T},), imsup z,,, and lim inf x,,. Does
limp— oo oy, exist? (Hint: T, is the nth tail of the sequence z,,.)

141 Letr, = (-1)"+ % Find lim sup &, and liminf z,. Does lim,_,o Tp
exist?

142 Give an example of a sequence 2,, — oo for which i, is nof monotone.

1.43 Let x, be any sequence of real numbers. Prove: x,, divergesto oo if and only
if lim inf z, = limsup z,, = co.

1.44 Let z, be any sequence of real numbers. Prove: x, diverges to —oc if and
only if lim inf z,, = limsupz, = —oa.

1.45 Prove that lim inf x,, < lim sup z,,, for every bounded sequence z,, of real
numbers. (Hint: The result of problem 5 may help.)

146 Letx, be any unbounded sequence of real numbers. Let s, and #,, be defined
as in the proof of Theorem 1.3.3.
a) If {z, | n € N} has no upper bound, prove s, = oo for all n, so that
limsup x, = ox.
b) If {z, | n € N} has no lower bound, prove ¢, = —oc for all n, so that
lim inf x,, = —00.
¢) In either of the two cases above, conclude that

limn inf &, < lim sup x,.

1.4 ALGEBRAIC COMBINATIONS OF SEQUENCES

If s, is some algebraic combination of other sequences, then we may be able to
determine whether or not s,, convergesif we know the behavior of the other sequences
of which s,, is composed.

Theorem 1.4.1 Suppose &, and yr, both converge, with x,, — L and y, — M as
7 — oc. Then

i rn+yn — L+ M
i Tnp =y — L — M.
i tpyn — LM.
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i :jf — T{?' provided that Af # Oand , # 0, foralln € N.
In order to prove this four-part theorem, it is helpful first to introduce the following

definition and the two lemmas that follow it.

Definition 1.4.1 A sequence that converges o zero is called a null sequence.

Lemma 1.4.1 The sequence z, — L € Rifand only ifx,, — L — 0.

Proof of Lemma. We remark that in words we are proving that x,, — £ if and only
if z, — L is a null sequence. By definition, 2, — L € R if and only if for all ¢ > 0
there exists N € N, corresponding to ¢, such that n > N implies |z, — L] < ¢,
This is equivatent to (@, ~— L) — 0] < ¢, which is equivalent to the statement that
{€n — L} — 0, since |z, — L] = [(z, — L) — 0. [

Lemma 1.4.2 If s, — 0and if t, is bounded, then s,t, — 0.

Proof: 'We are proving that a null sequence times a bounded sequence must be a
null sequence. There exists A > 0 such that [¢,| < M, foralln € N. Lete > 0.
Since s, — 0, there exists IV such that n > N implies |s, ~ 0| = |sn| < 5;. Now,
n > N implies

—E-Mze.

|sntn — O] = {satn| = |8a|[ta] < I

With the preceding definition and two lemmas in hand, we proceed to the main
task of proving the theorem.

Proof:

i. Let € > 0. There exists ¥y such that n > N; implies |z, — L| < ¢/2,
and there exists N such that n > N, implies |y, — M| < ¢/2. Now let
N = max{Ny. Np}. Then n > N implies

[(@n +yn) — (L + M) < |2y — L) + |y — M} < e

ii. This proof is almost identical to the preceding case.

i, Sinege y,, converges, ¥, is bounded. And

Tpltn — LM = zpyn — Ly + Ly, — LM
= (&n — L)yn + L{yn — M)
— 0+0=0

using the two lemimas and the first part, proven above.



EXERCISES 21

iv. Because of the third part, proven above, it suffices to prove that ;1— — T\l? But

1 1 |y — M| 1
= oy M .
e M [y M| o | ln M|

Since |y, — M| — 0, it suffices to show Eli‘-_ﬂ is bounded. There exists /V such
. . M .
that n > N implies ly, — M| < J—‘;ﬂ Thus |yn| > JTl and m < H—ilf

i 1 1 2
Thus Tyn ] 18 bounded by max{lyle’“" IyN_1M|’W|’}'

EXERCISES
1.47 Give examples of divergent sequences z,, and ¥, such that x,, 4 1, converges.

1.48 Leta € R be arbitrary. Give examples of sequences =, — occand g, — =
such that x,, — ¥y — a.

149 Give examples of divergent sequences 1, and y,, such that ..y, converges.

1.50 Let the real number a >  be arbitrary. Give examples of sequences ,, — oc
and ¥, - oo such that %3 — a.

1.51 Prove or else give a counterexample: If =, + y, converges and if =, — y,
converges, then z,, converges and ¥, converges.

1.52 Prove or ¢lse give a counterexample: If ad — be # G and if
axy, + by, — Land cap, + dy,, — M

as . — 00, then x, converges and y,, converges.

1.53  Suppose for all n € N we have i, # 0. Prove or else give a counterexample:
If both z, y,, and 3: converge, then x,, converges and y,, converges.

