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Basic Descriptions and Properties

This first chapter gives basic descriptions and properties of deterministic data and
random data to provide a physical understanding for later material in this book.
Simple classification ideas are used to explain differences between stationary random
data, ergodic random data, and nonstationary random data. Fundamental statistical
functions are defined bywords alone for analyzing the amplitude, time, and frequency
domain properties of single stationary random records and pairs of stationary random
records. An introduction is presented on various types of input/output linear system
problems solved in this book, as well as necessary error analysis criteria to design
experiments and evaluate measurements.

1.1 DETERMINISTIC VERSUS RANDOM DATA

Any observed data representing a physical phenomenon can be broadly classified as
being either deterministic or nondeterministic. Deterministic data are those that can
be described by an explicit mathematical relationship. For example, consider a rigid
body that is suspended from a fixed foundation by a linear spring, as shown in
Figure 1.1. Letm be the mass of the body (assumed to be inelastic) and k be the spring
constant of the spring (assumed to be massless). Suppose the body is displaced from
its position of equilibrium by a distanceX and released at time t¼ 0. From either basic
laws of mechanics or repeated observations, it can be established that the following
relationship will apply:

xðtÞ ¼ X cos

ffiffiffiffi
k

m

r
t t � 0 ð1:1Þ

Equation (1.1) defines the exact location of the body at any instant of time in the
future. Hence, the physical data representing themotion of themass are deterministic.

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat
and Allan G. Piersol
Copyright � 2010 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



There are many physical phenomena in practice that produce data that can be
represented with reasonable accuracy by explicit mathematical relationships. For
example, the motion of a satellite in orbit about the earth, the potential across a
condenser as it discharges through a resistor, the vibration response of an unbalanced
rotating machine, and the temperature of water as heat is applied are all basically
deterministic. However, there are many other physical phenomena that produce data
that are not deterministic. For example, the height of waves in a confused sea, the
acoustic pressures generated by air rushing through a pipe, and the electrical output of
a noise generator represent data that cannot be described by explicit mathematical
relationships. There is no way to predict an exact value at a future instant of time.
These data are random in character and must be described in terms of probability
statements and statistical averages rather than by explicit equations.

The classification of various physical data as being either deterministic or random
might be debated inmany cases. For example, it might be argued that no physical data
in practice can be truly deterministic because there is always a possibility that some
unforeseen event in the future might influence the phenomenon producing the data in
amanner that was not originally considered. On the other hand, it might be argued that
no physical data are truly random, because an exact mathematical description might
be possible if a sufficient knowledge of the basic mechanisms of the phenomenon
producing the datawere available. In practical terms, the decision ofwhether physical
data are deterministic or random is usually based on the ability to reproduce the data
by controlled experiments. If an experiment producing specific data of interest can be
repeated many times with identical results (within the limits of experimental error),
then the data can generally be considered deterministic. If an experiment cannot be
designed that will produce identical results when the experiment is repeated, then the
data must usually be considered random in nature.

Various special classifications of deterministic and random data will now be
discussed. Note that the classifications are selected from an analysis viewpoint and do
not necessarily represent the most suitable classifications from other possible view-
points. Further note that physical data are usually thought of as being functions of time
andwill be discussed in such terms for convenience. Any other variable, however, can
replace time, as required.

Figure 1.1 Simple spring mass system.
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1.2 CLASSIFICATIONS OF DETERMINISTIC DATA

Data representing deterministic phenomena can be categorized as being either
periodic or nonperiodic. Periodic data can be further categorized as being either
sinusoidal or complex periodic. Nonperiodic data can be further categorized as being
either “almost-periodic” or transient. These various classifications of deterministic
data are schematically illustrated in Figure 1.2. Of course, any combination of these
forms may also occur. For purposes of review, each of these types of deterministic
data, along with physical examples, will be briefly discussed.

1.2.1 Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data that can be definedmathematically by
a time-varying function of the form

xðtÞ ¼ X sinð2pf0tþ uÞ ð1:2Þ
where

X¼ amplitude

f0¼ cyclic frequency in cycles per unit time

u¼ initial phase angle with respect to the time origin in radians

x(t)¼ instantaneous value at time t

The sinusoidal time history described by Equation (1.2) is usually referred to as a sine
wave. When analyzing sinusoidal data in practice, the phase angle u is often ignored.
For this case,

xðtÞ ¼ X sin 2pf0t ð1:3Þ
Equation (1.3) can be pictured by a time history plot or by an amplitude–frequency
plot (frequency spectrum), as illustrated in Figure 1.3.

