Modeling

1.1 Introduction

This book uses analytical modeling to provide the reader with insights into the
fate and transport of solutes in groundwater. In this chapter, we begin by intro-
ducing what we mean by analytical modeling, solute transport, and groundwa-
ter. We describe models and modeling, define some common modeling terms,
and present the fundamental mathematical model that is used to simulate the
flow of water in a porous medium. We also include some example model appli-
cations, showing how modeling may be used to help us understand the behavior
of systems.

To begin, what is a model? Simply put, a model is any approximation of reality,
based on simplifications and assumptions. Thus, a model may be a small-scale
depiction of reality (a physical model), a mental model or set of ideas/theories
as to how reality works (a conceptual model), a network of resistors and capac-
itors that use electricity to simulate a real system (an analog model), or a set
of mathematical equations that are used to describe reality (a mathematical
model). In this book, we focus on mathematical models. Specifically, we use
partial differential equations (PDEs) to model reality, for as Seife (2000, p. 119)
noted in his book Zero: The Biography of a Dangerous Idea, “.. .nature... speaks
in differential equations...” Thus, when we subsequently talk about models, we
will be talking about one or more PDEs, along with their associated initial and
boundary conditions, which, based on various assumptions, are being used to
approximate reality.

Having defined what a model is, we need to think about the purpose of
modeling; how are models used? Essentially, models have two basic purposes:
(1) making predictions and (2) facilitating understanding. Newton’s model of
gravitational attraction, which allows us to forecast the motion of the planets,
and Einstein’s model of the mass/energy relationship, which allows us to
estimate the energy released in a nuclear explosion, are examples of model
applications for predictive purposes. Modeling for understanding, though, is
at least as important as using models to make predictions. Especially when
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modeling a real system that has many unknowns and much uncertainty associ-
ated with it, such as the subsurface, it may be extremely difficult to make good
predictions. In a classic study, Konikow (1986) conducted a postaudit to see
how satisfactorily a well-calibrated model, based on 40 years of data, predicted
the response of water levels in an aquifer to pumping over a subsequent 10-year
period. The correlation between observed and model-predicted water levels
was “poor.” The study concluded that “...the predictive accuracy of ... models
does not necessarily represent their primary value. Rather, they provide a
means to assess and assure consistency within and between (1) concepts of
the governing processes, and (2) data describing the relevant coefficients. In
this manner, a model helps ... improve understanding....” In this book, we
focus on the use of modeling to improve understanding. The models presented
in later chapters are gross simplifications of reality and have little predictive
value, except in a general qualitative sense. However, the model applications
that are presented hopefully provide the reader with important insights into
how governing processes and parameter values, which quantify the magnitude
of those processes, affect the response of chemical contaminants that are being
transported in the complex subsurface environment.

We use the classic definition of groundwater: “the subsurface water that
occurs beneath the water table in soils and geologic formations that are fully
saturated” (Freeze and Cherry, 1979). These geologic strata that contain water
are sometimes referred to as aquifers, but the word aquifer is generally reserved
for geologic strata that not only contain water but can also transmit or yield
appreciable quantities of water. Since the modeling that we are discussing is
not predicated on having a minimum transmissivity, we most often refer to the
material through which water is flowing simply as a hydrogeologic unit or as
a porous medium where we understand that the medium is of geologic origin.
The water table is the division between the unsaturated zone and the saturated
zone. As we are looking at groundwater, we are concerned with flow below the
water table.

Groundwater is not pure water; it contains a variety of solutes, which may
occur naturally or be of anthropogenic origin (i.e., human-made). Generally,
the majority of the naturally occurring solutes are ionic in form, with natural
organic matter concentrations low in comparison. However, much of the cur-
rent focus on groundwater contamination is due to the presence of hazardous
solutes, both organic and inorganic, of anthropogenic origin. The solutes found
in groundwater cover a wide range of chemical species. In this text, we take a
generic approach, using simple models that simulate the physical, chemical, and
biological processes that affect the fate and transport of no particular solute. In
this way, we hope the text achieves its goal of providing the reader with insights
into how governing processes and parameter values, which quantify the mag-
nitude of those processes, affect the response of chemical contaminants in the
subsurface.
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1.2 Definitions

