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CHAPTER 1

OPTICAL RAYS

Geometric or ray optics [16] is used to describe the path of light in free space in which
propagation distance is much greater than the wavelength of the light—normally mi-
crons (see Section 1.2.3 for more exact conditions). Note that we cannot apply ray
theory if the media properties vary noticeably in distances comparable to wavelength;
for such cases, we use more computationally demanding finite approximation tech-
niques such as finite-difference time domain (FDTD) [154] or finite elements [78,
79]. Ray theory postulates rays that are at right angles to wave fronts of constant
phase. Such rays describe the path along which light emanates from a source and the
rays track the Poynting vector of power in the wave. Geometric or ray optics provides
insight into the distribution of energy in space with time. The spread of neighboring
rays with time enables computation of attenuation, which provides information anal-
ogous to that provided by diffraction equations but with less computation. Ray optics
is extensively used for the passage of light through optical elements, such as lenses,
and inhomogeneous media for which refractive index (or dielectric constant) varies
with position in space.

In Section 1.1, we derive the paraxial equation that reduces dimensionality when
light stays close to the axis. In Section 1.2, we study geometric or ray optics: Fermat’s
principle, limits of ray theory, the ray equation, rays through quadratic media, and ma-
trix representations. In Section 1.3, we consider thin lens optics for launching and/or
receiving beams: magnification, beam expanders, beam compressors, telescopes, mi-
croscopes, and spatial filters.

Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare,
First Edition. By Alastair D. McAulay.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

3



4 OPTICAL RAYS

Parabola

Circle

1.0

0.5

−0.0

0.0 1.00.750.25 0.5

−0.5

−1.0

Axis

FIGURE 1.1 Illustrates the paraxial approximation.

1.1 PARAXIAL OPTICS

In 1840, Gauss proposed the paraxial approximation for propagation of beams that
stay close to the axis of an optical system. In this case, propagation is, say, in the z

direction and the light varies in transverse x and y directions over only a small distance
relative to the distance associated with the radius of curvature of a spherically curved
surface in x and y (Figure 1.1). The region of the spherical surface near the axis can
be approximated by a parabola. The spherical surface of curvature R is

x2 + y2 + z2 = R2 or z = R

√(
1 − x2 + y2

R2

)
(1.1)

Using the binomial theorem to eliminate the square root,

z = R

(
1 − x2 + y2

2R2

)
or R − z = x2 + y2

2R
(1.2)

which is the equation for a parabola.
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1.2 GEOMETRIC OR RAY OPTICS

1.2.1 Fermat’s Principle

In 1658, Fermat introduced one of the first variational principles in physics, the basic
principle that governs geometrical optics [16]: A ray of light will travel between points
P1 and P2 by the shortest optical path L = ∫ P2

P1
n ds; no other path will have a shorter

optical path length. The optical path length is the equivalent path length in air for
a path through a medium of refractive index n. Equivalently, because the refractive
index is n = c/v (v is the phase velocity, and c is the velocity of light), n ds = c dt,
this is also the shortest time path. As the optical path length or time differs for each
path, our optimization to determine the shortest (a minimum extremum) is that of a
length or time function among many path functions, that is a function of a function (a
functional), and this requires the use of calculus of variations [42]. Fermat’s principle
is written for minimum optical path length or, equivalently, for minimum time:

δL = δ

∫ P2

P1

n ds = 0 or δL = δ

∫ P2

P1

c dt = 0 (1.3)

Fermat’s principle lends itself to geometric optics in which light is considered to be
rays that propagate at right angles to the phase front of a wave, normally in the direction
of the Poynting power vector. Note that electromagnetic waves are transverse, and the
electric and magnetic fields in free space oscillate at right angles to the direction of
propagation and hence to the ray path. When valid, a wave can be represented more
simply by a single ray.

1.2.2 Fermat’s Principle Proves Snell’s Law for Refraction

Fermat’s principle can be used to directly solve problems of geometric optics as
illustrated by our proof of Snell’s law of refraction, the bending at an interface between
two media of different refractive indices n1 = √

μ1ε1 and n2 = √
μ2ε2, where ε is

the dielectric constant and μ is the relative permeability (Figure 1.2). From Fermat’s
principle, the optical path from P1 to P2 intercepts the dielectric interface at R so that
the optical path length through R is the least for all possible intercepts at the interface.
Because at an extremum the function in equation (1.3) has zero gradient, moving the
intercept point a very small variational distance δx along the interface to Q will not
change the optical path length. From Figure 1.2, the change in optical path length
when moving from the path through R to the path through Q is

δs − δs′ = nδx sin θ − n′δx sin θ′ = 0 (1.4)

which gives Snell’s law

n sin θ = n′ sin θ′ (1.5)
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FIGURE 1.2 Deriving Snell’s law from Fermat’s principle.