1.54 Prove or else give a counterexample:
a) A bounded sequence times a convergent sequence must be convergent.
b} A null sequence times & bounded sequence must be a null sequence.

1.55
a) ¥ q(n) = bpn* +by_1n* 1 +.. .4 byn+ bg is a polynomial in the variable
n € N with by, # 0, show that there exists N € N such that n > /N implies
q(n) # 0.
b) Show that

linn axn® +ap_ 14 tanten ak
nroo bipnk +bk_1nk_'l 4+ bn+by bk}

provided that 5 # 0 and k is a positive integer.
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1.56 < 1’ Define the nth Cesaro mean of a sequence i, by

1
Un:;(xl‘f'---"‘ﬂ:n)

forall n e N,

a) Suppose x, — L asn — oo, Prove: o, — L as n — oo. (Hint: Write

low — Lf = ’E:ﬂ &H—_L| )

b) Give an example of a divergens sequence z,, for which o, converges.
1.57 Letx, and y, be any two bounded sequences of real numbers. Prove that
lim sup(@,, + yn) < limsupzx, + limsupy,.
Grive an example in which strict inequality oceurs.
1.58 Letx, and y,, be any two bounded sequences of real numbers. Prove that
liminf{z, + ) > liminf x,, + liminf y,,.

Give an example in which strict inequality occurs.

1.5 THE BOLZANO-WEIERSTRASS THEOREM

A subsequence of a sequence x, is a sequence consisting of some (but not necessarily
all} of the terms of the sequence x,,. The terms appear in the same order as they
appedred in x,, but with omissions. We formalize this concept in the following
definition.

Definition 1.5.1 Let ny be any strictly increasing sequence of natural numbers, 50
that
Tog << Mg < - R e

Then we call x,,, a subsequence of ,,.

We remark that since ny > 1, it follows that ny > 2, ..., and ny > k&, for all
k. An alternative way to think about and to notate subsequences is to write that
ng = ¢(k), where ¢ : N — N is a strietly increasing function, in the sense that
Jj<k = ¢(j} < ¢(k). Then we could alternatively write x5, as Ty

B EXAMPLE 1.7
Let z, = n?, forall n € N. If nj = 2k, then z,,, = (2k)? is the sequence of

squares of even natural numbers.

TThis cxercise is used to develop the Fejer kernel for Fourier series in Exercise 6.47,
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Theorem 1.5.1 If x,, converges to the limit L as n — 0o, then every subsequence
pn, — Lask — .

Proof: Lete > 0. There exists N € N such that n > N implies |z, — L| < e.
Since ny, > kfor all k, it follows that k > N = |a,, — L} < e [

Corollary 1.5.1 If z,, has two subsequences that converge to different limits, then
I I8 ROt convergent.

Theorem 1.5.1 should be compared carefully with the following example.

B EXAMPLE L8

Let z, = (—1)"T!. The sequence x, is bounded but is not convergent. The

subsequences xax_1 — land xapy — —lask — oc,

We have learned previously that every convergent sequence is bounded. Although
the student has seen several examples of bounded sequences that are not convergent,
we do have the following very important theorem.

Theorem 1.5.2 (Bolzano—Weterstrass) Let i, be any bounded sequence of real num-
bers, so that there exists M € R such that |z.| < M for all n. Then there exists
a convergent subsequence Ty, of xn. That is, there exists a subsequence v, that
converges to some L € [—-M, M.

Proof: We will use the method of interval-halving introduced previously to prove
the existence of least upperbounds, Letn; = —M andb; = M. Sox, € [a,, by]. for
all n € N. Letz,, = x;. Now divide [a1, b1] in half using the midpoint ﬁ;—bk =0

i. If there exist oc-many values of n such that z,, € [ay,()]. then let a; = @, and
by = 0.

ii, Butif there do notexist so-many such terms in [¢;, 0], then there exist oc-many
such terms in [¢}, b;]. Tn that case let a; = 0 and by = by.

Now since there exist oc-many terms of x,, in [ag, bg], pick any ny > ny such that
Tny € [a2,b2). Nextdivide [az, ba) in half and pick one of the halves [as, bs] having
oo-many terms of iy init. Then pick ng > na such that z,,, € [a3, bz]. Observe that

2M

ok—1 0

bx — ax| =

as k — oo. Soif € > 0, there exists K such that k¥ > K implies 1b;, ~ ag| < €. Thus
if j and k > K, we have |2, — 2n,] < ¢ as well. Hence z,,, is a Cauchy sequence
and must converge. Since [—M, M] is a closed interval, we know from a previous
exercise that z,,, — L as k — oo forsome L € [-M, M). ]
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EXERCISES
1.59 Give an example of a bounded sequence that does not converge,

1.60 Use Corollary 1.5.1 to prove that the sequence z, = {—1)® + 1 does not
converge.

1.61 Suppose z, — oco. Prove that every subsequence z,, — oc as k — oG as
well. (Hint: The sequence z,, is divergent, so it is not enough te quote Theorem
1.5.1.)

