CHAPTER 1

INTRODUCTION

For the first time in history, and thanks to the exponential growth rate of computing
power, an increasing nmumber of scientists are finding that more time is spent creating,
rather than executing, working programs. Indeed, much cffort is spent writing
small programs to automate otherwise tedious forms of analysis, In the future, this
imbalance will doubtless be addressed by the adoption and teaching of more ctficient
programming techniques. An important step in this direction is the use of higher-level
programming languages, such as F#, in place of more conventional languages for
scientific programming such as Fortran, C, C++ and even Java and C#.

Its this chapter, we shall begin by laying down some guidelines for good program-
ming which are applicable in any language before briefly reviewing the history of the
F# language and outlining some of the features of the language which enforce some
of these guidelines and other features which ailow the remaining guidelines to be
met. As we shall see, these aspects of the design of F# greatly improve reliability and
development speed. Coupled with the fact that a freely available, efficient compiler
already exists for this language, no wonder F# is already being adopted by scientists
of all disciplines.
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1.1 PROGRAMMING GUIDELINES

Some generic guidelines can be productively adhered to when programming in any
language:

Correctness over performance Programs should be written correctly first and op-
timized last.

Factor programs Complicaied or common operations should be factored out into
separate functions or ohjects.

Interfaces Abstract interfaces should be designed and concrete implementations
should be coded to these interfaces.

Avoid magic numbers Numneric constants should be defined once and referred back
1o, rather than explicitly “hard-coding” their vatue multiple times at different
places in a program.

Following these guidelines is the first step towards rcusable programs.

1.2 A BRIEF HISTORY OF F#

The first version of ML (Meta Language)} was developed at Edinburgh University
in the 197075 as a language designed to efficiently represent and manipulate other
languages. The original ML language was pioneered by Robin Milner for the Logic of
Computuble Functions (1.CF) theorem prover. The original ML, and its derivatives,
were designed to stretch theoretical computer science to the limit, yiclding remarkably
robust and concise programming languages without sacrificing the performance of
low-level languages.

The Categorical Abstract Machine Language (CAML) was the acronym originalty
used to describe what is now known as the Caml family of languages, a dialcet of
ML that was designed and implemented by Gérard Huet at the Institut National
de Recherche en Informatique et en Automatigue (INRIA) in France, until 1994.
Since then, development has continued as part of prajet Cristal, now led by Xavier
Leroy. Ohbjective Cami (OCaml) is the current flagship language of projet Cristal.
The OCaml programming language is one of the foremost high-performance and
high-level programming languages used by scientists on the Linux and Mac OS X
platforms [11].

Don Syme at Microsoft Research Cambridge has meticulously engineered the
F# language for NET, drawing heavily upon the success of the CAML family of
languages. The F# lunguage combines the remarkable brevity and robustness of the
Caml family ol languages with .NET interoperability, facilitating seamless integration
of F4 programs with any other programs written in NET languages. Moreover, F#
is the first mainstream language to implement some important features such as active
patterns and asynchronous programming constructs.
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1.3 BENEFITS OF F#

Before delving into the syntax of the language itself, we shall list the main, advanta-
geous features offered by the F# language:

Safety F# programs are thoroughly checked prior to execution such that they are
proven to be entirely safe to run, e.g. a compiled F# program cannot cause an
access violation.

Functional Functions may be nested, passed as arguments to other functions and
stored in data structures as values.

Strongly typed The types of all values are checked during compilation to cnsure
that they are well defined and validly used.

Statically typed Any typing crrors in a program are picked up at compile-time by
the compiler, instead of at run-time as in many other languages.

Type inference The tyvpes of values are automatically inferred during compilation by
the context in which they occur. Therefore, the types of variables and functions
in F# code rarely need to be specified explicitly, dramatically reducing source
code size. Clarity is regaining by displaying inferred type information in the
integrated developrent environment (IDE).

Generics Functions are automatically generalized by the F# compiler, greatly sim-
plifying the writing of reusable functions.

Pattern matching Values, particularly the contents of data structures, can be matched
against arbitrarily-complicated patterns in order to determine the appropriate
course of action.

Modules and ebjects Programs can be structured by grouping their data structures
and related functions into modules and objects.

Separate compilation Source files can be compiled separately into object files that
are then linked together to form an executable or library. When linking, object
files are automatically type checked and optimized before the final cxccutable
is created.

Interoperability F# programs can cal! and be calted from programs written in other
Microsoft NET tanguages (e.g. C#), native code [ibraries and over the internet.

1.4 INTRODUCING F#

F# programs are typically written in Microsoft Visual Studio and can be executed
either following a complete build or incrementally from the F# interactive mode.
Throughout this book we shall present code snippets in the form scen using the F#
interactive mode, with code input following the prompt:
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Setup and use of the interactive mode is covered in more detail in chapter 2.
Throughout this book, we assume the use of the #light syntax option, which requires
the following command to be evaluated before any of the code examples:

= #light;;

Before we consider the features offered by F#, a brief overview of the syntax of
the language is instructive, so that we can provide actual code examples later. Other
books give more systematic, thorough and formal introductions to the whole of the
F# language [25, 22].

1.4.1 Language overview

In this section we shall evolve the notions of values, types, variabies, functions,
simple containers (lists and arrays) and program flow control. These notions will
then be used to introduce more advanced features in the later sections of this chapier.

When presented with a block of code, even the most seasoned and fluent pro-
grammer will not be able to infer the purpose of the code. Consequently, programs
should contain additional descriptions written in plain English, known as comments.
[n F#., comments are enclosed between (* and *) orafter // or /// on a single
line. Comments appearing after a /// are known as autodoc comments and Visual
Studio interprets them as official documentation according to standard .NET coding
guidelines.

Comments may be nested, i.e. (* {* ... *} *) is a valid comment and
comments are treated as whitespace, i.e. a(* ... *]b is understood to mean
a b rather than ab.

Tust as numbers arc the members of sets such as the integers (€ £), reals (£ R),
complexes (€ C) and s0 on, s¢ vafues in programs are members of sets. These sets
are known as fypes.

1.4.1.1 Basic fypes TFundamentally, languages provide basic types and, often,
allow morc sophisticated types to be defined in terms of the basic types. F# provides
a number of built-in types, such as unit, int, float, char, string and bool.
We shall examine these built-in types before discussing the compound zuple, record
and variant (alsa known as discriminated union) types,

Only one value is of type unit and this value is written {) and, therefore,
conveys no information. This is used to implement functions that require no input or
expressions that return no value, For example, a new tine can be printed by calling
the print_newline function:

= print newline () ;;

val it : unit = {}

This function requires no input, so it accepts a single argument () of the type
unit, and returns the value () of type unit.
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Integers are written -2, -1, 0, 1 and 2. Floating-point numbers are written
-2.0,-1.0,-0.5,0.0,0.5,1.0and 2.0, Note that a zero fractional part may
be omitted, so 3 . 0 may be written 3 ., bul we choosc the more verbose format for
purely esthetic rcasons. For example:

= 3;;

val it : int = 3

= 5.0;;

val it : float = 5.0

Arithmetic can be performed using the conventional +, -, *, / and % binary infix'
operators over many arithmetic types including int and £loat.

For example, the following expression is evaluated according to usual mathemati-
cal convention regarding operator precedence, with multiplication taking precedence
over addition:

=1 % 2 + 2 % 3;;
val it : int = 8

The same operators can be used for floating point arithmetic:

= 1.0 % 2.0 + 2.0 % 3.0;;
val it : float = 8.0

Defining new operators and overloading existing operators is discussed later, in
section 2.4.1.3, Conversion functions or type casts are used to perform arithmetic
with mixed types, e.g. the float function converts numeric types to the float
type.