When light passes through an inhomogeneous medium for which refractive index
n(r) = n(x, y, z) varies with position, a ray will no longer be straight. The divergence
of adjacent rays provides an estimate of the attenuation as a function of distance along
the ray.

1.2.3 Limits of Geometric Optics or Ray Theory

Rays provide an accurate solution to the wave equation only when the radius of
curvature of the rays and the electric field vary only slowly relative to wavelength,
which is often the case for light whose wavelength is only in micrometers. When
light rays come together as in the focus region from a convex lens, rapid changes in
field can occur in distances comparable to a wavelength. Hence, rays are inaccurate
representations for the solution to the wave equation at so-called caustics (the envelope
formed by the intersection of adjacent rays).

As light travels straight in a constant medium, we can discretize our region into
small regions of different but fixed refractive index in a finite-difference technique.
The rays across a small region are then coupled into adjacent regions using Snell’s law.
The steps in refractive index between small regions can cause spurious caustics in the
ray diagrams, which can be minimized by switching to a piecewise linear refractive
index approximation, as in a first-order polynomial finite-element approach [78, 79].
To plot a ray from a source to a target, we can draw multiple rays starting out at
difference angles from the source until we find one that passes through the target; this
is a two-point boundary problem.

1.2.4 Fermat’s Principle Derives Ray Equation

The ray equation, critical in geometric optics, describes the path of an optical
ray through an inhomogeneous medium in which refractive index changes in 3D
space [16, 148, 176]. The optical path length for use in Fermat’s principle, equation
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(1.3), may be written by factoring out dz from ds =
√

dx2 + dy2 + dz2:

δ

∫ P2

P1

n ds = δ

∫ z2

z1

n(x, y, z)

√(
dx

dz

)2

+
(

dy

dz

)2

+ 1 dz

= δ

∫ z2

z1

n(x, y, z)
√

x′2 + y′2 + 1 dz (1.6)

where prime indicates d/dz and ds =
√

x′2 + y′2 + 1 dz. Equation (1.6) can be writ-
ten as δ

∫ z2
z1

F dz, where the integrand F has the form of a functional (function of
functions)

F (x′, y′, x, y, z) ≡ n(x, y, z)
√

x′2 + y′2 + 1 (1.7)

From calculus of variations [16], the solutions for extrema (maximum or minimum)
with integrand of the form of equation (1.7) are the Euler equations

Fx − d

dz
Fx′ = 0, Fy − d

dz
Fy′ = 0 (1.8)

where subscripts refer to partial derivatives. From equation (1.7) and x′ = dx/dz,

Fx = ∂n

∂x
ds = ∂n

∂x

√
x′2 + y′2 + 1 = ∂n

∂x

ds

dz
(1.9)

and

Fx′ = n
1

2
√

x′2 + y′2 + 1
2x′ = n

dx

dz

dz

ds
= n

dx

ds
(1.10)

Similar equations apply for Fy and Fy′ . Substituting equations (1.9) and (1.10) into
equation (1.8) gives

∂n

∂x

ds

dz
− d

dz

(
n

dx

ds

)
= ∂n

∂x
− dz

ds

d

dz

(
n

dx

ds

)
= 0 (1.11)

The resulting equations for the ray path are

d

ds

(
n

dx

ds

)
= ∂n

∂x
,

d

ds

(
n

dy

ds

)
= ∂n

∂y
,

d

ds

(
n

dz

ds

)
= ∂n

∂z
(1.12)

where the last equation is obtained by reassigning coordinates, by analogy, or by
additional algebraic manipulation [16]. These equations can be written in vector form
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for the vector ray equation

d

ds

(
n

dr
ds

)
= ∇n (1.13)

Another derivation [16] for the ray equation provides a different perspective. The
derivation generates, from Maxwell’s equations or from the wave equation, an equiv-
alent to Fermat’s principle, the eikonal equation.