1.62 Use the following steps to prove that the sequence z, has no convergent
subsequences if and only if |x,| — oc as n — oa.
a) Suppose that the sequence xy, has no convergent subsequences, Let M >
0. Prove that there exist at most finitely many values of n such that
Tpn € [—M, M]. Explain why this implies |z,,| — oo as n — oc.
b} Suppose |z,] — oo as n — oc. Show that x, has no convergent subse-
quence. (Hint: Exercise 1.61 may help.)

1.63 Give an example in which y; > Oforall j and y; — 0 yet y; is not monotone.

1.64 The following guestions provide an easy, ahernative proof of the Bolzano—
Weierstrass Theorem.

a) Use the following steps to prove that every sequence x,, of real numbers

has a monotone subsequence. Denote the nth tail of the sequence by

Tn = {z; 1§ 2 n}.
{i) Suppose the following special condition is satisfied: Foreachn € N, T}, has a

smaliest element. Prove that there exists an increasing subsequence .

{ii) Suppose the condition above fails, so that there exists NV € N such that T has
no smatlest element. Prove that there exists a decreasing subsequence .

b) Give an easy alternative proof of the Bolzano—Weterstrass Theorem.

1.65 Prove: A sequence x, — L € R if and only if every subsequence iy,
possesses a sub-subsequence Ty, that converges to L as 7 — oc. (Hint: To prove
the if part, suppose false and write out the logical negation of convergence of z,, to
L)

1.66 Prove or Give a Counterexample: A sequence r, € R converges if and only if
every subsequence T, possesses a sub-subsequence x,,, that convergesas j — oc.

1.6 THE NESTED INTERVALS THEOREM

Having used the method of interval-halving twice already, it is natural to consider the
fotlowing theorem.
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Theorem 1.6.1 (Nested Intervals Theorem) Suppose
fa1,b1] 2 [az,b2] 2 -+« 2 [ag, by} 2 -
is a decreasing nest of closed finite intervals. Suppose also that
by —ap — Dask — oc.

Then there exists exactly one point L € (., |ag, by]. Moreover, ey — L and
b = Lask — o,

Progf: Let € > 0. Then there exists K such that £ > K implies |by — ax| < €.
But, forall k£ > K, ai € [ag, bk Thus j, k > K implies [a; — ai| < €. Hence the
sequence ay 1$ a Cauchy sequence so there exists a point L such that a;, — L. Since
& > n implies for all n that ax € [ay,, by), it follows that L € [ayn, by,] for all n and
that

= =]
Le ﬂ [a-k, bk].
k=1
Now, if
L'e ﬂ [ak, bk]
k=1
also, then {L — L'[ < {bx — ax| — 0, which implies L = L/, Hence the point £ is
unique. Observe that |be — L| < |be — ag| — 0 so that b — L as claimed. [

The reader is aware that there are real numbers that are not rational. For example,
we will prove that there is a square root of 2 in R in Example 1.10. Yet we know that
no ratienal number can be a square root of 2 as was shown in Exercise 1.11. Despite
the fact that not every real number is rational, every finitely long decimal expansion
represents a rational number, and common sense tells us that we may approximaite
any real number as closely as we wish by using a suitable but finitely long decimal
expansion. This observation gives rise to the following definition of what it means
for a subset S C IR to be dense in R.

Definition 1.6.1 A subser § C R is called dense in R if and only if for ali z € R,
there exists a sequence sy, of elements of § such that s, — .

M EXAMPLE LY

We will show that @ is dense in .

Proof: Letz € R. If x € ), we could simply let s, = = so that s — x,
being a constant sequence.

So suppose x ¢ ), so that & is irrational. Then there exists n € Z such that
n<iz<n+l Leta; = nand by = n + 1, both rational numbers. Then
the midpoint is also a rational number, and z mast lie in one half-interval but
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not the other. Let [agz, bp] be the half-interval containing z. Now cut [as, b2] in
half again and select [a3, b} containing « again. Note that

1
[bk_—ak!:%—_]—)o.

Since & € [ag, by] for all k, lay — x| — 0, se ¢ — =, and a, € Q for all &.
Thus we have a sequence of rational numbers converging to x in this case as
well. (Note that by would have served just as well as a;.) u

Remark. Because R is complete and because the set (§ R is dense in R, it follows
that any set of numbers that contains limits for all its Cauchy sequences and that
contains (F must also contain R. For this reason R is called the completion of Q).

W EXAMPLE 1.10

We will show that /2 exists in R.