However, the types of the two arguments to these operators must be the same, so
* cannot be used to multiply an int by a £loat:

> 2 * 2.0;;
Error: F30001: This expression has type flocat but is
here used with type int

Explicitly converting the value of type £loat to a value of type int using the
built-in function int results in a valid expression that the interactive session will
execute:

» 2 * int 2.0;;
val it : int = 4

In most programs, arithmetic is typically performed using a single munber repre-
sentation (e.g. either int or £1oat) and conversions between representations are,
therefore, comparatively rare. Thus, the overbead of having to apply functions to
explicitly convert between types is a small price to pay for the added robustness that
results from more thorough type checking.

LAn infix function is 2 function that appears between ils arguments rather than before themn. For example,
the arguments ¢ and j of the conventional addition operator + appear on cither side: ¢ + /.
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Single characters (of type char) arc written in single quotes, e.g. ' a‘, that may
also be written using a 3-digit decimal code, e.g. * \087 .

Strings are written in double quotes, ¢.g. "Hello World!". Characters in a
string ol length »» may be extracted using the notation s . {i] fors € {0...n —1}.
For example, the filth character in this string is “o™

> "Hello world!™, [4];;
val 1t : char = "o’

Strings arc immutable in F#, i.c. the characters in a string cannot be altered once
the string is created. The char array and byte array types may be used as
mutable strings.

A pair of strings may be concatenated using the overloaded + operator:

= "Hello " + "world!";:
val it : string = "Hellc world!"

Booleans are either true or false. Booleans are created by the usual compari-
son functions =, <> (not equal to), <, », <=, »=. These functions are polymorphic,
meaning they may be applied to pairs of values of the same type for any type. The
usual, short-circuit-evaluated” logical comparisons && and | | are also present. For
example, the following expression tests that one is less than three and 2.5 is less than
2.7
= 1 « 3 &&% 2.5 <« 2.7;;
val 1t : bool = true

Values may be assigned, or bound, to names. As F# is a functional language,
these values may be expressions that map values to values - functions. We shall
now examing the binding of values and expressions to variable and function names.

1.4.1.2 Variables and functions Variabies and functions are both defined
using the let construct. For example, the following defines a variable called a to
have the value 2:

» let a = 2;;
val a : int

Note that the language antomatically infers types. In this case, a has been inferred
1o be of type int.
Definitions using Let can be defined locally using the syntax:

let var = expr; 1n
expra

This evaluates expry and binds the result to the vartable var before evaluating
expry. For example, the following evaluates * in the context ¢ = 3, giving 9:

*Shert-circuit evaluation refers to the premature escaping of a sequence of operations (in this casc, boolean
comparisons). For example, the expression false && egpr need not evaluate expr as the result of the
whaole expression is necessarily false duc o the preceding false,
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= let a = 3 in
a * a;;
val it : int = 9

Note that the value 3 bound to the variable a in this example was local to the
expression a *  a and, therefore, the global definition of a is still 2:

> day;
val it : int = 2

More recent definitions shadow previous definitions. For example, the lollowing
supersedes a definition @ = 3 with @ = a ¥ a in order to calculate 5% - 625;

» let a = 5;;

val a : int

= let a = a * a;;
val a : int

= a % a;;

val 1t : int = 625

Note that many of the keywords at the ends of lines (such as the in keyword)
may be omitted when using the #1ight syntax option. This simplifics F# code and
makes it easier to read. More importantly, nested lines of code are written in the
same style and may be ¢valuated directly in a running F# interactive session. This is
discussed in chapter 2.

As F# 15 a functional language, valucs can be functions and variables can be
bound to them in exactly the same way as we have just seen, Specifically, function
definitions include a list of arguments between the name of the function and the = in
the 1let construct. For cxample, a function called sqr that acceptls an argument ni
and returns 1 * n may be defined as:

» let ggqr n = n * n;;
val sgr : int -»> int

Type inference for arithmetic operators defaults to int. In this case, the use of the
overloaded multiply * results in F# inferring the type of sqr to be int -»> int,
i.e. the sqr function accepts a value of type int and returns a value of type int.

The function sgr may then be applied to an int as:

= 8gr 5;;
val it : int = 25

In order to write a function to square a £loat, it is neccssary to override this
default type inference. This can be done by explicitly annotating the type. Types
may be constrained by specifying types in a definition using the syntax {expr :
type) . For example, specifying the type of the argument alters the type of the whole
function:

> let sgr {x : float} = x * x;;
val sgr : float -» float
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The return type of a function can also be constrained using a similar syntax, having
the same result in this case:

> let sgr x : fleoat = x * x;;
val sgr : float -» float

A variation on the let binding called a use binding is used to automatically
dispose a value at the cnd of the scope of the use binding. This is particularly useful
when handling file streams (discussed in chapter 5) because the file is guaranteed to
be closed.

Typically, more sophisticated computations require the use of more complicated
types. We shall now examine the three simplest ways by which mere complicated
types may be constructed.

1.4.1.3 Product types: tuples and records Tuples are the simplest form
of compound types, containing a fixed number of values which may be of different
types. The type of a tuple is written analogously to conventional set-theoretic style,
using * to denote the cartesian product between the sets of possible values for each
type. For cxample, a tuple of three integers, conventionally denoted by the triple
{i,4.k) € & x Z x Z, can be represented by values (i, j, k) ofthetypeint =
int * int. When written, tuple values are comma-separated and often enclosed
in parcntheses. For example, the following tuple contains three different values of
type int:

= {1! 2: 3);;
val 1t : int * int * int = (1, 2, 3}

At this point, it is instructive to intreduce some nomenclature: A tuple containing
n values is described as an n-tuple, c.g. the tuple (1, 2, 3) is a 3-tuple. The
value n is said to be the arity of the tuple.

Records are cssentially tuples with named components, known as fields. Records
and, in particular, the names of their ficlds must be defined using a type construct
before they can be used, When defined, record fields are written rame : type where
name is the name of the ficld (which must start with a lower-case letter) and type is
the type of values in that ficld, and are semicolon-separated and enclosed in curly
braces. TFor example, a record containing the x and y components of a 2D vector
could be defined as:

> type vec2 = { x : float; y : float };;
type vec2 = { x:float; y:float }

A value of this type represeating the zero vector can then be defined using:

> let zero = { x = 0.0; v = 0.0 };;
val zero ; vec2

Noie that the use of a record with fields x and v allowed F# to infer the type of
Zero as vecz.
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Whereas the tuples are order-dependent, i.e. (1,2} 4 (2, 1], the named ficlds of a
record may appear in any order, i.e. {x = l:y = 2} = {y = 2:x = 1}. Thus, we
could, equivalently, have provided the x and y fields in reverse order:

> let zero = { vy = 0.0; x = 0.0 };;
val zero : vecZ

The fields in this record can be extracted individually using the notation record . field
where record is the name of the record and field is the name of the field within that
record. For example, the x field in the variable zero is O

> Zero.X;;
val it : float = 0.0

Also, a shorthand with notation exists for the creation of a new record from an
¢xigting record with some of the fields replaced. This is particularly useful when
records contain many ficlds. For example, the record {#=1.0; y=0.0} may be
obtained by replacing the field x in the variable zero with 1:

> let x axis = { zero with x = 1.0 };;
val x axis : vec2

> x_axis;;

val it : vec2 = {x = 1.0; y = 0.0}

Like many operations in F#, the with notation feaves the original record unaltered,
creating a new record instead.