The time interval required for one full fluctuation or cycle of sinusoidal data is
called the period Tp. The number of cycles per unit time is called the frequency f0.

Figure 1.2 Classification of deterministic data.
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The frequency and period are related by

Tp ¼ 1

f0
ð1:4Þ

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude
component at a specific frequency, as opposed to a continuous plot of amplitude
versus frequency. Such spectra are called discrete spectra or line spectra.

There are many examples of physical phenomena that produce approximately
sinusoidaldata inpractice.Thevoltageoutputofanelectricalalternator isoneexample;
the vibratory motion of an unbalanced rotating weight is another. Sinusoidal data
represent one of the simplest forms of time-varying data from the analysis viewpoint.

1.2.2 Complex Periodic Data

Complex periodic data are those types of periodic data that can be defined math-
ematically by a time-varying function whose waveform exactly repeats itself at
regular intervals such that

xðtÞ ¼ xðt � nTpÞ n ¼ 1; 2; 3; . . . ð1:5Þ
As for sinusoidal data, the time interval required for one full fluctuation is called the
period Tp. The number of cycles per unit time is called the fundamental frequency f1.A
special case for complex periodic data is clearly sinusoidal data, where f1¼ f0.

With few exceptions in practice, complex periodic data may be expanded into a
Fourier series according to the following formula:

xðtÞ ¼ a0
2

þ
X1
n¼1

ðan cos 2pnf1tþ bn sin 2pnf1tÞ ð1:6Þ

where

f1 ¼ 1

Tp

an ¼ 2

Tp

ðTp
0
xðtÞ cos 2pnf1t dt n ¼ 0; 1; 2; . . .

bn ¼ 2

Tp

ðTp
0
xðtÞ sin 2pnf1t dt n ¼ 1; 2; 3; . . .

Figure 1.3 Time history and spectrum of sinusoidal data.
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An alternative way to express the Fourier series for complex periodic data is

xðtÞ ¼ X0 þ
X1
n¼1

Xn cosð2pnf1t�unÞ ð1:7Þ

where

X0 ¼ a0=2

Xn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
n ¼ 1; 2; 3; . . .

un ¼ tan�1ðbn=anÞ n ¼ 1; 2; 3; . . .

Inwords, Equation (1.7) says that complex periodic data consist of a static component
X0 and an infinite number of sinusoidal components called harmonics, which have
amplitudes Xn and phases un. The frequencies of the harmonic components are all
integral multiples of f1.

When analyzing periodic data in practice, the phase angles un are often ignored.
For this case, Equation (1.7) can be characterized by a discrete spectrum, as illustrated
in Figure 1.4. Sometimes, complex periodic data will include only a few components.
In other cases, the fundamental component may be absent. For example, suppose a
periodic time history is formed bymixing three sinewaves that have frequencies of 60,
75, and 100Hz. The highest common divisor is 5Hz, so the period of the resulting
periodic data isTp¼ 0.2 s.Hence,when expanded into a Fourier series, all values ofXn

are zero except for n¼ 12, n¼ 15, and n¼ 20.
Physical phenomena that produce complex periodic data are far more common

than those that produce simple sinusoidal data. In fact, the classification of data as
being sinusoidal is often only an approximation for data that are actually complex. For
example, the voltage output from an electrical alternator may actually display, under
careful inspection, some small contributions at higher harmonic frequencies. In other
cases, intense harmonic components may be present in periodic physical data. For
example, the vibration response of a multicyclinder reciprocating engine will usually
display considerable harmonic content.

Figure 1.4 Spectrum of complex periodic data.
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1.2.3 Almost-Periodic Data

In Section 1.2.2, it is noted that periodic data can generally be reduced to a series of
sine waves with commensurately related frequencies. Conversely, the data formed by
summing two or more commensurately related sine waves will be periodic. However,
the data formed by summing two or more sine waves with arbitrary frequencies
generally will not be periodic. Specifically, the sum of two or more sinewaves will be
periodic only when the ratios of all possible pairs of frequencies form rational
numbers. This indicates that a fundamental period exists that will satisfy the
requirements of Equation (1.5). Hence,

xðtÞ ¼ X1 sinð2tþ u1ÞþX2 sinð3tþ u2ÞþX3 sinð7tþ u3Þ
is periodic because 2

3,
2
7, and

3
7 are rational numbers (the fundamental period is Tp¼ 1).