To make sure we are all speaking the same language, let’s present some ter-
minology that is used throughout this text. We have already defined a model
as a set of differential equations with boundary and/or initial conditions.
We therefore refer to “the model” or “the model equations’, synonymously.
Often, the solution to the model equations is also referred to, imprecisely, as
the model. We try to be precise and explicitly refer to the model solution (or
system response or value of the dependent variable as a function of space and
time), rather than using the term model. Similarly, the computer code that
is used to obtain the model solution is sometimes referred to as the model.
Here, we use the term model code to refer to the set of computer instructions
or program that is used to solve the model equations. The model code may
utilize analytical, semianalytical, or numerical methods to solve the model
equations (Javandel et al., 1984). As the title of this book suggests, we present
analytical solutions to the model equations. Analytical solutions have a
couple of important advantages: (1) they are mathematically exact and do not
involve approximating the model equations as numerical methods do and (2)
computer codes can evaluate the solutions quickly. The main disadvantage
of these analytical solution methods, which was alluded to earlier, is that the
model equations and initial/boundary conditions that are being solved must
be “simple.” Typically, this means that the PDEs must be linear and that the
parameters in the PDEs used to quantify the processes being modeled, as well
as the PDE initial and boundary conditions, are either constant or described
by simple relationships (e.g., an initial or boundary condition described by a
trigonometric function). Such limitations mean that the system that is being
modeled is either homogenous in space and constant in time or else changes in
space and time are easy to express mathematically. Obviously, conditions in the
subsurface are far from homogeneous or easily expressed, and many processes
are most appropriately described by nonlinear equations. Nevertheless, for our
purposes (remember, we are focused on using models to gain understanding,
not to make predictions), these simplifications are acceptable, and, in fact,
helpful.

1.3 A Simple Model - Darcy’s Law and Flow Modeling

1.3.1 Darcy’s Law

In 1856, Henri Darcy, a French engineer, published his findings that the rate
of flow of water through a porous material was proportional to the hydraulic
gradient. Hydraulic gradient is defined as the change in hydraulic head (%) with
distance, where, if one assumes the density of water is constant in space, head
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is a measure (in units of length) of the potential energy of water at a point in
space. In three dimensions, Darcy’s law is

4 =—-KVh (1.1)

where ¢ [L-T~!] is the specific discharge or Darcy velocity, a vector that
describes the magnitude and direction of flow per unit area perpendicu-
lar to the flow direction, Vi is the hydraulic gradient, a vector describing
the magnitude and direction of the steepest change in head with distance
(Vh = %/i\+ %}+ 3—2’2 where ?,}\, and k are unit vectors in the x-, y-, and
z-directions, respectively), and K [L-T~!] is a constant of proportionality,
known as the hydraulic conductivity. In the version of Darcy’s law shown
in Equation (1.1), we are assuming that hydraulic conductivity is a single
constant, independent of location (i.e., the porous medium is assumed to be
homogeneous) and flow direction (so, the medium is said to be isotropic).
More complex versions of Darcy’s law allow the value of hydraulic conductivity
to vary with both location (a heterogeneous medium) and flow direction
(anisotropic medium). Note that for an isotropic medium, Equation (1.1)
indicates that the direction of flow is in the direction of the largest decrease
in hydraulic gradient (hence, the minus sign on the right-hand side of the
equation).

We see that Darcy’s law is a very simple model, yet it provides us with some
important insights. This simple PDE tells us that if we want to predict the
direction and magnitude of groundwater flow (which is flow through a porous
medium) we need to be able to quantify the hydraulic gradient and hydraulic
conductivity. It also tells us that for a given hydraulic conductivity, increasing
the gradient by some factor will result in an increase in flow by the same factor;
and for a given hydraulic gradient, an increase in conductivity by some factor
will increase the flow by the same factor.