1.4.1.4 Sum types: varianls The types of values stored in tuples and records
are known at compile-time. The F# compiler enforces the correet use of these types
at compile-time. However, this is too restrictive in many circumstances. These
requirements can be slightly relaxed by allowing a type to be defined which can
acquire one of several possible types at run-time. These are known as variant types.

Variant types are defined using the type construct with the possible constituent
types referred to by constructors (the names of which must begin with upper-casc
letters) separated by the | character. For example, a variant type named button
that may adopt the values On or Of £ may be written:

> type button =
| On
| Off;;
type button = On | Off
The constructors On and O£ £ may then be used as values of type button:

= Ol

val it : button
= Off;;

val it : button = QOff

on

In this case, the canstructors On and Of £ convey no information in themselves
(i.e. like the type unit, On and Of £ do not carry data) but the choice of On or O£ £



10 INTROGUCTION

does convey information. Note that both expressions were correctly inferred to be of
type button.

More usefully, constructors may take arguments, allowing them to convey infor-
mation by carrying data. The arguments are defined using of and are written in
the same form as that of a tuple. For example, a replacement but ton type which
provides an On constructor accepting two arguments (and int and a string) may
be written:

» Ltype button =
| On of int * string
| Off;;
type button = On of int * gtring | Off

The On constructor may then be used to create values of type but ton by append-
ing the argument in the style of a tuple:

> On (1, "mine"};;
val it : button = On (i, "mine"}
= On (2, “hers");;

val it : button =

= Off;;
val it : button

On (2, "hers")

Off

Types can also be defined recursively, which is very useful when defining more
sophisticated data structures, such as trees. For example, a binary tree contains either
2ero or two binary trees and can be defined as:

» type binary tree =
| Leaf
| Node of binary tree * binary_tree;;
type binary tree =
j Leaf
| Node of binary tree * binary tree

A value of type binary tree may be written in terms of these constructors:

> Node {Node {Leaf, Leaf), Leaf);;
val it : binary_tree = Node {Node (Leaf, Leaf}, Leaf}

Of course, we could also place data in the nodes to make a more useful data
structure. This line of thinking will be pursued in chapter 3. 1n the meantime, let us
consider two special data structures which have notations built into the language.

1.4.1.5 Generics The automatic generalization of function definitions to their
most generic form is one of the critical benefits offered by the F# language. In order
to exploit such genericity it is essential to be able to parameterize tuple, record and
variant types over type variables. A type variable is simply the type theory equivalent
of a variable in mathematics. In any given type expression, a type variable denotes
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any type and a concrete typc may be substituted accordingly. Type variables are
written ‘ a, ' b and so on.

For example, the following function definition handles a 2-tuple (a pair) but the
iype of the two elements of the pair are not known and, consequently, the F# compiler
automatically generalizes the function to apply to pairs of any two types denoted * a
and ‘ b, respectively:

> let swapf{a, b) = b, a;;
val swap : ‘a * ‘b -> ‘b *¥ 'a

Note that the behaviour of this swap function, to swap the elements of a pair,
is reflected in its type because the type variables appear in reverse order in the
return value. As a programmer grows accustomed to the implications of inferred
types, the types of expressions and function definitions come to convey a significant
amount of information. Moreover, the type information printed explicitly following
an interactive definition or expression in an F# interactive session (as shown here} is
made available directly from the source code in an IDE such as Visual Studio. This
18 described in more detail in chapter 2.

So the type of a gencric pair is written ‘a * ‘b, the type of a generic record
t 1s written {(‘a, ‘b) t. For example, the previous record type vec may be
parameterized over a generic field type * a. This is defined and used as follows:

> Lype ‘a vec = { x: 'a; y: 'a };;

type ‘a vec = { x: ’a; y: 'a

> { x=3.0; y=4.0};;

val it : float vec = { x = 3.0; y = 4.0 }

Note that the parameterized record type is referred to generically as * & vec and
specifically in this case as float vec because the elements are of the type £1cat.

Generic variant types are written in an equivalent notation, For example, the
following defines and uses a generic variant type called *a option:

> Ltype ‘a option =
| Mone
| Some of 'a;;
type ‘a option = None | Some of ‘a
= None;;
val it : ‘a option = None
> Some 3;;
val it : int option = Some 3

This type is actually so useful that it is provided by the F# standard library. Many
of the built in data structures, including lists and arrays, ar¢ parameterized over the
type of elements they contain and generic functions and types are used extensively
in the remainder of this book.

In the context of generic classes and generic NET data structures, a generic type
‘a t is often written equivalently as t<’a>. This alternative syntax arises in
section 1.4.4 in the context of sequence expressions.
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1.4.1.6 Listsandarrays Listsarewritten [a; b; c] and arrays are written
ila; b; c]|l. As wc shall sec in chapter 3, lists and arrays have different merits.

Following the notation for generic types, the types of lists and arrays of integers
are writien int list and int array, respectively:

> [1; 2; 31;;

val it : int list = [1; 2; 3]

> [|1; 2 3]1;;

val it : int array = [}1; 2; 3|}

In the case of lists, the infix cons operator ; : provides a simple way to prepend
an element to the front of a list. For cxample, prepending 1 onto the list {2; 3]
gives the list [1; 2; 3]1:

= 1 2 [2; 3};;
val it : int list = [1; 2Z; 3]

In the case of arrays, the notation array . [i] may be used to extract the i + 1™
element. For example, [|3; 5; 7|1 . [1] gives the second element 5:

= [|3; 5; 7|1.02];;
val it : int = 5

Also, a short-hand notation can be used to represent lists or arrays of tuples by
omitting unnecessary parentheses. For example, [{a, b}; {(c, d)] may be
written [a, b; <, dl.

The use and properties of lists, arrays and several other data structures will be
discussed in chapter 3. In the mean time, we shall examine programming constructs
which allow more interesting computations to be performed.

1.4.1.7 The if expression Like many other programming languages, F# pro-
vides an 1f construct which allows a boolean “predicate” expression to determine
which of two expressions is evaluated and returned, as well as a special 1 £ construct
which optionally evaluates an expression of type unit:

if expri then expry
if expr, then exprs else expry

In both cases, expry must evaluate to a value of type bool. In the former case,
expro is expected to evaluate to the value of type unit. In the latter case, both exprs
and exprs must evaluate to values of the same type.

The former evaluates the boelean expression expry and, only if the result is true,
evaluates the expression expra. Thus, the former is equivalent to:

if expry thenexpry else ()

The latter similarly cvaluates expry but returning the result of either expry, if expry
evaluated to £rue., or of expry otherwise.

For example, the following function prints “Less than three” if the given argument
is less than three:
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= let £ x =
if x < 3 then
print endline "Less than three";;
val £ : int -=> unit

= £ 5;;

val 1t : unit = {}
= £ 1;;

Leszs than three
val it ; unit = ()

The following function returns the siring “Less™ if the argument is less than 3 and
“Greater” otherwise:

> let £ x =
if x <« 3 then
IILeSSII
else
"Greater";;
val £ : int -» string
> f 1;;
val it : string = "Less"
> £ 5;;

val it : string "Greater"

The if expression is significantly less common in F# than many other languages
because a much more powerful form of run-time dispatch is provided by pattern
matching, which will be introduced in section 1.4.2.