FProof: Recall that in the first paragraph of Section !.3 we constructed an
increasing sequence z; as follows:

xp = 1

zp = 1.4
xz = 1.4l
rg = 1.414

Here xy, is the largest k-digit decimal greater than 1 such that xi < 2. We could
have constructed also a decreasing sequence ¥y by letting y be the smallest
k-digit decimal such that y? > 2. Thus

1
01 9
as k — oo We see that the intervals [z, i} satisfy the hypotheses of Theorem
1.6.1. Thus there exists a unique

lye — 2| <

o
L€ () lwx, ya]
k=1

such that z, — Land yx — L. Hencez} — L2 sothat L2 < 2, andy? — L2,
sothat L2 > 2. Thus L2 = 2 and I = /2 exists in R, n

EXERCISES
1.67 Give an example of a decreasing nest of nonempty open finite intervals

{a1,01) D (an, b2} 2 ---
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such that )~ | {ak, b)) = @, the empty set.

1.68 Give an example of a decreasing nest of open intervals
(@1,01) 2 (a2, 05) 2 -+

such that by — ax — 0 yet (o, (ar, b} # 0.

1.69 Give an example of a decreasing nest of infinite intervals with empty inter-
section,

L.7¢ Prove or give a counterexample: If @, T, b, |, and (a,, by) is a decreasing
nest of finite open intervals, then there exists L € R such that

oC

m (an.bn) = {L}.

n—=1

1.71 Show that every open interval {a, b) C R, with 0 < b — a but no matter how
smail, must contain a rational number. (Hint: Apply Example 1.9.)

1.72  { Let I denete the set of all irrational numbers. The following steps will lead
to the conclusion that I is dense in R. (You may assume it is known that v/2 € 1.}
Let z € R. We must show there exists a sequence s of elements of  converging to
x.
a) Show that if = is any nonzero rational number then %\/ﬁ is irrational.
{Hint: Suppose the ¢laim is false, and deduce a contradiction.)
b) Now suppose  is any real number. Explain why there exists a sequence
ts, of nonzero elements of () converging to % Define a sequence s of

elements of J converging to z.

1.73  Show that every open interval (a,b), with b — ¢ > (} but no matter how small,
must contain an irrational number. (Hint: Use the result of Exercise 1.72.)

174 Istheset {

me &,nE N} dense in R? Prove your conclusion.

175 ¢ Let I # () be a subset of the set of strictly positive real numbers, and l¢t
S = {nd|n€Z,de D}. Prove: §isdense in R if and only if inf(D) = 0.

1.7 THE HEINE-BOREL COVERING THEOREM

Although the study of continuous functions belongs to the next chapter, let us think
in advance on an intuitive level about this concept. A function f : B — R is said
to be everywhere continuous provided that for each point p € R, f(z) remains very
close to f{p) provided that r is kept sufficiently close to p. For example, the set

§ = {z|1f(x) ~ fp)l < €}

should contain some sufficiently small open interval around p, although 5 may also
include points far away from p.
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Consider next an open interval (g, &) that is contained in the set of values achieved
by f. Let O = {z | f(z) € (a,b)}. For each p € O there will be a corresponding
small number € > @ such that

(f(p) — €, f{p) +¢) S (e, b).

Because f is continuous at p, there will be a small open interval around p that is
contained in O. This example motivates the concept of an open set, which generalizes
the familiar notion of an open interval,

Definition 1.7.1 A set O C R is called an open subset of R provided for each x € O
there exists v, > Q such that

(z—rsxz+1e) CO.

Thus O is called open provided that each 2 € ( has some (perhaps very small) open
interval of radius r,, > () around it that is entirely in O,

B EXAMPLE 1.11

We claim that every open intervat (a, b) is an open set. In fact, if ¢ € (a,b),
then a < x < b and we can let

rg = min{|z — a|, |x — b[}.
Then (x — g,z + 1) C {a,b).

Theorem 1.7.1 Every open subset O C R is a union of (perhaps infinitely many)
open intervals. Moreover, every union of open sets is an open set.

Proof: Let O C R be open. Then, using the notation of Definition 1.7.1, you will
show in Exercise 1,78 that

0= U (x— 1y, 0 +74).

xeC}

To prove the second conclusion, let O = (), 4 Oa be any union® of open sets. Let
x € ). We know there exists ap € A such that z € O, which is open. Thus there
exists r, > 0 such that (z — ry 2 + 7.} € On, € O. Thus O is open. »

Definition 1.7.2 An open cover of a set § C R is u collection

O = {04 | a € A}

SWhen denoting an arbirrary umion of open sets, il is customary 1o use a so-called fndex set, such as the
set A used here. One should think of A as being a set of labels, or names, used to tag, or identify the sets
of which the union s being formed. One cannot always index sets by means of natural numbers, because
there exist sets so large that they cannot be uniquely indexed by natural numbers. Even the infinite set M
is too small. The reader will learmn more about this in Theorem 1.15.
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of (perhaps infinitely many) open sets Q,,, where v ranges over some index set A,
such that S C | ,c 4 Oa-

In analysis, it is often necessary to try to control small-scale locat variations of
some structure defined on a domain . Under suitable conditions, one can control
variations by restricting ones view to a very small open set surrounding each given
point of . Then in the large we cover the whole domain D with a family O of these
{possibly small} open sets whose union contains D). Usually © will have infinitely
many open sets as members, or elements of itself. Within each one of the apen
sets that are elements of O the fine structure varies only slightly. We hope for the
availability of a finite subcover, consisting of only finitely many of the open sets
belonging to O, so as to produce uniform controls on fine-scale variations for the
entire large domain . Below, we show an example of an open covering of a set
for which there is no finite subcover. This wilt motivate the Heine-Borel Theorem
which follows.