It is important to realize that Darcy’s law, as every model, has its limits in
describing reality. For instance, there are threshold hydraulic gradients, below
which there will be insignificant flow and Darcy’s law will be inapplicable. And
at high gradients, flow may become turbulent and Darcy’s law will not apply.
Darcy’s law is generally assumed to be applicable for laminar flow, where the
Reynolds number (Re) is less than 1. Reynolds number is a dimensionless quan-
tity defined as

_ 141
1%

Re

where || is the magnitude of the specific discharge, d is a length scale rep-
resentative of the system (normally the mean diameter of the porous medium
solids or the mean pore dimension), and v is the kinematic viscosity of water
[L>T'].
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1.3.2 Flow Equation

We can also use Darcy’s law to develop other relations (or models). We see that
although Equation (1.1) is useful, its application depends on knowing values of
hydraulic head at locations within a domain in order to determine the specific
discharge at those locations. Equation (1.1) would be even more useful if we
had a model that allowed us to derive values of hydraulic head throughout a
domain. One of the fundamental principles that are applied to develop mod-
els throughout engineering and science is the law of mass conservation, which
basically states that mass can neither be created nor destroyed. Let us now use
mass conservation, combined with Darcy’s law, to derive the main equation of
flow, which will allow us to calculate hydraulic heads throughout a domain if
we are given heads at boundaries (for a steady-state system, where heads are
invariant in time) or if we are given heads at boundaries and heads at a point
in time (for a transient system, where heads are changing in time). Once we
know the “head field” (the values of hydraulic head throughout a domain), we
can then apply Darcy’s law to determine the flow field.

Figure 1.1 shows a differential element of porous media of length Ax. We
define the porosity of the porous material (#) as the volume of void space
between the material grains (the pore space), divided by the total volume of the
element. Thus, we see 7 is dimensionless. In the saturated zone, the void space
in the porous media is entirely filled with water. If we define water content (6)

v

!: Ax

Figure 1.1 Differential element of porous media.
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Figure 1.2 Conservation of mass through a differential element of porous media.

as the volume of water divided by the total volume of the element, we see that
in the saturated zone, 0 = n.

Let us assume one-dimensional water flow in the positive x-direction through
a differential element of length Ax and cross-sectional area perpendicular to the
direction of flow A [L?] (Figure 1.2). Water mass enters and leaves our differ-
ential element due to flow in (at specific discharge ¢,) and flow out (at specific
discharge g, »,. Note that we are allowing the specific discharge, g, to vary in
space, so that g,, which designates the specific discharge at location «, is not
necessarily the same as g, ,, which is the specific discharge at location x+Ax.
By mass conservation, we know that accumulation of water mass per unit time
within the element must equal the mass of water that is entering per unit time
minus the mass of water mass that is leaving per unit time. Let us look at each
of these terms individually.

First, since the volume of the differential element (A*Ax) remains constant,
the only way water can accumulate within the element is for either the porosity
of the medium or the density of the water (p) [M-L73] to change with time.
Thus, we can write the term that describes accumulation of the water within
the differential element as AAx%. Note that the units of this term are
[M-T1].

The mass of water entering the differential element per unit time is the spe-
cific discharge of the water into the left face of the element (g,) multiplied
by the cross-sectional area through which the water is moving (A) multiplied
by the water density at location x (p,). Again, units for this term work out to
be [M-T']. Similarly, the mass of water leaving the element per unit time is
Qi nxAPgin Whereq, . and p,, . are the specific discharge and water density
at location x+Ax, respectively. Thus, mathematically, we may write our mass
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balance equation as

d(pb)
AAxT = qupx - qx+AxApx+Ax (12)
If we assume water is an incompressible fluid, its density is constant in both
space and time and we can eliminate p from both sides of the equation. We can
subsequently divide both sides of Equation (1.2) by AAx to obtain

% _ Dx — DutAx
ot Ax
Taking the limit on the right-hand side of Equation (1.3) as Ax approaches
zero gives
9 _ Jq
ot ox
We may now apply Darcy’s law (Equation (1.1)) in one dimension to replace
q on the right-hand side of Equation (1.4) with —K Z—Z to obtain

(1.3)

(1.4)