On the other hand,

xðtÞ ¼ X1 sinð2tþ u1ÞþX2 sinð3tþ u2ÞþX3 sinð
ffiffiffiffiffi
50

p
tþ u3Þ

is not periodic because 2=
ffiffiffiffiffi
50

p
and 3=

ffiffiffiffiffi
50

p
are not rational numbers (the fundamental

period is infinitely long). The resulting time history in this case will have an almost-
periodic character, but the requirements of Equation (1.5) will not be satisfied for any
finite value of Tp.

Based on these discussions, almost-periodic data are those types of nonperiodic
data that can be defined mathematically by a time-varying function of the form

xðtÞ ¼
X1
n ¼ 1

Xn sin ð2pfntþ unÞ ð1:8Þ

where fn=fm 6¼ rational number in all cases. Physical phenomena producing almost-
periodic data frequently occur in practice when the effects of two or more unrelated
periodic phenomena are mixed. A good example is the vibration response in a
multiple-engine propeller airplane when the engines are out of synchronization.

An important property of almost-periodic data is as follows. If the phase angles un
are ignored, Equation (1.8) can be characterized by a discrete frequency spectrum
similar to that for complex periodic data. The only difference is that the frequencies of
the components are not related by rational numbers, as illustrated in Figure 1.5.

Figure 1.5 Spectrum of almost-periodic data.
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1.2.4 Transient Nonperiodic Data

Transient data are defined as all nonperiodic data other than the almost-periodic data
discussed in Section 1.2.3. In other words, transient data include all data not
previously discussed that can be described by some suitable time-varying function.
Three simple examples of transient data are given in Figure 1.6.

Physical phenomena that produce transient data are numerous and diverse. For
example, the data in Figure 1.6(a) could represent the temperature of water in a kettle
(relative to room temperature) after the flame is turned off. The data in Figure 1.6(b)
might represent the free vibration of a damped mechanical system after an excitation
force is removed. The data in Figure 1.6(c) could represent the stress in an end-loaded
cable that breaks at time c.

An important characteristic of transient data, as opposed to periodic and almost-
periodic data, is that a discrete spectral representation is not possible A continuous
spectral representation for transient data can be obtained inmost cases, however, from
a Fourier transform given by

Xðf Þ ¼
ð1
�1

xðtÞe�j2pftdt ð1:9Þ

The Fourier transform X(f) is generally a complex number that can be expressed in
complex polar notation as

Xðf Þ ¼ jXðf Þje�juðf Þ

Here, Xðf Þj j is the magnitude of X(f) and u(f) is the argument. In terms of the
magnitude Xðf Þj j, continuous spectra of the three transient time histories in
Figure 1.6 are as presented in Figure 1.7. Modern procedures for the digital
computation of Fourier series and finite Fourier transforms are detailed in
Chapter 11.

Figure 1.6 Illustrations of transient data.
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1.3 CLASSIFICATIONS OF RANDOM DATA

As discussed earlier, data representing a random physical phenomenon cannot be
described by an explicit mathematical relationship because each observation of the
phenomenonwill be unique. In other words, any given observationwill represent only
one of many possible results that might have occurred. For example, assume the
output voltage from a thermal noise generator is recorded as a function of time. A
specific voltage time history record will be obtained, as shown in Figure 1.8. If a
second thermal noise generator of identical construction and assembly is operated
simultaneously, however, a different voltage time history record would result. In fact,
every thermal noise generator that might be constructed would produce a different
voltage time history record, as illustrated in Figure 1.8. Hence, the voltage time
history for any one generator is merely one example of an infinitely large number of
time histories that might have occurred.

A single time history representing a random phenomenon is called a sample
function (or a sample recordwhen observed over a finite time interval). The collection
of all possible sample functions that the random phenomenon might have produced is
called a random process or a stochastic process. Hence, a sample record of data for a
random physical phenomenon may be thought of as one physical realization of a
random process.

Random processes may be categorized as being either stationary or nonstationary.
Stationary random processes may be further categorized as being either ergodic or
nonergodic. Nonstationary random processes may be further categorized in terms of

Figure 1.7 Spectra of transient data.
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specific types of nonstationary properties. These various classifications of random
processes are schematically illustrated in Figure 1.9. The meaning and physical
significance of thesevarious types of randomprocesseswill nowbe discussed in broad
terms. More analytical definitions and developments are presented in Chapters 5
and 12.