1.4.1.8 More about functions Functions can also be defined anonymously,
known as A-abstraction in computer science. For example, the following defines a
function f{:r) = x x = which has a type representing® f : Z — %:
> fun x ->» x * x;;
val it : int -> int = <fun:clo@l 3=

This is an anenymous equivalent to the sgr function defined earlier. The type of
this expression is also inferred to be int -> int. This anonymeous function may

be applied as if it were the name of a conventional function. For example, applying
the function f to the value 2 gives 2 x 2 = 4:

> {fun x -> ® * X} 2;;
val : int = 4

Consgequently, we could have defined the sgr function cquivalently as:

> let sqr = fun x -> x * X;;

3We say “representing” because the F# type int is, in fact, a finite subset of Z, as we shall sce in chapter 4.
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val sgr : int -» int

Once delined, this version of the sqr function is indistinguishable from the
original.

The iet ... in construct allows definitions to be nested, including funetion
definitions. For cxample, the following function ipow3 raises a given int to the
power three using a sqr function nested within the body of the 1 pow3 functon:

> let ipow3 x

let sgr x = ¥ * X
X * sgr x;;
val ipow3 : 1nt -» int

‘Note that the #light syntax option allowed us to omit the in keyword from the
inngr let binding, and that the function application sqr x takes precedence over
the multiplication.

The let construct may also be used to define the elements of a tuple simultane-
ously. For exampie, the following defines two variables, a and b, simultaneously:

= let a, b = 3, 4;;
val a : int
val b : int

This is particularly uscful when factoring code. For example, the following
definition of the ipow4 function contains an implementation of the sgr function
which is identical to that in our previous definition of the ipow3 function:

> let ipowd x
let sqr x = x * x
sqrisqr x};;

val ipowd4 : int -» int

Just as common subexpressions can be factored out of a mathematical expression,
s0 the ipow3 and ipow4 functions can be factored by sharing a common sqgr
function and returning the ipow3 and ipow4 functions simultaneously in a 2-tuple:

» let ipow3, ipowd =

let sgr = = x * X

ffun x -=» x * sgr x}, {fun x -» sgrisqr x});;
val ipow3d : int -> int
val ipow4 : int -» int

Factering code is an important way to keep programs manageable. In particular,
programs can be factored much more aggressively through the use of higher-order
functions (HOFs) — something that can be done in F# but not Java, C++ or Fortran.
We shall discuss such factoring of F# programs as a means of code structuring in
chapter 2. In the meantime, we shall cxamine recursive functions, which perform
computations by applying themsclves.

Aswe have already seen, variable names in 1 et definitions refer to their previously
defined values. This default behaviour can be overridden using the rec keyword,
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which allows a variable definition to refer to itself. This is necessary to define
a recursive function®. For example, the following implementation of the ipow
function, which computes »n”™ for n, m > 0 € £, calls itself reeursively with smaller

m to build up the result until the basc-case n® = 1 is reached:

= let rec ipow n m =
if m = 0 then 1 else
n * ipow n {m - 1);;
val ipow : int -» int -= int

For example, 2'¢ -= 65, 536:

> ipow 2 16;;
val it : int = 65536

Recursion is an essential construct in functional programming and will be dis-
cussed in more detail in section 1.6.

The programming constructs described so far may already be used to write some
interesting functions, using recursion to act upon values of non-trivial types. How-
ever, one important piece of functionality is still missing: the ability to dissect variant
types, dispatching according to constructor and extracting any data contained in them.
Pattern matching is an incredibly powerful core censtruct in F# that provides exacily
this functionality.

1.4.2 Pattern matching

As a program is cxecuted, it is quite often necessary to choose the future course of
action based upon the value of a previously computed result. As we have already
seen, a two-way choice can be implemented using the if construct. However, the
ability to choose from several different possible actions is often desirable. Although
such cases can be reduced to a scries of 1f tests, languages typically provide a
more general construct to compare a result with several different possibilities more
succingtly, more clearly and sometimes more cfficiently than manually-nested 1 fs.
In Fortran, this is the SELECT CASE construct, In C and C++, it is the switch
case construct.

Unlike conventional languages, F# allows the value of a previous result to be
compared against various patterns - pattern matching. As we shall see, this ap-
proach is considerably more powerful and even more efficient than the conventional
approaches.

The most common pattern matching construct in F# is in the match ... with
... EXpression:

match expr with
| pattern, -> expr
| patterna - > expro

4A recursive function is a function that calls itself, possibly via other functions.
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| patterny - > expry

| pattern,, -> expry,

This evaluates expr and compares the resulting value firstly with pattern; then
with paiterns and so on, until a pattern is found to match the value of expr, in which
case the corresponding expression expr,, is ¢valuated and returned.

Patterns may rcflect arbitrary data structures (tuples, records, variant types, lists
and arrays) that are (o be matched verbatim and, in particular, the cons operator : :
may be used in a pattern to decapitate a list. Also, the pattern __ matches any value
without assigning a name to it. This is useful for clarifyving that part of a pattern is
not referred to in the corresponding expression,

For example, the following function £ compares its argument 1 against three
patterns, returning the expression of type st ring corresponding to the first pattern
that matches:

> let £ 1 =

match i with

| ¢ -= "Zero"

| 3 - "Three"

| _ -» "Neither zero nor three";;
val £ : int -» string

Applying this function to some cxpressions of type int demonstrates the most
basic functionality of the match construct:

= £ 0;;

val it : string = "Zero"

> £ 1;;:

val it : string = "Neither zero nor three"
= E (1 + 2);;

val it : string = "Three"

As pattern matching is such a fundamental concept in F# programming, we shall
provide several more examples using pattern matching in this section,

A function is_empty 1list which examines a given list and returns true if
the list is empty and false if the list contains any elements, may be written without
pattern matching by simply testing equality with the empty list:

» let is empty list 1list =
list = [1;;
val is_empty list : ‘a list -» bool
Note that the clean design of the F# language allows the identifier 1ist to be
used to refer to both a variable name and a type without conflict.

Using pattern matching, this example may be written using thematch ... with
... construct as:

> let 1s empty list list =
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match list with
| [1 -» true
| . -» false;;
val is empty list : ‘a list -» bool

Neote the use of thc anonymous  pattern to match any value, in this case accounting
for all other possibilities.

The is _empty_list function can also be written using the function ...
construct, used to create one-argument A-functions which are pattern matched over
their argument:

» let isg empty list = function
| [1 -» true
| _::_ -» false;;
val is_empty_list : ‘a list -= bool

In general, functions that pattern match over their last argument may be rewritlen
more succinctly using function.

1.4.2.1 Variables in patterns Variables that are named in the paltern on the
left hand side of a match case are bound to the corresponding parts ol the value
being matched when evaluating the corresponding expression on the right hand side
of the match case. This allows parts of a data structure to be used in the resulting
computation and, in particular, this is the enly way to extract the valucs of the
arguments of a variant type constructor.

The following function £ tries to extract the argument of the Some constructor of
the built in option type, returning a default value of 0 if the given value is None:

» let £ = function
| None -> ©
| Some x -» x;;
val £ : int option -> int

Note that the default value of 0 returned by the first match case of this pattern
match ted type inference to determine that the argument to the £ function must be of
the type int option.

For example, applying this function the values None and Some 3 gives the resalts
0 and 3 as expected:
= £ None;;
val it : int
> f{Bome 3);;
val it : int = 3

If
[ew)

In the latter case, the second pattern is matched and the variable name x appearing
in the pattern is bound to the corresponding value in the data structure, which is 3 in
this case. The second maich case simply returns the value bound to 3, returning 3 in
this case.