00 0*h
X<
ot 0x?
If we assume the change in water content with time on the left-hand side
of Equation (1.5) is proportional to the change in hydraulic head with time,
Equation (1.5) becomes
2
5,2 _ o (1.6)
ot 0x?
where S, the specific storage [L1], defined as the volume of water that a unit
volume of aquifer releases from storage under a unit decline in hydraulic head,
is a constant of proportionality. For a full discussion of this model, the reader
is referred to Domenico and Schwartz (1998).
Finally, if we expand Equation (1.6) to three dimensions, we obtain

oh _K (&h oh o
ot S, \ox* 0y*> 072

S

(1.5)

(1.7)

This PDE will be called the flow equation for a homogenous isotropic aquifer.
Given initial and boundary conditions, and values for the parameters K and S,,
it can be solved for hydraulic head as a function of location and time. If the flow
is steady state (as is frequently assumed), ‘;—i’ = 0 and the flow equation becomes

0*h | 0*h  0*h
O=|—+—+— 1.8
<(3x2 - 0y? - dzz) (18)

the solution of which does not depend on K and S,. Hydraulic head as a function
of location (x, y, z) can be found by solving Equation (1.8) for given boundary
conditions.
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1.3.3 Example Application of Darcy’s Law and the Flow Equation

Starting with Equation (1.7) or (1.8), let us now develop a model for a particular
simple scenario, and use the model to gain understanding about the scenario,
as well as to make predictions.

Water is flowing at a steady rate of 1.0 L/min through a 1I0m X 2m X 1m
rectangular culvert filled with sand (Figure 1.3). Hydraulic head measurements
at the inlet and outlet of the culvert are 9 and 8.9 m, respectively. What is the
hydraulic conductivity of the sand?

First, we need to make some assumptions and convert our physical scenario
into a conceptual model. Since we are told that hydraulic head only varies along
the length of the culvert and does not change with time, let us assume that we
can model this as a one-dimensional steady-state system. With no further infor-
mation, we can assume that the sand is homogeneous. Our conceptual model,
then, is of one-dimensional steady water flow through a 10-m-long culvert with
a2 m? cross-sectional area.

Having a conceptual model of our physical system, we are now at a point
where we can develop a mathematical model. Since we are at steady state, we
use Equation (1.8). If we designate our length dimension as x, Equation (1.8)

8.9m

9m

10m

A 4
x

) / 2m y
1.0 L/min

Figure 1.3 Rectangular culvert filled with sand for example application of Darcy’s law and
the flow equation.
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becomes
d*h
0=(=2— 19
(4%) (19)
with boundary conditions
hx=0m)=9m (1.9a)
h(x=10m)=8.9m (1.9b)

Note that this is an ordinary differential equation, since for the
one-dimensional steady-state flow conditions we have postulated, head
is only a function of x. The solution to this ordinary differential equation that
satisfies the two boundary conditions is

h(x) =9 m—0.01x (1.10)

Equation (1.10) is the solution to our model equation (Equation (1.9)), and it
allows us to calculate the hydraulic head (and hydraulic gradient) at any point
along the length of the culvert. The solution shows us that we have a linear
distribution of the head along the culvert length.

We may now apply Darcy’s law to answer the following question: what
is the hydraulic conductivity of the sand? Rewriting Equation (1.1) for the
one-dimensional system gives

-
_—lqli

A~
7 oh
1=

dx

K

(1.11)

From Equation (1.10), we know that % = —0.01 and by the definition of spe-
cific discharge as flow per unit area perpendicular to the flow direction we can
calculate || = Q4 = 10L/minfy 2*1m*fg00 1 *1 minjgo = 833 x 10~ °m/s.

Finally, applying Equation (1.11) gives us K = 8.33x10™* m/s.

We see that our models (Equations (1.1) and (1.8) allowed us to find the
answer to our question in this very simple case. More importantly, however,
the models allow us to understand the system. What happens to flow through
the culvert if the hydraulic gradient is doubled? What happens to flow if
we replace the sand with gravel having a hydraulic conductivity that is 10
times greater? What would we need to measure to determine sand and gravel
hydraulic conductivities if we are told the first half of the culvert is filled with
uniform sand and the second half filled with uniform gravel? These questions
can all be answered through consideration of the model equations.