1.3.1 Stationary Random Data

Whena physical phenomenon is considered in termsofa randomprocess, the properties
of the phenomenon can hypothetically be described at any instant of time by computing

Figure 1.8 Sample records of thermal noise generator outputs.

Figure 1.9 Classifications of random data.
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averagevalues over the collection of sample functions that describe the randomprocess.
For example, consider the collection of sample functions (also called the ensemble) that
forms therandomprocess illustratedinFigure1.10.Themeanvalue (firstmoment)of the
random process at some t1 can be computed by taking the instantaneous value of each
sample function of the ensemble at time t1, summing the values, and dividing by the
number of sample functions. In a similar manner, a correlation (jointmoment) between
the values of the random process at two different times (called the autocorrelation
function) can be computed by taking the ensemble average of the product of instant-
aneous values at two times, t1 and t1 þ t. That is, for the random process {x(t)}, where
thesymbol{}isusedtodenoteanensembleofsamplefunctions,themeanvaluemx(t1)and
the autocorrelation function Rxx (t1, t1 þ t) are given by

mxðt1Þ ¼ lim
N!1

1

N

XN
k¼1

xkðt1Þ ð1:10aÞ

Rxxðt1; t1 þ tÞ ¼ lim
N!1

1

N

XN
k¼1

xkðt1Þxkðt1 þ tÞ ð1:10bÞ

where the final summation assumes that each sample function is equally likely.

Figure 1.10 Ensemble of time history records defining a random process.
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For the general case where mx(t1) and Rxx(t1, t1 þ t) defined in Equation (1.10)
vary as time t1 varies, the random process {x(t)} is said to be nonstationary. For the
special case where mx(t1) and Rxx(t1, t1 þ t) do not vary as time t1 varies, the random
process {x(t)} is said to be weakly stationary or stationary in the wide sense. For
weakly stationary random processes, the mean value is a constant and the auto-
correlation function is dependent only on the time displacement t. That is, mx(t1)¼ mx
and Rxx(t1, t1 þ t)¼Rxx(t).

An infinite collection of higher order moments and joint moments of the
random process {x(t)} could also be computed to establish a complete family of
probability distribution functions describing the process. For the special case where
all possible moments and joint moments are time invariant, the random process
{x(t)} is said to be strongly stationary or stationary in the strict sense. For many
practical applications, verification of weak stationarity will justify an assumption
of strong stationarity.

1.3.2 Ergodic Random Data

In Section 1.3.1, it is noted how the properties of a random process can be determined
by computing ensemble averages at specific instants of time. In most cases, however,
it is also possible to describe the properties of a stationary random process by
computing time averages over specific sample functions in the ensemble. For
example, consider the kth sample function of the random process illustrated in
Figure 1.10. Themean value mx(k) and the autocorrelation functionRxx(t, k) of the kth
sample function are given by

mxðkÞ ¼ lim
T !1

1

T

ðT
0
xkðtÞ dt ð1:11aÞ

Rxxðt; kÞ ¼ lim
T!1

1

T

ðT
0
xkðtÞxkðtþ tÞ dt ð1:11bÞ

If the random process {x(t)} is stationary, and mx(k) and Rxx(t, k) defined in
Equation (1.11) do not differ when computed over different sample functions, the
random process is said to be ergodic. For ergodic random processes, the time-
averaged mean value and autocorrelation function (as well as all other time-
averaged properties) are equal to the corresponding ensemble-averaged values.
That is, mx(k)¼ mx andRxx(t, k)¼Rxx(t). Note that only stationary random processes
can be ergodic.

Ergodic randomprocesses are clearly an important class of randomprocesses since
all properties of ergodic random processes can be determined by performing time
averages over a single sample function. Fortunately, in practice, random data
representing stationary physical phenomena are generally ergodic. It is for this
reason that the properties of stationary random phenomena can bemeasured properly,
in most cases, from a single observed time history record. A full development of the
properties of ergodic random processes is presented in Chapter 5.

CLASSIFICATIONS OF RANDOM DATA 11



1.3.3 Nonstationary Random Data

Nonstationary random processes include all random processes that do not meet the
requirements for stationary defined in Section 1.3.1. Unless further restrictions are
imposed, the properties of a nonstationary random process are generally time-
varying functions that can be determined only by performing instantaneous
averages over the ensemble of sample functions forming the process. In practice,
it is often not feasible to obtain a sufficient number of sample records to permit the
accurate measurement of properties by ensemble averaging. This fact has tended to
impede the development of practical techniques for measuring and analyzing
nonstationary random data.