(∇S)2 = n2 or

(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2

= n2(x, y, z) (1.14)

The eikonal equation relates phase fronts S(r) = constant and refractive index n. A
ray ns is in the direction at right angles to the phase front, that is, in the direction of
the gradient of S(r), or

ns = ∇S or n
dr
ds

= ∇S (1.15)

By taking the derivative of equation (1.15) with respect to s, we obtain the ray equa-
tion (1.13).

1.2.5 Useful Applications of the Ray Equation

We illustrate the ray equation for rays propagating in a z–y plane of a slab, where z

is the propagation direction axis for the paraxial approximation and refractive index
varies transversely in y. For a homogeneous medium, n is constant and ∇n = ∂n/∂y =
0. Then the ray equation (1.13) becomes d2y/dz2 = 0. After integrating twice, y =
az + b, a straight line in the z–y plane. Therefore, in a numerical computation, we
discretize the refractive index profile into piecewise constant segments in y and obtain
a piecewise linear optical ray path in plane z–y.

For a linearly varying refractive index in y, n = n0 + ay with n ≈ n0, ∂n/∂y =
a, the ray equation (1.13) becomes d2y/dz2 ≈ a/n0. After two integrations, y =
(a/n0)z2 + (b/n0)z + d, which is a quadratic in the z–y plane and can be represented
to first approximation by a spherical arc. Therefore, if we discretize the refractive
index profile into piecewise linear segments, we obtain a ray path of joined arcs
that is smoother than the piecewise linear optical ray path for a piecewise constant
refractive index profile. The approach is extrapolatable to higher dimensions.

Another useful refractive index profile is that of a quadratic index medium, in which
the refractive index smoothly decreases radially out from the axis of a cylindrical body
(Figure 1.3a):

n2 = n2
0(1 − (gr)2) with r2 = (x2 + y2) (1.16)



GEOMETRIC OR RAY OPTICS 9

n

n0

r
0

(a) (b)

z

FIGURE 1.3 Ray in quadratic index material: (a) refractive index profile and (b) ray path.

where g is the strength of the curvature and gr � 1. Material doping creates such
a profile in graded index fiber to replace step index fiber. In a cylindrical piece of
glass, such an index profile will act as a lens, called a GRIN lens [47]. A GRIN
lens can be attached to the end of an optical fiber and can match the fiber diameter
to focus or otherwise image out of the fiber. In the ray equation, for the paraxial
approximation, d/ds = d/dz, and from equation (1.16), ∂n/∂r = −n0g

2r. So the ray
equation reduces to

d2r

dz2 + g2r = 0 (1.17)

which has sin and cos solutions. A solution to equation (1.17) with initial conditions
(r0)in and (dr0/dz)in = (r′

0)in is

r = (r0)in cos(gz) + (r′
0)in

sin(gz)

g
(1.18)

which can be verified by substituting into equation (1.17). A ray according to equa-
tion (1.18) for a profile, equation (1.17), is shown in Figure 1.3b.

1.2.6 Matrix Representation for Geometric Optics

The ability to describe paraxial approximation propagation in the z direction through
circularly symmetric optical components using a location and a slope in geometric
optics allows for a 2 × 2 matrix representation [44, 132, 176].

We consider a material of constant refractive index and width d. For this medium,
light propagates in a straight line (Section 1.2.3), and a ray path does not change slope,
r′

out = r′
in. The ray location changes after passing through width d of this medium

according to

r(z)out = r(z)in + r′(z)ind (1.19)

where after traveling a distance d at slope r′, location has changed by r′(z)ind.
Hence, we can write a matrix equation relating the output and the input for a

position and a slope vector [r(z), r′(z)]T:

[
r(z)

r′(z)

]
out

=
[

1 d

0 1

] [
r(z)

r′(z)

]
in

(1.20)
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Similarly, the ray can be propagated through a change in refractive index from n1 to
n2 with

[
r(z)

r′(z)

]
out

=
[

1 0

0 n1
n2

] [
r(z)

r′(z)

]
in

(1.21)

where position does not change and from Snell’s law for small angles, for which slope
tan θ ≈ sin θ, the slope changes by n1/n2.