1.3.4 Note of Caution - Know Model Assumptions and Applicable
Conditions

Let us now use our model to derive the well-known equation that describes
horizontal flow to a pumping well in an infinite, confined aquifer. A confined
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aquifer, also called an artesian aquifer, is an aquifer that is overlain by a
low-hydraulic-conductivity confining layer. The water in a confined aquifer is
under pressure, as opposed to water in an unconfined (water table) aquifer,
where the pressure at the water table is atmospheric (which, by convention,
is zero pressure). Thus, recalling that hydraulic head represents the potential
energy of water at a location in space, the head in an unconfined aquifer is just
the elevation of the water table, while the head in a confined aquifer is the sum
of the head due to elevation and the head due to pressure. Figure 1.4 depicts
an infinite, confined aquifer of thickness B, with a pumping well of radius r,, at
radial position » = 0 pumping water out of an aquifer of hydraulic conductivity,
K, at a flow rate Q [L3-T~!]. We see that the hydraulic head levels are above the
upper confining layer, due to the pressure head.

If we assume the pumping well has been pumping a long time, so that condi-
tions are steady state, we may be tempted to convert our model for steady-state
flow (Equation (1.8)) to radial coordinates and apply it to our problem:

2
0= <%) (1.12)

We immediately see this approach is incorrect. Integrating Equation (1.12),
we find that the hydraulic gradient, 7/, should be a constant. If the aquifer is
homogenous, so that the hydraulic conductivity, K, is a constant; application
of Darcy’s law tells us that the Darcy velocity, g, is also constant. Clearly, this

Hydraulic head N Ve

Confining layers - Pumping well

’—w

Figure 1.4 Pumping well in an infinite, confined aquifer.



1.3 A Simple Model - Darcy’s Law and Flow Modeling

cannot be the case, as we realize that as the water approaches the pumping well
and 7 gets smaller, the velocity of the water must increase.

So why did our approach fail? The problem is we applied the flow model,
which was formulated while assuming certain conditions, under a scenario
where those conditions were not valid. In particular, one of the implicit
assumptions that were made when deriving the flow model was that the
cross-sectional area of the differential element perpendicular to the flow
direction at x is the same as the cross-sectional area at x + Ax (see Figure 1.2,
which was used to derive Equation (1.8)). In fact, the annular differential
element depicted in Figure 1.5 is relevant to our scenario of a pumping well
in an infinite, confined aquifer. For Figure 1.5, the steady-state mass balance
equation around the annular differential element is

0 =q, arPrins27(r + Ar)B — q,p,27rB (1.13)

where g, ,, and g, are the specific discharges at location r + Ar and r, respec-
tively and 2z(r + Ar)B and 2zrB are the areas of the outer and inner annular
surfaces, respectively. Note how the areas at the inflow and outflow faces of the
differential element are not the same. Assuming incompressible flow, so that

A 4

Figure 1.5 Annular differential element in an infinite, confined aquifer with a pumping well.
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Priar = P, and letting Ar — 0, we obtain the following differential equation:

d
dg  q_

0 1.14
dr r ( )

Substituting for g using Darcy’s law in radial coordinates (g = —K“%) results
in the following second-order homogeneous ordinary differential equation:
@ 1dh _
dar?  rdr
For the scenario depicted in Figure 1.4, the following boundary conditions
apply:
dh

0 (1.15a)

— =0 when r - o (1.15b)
dr
dh
@~ Zar,BK VheNT =T (1:150

Note that the boundary condition (1.15c¢) is obtained by applying Darcy’s law
at the well radius, and using mass balance, since the flow into the well through
the well screen at r = r,, (inflow = ¢, 2zr,B) must equal Q. The solution to
Equation (1.15) is ’

Q
h= TmBK In(r) (1.16)

Interestingly, this solution, which is mathematically correct, does not make
practical sense, since the solution involves determining the natural logarithm of
the radial distance, r, which has dimensions. Thus, the value of # would depend
on the unit of length that is chosen for r. Therefore, for practical application
the solution must be normalized and written as the difference between two
heads:

Q p)
= In(2 1.17
=h = gk I <rl ) (1.17)

where /1, and /i, are heads at distances r, and r; from the pumping well,
respectively. Equation (1.17) is the well-known Thiem solution for steady-state
horizontal flow to a pumping well in an infinite, confined, homogeneous
aquifer.

