
Chapter 1

Noting Numbers Scientifically
In This Chapter
� Crunching numbers in scientific and exponential notation

� Telling the difference between accuracy and precision

� Doing math with significant figures

Chemistry is a science. This means that like any other kind of scientist, a chemist tests
hypotheses by doing experiments. Better tests require more reliable measurements,

and better measurements are those that have more accuracy and precision. This explains
why chemists get so giggly and twitchy about high-tech instruments; those instruments
make better measurements. How do chemists report their precious measurements? What’s
the difference between accuracy and precision in those measurements? How do chemists
do math with measurements? These questions may not keep you awake at night, but know-
ing the answers to them will keep you from making embarrassing, rookie errors in chem-
istry. So we address them in this chapter.

Using Exponential and Scientific Notation 
to Report Measurements

Because chemistry concerns itself with ridiculously tiny things like atoms and molecules,
chemists often find themselves dealing with extraordinarily small or extraordinarily large
numbers. Numbers describing the distance between two atoms joined by a bond, for exam-
ple, run in the ten-billionths of a meter. Numbers describing how many water molecules 
populate a drop of water run into the trillions of trillions.

To make working with such extreme numbers easier, chemists turn to scientific notation,
which is a special kind of exponential notation. Exponential notation simply means writing 
a number in a way that includes exponents. Every number is written as the product of two
numbers, a coefficient and a power of 10. In plain old exponential notation, a coefficient can
be any value of a number multiplied by a power with a base of 10 (such as 104). But scientists
have rules for coefficients in scientific notation. In scientific notation, a coefficient is always
at least 1 and always less than 10 (such as 7, 3.48, or 6.0001).

To convert a very large or very small number to scientific notation, position a decimal point
between the first and second digits. Count how many places you moved the decimal to the
right or left, and that’s the power of 10. If you moved the decimal to the left, the power is 
positive; to the right is negative. (You use the same process for exponential notation, but 
you can position the decimal anywhere.)
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In scientific notation, the coefficients should be greater than 1 and less than 10, so look for
the first digit other than 0.

To convert a number written in scientific notation back into decimal form, just multiply the
coefficient by the accompanying power of 10.

10 Part I: Getting Cozy with Numbers, Atoms, and Elements 

Q. Convert 47,000 to scientific notation.

A. 47,000 = 4.7 × 104. First, imagine the
number as a decimal:

47,000.00

Next, move the decimal between the first
two digits:

4.7000

Then count how many positions to the
left you moved the decimal (four, in this
case), and write that as a power of 10: 
4.7 × 104.

Q. Convert 0.007345 to scientific notation.

A. 0.007345 = 7.345 × 10–3. First, move the
decimal between the first two nonzero
digits:

7.345

Then count how many positions to the
right you moved the decimal (three, in
this case), and write that as a power of
10: 0.007345 = 7.345 × 10–3.

1. Convert 200,000 into scientific notation.

Solve It

3. Convert 0.00002 into scientific notation.

Solve It

2. Convert 80,736 into scientific notation.

Solve It

4. Convert 6.903 × 102 from scientific notation
into decimal form.

Solve It
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Multiplying and Dividing in Scientific Notation
A major benefit of presenting numbers in scientific notation is that it simplifies common arith-
metic operations. (Another benefit is that, among the pocket-protector set, numbers with
exponents just look way cooler.) The simplifying powers of scientific notation are most evi-
dent in multiplication and division. (As we describe in the next section, addition and subtrac-
tion benefit from exponential notation, but not necessarily from strict scientific notation.)

To multiply two numbers written in scientific notation, multiply the coefficients, and then
add the exponents. To divide two numbers, simply divide the coefficients, and then subtract
the exponent of the denominator (the bottom number) from the exponent of the numerator
(the top number).
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Q. Multiply, using the “shortcuts” of scien-
tific notation: (1.4 × 102) × (2.0 × 10–5).