Another common matrix is that for passing through a lens of focal length f :

[
r(z)

r′(z)

]
out

=
[

1 0
1

−f
1

] [
r(z)

r′(z)

]
in

(1.22)

where a lens changes the slope of a ray by −r(z)/f .
A useful case is the propagation of rays through a quadratic medium. From equa-

tion (1.18), a 2 × 2 matrix can be written and verified by substituting

[
r(z)

r′(z)

]
out

=
[

cos(gz) sin(gz)
g

−g sin (gz) cos(gz)

] [
r(z)

r′(z)

]
in

(1.23)

Other matrices are illustrated in Ref. [176]. The advantage of the 2 × 2 representa-
tion is that for a string (or sequence) of circularly symmetric components, the matrices
can be multiplied together to achieve a single 2 × 2 matrix for transmission through
the complete string. The property is that the determinant of any matrix is zero. We
will use in Section 2.1.2 the 2 × 2 notation with matrix elements labeled clockwise
from top left as ABCD to compute the effect of propagating a Gaussian beam through
the corresponding optical element.

1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS

Ray tracing allows modeling of simple optics for launching and receiving beams.
Beam expanders, beam compressors, telescopes, microscopes, and spatial filters are
frequently used in military optical systems to change the beam diameter, view an
object at different levels of magnification, or improve the beam spatial coherence.
These systems can be constructed with two thin refractive lenses [61]. More complex
lens designs can be performed with commercial software such as Code V. A single
thin lens system and a magnifier are discussed first.

1.3.1 Imaging with a Single Thin Lens

1.3.1.1 Convex Lens for Imaging The focal length of a convex (positive) lens
is the distance f ′ at which parallel rays (a collimated beam) are focused to a point
F ′, (Figure 1.4a) [61]. A single lens can be used for imaging, that is, to create a copy
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FIGURE 1.4 Focusing a collimated parallel beam: (a) with a convex lens, (b) with a concave
lens, (c) with a concave mirror, and (d) with a convex mirror.

of an input object to an output image of different size and location (Figure 1.5). An
object U0 is at distance do (o for object) in front of the lens L of focal length f . A
copy, called the image Ui (i for image), is located at a distance di behind the lens
(o and i are not to be confused with output and input). For a sharp image, the lens
equation must be satisfied.

1

do
+ 1

di
= 1

f
and m = −di

do
(1.24)

Uo

Ui

d ido

f f

Convex

lens

FIGURE 1.5 Imaging with a single thin lens.
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The negative sign in the image or lateral magnification m refers to the fact that the
image is inverted. By wearing inverting glasses, it was shown that the brain inverts
the image in the case of the human eye. Note that lens designers may use a different
convention that changes the equations; for example, distances to the left of an element
are often considered negative.

Note that figures can be reversed as light can travel in the opposite directions
through lenses and mirrors. In a concave lens (Figure 1.4b), parallel rays are caused
to diverge. A viewer at the right will think the light is emitted by a point source
at F ′. This is a virtual point source as, unlike with a convex lens, a piece of paper
cannot be placed at F ′ to see a real image. When using the lens equation (1.24)
for a concave lens, the focal length f for a convex lens is replaced by −f for a
concave lens.

A concave mirror (Figure 1.4c) performs a function similar to the convex lens in
focusing parallel rays of light. But the light is folded back to focus on the left of the
mirror instead of passing through. Mirrors may be superior to lenses because of less
weight and small size owing to folding. Similarly, the convex mirror acts like a folded
concave lens (Figure 1.4d).

1.3.1.2 Convex Lens as Magnifying Glass A single lens can be used as a
simple microscope to increase the size of an object over the one that would be obtained
without the magnifying lens. Such a system is used as an eyepiece in more complex
systems. The closest a typical eye can come to an object for sharp focusing is the
standard distinct image distance of s′ = 25 cm. If it were possible to see an object
closer to the eye, the image would occupy a larger area of the retina and the object
would look larger. The magnifying glass allows the object to be brought closer than
the minimum sharp distance of the eye, say to a distance do in front of the eye, by
projecting a virtual image at the standard distance, s′ (Figure 1.6) [61]. From the lens
law, equation (1.24), using a negative sign for s′ because it is on the opposite side of
the lens relative to Figure 1.5,

1

do
= 1

s′
+ 1

f
= f + s′

fs′
(1.25)

FIGURE 1.6 A magnifying glass.
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The angle θ subtended by the object in the absence of a magnifying lens and the angle
θ′ subtended with the magnifying glass are

tan θ = y

s′

tan θ′ = y

do
= y

f + s′

fs′
(1.26)

where the second equation used equation (1.25). Therefore, the angular or power
magnification may be written for small angles, using equation (1.25) for 1/do, as

M = θ′

θ
= s′

do
= s′

f
+ 1 ≈ s′

f
(1.27)

For f in centimeters, and minimum distinct distance of s′ = 25 cm, magnifying
power is M = 25/f . An upper case M distinguishes from lateral magnification m in
equation (1.24).