B EXAMPLE 1.12

Consider the set § = (0, 2), a finite open interval. We claim that

(1
SC - .
029
=1
In fact, for each z € (0,2} there exists n € N such that z € (%2) {Make
sure you see why this is so.) Thus @ = {(£,2) | n € N} is an open cover
of S. However, it is impossible to select any finite subset of (J that covers S.
The reason is that any finite subset of 0 would have a largest value ng of n for
which -71; would be the left hand endpoint of an interval belonging to the chosen
finite subset of (. Thus the finite subset would fail to cover any points to the
left of L.
g

Remark 1.7,1 Note that the term finite interval means an interval of finite length.
Any finite interval with strictly positive length has infinitely many distinct points
within it. Thus the word finite in finite interval means the same thing as bounded.
On the other hand, a finite set means a set with finitely many elements. In Example
1.12, a finite subset of a set of intervals means a collection of finitely many of those
intervals. This does not mean that the intervals in question have finitely many points.

The Heine—Borel theorem is one of the most important in advanced calculus. But
it is the most abstract theorem presented thus far in this book, and the reader will need
time and experience to absorb fully its significance. It is recommended to consider
Exercise 1.80 below after reading the statement of the theorern.

Theorem 1.7.2 (Heine—Borel) Suppose the closed finite interval

2,01 € |J O

at A
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where O = {O, | o € A} is an open cover of [a, bl. Then there exists a finite set
F={a1,...,an} C Asuch that

[a:b] - U Oa = U Oa‘:-

el i=21
The collection {Oa,. ..., 04, } C O is called a finite subcover of [a, b].

Proof: We suppose the theorem were false. We will deduce a logical self-
contradiction from that supposition. This will prove the theorem. So suppose
the Heine-Borel theorem were false: Thus we can assume the given cover does not
admit a finite subcover of [a,b].

Leta; =aand by = b, and let ¢ = 93%91 Then each of the intervals [a, ¢] and
[e, b1} is covered by |}, ¢ 4 Oa. If both of these half-intervals had finite subcovers,
then the whole interval [a,b] would have a finite subcover since the union of two
finite families is still finite. Since we are supposing [a,b] has no finite subcover,
pick a half-interval [az, bp] that has no finite subcover. Now cut [y, bg] in half and
reason the same way for [ag, bz] as we did for [a1, b1]. We obtain a decreasing next
of intervals

[a1:01] 2 «+ D [ag, b} 2 - -~

such that each [ay, by} is covered by |, 4 Oo but has no finite subcover.

However,
—a

i1 0

ok — ax| =

as k — oc. By the nested intervals theorem, there exists a unigque

x E ﬂ [(Lk,bk] C [{1, b].
k=1

Since x € [a, b], there exists @ € A such that z € O,. So there exists r, > 0 such
that {z — vy, 7 + 7} € O,. Now pick k big enough so that by ~ az < ry. Thus

T € [eg,by] C{x—re 2 +17) € Oy

and we have covered [ay, by] with a single open set (3, from the original cover, This
is a (very small) finite subcover. This contradicts the statement that [ay, by could not
have a finite subcover. This contradiction proves the Heine—Borel theorem. ]

EXERCISES
1.76  Show that a closed finite interval [a,b] is rot an open set.
1.77  Show that a half-closed finite interval (a,b] is nof an open set.

1.78 Let (3 be any open subset of R, and for each € O let r,, be defined as in
the proof of Theorem 1.7.1. Complete the proof of that theorem by showing that
O =Upeolz —re, 2+ 1)
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179 The empty set () satisfies the definition of being open. Explain.

1.80 Find an open cover of the interval {—1, 1) that has no finite subcover. Justity
your claims.

1.81 Find an open cover of the interval {—oo, 00) that has no finite subcover.
Justify your claims,

1.82 Let E C R be any unbounded set. Find an open cover of E that has no finite
subcaover. Prove that you have chosen an open cover and that it has no finite subcover.

183 Let £ = {%; ‘ ne N}. Find an open cover O = {0,, | n € N} of F that
has no finite subcover, and prove that € is an open cover and that () has no finite
subcover.