A. 2.8 × 10–3. First, multiply the coefficients:

1.4 × 2.0 = 2.8

Next, add the exponents of the powers 
of 10:

102 × 10–5 = 102 + (–5) = 10–3

Finally, join your new coefficient to your
new power of 10:

2.8 × 10–3

Q. Divide, using the “shortcuts” of scientific
notation: (3.6 × 10–3) / (1.8 × 104).

A. 2.0 × 10–7. First, divide the coefficients:

3.6 / 1.8 = 2.0

Next, subtract the exponent of the
denominator from the exponent of the
numerator:

10–3 / 104 = 10–3 – 4 = 10–7

Then, join your new coefficient to your
new power of 10:

2.0 × 10–7

5. Multiply (2.2 × 109) × (5.0 × 10–4).

Solve It

6. Divide (9.3 × 10–5) / (3.1 × 102).

Solve It
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Using Exponential Notation to Add and Subtract
Addition or subtraction gets easier when your numbers are expressed as coefficients of iden-
tical powers of 10. To wrestle your numbers into this form, you might need to use coeffi-
cients less than 1 or greater than 10. So, scientific notation is a bit too strict for addition and
subtraction, but exponential notation still serves us well.

To add two numbers easily by using exponential notation, first express each number as a
coefficient and a power of 10, making sure that 10 is raised to the same exponent in each
number. Then add the coefficients. To subtract numbers in exponential notation, follow the
same steps, but subtract the coefficients.

12 Part I: Getting Cozy with Numbers, Atoms, and Elements 

7. Using scientific notation, multiply 
52 × 0.035.

Solve It

8. Using scientific notation, divide 
0.00809 / 20.3.

Solve It

Q. Use exponential notation to add these
numbers: 3,710 + 2.4 × 102.

A. 39.5 × 102. First, convert both numbers
to the same power of 10:

37.1 × 102 and 2.4 × 102

Next, add the coefficients:

37.1 + 2.4 = 39.5

Finally, join your new coefficient to the
shared power of 10:

39.5 × 102
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Q. Use exponential notation to do this sub-
traction: 0.0743 – 0.0022.

A. 7.21 × 10–2. First, convert both numbers
to the same power of 10:

7.43 × 10–2 and 0.22 × 10–2

Next, subtract the coefficients:

7.43 – 0.22 = 7.21

Then join your new coefficient to the
shared power of 10:

7.21 × 10–2

9. Add 398 × 10–6 + 147 × 10–6.

Solve It

10. Subtract 7.685 × 105 – 1.283 × 105.

Solve It

11. Using exponential notation, add 0.00206 +
0.0381.

Solve It

12. Using exponential notation, subtract 
9,352 – 431.

Solve It
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Distinguishing between Accuracy and Precision
Accuracy and precision . . . precision and accuracy . . . same thing, right? Chemists every-
where gasp in horror, reflexively clutching their pocket protectors — accuracy and precision
are different!

� Accuracy describes how closely a measurement approaches an actual, true value.

� Precision, which we discuss more in the next section, describes how close repeated
measurements are to one another, regardless of how close those measurements are to
the actual value. The bigger the difference between the largest and smallest values of a
repeated measurement, the less precision you have.

The two most common measurements related to accuracy are error and percent error.

� Error measures accuracy, the difference between a measured value and the actual
value:

Actual value – Measured value = Error

� Percent error compares error to the size of the thing being measured:

|Error| / Actual value = Fraction error

Fraction error × 100 = Percent error

Being off by 1 meter isn’t such a big deal when measuring the altitude of a mountain, but it’s
a shameful amount of error when measuring the height of an individual mountain climber.

14 Part I: Getting Cozy with Numbers, Atoms, and Elements 

Q. A police officer uses a radar gun to clock
a passing Ferrari at 131 miles per hour
(mph). The Ferrari was really speeding 
at 127 mph. Calculate the error in the
officer’s measurement.