In many cases, the nonstationary random data produced by actual physical phe-
nomena can be classified into special categories of nonstationarity that simplify the
measurement and analysis problem. For example, some types of randomdatamight be
described by a nonstationary random process {x(t)}, where each sample function is
givenbyx(t)¼ a(t)u(t).Here,u(t) isasamplefunctionfromastationaryrandomprocess
{u(t)} anda(t) is a deterministicmultiplication factor. In otherwords, thedatamight be
represented by a nonstationary random process consisting of sample functions with a
common deterministic time trend. If nonstationary randomdata fit a specific model of
this type, ensemble averaging is not always needed to describe the data. The various
desiredpropertiescansometimesbeestimatedfromasinglesamplerecord,as is truefor
ergodic stationary data. These matters are discussed in detail in Chapter 12.

1.3.4 Stationary Sample Records

The concept of stationarity, as defined and discussed in Section 1.3.1, relates to the
ensemble-averaged properties of a random process. In practice, however, data in the
form of individual time history records of a random phenomenon are frequently
referred to as being stationary or nonstationary. A slightly different interpretation of
stationarity is involved here. When a single time history record is referred to as being
stationary, it is generally meant that the properties computed over short time intervals
do not vary significantly from one interval to the next. The word significantly is used
here to mean that observed variations are greater than would be expected due to
normal statistical sampling variations.

To help clarify this point, consider a single sample record xk(t) obtained from the
kth sample function of a random process {x(t)}. Assume a mean value and an
autocorrelation function are obtained by time averaging over a short interval Twith a
starting time of t1 as follows:

mxðt1; kÞ ¼
1

T

ðt1 þT

t1

xkðtÞ dt ð1:12aÞ

Rxxðt1; t1 þ t; kÞ ¼ 1

T

ðt1 þ T

t1

xkðtÞxkðtþ tÞ dr ð1:12bÞ

12 BASIC DESCRIPTIONS AND PROPERTIES



For the general case where the sample properties defined in Equation (1.12) vary
significantly as the starting time tl varies, the individual sample record is said to be
nonstationary. For the special case where the sample properties defined in
Equation (1.12) do not vary significantly as the starting time t1 varies, the sample
record is said to be stationary. Note that a sample record obtained from an ergodic
random process will be stationary. Furthermore, sample records frommost physically
interesting nonstationary random processes will be nonstationary. Hence, if an
ergodic assumption is justified (as it is for most actual stationary physical phenom-
ena), verification of stationarity for a single sample record will effectively justify an
assumption of stationarity and ergodicity for the random process from which the
sample record is obtained. Tests for stationarity of individual sample records are
discussed in Chapters 4 and 10.

1.4 ANALYSIS OF RANDOM DATA

The analysis of random data involves different considerations from the deterministic
data discussed in Section 1.2. In particular, because no explicitmathematical equation
can be written for the time histories produced by a random phenomenon, statistical
procedure must be used to define the descriptive properties of the data. Nevertheless,
well-defined input/output relations exist for random data, which are fundamental to a
wide range of applications. In such applications, however, an understanding and
control of the statistical errors associatedwith the computed data properties and input/
output relationships is essential.

1.4.1 Basic Descriptive Properties

Basic statistical properties of importance for describing single stationary random
records are

1. Mean and mean square values

2. Probability density functions

3. Autocorrelation functions

4. Autospectral density functions

For the present discussion, it is instructive to define these quantities by words alone,
without the use of mathematical equations. After this has been done, they will be
illustrated for special cases of interest.

The mean value mx and the variance s2
x for a stationary record represent the central

tendency and dispersion, respectively, of the data. The mean square value c2
x , which

equals the variance plus the square of themean, constitutes ameasure of the combined
central tendency and dispersion. The mean value is estimated by simply computing
the average of all data values in the record. The mean square value is similarly
estimated by computing the average of the squared datavalues. By first subtracting the
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mean value estimate from all the data values, the mean square value computation
yields a variance estimate.

The probability density function p(x) for a stationary record represents the rate of
change of probability with data value. The function p(x) is generally estimated by
computing the probability that the instantaneous value of the single record will be in a
particular narrow amplitude range centered at various data values, and then dividing
by the amplitude range.The total area under the probability density function over all
data values will be unity because this merely indicates the certainty of the fact that the
data values must fall between�1 and þ 1. The partial area under the probability
density function from�1 to some given value x represents the probability distribu-
tion function, denoted by P(x). The area under the probability density function
between any two values x1 and x2, given by P(x2)�P(x1), defines the probability that
any future data values at a randomly selected time will fall within this amplitude
interval. Probability density and distribution functions are fully discussed in Chapters
3 and 4.