1.84 { Wecall p a cluster point of E, provided that for all € > Qthereexistse €
such that
D<le—p|<e

{See Defintion 2.1.1.) Let E' C R be any set with the property that there 15 2 cluster
point p of E such that p ¢ F. Show that there exists an open cover of E that has no
finite subcover, Justify vour claims. (Note: Exercise 1.83 is an example of the claim
of this exercise.)

1.85 True or False: Finitely many of the open sets in the collection
r 3z
{GF) [e=o]

1.86 Prove or give a counterexampie: Every open cover of a finite subset of IR has
a finite subcover. (Note: For the real line, the phrase finite subset does not mean the
same thing as finite interval.)

would suffice to cover {0, 1].

1.8 COUNTABILITY OF THE RATIONAL NUMBERS

Definition 1.8.1 A set § is called countable if it is an infinite set for which it is
possible to arrange all the elements of S into a sequence. That is, S is countable if
8 = {51,82,.-., 5k, . . . } with each element of S listed exactly once in the sequence.

Equivalently, we may say that § is countable if and only if there exists a funcrion
s : N — S that is both one-to-one, which is also called injective, and onto S. Onto
maps are often catled surjective. The term s, in the definition above would be s(n}
in this notation.
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B EXAMPLE 1.13

Let E denote the set of all even natural numbers. Thus E g N. We claim that
E is countable. In fact, the elements of E can be arranged into a sequence
by means of a function § : n — 2n that is both an injection and a surjection
of & onto N. That is, the sequence is given by s, = 2n. Tt may surprise the
reader that the elements of an infinite set can be paired one-to-one with those
of a proper subset.

B EXAMPLE 1.14

We will prove the surprising and useful fact that the set 3 of all rational numbers
is countable. It is important to understand that if a sequence s, is to include
ail the rational numbers, then these numbers cannot be listed in size places,
That is, if 8, < 8,41, both in , then 39—"%"—ﬂ lies between them and is again
rational. Hence there is no next smailest rationat number after s,

We can explain how to list the rational numbers in a sequence, disregarding
the order relation, as follows. We are going to consider a table of numbers with
infinitely many rows. The entry in the m™ row and nth column will be the
fraction % Here m € N and n € Z. Thus there will be a first row, in which
each denominator is understood to be 1, but no last row. Each row will extend
endlessly to left and to the right. We can draw only part of this table below.

-4 -3 -2 -1 0 1 2 3 4
~4 _3 _2 1 0 1 2 2 4
2 2 2 i 2 2z 2z 2 2
-4 3 _2 _1 49 1 2 3 d
3 3 3 3 3 3 3 3 3
-4 _34 2 _1 0 1 2 3 4
1 1 1 i 1 1 1 1 1

We will describe a systematic expanding search pattern that reaches each
term on the infinite table after some finite number of terms in the sequence
described below. We will list side-by-side those terms 2 for which

T
[m| + |n| =k
beginning with & = 1, & = 2, and so on. If parentheses are placed arcund a

number, we are skipping that number because it was already listed previously.
Here is the resulting list:

0 1 /0 1 ) 2 1
0:“15 (§ _0) 11!_2:_55 (§ _U) 55:25_31 (_§ __1) 3_5}
0 1 /2
(2-0) L (2=1)us....

It is clear that this expanding search patiern eventually reaches any rational
number - that one might choose, and each rational number is listed exacly
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once in the resulting endless sequence, The first several terms of the sequence
8p, correspondingto k =0,1,2, 3,4, are

11 11
_55 §>25 _31 _gs g}

We will see several applications of the countability of (@ in this book. However,
for now we describe a startling example.

0,-1,1,-2, 3,....

B EXAMPLE L.15

We will describe a set O that is both open and dense in R, vet which is quite
smail.

Let € > 0, a small positive number. Consider the line segment [0, e} of
length €. We will construct a sequence of intervals (ag, bx), each of length
- That is, the first interval, (a1, b)) will have length . This leaves half of
0, €] remaining. But for (g, by ) we wilt use only half that remainder: namely,
2. b3 — as will be taken to be ¢, or half of the remaining 7 from the original
interval [0, €].

Let Q@ = {s1, 32,..., Sk, - - .}, which can be arranged since (Q is countable,
as explained above. Let (a1,d;) be centered around sy, (a3, bs) centered
around so, and in general (ay, bx} will be centered around the point s;. For
any finite subcoltection of the intervals (ag, by), ¥ = 1,2, 3,-- -, the sum of
the lengths of each of the finitely many intervals chosen must be less than ¢,
That is because the whole infinite sequence of intervals is chosen by cutting e
in half again and again without end.

Now consider that ( is dense in R. But if we let O = {J;_ ; (ax, bs), then
@ < O and so O is also dense in R. Moreover, () is open by Theorem 1.7.1.