A. –4 mph. First, determine which value is
the actual value and which is the meas-
ured value:

Actual value = 127 mph; measured value
= 131 mph

Then calculate the error by subtracting
the measured value from the actual
value:

Error = 127 mph – 131 mph = –4 mph

Q. Calculate the percent error in the offi-
cer’s measurement of the Ferrari’s speed.

A. 3.15%. First, divide the absolute value
(the size, as a positive number) of the
error by the actual value:

|–4 mph| / 127 mph = 4 mph / 127 mph =
0.0315

Next, multiply the result by 100 to obtain
the percent error:

Percent error = 0.0315 × 100 = 3.15%
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Expressing Precision with Significant Figures
After you know how to express your numbers in scientific notation and how to distinguish
precision from accuracy (we cover both topics earlier in this chapter), you can bask in the
glory of a new skill: using scientific notation to express precision. The beauty of this system
is that simply by looking at a measurement, you know just how precise that measurement is.

When you report a measurement, you should only include digits if you’re really confident
about their values. Including added digits in a measurement means something — it means
that you really know what you’re talking about — so we call the included digits significant 
figures. The more significant figures in a measurement, the more precise that measurement
must be. The last significant figure in a measurement is the only figure that includes any
uncertainty. Here are the rules for deciding what is and what isn’t a significant figure:

� Any nonzero digit is significant. So, 6.42 seconds (s) contains three significant figures.

� Zeros sandwiched between nonzero digits are significant. So, 3.07s contains three
significant figures.

� Zeros on the left side of the first nonzero digit are not significant. So, 0.0642s and
0.00307s each contain three significant figures.

� When a number is greater than 1, all digits to the right of the decimal point are
understood to be significant. So, 1.76s has three significant figures, while 1.760s has
four significant figures. The “6” is uncertain in the first measurement, but is certain in
the second measurement.
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13. Two people, Reginald and Dagmar, measure
their weight in the morning by using typi-
cal bathroom scales, instruments that are
famously unreliable. The scale reports that
Reginald weighs 237 pounds, though he
actually weighs 256 pounds. Dagmar’s
scale reports her weight as 117 pounds,
though she really weighs 129 pounds.
Whose measurement incurred the greater
error? Whose incurred a greater percent
error?

Solve It

14. Two jewelers were asked to measure the
mass of a gold nugget. The true mass of the
nugget was 0.856 grams (g). Each jeweler
took three measurements. The average of
the three measurements was reported as
the “official” measurement with the follow-
ing results:

Jeweler A: 0.863g, 0.869g, 0.859g

Jeweler B: 0.875g, 0.834g, 0.858g

Which jeweler’s official measurement was
more accurate? Which jeweler’s measure-
ments were more precise? In each case,
what was the error and percent error in the
official measurement?

Solve It
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� When a number has no decimal point, any zeros after the last nonzero digit may or
may not be significant. So, in a measurement reported as 1,370s, you can’t be certain
if the “0” is a certain value, or if it’s merely a placeholder.

Be a good chemist. Report your measurements in scientific notation to avoid such
annoying ambiguities (see the earlier section, “Using Exponential and Scientific
Notation to Report Measurements”).

� Numbers from counting (for example, 1 kangaroo, 2 kangaroos, 3 kangaroos . . .) 
or from defined quantities (that is to say, 60 seconds per 1 minute) are understood
to have an unlimited number of significant figures; in other words, these values are
completely certain.

� If a number is already written in scientific notation, then all the digits in the coeffi-
cient are significant, and none others.

So, the number of significant figures you use in a reported measurement should be consis-
tent with your certainty about that measurement. If you know your speedometer is routinely
off by 5 miles per hour, then you have no business protesting to a policeman that you were
only going 63.2 miles per hour.