In this section, we saw the importance of understanding the assumptions that
are made in developing a model and being aware of the conditions upon which
the model is applicable. We also saw an approach for testing model results, to
see if the model makes sense (i.e., the Equation (1.12) model predicted water
would move with a constant Darcy velocity toward a pumping well, which we
realized was unrealistic).
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1.3.5 Superposition (For a Fuller Discussion of Superposition Applied
to Groundwater Flow, See Reilly et al., 1984)

The principle of superposition is useful in helping to solve both flow and trans-
port problems. Superposition applies to linear equations, so before discussing
the principle of superposition, let us first define what it means for an equation
to be linear. An equation (and remember our definition of a model as an
equation — oftentimes a differential equation with initial/boundary conditions)
is said to be linear if all terms are linear in the dependent variable. Thus, all
the models we have discussed in this chapter so far (e.g., Equations (1.1),
(1.7), (1.8), and (1.15) are linear, because the dependent variable, /4, and its
derivatives are, in all cases, linear functions. The Boussinesq equation is an
example of a nonlinear equation. The following Boussinesq equation models
two-dimensional flow in an unconfined aquifer.

oh K| o oh 0 oh
—==|=I|h=)+=|Ih=
ot S, |ox \ ox dy \ dy

The similarity to Equation (1.7), which models three-dimensional flow in
a confined aquifer, is apparent. However, Equation (1.7) is linear since all
the terms with the dependent variable / are linear, whereas the Boussinesq
equation is nonlinear in /4, due to terms hah and hdh As an aside, the reason

the Boussinesq equation for unconﬁned ﬂow dlffers from Equation (1.7)
is because Equation (1.7) was derived using the mass balance around the
differential element shown in Figure 1.2, where the cross-sectional area
perpendicular to the flow direction is constant, whereas for unconfined flow
the differential element shown in Figure 1.6 is relevant, so that the areas of the
inflow and outflow surfaces are different, due to the difference in aquifer depth
at positions x and x + Ax.

If an equation is linear, so that superposition applies, that means that solu-
tions to the equation can be added together. This principle is perhaps best
explained with an example.

1.3.6 Example Application of the Principle of Superposition

Consider the scenario depicted in Figure 1.7. Two pumping wells and a mon-
itoring well are installed in a confined, infinite, homogeneous aquifer of 10 m
thickness and with no regional flow. Prior to turning on the pumps, the water
level (i.e., the hydraulic head) is measured at all three wells and found to be
100 m above sea level (since there is no regional flow, the head must be the
same at all locations). After turning on the pumps, the water level drops to 99,
98, and 97.4 m above sea level at pumping wells 1 and 2 and the monitoring
well, respectively. What is the hydraulic conductivity of the infinite aquifer?
We saw that Equation (1.17), which describes the head in a confined, infinite,
homogeneous aquifer influenced by a pumping well, is the solution to linear
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Cross-sectional

area = Why, ax
Cross-sectional

area = wh,
ax

Ox+ax

hX+AX

X hy# Py ax X + Ax

Figure 1.6 Conservation of mass through a differential element of porous media where the
area of inflow to the element does not equal the area of outflow.

Monitoring well Figure 1.7 Using the principle of
superposition to determine the
hydraulic conductivity of an infinite
homogeneous aquifer with two

5m 10m pumping wells.
Pumping well 1 Pumping well 2
Q =10 L/min Q =20 L/min
ry1=0.05m ry2 =0.05m

Aquifer thickness, B =10m
Hydraulic conductivity, K = ???