The ability to deconstruct the value of a variant type into its constituent parts is
the single most important use of pattern matching.
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1.4.2.2 Named subpatterns Part of a data structure can be bound to a variable
by giving the variable name in the pattern. Occasionally, it 1s also useful to be able
to bind part of a data structure matched by a sub patiern.

The as construct provides this functionality, allowing the value corresponding to
a matched subpaitern to be bound to 2 variable,

For example, the following recursive function rcturns a list of all adjacent pairs
from the given list:

= let rec pairs = function
| hi::{(h2::_ as t} -» (hl, h2} :: pairs t
| -= [1;:

val pairs : fa 1list -» {('a * ‘a} list

Tn this casc, the first two elements from the input are named hl and h2 and the
tail list afier hl is named t, i.e. h2 is the head of the tail tist t.

Applying the pairs [unction to an example list retumns the pairs of adjacent
clements as a list of 2-tuples:

» pairs [1; 2; 3: 4; 8):;
val it : {int * int) list =
({1, 2}; (2, 3y; (3, 4); {4, 5}]

Named subpatterns are used in some of the later examples in this book.

1.4.2.3 Guarded patterns Patterns may also have arbitrary tests associated
with them, written vsing the when construct. Such patterns are referred to as guarded
patterns and are only allowed to match when the associated boolean expression (the
guard) evaluales to true.

For example, the following recursive function filters out only the non-negative
numbers from a list:

> let rec positive = function
| [1 -> [I
| h::t when h <« 0 -» positive t
| h::t -» h::positive t;;

val positive : int list -» int list

Applying this function (o a list containing pesitive and negative numbers results
in a list with the negalive numbers removed

> positive [-3; 1; -1; 41;;
val it : int list = [1; 4]

Although guarded patterns undermine some of the static checking of pattern
matches that the F# compiler can perform, they can be used to good effect in a variety
of circumstances.

1.4.2.4 Orpatlterns Inmany cases it is useful for several different patterns to be
combined into a single pattern that is matched when any of the alternatives matches.
Such patterns are known as or-patterns and use the syntax:
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pattern) | patterng

Or patterns must bind the same sets of variables.
For example, the following function returns true when its argument is in
{—1,0,1} and falee otherwise:

> let is sign = function
| -1 ] 0! 1 -> true
| _ -» false;;

val 1s sign : int -> bool

The sophistication provided by pattern matching may be misused. Tortunately,
the F# compilers go to great lengths to enforce correct use, even brashly criticising
the programmers style when appropriate.

1.4.2.5 FErroneous pallerns Alternative patterns in a match case must share
the same set of variable bindings, For example, aithough the following function
makes sense to a human, the F# compilers complain about the patterns {a, 0) and
(0, b) binding different sets of variables ({a} and {4}, respectively):

» let product a b =

match a, b with

| a, 0 | 0, b -> 0

| a, b -> a * b;;
Error: FS0018: The two sides of this 'or’ pattern bhind
different sets of variabkles

In this case, this function can be corrected by using the ancnymous _ pattern as
neither a nor b is used in the first case:

» let product a b =
match a, b with
| , 0] o0, ->0
| a, b -»a * b;;
val product : int -» int -» int

This actually conveys useful information about the code. Specifically, that the
values matched by _ are not used in the corresponding expression.

F# uses type information to determinc the possible values of expression being
matched. If the patterns fail to cover all of the possible valucs of the input then, at
compile-time, the compiler emits:

Warning: FS0025: Incomplete pattern match.

If a program containing such pattern matches is executed and no matching pattern
is found at run-time then MatchFailureException is raised. Exceptions will
be discussed in section 1.4.5.

For example, in the context of the built-in option typc, the F# compiler will warn
of a function matching only the Some type constructor and neglecting None:

» let extract = function
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| Some x -» X;;
Warning: FS0025: Incomplete pattern match.
The value 'None’ will not be matched.
val extract : ‘a option -> int

This extract function then works as expected when given that value Some 3:

» exXxtract (Some 3);;
val it : int = 2

but causes MatchFaillureExcept ionto be raised at run-time if a None value
is given, as none of the patterns in the pattern match of the ext ract function match
this value:

= éxtract None; ;
Exception of type
‘Microsoft.FSharp.MatchFailureException’ was thrown.

As some appreaches to pattern matching lead to more robust programs, some
notions ol good and bad programming styles arise in the context of pattern matching.

1426 Good style The compiler cannot prove that any given pattern match
covers all eventualities in the general case. Thus, some style guidelings may be
productively adhered to when writing pattern matches, to aid the compiler in its
proofs:

o Guarded patterns should be used only when necessary. In particular, in any
given pattern matching, the last pattern should not be guarded.

e In the case of user-defined variant types, all eventualities should be covered
explicitly {suoch as [} and hi: : £ which, between them, match any list).

Asg proof generation cannot be automated in general, the F# compilers do not try to
prove that a sequence of guarded patterns will match all possible inputs. Instead, the
programumer is expected to adhere to a good programming style, making the breadth
of the final match explicit by removing the guard. For example, the F# compilers do
not prove that the following pattern match covers all possibilities;

> let sgign = function

| i when 1 <« 0.0 ~» -1

[ 0.0 -5 ¢

| i when 1 » 0.0 - 1;;
Warning: FS0025: Incomplete pattern match.
val sgign ; float -»> int

In this case, the function should have been written without the guard on the last
pattern:

» let sign = function
| 1 when 1 < 0.0 -» -1
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| 0.0 -> ©
| == 1y
val sign : float -»> int

Also, the F# compilers will try to determine any patterns which can never be
matched. Tf such a pattern is found, the compiler will emit a warning. For example,
in thig case the first match accounts for all possible input values and, therefore, the
second match will never be used:

» let product a b =
match a, b with
| a, b ->a *Db

| _, 0.0 | 0.0, _ -> 0.0;;
Warning: F30026; This rule will never be matched.
val product : int -» int -» int

When matching over the constructors of a type, all eventualities should be caught
explicitly, i.e. the final pattern should not be made completely general. For example,
in the context of a type which can represent different number representations:

> type number =
| Integer of int
| Real of float;;
type number = Integer of int | Real of float

A function to test for equality with zero could be written in the following, poor
style:

» let bad is zero = function
| Integer 0 | Real 0.0 -> true
| _ -» false;;

val bad_is_zerc : number -»> bool

When applied to various values of type number, this function correctly acts a
predicate to test for equality with zero:

> bad is zero {Integer (-1}};;
val it : beool = false

> bad_is zero {Integer 0};;
val it : bool = true

> bad is zero (Real 0.0);;
val it : beoel = true

> bad is zero {Real 2.6);;
val it : bool = false

Although the bad is zevro function works in this case, this formulation is
fragile when the variant type is extended during later development of the program.
Instead, the constructors of the variant type should be matched against explicitly, to
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ensure that later extensions to the variant type yicld compile-time warnings for this
function {which could then be fixed):

> let good is zerc = function
| Integer 0 | Real 0.0 -» true
| Integer _ | Real _ -> false;;
val good is zero : number -» bool

The stylc used in the good is zero function is more robust. For example, if
whilst developing our program, we were to supplermnent the definition of our number
type with a new representation, say of the complex numbers 2z = & + iy € C

> type number =
| Integer of int
| Real of float
| Complex of float * float;;
type number =
| Integer of int
| Real of float
| Complex of float * float

the bad is zero function, which is written in the poor style, would compile
without warning despite being incorrect:

> let bad is zero = function
| Integer 0 | Real 0.0 -» true
|  -» false;;

val bad_1g zero : number -» bool

Specifically, this function treats all values which are not zero-integers or zero-
reals as being non-zero. Thus, zero-complex z = 0 4 (i 1s incorrectly deemed to be
non-7ero:

> bad is zero (Complex (0.0, 0.0});;
val it : bool = false

In contrast, the good_is_zero function, which was written using the good
style, would allow the compiler to spot that part of the number type was not being
accounled for in the pattern match:

> let good is zero = function

| Integer 0 | Real 0.0 -» true

| Integer _ | Real _ -» false;;
Warning: FS0025: Inconplete pattern wmatch.
val good_is zero : number -> bool

The programmer could then supplement this function with a case for complex
numbers:

> let good_is_zero = function
| Integer 0 | Real 0.0 | Complex{0.0, 0.0) -» true
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| Integer _ | Real _ | Complex _ -» false;;
val good is zero : number -»> bool

The resulting finction would then provide the correct functionality:

> good_is zero {Complex (0.0, 0.0)};;
val it : bool = true

Clearly, the ability have such safety checks performed at compile-time can be very
valuable during development. This is another important aspect of safety provided by
the F# language, which results in considerably more robust programs.