The autocorrelation function Rxx(t) for a stationary record is a measure of time-
related properties in the data that are separated by fixed time delays. It can be
estimated by delaying the record relative to itself by some fixed time delay t, then
multiplying the original record with the delayed record, and finally averaging the
resulting product values over the available record length or over some desired portion
of this record length. The procedure is repeated for all time delays of interest.

The autospectral (also called power spectral) density function Gxx( f ) for a
stationary record represents the rate of change of mean square value with frequency.
It is estimated by computing the mean square value in a narrow frequency band at
various center frequencies, and then dividing by the frequency band. The total area
under the autospectral density function over all frequencies will be the total mean
square value of the record. The partial area under the autospectral density function
from f1 to f2 represents the mean square value of the record associated with that
frequency range. Autocorrelation and autospectral density functions are developed in
Chapter 5.

Four typical time histories of a sine wave, sine wave plus random noise, narrow
bandwidth randomnoise, andwide bandwidth randomnoise are shown in Figure 1.11.
Theoretical plots of their probability density functions, autocorrelation functions, and
autospectral density functions are shown in Figures 1.12, 1.13, and 1.14, respectively.
Equations for all of these plots are given in Chapter 5, together with other theoretical
formulas.

For pairs of random records from two different stationary random processes, joint
statistical properties of importance are

1. Joint probability density functions

2. Cross-correlation functions

3. Cross-spectral density functions

4. Frequency response functions

5. Coherence functions
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The first three functions measure fundamental properties shared by the pair of
records in the amplitude, time, or frequency domains. From knowledge of the cross-
spectral density function between the pair of records, as well as their individual
autospectral density functions, one can compute theoretical linear frequency response
functions (gain factors and phase factors) between the two records. Here, the two
records are treated as a single-input/single-output problem. The coherence function is
a measure of the accuracy of the assumed linear input/output model and can also be
computed from the measured autospectral and cross-spectral density functions.
Detailed discussions of these topics appear in Chapters 5, 6, and 7.

Figure 1.11 Four special time histories. (a) Sine wave. (b) Sine wave plus random noise. (c) Narrow
bandwidth random noise. (d) Wide bandwidth random noise.
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Common applications of probability density and distribution functions, beyond a
basic probabilistic description of data values, include

1. Evaluation of normality

2. Detection of data acquisition errors

3. Indication of nonlinear effects

4. Analysis of extreme values

Figure 1.12 Probability density function plots. (a) Sine wave. (b) Sine wave plus random noise.
(c) Narrow bandwidth random noise. (d) Wide bandwidth random noise.
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Figure 1.13 Autocorrelation function plots. (a) Sine wave. (b) Sine wave plus random noise. (c) Narrow
bandwidth random noise. (d) Wide bandwidth random noise.
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The primary applications of correlation measurements include

1. Detection of periodicities

2. Prediction of signals in noise

3. Measurement of time delays

4. Location of disturbing sources

5. Identification of propagation paths and velocities

Figure 1.14 Autospectral density function plots. (a) Sine wave. (b) Sine wave plus random noise.
(c) Narrow bandwidth random noise. (d) Wide bandwidth random noise.
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Typical applications of spectral density functions include

1. Determination of system properties from input data and output data

2. Prediction of output data from input data and system properties

3. Identification of input data from output data and system properties

4. Specifications of dynamic data for test programs

5. Identification of energy and noise sources

6. Optimum linear prediction and filtering

1.4.2 Input/Output Relations

Input/output cases of common interest can usually be considered as combinations of
one or more of the following linear system models:

1. Single-input/single-output model

2. Single-input/multiple-output model

3. Multiple-input/single-output model

4. Multiple-input/multiple-output model

In all cases, there may be one or more parallel transmission paths with different time
delays between each input point and output point. Formultiple-input cases, the various
inputs may or may not be correlated with each other. Special analysis techniques are
required when nonstationary data are involved, as treated in Chapter 12, or when
systems are nonlinear, as treated in Chapter 14.