Equation (1.15). Thus, the principle of superposition applies and solutions to
Equation (1.15) are additive. Rather than thinking in terms of head, it is perhaps
more instructive in this case to think in terms of drawdown, where drawdown
is defined as the difference in hydraulic head before and after the pumping wells
are turned on. Thus, for this case, the drawdown at the monitoring well is 2.6 m.
The principle of superposition allows us to calculate this overall drawdown at
the monitoring well (s,,,,,) as the sum of the drawdown due to the influence of
pumping well 1 (s,,,;) and the drawdown due to the influence of pumping well
2 (S,,m2)- Thus, if we define 4,,,,; as the head at the monitoring well only due to



Problems

the influence of pumping well 1 and /4,,,, as the head at the monitoring well
only due to the influence of pumping well 2, we see

Syw1 =100m —h,,,, and s, =100m —h

mwl2
We then apply Equation (1.17) to calculate 4,,,, and 4,,,,,,:

r r
R A (T ang By = Moy + Dy (T
27BK o 27BK T

where /1,,; and /,,, are the heads at the well screens (radius =7, and r,,), Q,

and Q, are the pumping rates, and r,,,,, and r,,,, are the distances from the

monitoring well to the pumping well, for pumping wells 1 and 2, respectively.
Thus, our final equation for the overall drawdown at the monitoring well is

Smw = Smw1 + Smw2

Sy = 3 100m — |h,,; + i In (21
27xBK T

[ QZ w2

100 m — |A& In{ ==

+{ N G

Substituting in values for the problem, and converting flow in L/min to

m?/min:

' 0.01 m?/mi
2.6m={100m— 99 m + m/mmln( 5> m )]}

27(10 m)K 0.05 m

0.02 m?®/mi
+{100m—[98m+ m/mmln(lom )]}

27(10 m)K 0.05m

Solving this single algebraic equation with one unknown for K, we find
K =0.006 m/min.

The principle of superposition also means that if the drawdown response to
a well pumping at a given rate is x, the response to a well pumping at twice
that rate will be 2x. It also means that a pumping well and an injection well will
be mirror images of each other. That is, if pumping at a given rate results in a
drawdown of y, injection at the same rate will result in mounding (increasing
the head) of y.

Problems

1.1 Given that flow through the culvert in the example in Section 1.3.3 is
1.0 L/min, what is the flow if (a) the hydraulic gradient is doubled and (b)
sand is replaced by gravel having a hydraulic conductivity that is 10 times
greater?
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1.2

1.3

1.4

1.5

1.6

1.7

In the example in Section 1.3.3, assuming the flow through the culvert is
still steady at 1.0 L/min, what would we need to measure to determine
sand and gravel hydraulic conductivities if we are told the first half of
the culvert (x = 0—5m) is filled with uniform sand and the second half
(x =5-10m) filled with uniform gravel?

Show that the solution given in Equation (1.16) satisfies differential
equation (1.15a) and boundary conditions (1.15b and 1.15c).

Starting with mass balance around an annular differential element, derive
a differential equation and boundary conditions analogous to Equation
(1.15) for steady flow to a pumping well in an infinite, homogeneous,
unconfined aquifer. Keep in mind that for an unconfined aquifer, the
height of the differential element through which the water is flowing is
not constant, as it was for the confined aquifer depicted in Figures 1.4-and
1.5. The solution to the differential equation and boundary conditions
you develop (if done correctly) is sometimes referred to as the Dupuit
equation for steady-state flow to a well in an unconfined aquifer.

Is the differential equation derived in Problem 1.4 linear or nonlinear?
Does the principle of superposition apply?

Starting with mass balance around the differential element in Figure 1.6,
derive the Boussinesq equation.

Change the scenario shown in Figure 1.7 so that pumping well 2 is inject-
ing water at a rate of 20 L/min into the confined, infinite aquifer with a
hydraulic conductivity, K, equal to 0.006 m/min. Calculate the drawdown
(or mounding) at the monitoring well. HINT: For injection, the flow rate,
Q, in Equation (1.17) is a negative number. Also, if the drawdown, s, is
negative, it indicates mounding.
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