Due to the ubiquity of pattern matching in F# programs, the number and structure
of pattern matches can be non-trivial. In particular, patterns may be nested and may
be performed in parallel.

1.4.2.7 Parallel pattern matching Pattern matching is often applied to several
different values in a single function. The most obvious way to pattcrn match over
several values is to nest pattern matches. However, nested patterns are rather ugly
and confusing,

For cxample, the following function tries to unbox threc option types, returning
None if any of the inputs is None:

> let unbox3 a b ¢ =
match a with
| Some a -=»
match b with
| Some b -=
match ¢ with
| Some ¢ -»> Some(a, b, <)
| None -»> None
| None -» None
|  -» None;;
val unbox3
‘a option -» ‘b option -» ‘¢ option -=»
{ta * 'h * ‘¢] option

Applying this function to three option values gives an option value in responsc:

» unbox3 (Some 1} {(Some 2} (Scme 3} ;;
val it : {int * int * int) option = Some (1, 2, 3)

Fortunately, parallel pattern matching can be used to perform the same task more
concisely. This refers to the act of pattern matching over a tuple of values rather than
nesting different pattern matches for each value.

For example, a function to unbox three option values simultaneously may be
written more concisely using a parallel pattern match:

» let unbox3 a b ¢ =
match a, b, ¢ with
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| Some a, Some b, Some ¢ -» Some (a, b, c)
[ _ -» None;;
val unbox3
'a optien -» 'b option -» ‘¢ option -»
{ra * ‘b * '¢}) option

As a core feature of the F# language, pattern matching will be used extensively in
the remainder of this book, particularly when dissecting data structures in chapter 3.

1.4.2.8 Active patterns ML-style pattern matching provides a simple and ef-
ficient way to dissect concrete data structures such as trees and, consequently, is
ubiquitucus in this family of programming languages. However, ML-style pattern
matching has the disadvantage that it ties a function to a particular concrete data
structure. A new feature in the F# programming language called active patterns is
designed to alleviate this problem by allowing patterns to perform computations to
dissect a concrete data structure and present it in a different form, known as a view
of the underlying structure.

As a simple example, active patterns can be used to sanitize the strange total
ordering function compare that F# inherited from OCaml by viewing the int
result as the sum type that it really represents:

> let {|Less|Equal|Greater|) = function
| ¢ when c<0 -»> Less
| ¢ when c»0 -»> CGreater
l _ -» Equal;;
val (|Less|Equal|Greater|)
int -» Choice<unit, unit, units>

Pattern matches over int values can now use the active patterns Less, Equal
and Greater. Moreover, the pattern matcher is now aware that these three patterns
form a complete set of alternatives.

A more useful example of active patterns is the dissecting of object oriented daa
structures carried over from the .NET world. The use of active patterns to simplify
the dissection of XML trees is described in chapter 10.

1.4.3 Equality

The F# programming language includes a notion of structural equality that auto-
matically traverses valucs of compound types such as tuples, records, variant types,
lists and arrays as well as handling primitive types. The equality operator = calls the
Equals method of the NET object, allowing the equality operation to be overridden
tor speeific types where applicable,

For example, the following checks that 3 — 1 = 2;

=3 - 1= 2;;
val it : bool = true

The following tests the contents of two pairs for equality:
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> (2, 3} = (2, 4);;
val it : bool = falise

In some cases, the built-in structoral equality is not the appropriate notion of
equality. For example, the set data structure {described in detail in chapter 3} is
represented internally as a balanced binary tree. However, some sets have degenerate
representations, e.g. they may be balanced differently but the contents are the same.
So structural equality is not the correct notion of equality for a set. Consequently,
the Set module overrides the default Equais member to give the = operator an
appropriate notion of set equality, where sets are compared by the elements they
contain regardless of how they happen to be balanced.

Occasionally, the ability to test if two values refer to identical representations
(e.g. the same memory location) may be useful. This 1s known as reference equality
in the context of NET and is provided by the built-in == operator.

For example, pairs defined in difterent placés will reside in different memory
locations. So, in the following example, the pair a is referentially equal to itself but
a and b are logically but not referentially equal:

> let a =1, 2;:;

val a : int * int

> let b = 1, 2;;

val b : int * int

> a == aj;;

val it : bool = true

stdin(26,1): warning: FS0062: This construct is for
compatibility with OCaml. The use of the physical
equality operator ‘==’ is not recommended except in
cross-compiled code. You probably want to use generic
gtructural egquality ‘=*. Diszable this warning using
--no-warn 632 or #nowarn "62"

This waming is designed for programmers used to languages where == denoctes
ordinary equality. Safe in the knowledge that == denotes referential equality in F#,
we can disable this waming before using it:

»a = b;;
val it : bool = true

> #nowarn "62";;

> a == b;;
val it : bool = false

Referential equality may be considered a probabilistic alternative to logical equal-
ity. If two values are referentially equal then they must also be logically equal,
otherwise they may or may not be logically equal. The notion of referential equality
can be used to implement productive optimizations by avoiding unnecessary copying
and is discussed in chapter 8.
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1.4.4 Sequence expressions

The F# programming language provides an elegant syntax called sequence expres-
sions for generating lists, arrays and Seq”. A contiguous sequence of integers can
be specitied using the syntax:

seq {first .. last}
For cxample, the the integers + € {1...5} may be created using:

> seq {l .. 5};;
val it : seg<ints> = seq [1; 2; 3; ...]

Note that the gencric scquence type 18 written using the syntax seg<‘a» by
default rather than ' a seq.

All comprehension syntaxes can be used with different brackets to generate lists
and arrays. For example:

= [1 .. B];;
val 1t : int list = [1; 2; 3; 4; 5]
= [|1 .. 5]1;:;

val it : int array = [l1; 2; 3; 4; 5]

Non-contiguous sequences can also be created by specifying a step size using the
syntax:

seq {first .. step .. last)
For example, the integers [0. .. 9] in steps of 3 may be created using:

= sedq {O .3 L. 9};;
val it : seqg<int> = seq [0; 3; &; ...]

Lists, arrays and sequences can be filtered fnto a sequence using the syntax:

seq {for pattern in container - >
espr

For example, the squares of the Some values 10 an option list may be filtered out
using:

> gseq {for Some 1 in {Some 1; Scme 3; None ; Some 2] -=
ix i}y
val it : seqge«inkt> = seq [1; 9; 4]

The paitern used for filtering can be guarded using the syntax;

seq {for pattern in conteiner when guard - >
expr}

For cxample, extracting only results for which i < 3 in the previous example:

*geq s discussed in detail in section 3.8,
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» let xg = [Some 1; Some 3; None; Some 2] in
gseq {for Some i in xs when i « 3 ->
ixi};;

val it : seg<ints = seq [1; 4]

These examples all generate a data structure called Seq. This data structure is
discussed in detail in chapter 3.