A simple single-input/single-outputmodel is shown in Figure 1.15. Here, x(t) and y
(t) are the measured input and output stationary random records, and n(t) is the
unmeasured extraneous output noise. The quantity Hxy(f) is the frequency response
function of a constant-parameter linear system between x(t) and y(t). Figure 1.16
shows a single-input/multiple-output model that is a simple extension of Figure 1.15,
where an input x(t) produces many outputs yi(t), i¼ 1, 2, 3,.... Any output yi(t) is the
result of x(t) passing through a constant-parameter linear system described by the
frequency response function Hxi(f). The noise terms ni(t) represent unmeasured
extraneous output noise at the different outputs. It is clear that Figure 1.16 can be
considered as a combination of separate single-input/single-output models.

Appropriate procedures for solving single-inputmodels are developed inChapter 6
using measured autospectral and cross-spectral density functions. Ordinary coher-

Figure 1.15 Single-input/single-output system with output noise.
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ence functions are defined, which play a key role in both system-identification and
source-identification problems. To determine both the gain factor and the phase factor
of a desired frequency response function, it is always necessary to measure the cross-
spectral density function between the input and output points. A good estimate of the
gain factor alone can be obtained from measurements of the input and output
autospectral density functions only if there is negligible input and output extraneous
noise.

For a well-defined single-input/single-output model where the data are stationary,
the system is linear and has constant parameters, and there is no extraneous noise at
either the input or output point, the ordinary coherence function will be identically
unity for all frequencies. Any deviation from these ideal conditions will cause the
coherence function to be less than unity. In practice, measured coherence functions
will often be less than unity and are important in determining the statistical confidence
in frequency response function measurements.

Extensions of these ideas can be carried out for general multiple-input/multiple-
output problems, which require the definition and proper interpretation of multiple
coherence functions and partial coherence functions. These general situations can be
considered as combinations of a set ofmultiple-input/single-outputmodels for a given
set of stationary inputs and for different constant-parameter linear systems, as shown
in Figure 1.17. Modern procedures for solving multiple-input/output problems are
developed in Chapter 7 using conditioned (residual) spectral density functions. These
procedures are extensions of classical regression techniques discussed inChapter 4. In
particular, the output autospectral density function in Figure 1.17 is decomposed to
show how much of this output spectrum at any frequency is due to any input
conditioned on other inputs in a prescribed order.

Basic statistical principles to evaluate random data properties are covered in
Chapter 4. Error analysis formulas for bias errors and random errors are developed
in Chapters 8 and 9 for various estimates made in analyzing single random records and
multiple random records. Included are random error formulas for estimates of
frequency response functions (both gain factors and phase factors) and estimates of

Figure 1.16 Single-input/multiple-output system with output noise.
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coherence functions (ordinary, multiple, or partial). These computations are easy to
apply and should be performed to obtain proper interpretations of measured results.

1.4.3 Error Analysis Criteria

Some error analysis criteria for measured quantities will now be defined as back-
ground for the material in Chapters 8 and 9. Let a hat (^) symbol over a quantity f,
namely, f̂, denote an estimate of this quantity. The quantity f̂will be an estimate off
based on a finite time interval or a finite number of sample points.

Conceptually, suppose f̂ can be estimated many times by repeating an experiment
or some measurement program. Then, the expected value of f̂, denoted by E½f̂�, is
something one can estimate. For example, if an experiment is repeated many times to
yield results f̂i, i¼ 1, 2, . . ., N, then

E½f̂� ¼ lim
N!1

1

N

XN
i¼1

f̂i ð1:13Þ

This expected value may ormay not equal the true valuef. If it does, the estimate f̂ is
said to be unbiased. Otherwise, it is said to be biased. The bias of the estimate, denoted
b½f̂�, is equal to the expected value of the estimate minus the true value—that is,

b½f̂� ¼ E½f̂��f ð1:14Þ

Figure 1.17 Multiple-input/single-output system with output noise.
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It follows that the bias error is a systematic error that always occurs with the same
magnitude in the same direction when measurements are repeated under identical
circumstances.

The variance of the estimate, denoted byVar½f̂�, is defined as the expected value of
the squared differences from the mean value. In equation form,

Var½f̂� ¼ E½ðf̂�E½f̂�Þ2� ð1:15Þ
The variance describes the random error of the estimate—that is, that portion of the
error that is not systematic and can occur in either direction with different magnitudes
from one measurement to another.