We claim that O is a small set in the following sense. Let [a,b] be any closed
finite intervat of length > ¢. We claim it is impossible for [a, b] C O. In fact,
if [a,b] were a subset of O, then

=

-

I

[a: b] < U (ﬂ-k, bk):
k=1

an open cover of [a.b]. By the Heine—Borel theorem, there must be a finite

number of intervals from among the {ag, br}’s that cover [a,b]. Yet the sum of

the lengths of these finitely many intervals must be less than € < b — a. This

is impossible.

It is interesting to compare the preceding example with Exercise 1.91, The
interested student can learn much more about surprising subsets of the line in the
book by Gelbaum and Olmsted [7].

It is natural to wonder at this point whether or not perhaps every infinite set is
countable. The answer is ro, as is shown by the following surprising theorcm.

Theorem 1.8.1 {Cantor) The set R of real numbers is uncountable. {That is, it is
impossible to include all the real numbers in a sequence.)
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Proof: We begin by noting that the (possibly endless) decimal expansions of real
numbers are not unique, becauvse an infinite fail of 9°s can always be replaced by an
expansion ending in an infinite tqil of 0’s. For example,

0.989...=1.000...
This is understood in the sense that if z, = 0.999._.9 with n 9’s then

— {}

Tp — 1] =
!.IT J 1071

asn — oo, Butif we agree not to allow endless tails of 9's, then decimal expansions of
real numbers are unique. Moreover, every infinite decimal representation corresponds
to a real number. The reason for this fact is as follows. Consider any infinite decimal
expression. It could be written in terms of a whole number K in the form

K+ 0.dideds . ..dn...,
where d,, is the nth digit to the right of the decimal point. Then let
Tn = K + O.didz . dn.

It follows that if m and n are both greater than NV, then

lxn—xm|<w~—>0

as N — o0. Hence the sequence x,, of truncations of the endless decimal expression
to n digits is itself a Cauchy sequence. By the completeness axiom this sequence
T must converge to a limit z € IR. That is why we say that the endless decimal
represents .

Now we suppose that Cantor’s theorem were false and deduce a contradiction,
Suppose therefore that all real numbers could be placed into a sequence. Then there
would be a subsequence x,, containing alf the real numbers in [0,1}. We denote the
decimal expansions of the numbers x, in a vertical column below.

w1 = Jdudippdiz.dig..
Ty = .doydosdos .. . dop ...
ry = .d3] d:;gd;;g - dgk -
Tn = .Gurdpadng-. dog--.

Now we obtain a contradiction by constructing a number z € [0, 1) that is not in
the sequence x,. We define z by the digits dy, in its decimal expansion. If d;; # 0,
weletd, = 0. fdyy = 0,letd; = 1. My # 0, welet dz = 0. If dog = 0, we let
dy = 1, Ingeneral, if dgy, # 0, we letdy, = 0, butif dg, = 0, then we letdy, = 1. We
observe that z = .didady .. . dy ... € [0,1), yetz ¢ {z,,} since for all n, x differs
from x,, in the nith decimal digit. [
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EXERCISES

1.87 ¢
a) 1If A and B are each countable sets, show that A U B is countable. (Hint:
For each set, cousider a sequence of all elements, and show how to splice
the sequences together to make one sequence. Remember that the sets need
not be disjoint.)
b) Prove that the union of countably many finite sets is either countable or
finite.

1.B8 1If A, is a countable set for each n € N, show that

is again a countable set. (Hint: Explain why each set 4, can be writien in the form
Ap = {ay; | ke N}

but these sets need not be disjoint from one another. Consider an array similar to that
displayed in the proof of Cantor’s Theorem in this section, but reason in a manner
similar to that in Example 1.14.)

1.89 Is the set Z of integers countable? Why or why not? How about the set of all
odd positive integers? Even integers?

1.20  Show that the set I of all irrational numbers must be uncountable. (Hint: Use
Exercise 1.87.)

191 Asubset B C Ris called closed if and only if its complement R\ F is open.
(For example, R itself is a closed set since R\ B = @ is an open set.) Prove that a
closed set F that is also dense in B must be all of R. (Hint: Suppose the claim were
false, so that R \ F is a nonempty open set. Deduce a contradiction.)

1.92  Referring to the definition in Exercise 1.91, answer the following questions.
a) Prove that every closed finite interval [a, 8] is a closed set.
b} Give an example of subset £ C R for which E is neither open nor closed.
Justify your example.
¢) Give an example of aset 5 C R that is both open and closed.

1.93 ¢ Prove that every open set § C R can be expressed as the union of a
countable set of open intervals. Hint: Let SN Q = {g, | n € N} be a sequence
listing all the rational numbers in 5. Let

rn = sup{7 | (gn — 7, gn + 1) € S}

1.94 Prove that every subset E of R is the union of some family of closed sets.
Can every subset £ of R be the union of a fumily of open sets? Prove your answer,
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1.95 LetS=QnN|[0,1]. Then S is countable, so we can write
S =1{s, | necN}

We foliow the model of Example 1,15 using ¢ = 1/2, Thus, for each n, {a,,, b,,) is
an open interval centered about s, and b, — a, = 2—,,1_,,-1-
a) Show that O = |- ;(ay. by) is an open subset of R and that every point
of [0, 1] is the limit of a sequence of points from O.
b) Use the Heine-Borel Theorem to prove that O = {{an, bs) | n € N} is not
an open cover of [0, 1].