1.3.2 Beam Expanders

Beam expanders are used to increase beam diameter for beam weapons and optical
communications. Beam expansion reduces the effects of diffraction when propagating
light through the atmosphere. A source with a larger beam diameter will spread less
with distance than one with a smaller diameter (Section 3.3.5) or, for example, if �s

in equation (3.20) increases, then �θ decreases (Section 3.2.2). Therefore, when a
beam is launched into the air for optical communications, to replace a microwave
link, or for a power ray, the beam diameter is expanded to minimize beam spreading.
A wider beam is less influenced by turbulence because of averaging across the beam
(Chapter 5).

Figure 1.7 shows how two convex lenses L1 and L2 of different focal lengths, f1
and f2, can expand a collimated beam diameter from d1 to d2. By similar triangles,

d2

d1
= f2

f1
(1.28)

Laser

diode

Lens  L1

Lens  L2

f1

d1

f2

d2

Collimating

     lens

FIGURE 1.7 Beam expander to reduce effects of beam spreading in the atmosphere.
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Lens  L2
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d2

Collimating

     lens

FIGURE 1.8 Beam expander made with a concave lens as the first lens.

Photodetector

Lens  L1

Lens  L2

f2f1

Focusing

    lens

d1

d2

FIGURE 1.9 Beam compressor to reduce collimated beam diameter.

A beam expander can also be made shorter by using a concave lens for the first lens
L1 (Figure 1.8).

1.3.3 Beam Compressors

A compressor is the reverse of the expander as shown in Figure 1.9. In a receiver for
an optical communication link, an incoming collimated beam is reduced in diameter
from d1 to d2 to match the size of an optical sensor. By similar triangles, the image
or lateral magnification, m is

m = d2

d1
= f2

f1
(1.29)

In a practical optical link, the beam expander on the transmit side forms a slightly con-
verging beam. As the beam profile is normally Gaussian (Section 2.1), the propagation
follows that described in Section 2.1.2.

1.3.4 Telescopes

The beam compressor (Section 1.3.3) has the form of a refractive telescope L1 forms
an image and L2 reimages to ∞ for viewing by eye and the beam expander (Sec-
tion 1.3.2) has the form of a reverse telescope. A more common drawing for a refractive
telescope is shown in Figure 1.10, in which the real image at Q′ is at the focal point of
both lenses [61]. Parallel rays from an object at infinity arrive at an object field angle
θ to the axis and form an image at Q′. 2θ is called the field of view. The objective lens
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FIGURE 1.10 Telescope.

acts as the aperture stop or the entrance pupil in the absence of a separate stop [61].
The second lens, usually called an eyepiece, magnifies the image at Q′ so that a larger
virtual image Q′′ appears at infinity (Section 1.3.1.2). The virtual image subtends
an angle θ′ at the eye. Angular magnification or magnifying power M (reciprocal of
lateral magnification) is

M = θ′

θ
= fo

fe
(1.30)

Large astronomical telescopes built with refractive lenses are limited to approximately
1 m diameter because of the weight of the lenses. Higher resolution telescopes with
larger diameters use mirrors and are discussed next.

1.3.4.1 Cassegrain Telescope The Cassegrain telescope has a common dish
appearance and is used in military systems to reduce weight and size relative to a
refractive lens telescope for transmitting and receiving signals. (see Sections 16.2.5,
15.1.1 and 12.2). Figure 1.11a shows the inverted telescope as a beam expander for

Concave
mirror

Convex
mirror

Input beam
upper edge

Input beam
lower edge

Output
beam to
sensor

Concave
mirror

Convex
mirror

Output beam
lower edge

Output beam
upper edge

Input
beam
from
laser

(a) (b)

FIGURE 1.11 Cassegrain antenna as (a) beam expander or inverted telescope and (b) tele-
scope.
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transmitting light beams. The input beam passes through a small hole in the large
concave mirror to strike the small convex mirror. Comparing the Cassegrain inverted
telescope with the lens beam expander in Figure 1.8, the first small concave lens,
L1, is replaced by a small convex mirror that spreads the light over a concave mirror
that replaces the second lens L2. The output aperture size is close to that of the large
mirror diameter.