Comprehensions may also be nested to produce a flat data structure. For example,
nesting loops over ¢ and ¥ coardinates is an easy way to obtain a sequence of grid
coordinates:

> [ for x in 1 .. 3
tor vy in1 .. 3 -=
X, ¥ 1:;
val it : {int * int)} list =

(1, L; ¥, 2; 1, 3; 2, 1; 2, 2; 2, 3; 3, 1; 3, 2; 3, 3]

Sequence expressions have a wide variety of uses, from random number generators
to file 10.

1.4.5 Exceptions

In many programming languages, program ¢xccutien can be interrupted by the rais-
ing® of an exception. This is a useful facility, typically used to handle problems such
as failing 1o open « file or an unexpected flow of execution (e.g. due to a program
being given invalid input).

Like a variant constructor in F#, the name of an cxception must begin with a capital
letter and an exception may or may not carry an associated value. Before an exception
can be used, it must declared. An cxception which does not carry associaled data
may be declared as:

exception Mame
An exception which carries associated data of type #ype may be declarcd:
exception Name of fype

Exceptions are raised using the built-in raise function. For cxample, the fol-
lowing raises a built-in exception called Failure which carrics a string:

ralse (Failure "My problem")
F# exceptions may be caught using the syntax:

try
expr
with
| pattern) - > expr|

fSometimes known as throwing an exception, e.g. in the context of the C++ language.
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| patterng - > expra
| patterns - > exprs

(..

| pattern,, - > expry,

where expr is evaluated and its result returned if no exception was raised. If an
exception was raised then the exception is matched against the patterns and the value
of the corresponding expression (if any) is returned instead.

For example, the following raises and catches the Failure exception and returns
the string that was carried by the exception:

» btry
raigse (Failure "My problem"}
with
| Failure s -»
8
val it : string = "My problem"”

Note that, unlike other pattern matching constructs, patterns matching over ex-
ceptions need not account for all eventualities — any uncaught cxceptions simply
continue 1o propagate.

For cxample, an exception called ZeroLength that does not carry associated
data may be declared with:

> exception Zerolength;;
exception Zerolength

A function to normalize a 2D vector r = (x, %) to create a unit-length 2D vector:

r

- H
Il

[l
Catching the erroneous case of a zero-length vector, this may be written:

> let norm (x, y) =
match sgri{x * x + yv * vy} with
| 0.0 - raise ZeroLength
s == x /=5, v / 8;1;
val norm ; float * flocat -» float * float

Applying the norm function to a non-zero-length vector produces the correct
result to within numerical error (a subject discussed in chapter 4):

= norm {3.0, 4.0);;
val it : float * float = (0.6, 0.8)

Applying the norm function to the zero vector raises the ZeroLength exception:

> norm (0.0, 0.0);;
Exception of type ‘FSI_0159+ZerolLength’ was thrown.
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A “gafe” version of the norm function might catch this exception and return some
reasonable result in the case of a zero-length vector:

> let safe norm r =
try
norm r
with
| ZeroLength -=
0.0, 0.0;;
val safe norm : float * fleoat -»> float * float

Applying the safe norm function to a non-zere-length vector causes the result
of the expression norm r to be returned:

> safe norm (3.0, 4.0)});;
val 1t : fleocat * fleocat = (0.6, 0.8}

However, applying the gafe norm function to the zero vector causes the norm
function te raise the ZeroLength exception which is then caught within the
safe norm function which then returns the zero vector:

> safe norm (0.0, 0.0};;

val it : float * fleat {0.0, 0.0}

The use of exceptions to handle unusual occurrences, such as in the safe norm
function, is one important application of exceptions. This functionality is exploited
by many of the functions provided by the core F# library, such as those for handling
files {(discussed in chapter 5). The safe_norm functionis a simple example of using
exceptions that could have been written using an 1 £ expression. However, exceptions
are much more useful in more complicated circumstances, where an exception might
propagate through several functions before being caught.

Another important application is the use of exceptions to escape computations. The
usefulness of this way of exploiting exceptions cannot be fully understood without
first understanding data structures and algorithms and, thercfore, this topic will be
discussed in much more detail in chapter 3 and again, in the context of performance,
in chapter 8.

The Exit, Invalid_argument and Failure exceptions are built-in, as
well as two functions to simplify the raising of these exceptions, Specifically, the
invalid_arg and failwith functions raise the Invalid argument and
Failure exceptions, respectively, using the given string.

F# also provides a try ... finally ... construct thal executes a final ex-
pression whether or not an exception is raised. This can be used to ensure that state
changes are correctly undone even under exceptional circumstances.

1.5 IMPERATIVE PROGRAMMING

Just like conventional programming languages, F# supports mutable variables and
side effects: imperative programming. Record flelds can be marked as mutable,
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in which case their value may be changed. For example, the type of a mutable,
two-dimensional vector called vec2 may be defined as:

> type vec2 = { mutable x: float; mutable y: £loat };;
type vec2 = { mutable x : float; mutable y : float; }

A value r of this type may be defined:

= let r = { x =1.0; vy = 2.0 };;
val r : wveg2

The x-coordinate of the vector r may be altered in-place using an imperative style:

> r.Xx «- 3.0;;
val it : unit = ()

The side-effect of this expression has mutated the value of the variable r, the
a-coordinate of which is now 3 instead of 1:
= I
val it : vec = {x = 3.0; y = 2.0}

A record with a single, mutable field can often be useful. This data structure,

called a reference, is already provided by the type ref. For example, the following
delines a variable named & that is a reference to the integer 2:

> let a = ref 2;;
val a : int ref = {contents = 2}

The type of a is then int ref. The value referred to by a may be obtained
using fa:

= la;;
val it : int = 2

The value of a may be sct using : =:

= d 1= 3;;

val it : unit = ()
= ta;;

val it : int = 3

[n the case of references to integers, two additional functions are provided, incr
and decr, which increment and decrement references to integers, respectively:
> INCr &aj;
val it : unit = ()
= la;;
val a : int = 4

In addition to mutable data structures, the F# language provides looping constructs
for imperative programming. The whi le loop executes its body repeatedly while the
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condition is t rue, returning the value of type unit upon completion. For example,
this while loop repeatedly decrements the mutable variable x, until it reaches zero:

»> let x = ref 5;;
val x : int ref

= while Ix > @ do

decr x;;
val 1t : unit = (}
= 1X;;

val it : int = 0

The for loop introduces a new loop variable explicitly, giving the initial and final
values of the loop variable. For example, this for loop runs a loop variable called 1
from one to five, incrementing the mutable value x five times in total:

» for 1 =1 to 5 do

incr x;;
val 1t : unit = (}
= Ix;;

val 1t : int = &

Thus, while and £or loopsin F# are analogous to those found in most imperative
languages.

1.6 FUNCTIONAL PROGRAMMING

Unlike the imperative programming langnages C, C++, C#, Java and Fortran, F#
is a functional programming language. Functional programming is a higher-level
and mathematically more elegant approach to programming that is ideally suited
to scientific computing. Indeed, most scientists do not realise that they naturally
compose programs in a functional style even if they are using an imperative language.
We shall now examine the various aspects of functional programming and their
implications in more detail.