1.96 { A real number a is called an algebraic number provided there exists a
polynomial equation p(z) = 0 with integer coefficients such that p(a) = 0.
a) Let Py p, denote the set of all polynomials with integer coefficients of the
form p(z) = a,z™ + - -+ + a12 + gg for which the sum of the absolute
values of the coefficients is bounded by N. That is

n
k=0

Show that Py ,, is a finite set.

b) Prove that the set of algebraic numbers is countable. (Hint; Consider first
the set of those numbers that are roots of a polynomial equation of degree
n with integer coefficients.)

1.97 A real number is called transcendental provided that it is not algebraic. Prove
that the set of all transcendental numbers is uncountable.

Remark 1.8.1 The method of proof employed in Cantor’s theorem is known as the
Cantor diagonalization process after its inventor, Georg Cantor (1845-1918). The
discovery that some infinite sets are significantly larger than others, as uncountable
sets are larger than countable ones, led e the invention of the subject of transfinite
arithmetic. The student who is curious to learn more about this may enjoy the classic
book by E. Kamke [11}

It is interesting to note that Cantor embarked upon his study of transfinite sets with
particular applications to analysis in mind. So-called trigonometric series, or Fourier
series, are representations of suitable functions as sums of perhaps infinitely many
sine and cosine waves of various periods. Such representations had been shown by
Fearier to be very useful for the solution of the heat equation in physics. There were,
however, major difficulties regarding the uniqueness of these representations and the
actual pointwise convergence of the sums of sine and cosine waves to the function
under study. In the long run, it turned out that a different development undertaken
by Henri Lebesgue (the Lebesgue integral} was more effective than set theery for
this application. However, Cantor’s research cast a new light upon the whole of
mathematics, far beyend the applications that motivated the initial study. This is a
good example of how investigation of an interesting question can lead to vast and
totally unanticipated branches of mathematical knowledge.
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The interested reader can find this and many other historical topics in Mathematics
at the website of the MacTutor History of Mathematics archive at the University of
St. Andrews in Scotland,

1.9 TEST YOURSELF

Test Yourself sections, found at the end of each chapter, contain short questions to
check your understanding of basic concepts and examples. Proofs are not tested
in these sections, since proofs must be read individually by the student’s teacher or
teaching assistant.

EXERCISES
198 ¢ = 1. Findanumber§ > 0small enough so that |a—b| < & and [e—b| < §

implies [a — ] < «.
1.99 The sequence z, begins as follows: 0,1, %,2,1,%,3, 32,
continues according to the same pattern.

a) True or False: limy,—oc |Zn — Tnt1] = 0.

b} True or False: x,, is a Cauchy sequence.

.4,...and

~f
s

1100  Give an example of two sequences, x,, and y, # 0 such that z,,y,, converges,
%ﬂ converges, but neither x,, nor y, converges.

1101 Letz, = ((—-1)"+1)+ 5 forall n € N, Find both liminf z,, and
lim sup &y.

1.102 Give an example of two sequences of real numbers z,, and ¥, for which
lim inf(zp, + ) = 0 butliminf x, = —oco = lim inf y,.

1.103  State True or Give a Counterexample: If x,, is an unbounded sequence, then
in has no convergent subsequences.

1.104 Give an example of a decreasing nest of nonempty open intervals (¢, by )
such that b, — a, — 0but (Yo, (ap, by) = 0.

1.105 True or False: Theset S = {2 | m € Z,n € N} is dense in .

1106 Let B = {1|n € N}. Find an open cover O = {Oy, | n € N} of E that
has ne finite subcover.

1.107 True or False: The set (} is closed in the real line IR.

1.108 True or False: The set § = {0.d,d>...d, | n € N} of all finirely long
decimal expansions (with each d; an integer between O and 9) is countable.

1.109 True or Faise: The set § = {gﬁ

E S Q} is uncountable.

Thttp://www-history.mgs.st—andrews.ac.uk/history/
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L1110 Letz, =1+ %% Ife > 0 finda N € N sufficiently big so that n > N
implies |z, ~ 1] < ¢,

1.111  True or Give a Counterexample: A bounded sequence times a convergent
sequence must be a convergent sequence.

1112 Find (3%, (—oc, —nl.

L113  Give an example of an open cover @ = {O,, | |n € N} of the set

s-{s
n

such that § has no finite subcover from &,
1.114 Let

TJ,EQ,REN}

-E:{—i‘nEN}U{D}.

True or False: The set R\ E, that is the complement of E, is an open subset of R.