16 Part I: Getting Cozy with Numbers, Atoms, and Elements 

Q. How many significant figures are in the
following three measurements?

20,175 yards, 1.75 × 105 yards, 1.750 × 105

yards

A. Five, three, and four significant figures,
respectively. In the first measurement,

all digits are nonzero, except for a 0 that
is sandwiched between nonzero digits,
which counts as significant. The second
measurement contains only nonzero
digits. The third measurement contains a
0, but that 0 is the final digit and to the
right of the decimal point, and is there-
fore significant.

15. Modify the following three measurements so
that each possesses the indicated number of
significant figures (SF) and is expressed prop-
erly in scientific notation.

76.93 × 10–2 meters (1 SF), 0.0007693 meters 
(2 SF), 769.3 meters (3 SF)

Solve It

16. In chemistry, the potential error associ-
ated with a measurement is often
reported alongside the measurement, 
as in: 793.4 ±0.2 grams. This report indi-
cates that all digits are certain except
the last, which may be off by as much as
0.2 grams in either direction. What, then,
is wrong with the following reported
measurements?

893.7 ±1 gram, 342 ±0.01 gram

Solve It
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Doing Arithmetic with Significant Figures
Doing chemistry means making a lot of measurements. The point of spending a pile of money
on cutting-edge instruments is to make really good, really precise measurements. After
you’ve got yourself some measurements, you roll up your sleeves, hike up your pants, and
do math with the measurements.

When doing that math, you need to follow some rules to make sure that your sums, differ-
ences, products, and quotients honestly reflect the amount of precision present in the origi-
nal measurements. You can be honest (and avoid the skeptical jeers of surly chemists) by
taking things one calculation at a time, following a few simple rules. One rule applies to addi-
tion and subtraction, and another rule applies to multiplication and division.

� When adding or subtracting, round the sum or difference to the same number of
decimal places as the measurement with the fewest decimal places. Rounding like
this is honest, because you acknowledge that your answer can’t be any more precise
than the least precise measurement that went into it.

� When multiplying or dividing, round the product or quotient so that it has the same
number of significant figures as the least precise measurement — the measurement
with the fewest significant figures.

Notice the difference between the two rules. When you add or subtract, you assign signifi-
cant figures in the answer based on the number of decimal places in each original measure-
ment. When you multiply or divide, you assign significant figures in the answer based on the
total number of significant figures in each original measurement.

Caught up in the breathless drama of arithmetic, you may sometimes perform multi-step cal-
culations that include addition, subtraction, multiplication, and division, all at once. No prob-
lem. Follow the normal order of operations, doing multiplication and division first, followed
by addition and subtraction. At each step, follow the simple rules previously described, and
then move on to the next step.
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Q. Express the following sum with the
proper number of significant figures:

35.7 miles + 634.38 miles + 0.97 miles = ?

A. 671.1 miles. Adding the three values
yields a raw sum of 671.05 miles.
However, the 35.7 miles measurement
extends only to the tenths place; the
answer must therefore be rounded to the
tenths place, from 671.05 to 671.1 miles.

Q. Express the following product with the
proper number of significant figures:

27 feet × 13.45 feet = ?

A. 3.6 × 102 feet2. Of the two measurements,
one has two significant figures (27 feet)
and the other has four significant figures
(13.45 feet). The answer is therefore lim-
ited to two significant figures. The raw
product, 363.15 feet2, must be rounded.
You could write 360 feet2, but doing 
so implies that the final 0 is significant
and not just a placeholder. For clarity,
express the product in scientific nota-
tion, as 3.6 × 102 feet2.
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18 Part I: Getting Cozy with Numbers, Atoms, and Elements 

17. Express this difference using the appropri-
ate number of significant figures:

127.379 seconds – 13.14 seconds + 1.2 × 10–1

seconds = ?

Solve It

18. Express the answer to this calculation
using the appropriate number of signifi-
cant figures:

345.6 feet × (12 inches / 1 foot) = ?

Solve It

19. Report the difference using the appropriate
number of significant figures:

3.7 × 10–4 minutes – 0.009 minutes = ?