An assessment of the total estimation error is givenby themean square error,which
is defined as the expected value of the squared differences from the true value. The
mean square error of f̂ is indicated by

mean square error½f̂� ¼ E½ðf̂�fÞ2� ð1:16Þ
It is easy to verify that

E½ðf̂�fÞ2� ¼ Var½f̂� þ ðb½f̂�Þ2 ð1:17Þ
In words, the mean square error is equal to the variance plus the square of the bias. If
the bias is zero or negligible, then the mean square error and variance are equivalent.

Figure 1.18 illustrates the meaning of the bias (systematic) error and the variance
(random) error for the case of testing two guns for possible purchase by shooting each
gun at a target. In Figure 1.18(a), gunA has a large bias error and small variance error.
In Figure 1.18(b), gun B has a small bias error but large variance error. As shown, gun
Awill never hit the target,whereas gunBwill occasionally hit the target. Nevertheless,
most people would prefer to buy gun A because the bias error can be removed
(assuming one knows it is present) by adjusting the sights of the gun, but the random

Figure 1.18 Randomand bias errors in gun shoots at a target. (a) GunA: large bias error and small random
error. (b) Gun B: small bias error and large random error.
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error cannot be removed. Hence, gun A provides the potential for a smaller mean
square error.

A final important quantity is the normalized rms error of the estimate, denoted by
e½f̂�. This error is a dimensionless quantity that is equal to the square root of the mean
square error divided by the true value (assumed, of course, to be different from zero).
Symbolically,

e½f̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðf̂�fÞ2�

q
f

ð1:18Þ

In practice, one should try to make the normalized rms error as small as possible.
This will help to guarantee that an arbitrary estimate f̂ will lie close to the true
value f.

1.4.4 Data Analysis Procedures

Recommended data analysis procedures are discussed in more detail in Chapters
10–14. Chapter 10 deals with data acquisition problems, including data collection,
storage, conversion, and qualification. General steps are outlined for proper data
analysis of individual records and multiple records, as would be needed for different
applications. Digital data analysis techniques discussed in Chapter 11 involve
computational procedures to perform trend removal, digital filtering, Fourier series,
and fast Fourier transforms on discrete time series data representing sample records
from stationary (ergodic) random data. Digital formulas are developed to compute
estimates of probability density functions, correlation functions, and spectral density
functions for individual records and for associated joint records. Further detailed
digital procedures are stated to obtain estimates of all of the quantities described in
Chapters 6 and 7 to solve various types of single-input/output problems and multiple-
input/output problems. Chapter 12 is devoted to separate methods for nonstationary
data analysis, and Chapter 13 develops Hilbert transform techniques. Chapter 14
discusses models for nonlinear system analysis.

PROBLEMS

1.1 Determine the period of the function defined by

xðtÞ ¼ sin 11tþ sin 12t

1.2 For the following functions, which are periodic and which are nonperiodic?

(a) x(t)¼ 3 sin t þ 2 sin 2t þ sin 3t.

(b) x(t)¼ 3 sin t þ 2 sin 2t þ sin pt.
(c) x(t)¼ 3 sin 4t þ 2 sin 5t þ sin 6t.

(d) x(t)¼ e�t sin t.
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1.3 If a stationary random process {x(t)} has a mean value of mx, what is the
limiting value of the autocorrelation function Rxx(t) as the time delay t
becomes long?

1.4 An estimate is known to have a mean square error of 0.25 and a bias error of
0.40. Determine the variance of the estimate.

1.5 In Problem1.4, if the quantity being estimated has a true value off¼ 5,what is
the normalized rms error of the estimate?

In Problems l.6–1.9 state which properties are always true.

1.6 A stationary random process must

(a) be discrete.

(b) be continuous.

(c) be ergodic.

(d) have ensemble-averaged properties that are independent of time.

(e) have time-averaged properties that are equal to the ensemble-averaged
properties.

1.7 An ergodic random process must

(a) be discrete.

(b) be continuous.

(c) be stationary.

(d) have ensemble-averaged properties that are independent of time.

(e) have time-averaged properties that are equal to the ensemble-averaged
properties.

1.8 A single sample function can be used to find all statistical properties of a
random process if the process is

(a) deterministic.

(b) ergodic.

(c) stationary.

(d) all of the above.

1.9 The autocorrelation function of a stationary random process

(a) must decrease as tj j increases.
(b) is a function of the time difference only.

(c) must approach a constant as tj j increases.
(d) must always be nonnegative.

1.10 How do the answers to Problem l.9 change if the stationary random process is
mixed with a periodic process?

24 BASIC DESCRIPTIONS AND PROPERTIES