The reverse structure acts as a telescope (Figure 1.11b). The large concave mirror
aperture determines the resolution of images. Light reflecting from the concave mirror
focuses on the small convex mirror and then through a hole in the concave mirror onto
a CCD image sensor. This configuration is used in the Geoeye imaging satellite 400
miles up (Figure 1.12) [125]. Such imaging satellites are critical for providing intelli-
gence information for the military and data for commercial ventures such as Google.
A Geoeye satellite, launched in 2008, as shown in Figure 1.13 [125], involves many
other systems, solar panels, global positioning system (GPS), star tracker (together
the star tracker and the GPS can locate objects to within 3 m), image storage, and data
antenna for transmitting signals back to earth when over designated ground stations.
In the open literature as of 2009, there are in orbit 51 imaging satellites with resolution
between 0.4 and 56 m launched by 31 countries and 10 radar satellites launched by 18
countries [125]. The military and commercial sectors rely on these and classified satel-
lites for intelligence relating to threat warnings of enemy activities and environmental
issues, on global positioning satellites for guiding missiles and locating U.S. and allies
personnel and vehicles, on communication satellites for battlefield communications,

FIGURE 1.12 Optics inside Geoeye using a Cassegrain telescope.
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FIGURE 1.13 Geoeye imaging satellite.

and on classified antisatellite satellites aimed at interfering with other countries’ satel-
lites. Hence, the control of satellite space will be critical in future wars, although in
recent wars control of air space was adequate. Most satellites are vulnerable to laser
attack from the ground, aircraft, or other satellites. For example, imaging satellites can
be blinded by glare from lasers and for most satellites the solar cell arrays can be easily
damaged by lasers, which can disable their source of solar energy. Consequently, as
discussed in Chapter 14, the military satellites should also have laser warning devices
and protection such as their own lasers and electronic countermeasures.

1.3.4.2 Nasmyth Telescope Sometimes for convenience of mounting subse-
quent equipment, such as optical spectral analyzers, a variation of the Cassegrain
telescope is used in which the light is brought out to one side using a third mirror,
rather than through a hole in the primary mirror. This is referred to as a Nasmyth tele-
scope (related to a Coudé telescope). Such an arrangement is shown diagrammatically
in Figure 15.1.

1.3.5 Microscopes

A typical two-lens microscope (Figure 1.14) has a form similar to the beam expander
(Section 1.3.2). A tiny object, in this case an arrow, is placed just inside the focal
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FIGURE 1.14 Microscope.

length of the objective lens. According to the lens law, equation (1.24), an image is
formed with magnification mo = x′/fo. The eyepiece focal length fe has magnifi-
cation, equation (1.27) (Section 1.3.1.2), Me = s′/fe, where the minimum distinct
distance for the eye is s′ = 25 cm. Consequently, the magnification is [61]

M = moMe = x′

fo

s′

fe
(1.31)

1.3.6 Spatial Filters

Spatial filters are used to improve spatial coherence in interferometers and between
power amplifier stages in a high-power laser (Chapter 8 and Section 13.2.1). A spatial
amplifier looks like Figure 1.7 but has a pinhole of very small size, usually microm-
eters, placed exactly at the focal point of the two lenses (Figure 1.15). Alignment of
the pinhole requires high precision to make sure the pinhole lines up exactly with
the main power at the focus of the beams. The light to the right of the pinhole now
appears to come from an almost perfect point source that produces an almost perfect
spherical wave. The smaller the pinhole, the closer is the wave to perfectly spherical.
Note that light will be lost if the pinhole is too small. A collimating lens following
the pinhole as in Figure 1.7 converts the spherical wave into an almost perfect plane
wave.

Lens  L1 Lens  L2

d d

ff

FIGURE 1.15 Spatial filter improves spatial coherence for higher quality beams.
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Optical amplifiers cause distortion due to nonlinear effects at high power. Spatial
correlation is degraded and the plane wave has regions pointing off axis. Hence, a
spatial filter is often used to clean up the beam after amplification. In a series of
power amplifiers (Section 13.2.1), a spatial filter after each amplifier will prevent
distortion building up to unacceptable levels. The beam can even be passed back and
forth through the same amplifier, as in the National Infrastructure Laser (Chapter 13),
because the flash light duration is long enough for several passes of the beam to be
amplified. An alternative method of improving beam quality by adaptive optics is
described in Section 5.3.2 and used in the airborne laser in Section 12.2.2 and 12.2.3.