Solve It

20. Express the answer to this multistep calcu-
lation using the appropriate number of sig-
nificant figures:

87.95 feet × 0.277 feet + 5.02 feet – 1.348
feet / 10.0 feet = ?

Solve It
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Answers to Questions on Noting Numbers
Scientifically

The following are the answers to the practice problems presented in this chapter.

a 2 × 105. Move the decimal point immediately after the 2 to create a coefficient between 1 and
10. Because this means moving the decimal point five places to the left, multiply the coefficient
of 2 with the power 105.

b 8.0736 × 104. Move the decimal point immediately after the 8 to create a coefficient between 
1 and 10. This involves moving the decimal point four places to the left, so multiply the coeffi-
cient of 8.0736 with the power 104.

c 2 × 10–5. Move the decimal point immediately after the 2 to create a coefficient between 1 and
10. This means moving the decimal point five spaces to the right, so multiply the coefficient of
2 with the power 10–5.

d 690.3. This question requires you to understand the meaning of scientific notation in order to
reverse the number back into “regular” decimal form. Because 102 equals 100, multiply the 
coefficient 6.903 with 100. This moves the decimal point two spaces to the right.

e 1.1 × 106. The raw calculation yields 11 × 105, which converts to the given answer when
expressed in scientific notation.

f 3.0 × 10–7. The ease of math with scientific notation shines through in this problem. Dividing
the coefficients yields a coefficient quotient of 3.0, while dividing the powers yields a quotient
of 10–7. Marrying the two quotients produces the given answer, already in scientific notation.

g 1.82. First, convert each number to scientific notation: 5.2 × 101 and 3.5 × 10–2. Next, multiply
the coefficients: 5.2 × 3.5 = 18.2. Then add the exponents on the powers of 10: 101 + (–2) = 10–1.
Finally, join the new coefficient with the new power: 18.2 × 10–1. Expressed in scientific notation,
this answer is 1.82 × 100 = 1.82.

h 3.99 × 10–4. First, convert each number to scientific notation: 8.09 × 10–3 and 2.03 × 101. Then
divide the coefficients: 8.09 / 2.03 = 3.99. Next, subtract the exponent on the denominator from
the exponent of the numerator to get the new power of 10: 10–3 – 1 = 10–4. Join the new coefficient
with the new power: 3.99 × 10–4. Finally, express gratitude that the answer is already conve-
niently expressed in scientific notation.

i 545 × 10–6. Because the numbers are each already expressed with identical powers of 10, you
can simply add the coefficients: 398 + 147 = 545. Then join the new coefficient with the original
power of 10.

j 6.402 × 105. Because the numbers are each expressed with the same power of 10, you can
simply subtract the coefficients: 7.685 – 1.283 = 6.402. Then join the new coefficient with the
original power of 10.

k 40.16 × 10–3 (or an equivalent expression). First, convert the numbers so they each use the
same power of 10: 2.06 × 10–3 and 38.1 × 10–3. Here, we used 10–3, but you can use a different
power, so long as the same power is used for each number. Next, add the coefficients: 2.06 +
38.1 = 40.16. Finally, join the new coefficient with the shared power of 10.

l 89.21 × 102 (or an equivalent expression). First, convert the numbers so each uses the same
power of 10: 93.52 × 102 and 4.31 × 102. Here, we picked 102, but any power is fine so long as the
two numbers have the same power. Then subtract the coefficients: 93.52 – 4.31 = 89.21. Finally,
join the new coefficient with the shared power of 10.

m Reginald’s measurement incurred the greater magnitude of error, while Dagmar’s measure-
ment incurred the greater percent error.
Reginald’s scale reported with an error of 256 pounds – 237 pounds = 19 pounds. Dagmar’s
scale reported with an error of 129 pounds – 117 pounds = 12 pounds. Comparing the 
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magnitudes of error, we see that 19 pounds > 12 pounds. However, Reginald’s measurement had
a percent error of 19 pounds / 256 pounds × 100 = 7.4%, while Dagmar’s measurement had a per-
cent error of 12 pounds / 129 pounds × 100 = 9.3%.