1.6.1 Immutability

In mathematics, once 2 variable is defined to have a particular value, it keeps that
value indefinitely. Thus, variables in mathematics are immufable. Similarly, most
variables in F# are immutable.

In practice, the ability to choose between imperative and functional styles when
programming in F# is very productive. Many programming tasks are naturally suited
to either an imperative or a functional style. For example, pertions of a program
dealing with user input, such as mouse movemenis and key-presses, are likely to
benefit from an imperative style where the program maintains a state and user input
may resuft in a change of state. In contrast, functions dealing with the manipulation
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of complex data structures, such as irees and graphs, are likely to benefit from being
written in a functional style, using recursive functions and immutable data, as this
greatly simplifies the task of writing such functions correctly, Tn both cases, functions
can refer to themselves — recursive functions. However, recursive functions are
pivotal in functional programming, where they are used to tmplement functionality
equivalent to the while and for looping constructs we have just examined.

One of the simplest differences between conventional imperative languages and
functional programming languages like F# is the ubiquitous use of immutable data
structures in functional programming. Indeed, the F# standard library provides a
wealth of cfliciently-implemented immutable data structures. The use of immutable
data structures has some subtle implications and important benefits.

When a function acts upon an immutable data structure to produce a similar
immutable data structure there is no need to copy the parts of the input that are reused
in the output because the input data structure can never be changed. This ability to
refer back o old values is known as referentiaf transparency. So functions that act
over immutable data structures typically compose an output that refers back to parts
of the input.

For example, creating a list b as an element prepended onto a list a does not alter
a:

= let a = [1; 2; 3];;

val a : int list

> let b = 0::a3;;

val b : int list

= a, b;;

val it : int list * int list = ([1; 2Z; 31, [0; 1; 2; 31)

Notc that the original list 2 is «till [1; 2; 3]. Imperative programming would
cither require that a is altered (losing its original value) or that a is copied. Essentially,
the former is confusing and the latter is slow.

Immutable data structures are beneficial for two main reasons:

¢ Sinplicity: Mathematical ¢xpressions can often be translated into efficient
functional programs much more casily than into cfficient imperative programs.

e Concurrent: Immutable data structures are inherently thread safe so they are
ideal for parallel programiming.

When a programimer is introduced to the concept of functional programming for the
first time, the way to implement simple programming constructs such as loops does
not appear obvious. [ the loop variable cannot be changed because it is immutable
then how can the loop proceed?

1.6.2 Recursion

Looping constructs can be converted into recursive constructs, such as recurrence
relations. For example, the factorial function is typically considered to be a product
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with the special case 0! = 1;

nI::IIi
1=1
This may be translated into an imperative function that loops overi € {1...n},
altering a mutable accumulator called accu:

> let factorial n =
let accu = ref 1
for i = 1 to n do

accu := 1 * laccu
lacou; ;
val factorial : int -> int

For example, 5! = 120;

> factorial 5;;
val it : int = 120

However, the factorial may be expressed equivalently as a recurrence relation:
gl=1

l=nx(n-—1)

This may be translated into an recursive function that calls itself until the base
case 0! = | is reached:

= let rec factorial = function

| 0 -1
| n -» n * factorial (n - 1);;
val factorial : int -» int

» factorial 5;;
val it : int = 120

In this case, the functional style is significantly simpler than the imperative style.
As we shall see in the remainder of this book, functional programming is often more
concise and simpler than imperative programuming. This is particularly true in the
context of mathematical programs.

The remaining aspects of functional programming are concemed with passing
functions to functions and retuming functions froem functions,

1.6.3 Curried functions

A curried function is a function that returns a function as its result. Curried functions
are best introduced as a more flexible alternative to the conventional (non-curried)
functions provided by imperative programming languages.

Effectively, imperative languages only allow functions to accept a single value
{often a tuple) as an argument. For example, a raise-to-the-power function for
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integers would have to accept a single tuple as an argument which contained the two
values used by the function:

> let rec ipow _1({x, n} =

match n with

| 0 -» 1.0

| m -» x * ipow 1(x, nn - 1};;
val ipow_1 : fleoat * int -» float

But, as we have seen, F# also allows:

> let rec ipow 2 n x =

match n with

| 0 -» 1.0

| n -> x * ipow 2 (n - 1} x;;
val ipow 2 : int -»> float -» float

This latter approach is actually a powerful generalization of the former, only
available in functional programming languages.

The difference between these two styles is subtie but important. In the latter case,
the typc can be understood 1o mean:

val ipow_2 ; int -> {(float -» float)

i.c.this ipow 2 function accepts an exponent n and returns a function that raises
a float x to the power of n, 1.e. this 18 a curried function.

The utility of curried functions lies in their ability to have their arguments partially
applied.

In this case, the curried ipow_ 2 function can have the power n partially applied
to obtain a more specialized function for raising a £ loat to a particular power. For
example, functions to square and cube a £1oat may now be written very succinctly
in terms of ipow_ 2:

> let sqguare = ipow 2 2;;
val sguare : float -»> float

= square 5.0;;
val it : float = 25.0

= let cube = ipow_2 3;;
val cube : float -= float

> cube 3.0;;
val it : fleoat = 27.0

Thus, the use of currying has allowed an expression of the form:
fun x -> ipow 1(x, 2}
to be replaced with the more succinet alternative:

ipow 2 2
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This technique actually scales very well to more complicated situations with
several curried arguments being partially applied one after another. As we shall see
in the next chapter, currying is particularly useful when vsed in combination with
higher-order functions.

1.6.4 Higher-order functions

Conventional languages vehemently separate functions from data. In contrast, F#
allows the seamless treatment of functions as data. Specifically, F¥# allows functions
o be stored as values in data structures, passced as arguments to other functions and
returned as the results of expressions, including the return-values of functions.

A higher-order function is a function that accepts another function as an argument.
As we shall now demonstrate, this ability can be of direct relevance to scientific
applications. :

Many numerical algorithms are most obviously expressed as one function pa-
rameterized over another function. For example, consider a function cailed d that
calculates a numerical approximation to the derivative of a given one-argument func-
tion. The function d accepts a function [ : B — R and a value » and rctums a

function to compute an approximation to the derivative :—g given hy:

48— fle=5) _df
28 T odr

dif](z)

where d : (R — R) -+ (R — R).
This is easily written in F# as the higher-order function d that accepts the function
f as an argument’:

> let 4 (£ : float -» float) = =

let dx = sgrt epsilon float

(f {x + dx) - £ {x - dx)} / (2.0 * dx);;
val d : {float -» fleoat) -» float -»> fleoat

For example, consider the function f(x) = 2% - = - 1:
= let £ x =2 ** 3.0 - x - 1.0;;
val £ : float -» float
The higher-order function d can be used to approximate 4| =11

dmia‘-:?
>d f 2.0;;
val it : fleat = 11.0

More importantly, as d is a curried function, we can use 4 to create derivative
functions. For example, the derivative f'(x) = ‘(% can be obtained by partially
applying the curried higher-order function d to £

"The built-in value epsilon_float is the ymallest Aloaling-point number that, when added o 1, docs
not give |. The square rool of this value can be shown to give optimal propertics when used in this way.
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> let £ = 4 £;;
val £* : (float -»> float)

The function f* can now be used to calculate a numerical approximation to the
derivative of f for any z. For example, f'(2) = 11:

> £ 2.0;;
val it : float = 11.0

Higher-order functions are invaluable for representing many operators found in
mathematics, science and engineering,

Now that the foundations of F# have been introduced, the next chapter describes
how these building blocks can be structured inte working programs.