n Jeweler A’s “official” average measurement was 0.864g, while Jeweler B’s official measurement
was 0.856g; thus, Jeweler B’s official measurement is more accurate because it’s closer to
the actual value of 0.856g.
However, Jeweler A’s measurements were more precise because the differences between A’s
measurements were much smaller than the differences between B’s measurements. Despite the
fact that Jeweler B’s average measurement was closer to the actual value, the range of his meas-
urements (that is, the difference between the largest and the smallest measurements) was
0.041g. The range of Jeweler A’s measurements was 0.010g.
This example shows how low precision measurements can yield highly accurate results
through averaging of repeated measurements. In the case of Jeweler A, the error in the official
measurement was 0.864g – 0.856g = 0.008g. The corresponding percent error was 0.008g / 0.856g
× 100 = 0.9%. In the case of Jeweler B, the error in the official measurement was 0.856g – 0.856g
= 0.000g. Accordingly, the percent error was 0%.

o With the correct number of significant figures and expressed in scientific notation, the measure-
ments should read as follows: 8 × 10–1 meters, 7.7 × 10–4 meters, 7.69 × 102 meters.

p “893.7 ± 1 gram” is an improperly reported measurement because the reported value, 893.7,
suggests that the measurement is certain to within a few tenths of a gram. The reported error
is known to be greater, at ±1 gram. The measurement should be reported as “894 ±1 gram.”
“342 ±0.01 gram” is improperly reported because the reported value, 342, gives the impres-
sion that the measurement becomes uncertain at the level of grams. The reported error
makes clear that uncertainty creeps into the measurement only at the level of hundredths of a
gram. The measurement should be reported as “342.00 ±0.01 gram.”

q 1.1436 × 102 seconds. The trick here is remembering to convert all measurements to the same
power of 10 before comparing decimal places for significant figures. Doing so reveals that 1.2 ×
10–1 seconds goes to the hundredths of a second, despite the fact that the measurement con-
tains only two significant figures. The raw calculation yields 114.359 seconds, which rounds
properly to the hundredths place (taking significant figures into account) as 114.36 seconds, 
or 1.1436 × 102 seconds in scientific notation.

r 4.147 × 103 inches. Here, you must recall that defined quantities (1 foot is defined as 12 inches)
have unlimited significant figures. So, our calculation is limited only by the number of signifi-
cant figures in the 345.6 feet measurement. When you multiply 345.6 feet by 12 inches per foot,
the feet cancel, leaving units of inches. The raw calculation yields 4,147.2 inches, which rounds
properly to four significant figures as 4,147 inches, or 4.147 × 103 inches in scientific notation.

s –9 × 10–3 minutes. Here, it helps here to convert all measurements to the same power of 10 so
you can more easily compare decimal places in order to assign the proper number of signifi-
cant figures. Doing so reveals that 3.7 × 10–4 minutes goes to the hundred-thousandths of a
minute, while 0.009 minutes goes to the thousandths of a minute. The raw calculation yields
–0.00863 minutes, which rounds properly to the thousandths place (taking significant figures
into account) as –0.009 minutes, or –9 × 10–3 minutes in scientific notation.

t 2.93 × 101 feet. Following standard order of operations, this problem can be executed in two main
steps, first performing multiplication and division, and then performing addition and subtraction.
Following the rules of significant figure math, the first step yields: 24.4 feet + 5.02 feet – 0.135
feet. Each product or quotient contains the same number of significant figures as the number in
the calculation with the fewest number of significant figures.
The second step yields 29.3 feet, or 2.93 × 101 feet in scientific notation. The final sum goes only
to the tenths place, because the number in the calculation with the fewest decimal places went
only to the tenths place.
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