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1.1. INTRODUCTION

The discovery of a lead compound is arguably the first significant chemistry
milestone along the path to the discovery of a new small molecule drug.
Without a solid lead a new drug discovery project must be put on hold or
abandoned. The process by which this milestone is achieved has been and is one
of continuous evolution. Indeed, even the definition of what constitutes a lead
has been refined over the past two decades such that lead criteria are much
more stringent than ever before. This is a necessary consequence of high
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attrition rates in the clinic, the escalation of drug development costs beyond the
billion dollar mark, and the ever higher expectations of safety and efficacy on
the part of regulatory agencies, physicians, and patient populations at large. It
is incumbent upon medicinal chemists to find the strongest possible leads so as
to minimize the risk of failure as the compounds move along the increasingly
expensive path to the pharmacists’ shelves. This chapter is intended to provide
an introduction to the volume by presenting a historical overview of lead
discovery, along with an assessment of where we stand today and the major
barriers that still remain. The coverage cannot be exhaustive, considering the
volume of literature on the subject. Rather, it will be selective, focusing on key
contributions that form the body of basic principles in current use, and
providing indications of directions for further research likely to improve the
efficiency and cost effectiveness of lead discovery.

1.2. HISTORICAL OVERVIEW

The use of exogenous substances to treat human diseases can be traced to very
ancient times. The use of opium, for example, was described by the Sumerians
several thousand years ago. In 1805 Serturner isolated from opium a single pure
substance that he called morphine. This allowed the study of the effects of
morphine without the interfering effects of other constituents of the opium
mixture, and marks the beginning of the science of pharmacology. There
followed rapidly the isolation of additional alkaloids from opium, and their
comparative biological evaluations were the beginnings of modern medicinal
chemistry, notwithstanding the fact that the structures of these substances
would not be known for another century or more. Biological studies were
purely descriptive. Compounds were administered to whole animals and effects
were observed. If a compound’s effect was considered desirable as it may have
related to human disease, the compound might have been evaluated for
toxicity, and then tried in humans. In the early twentieth century the theory
of drug effect resulting through specific interaction with a receptor was
advanced by Paul Ehrlich. His basic concepts of specificity, reversibility, and
development of tachyphylaxis are still largely valid today. In combination with
the development of molecular structure and its elucidation, this gave rise to the
concept of structure–activity relationships (SAR) as a means of improving drug
action. Wohler’s synthesis of urea in 1828 established the science of synthetic
organic chemistry, which allowed chemists to explore non-natural analogs of
natural product structures for biological activity. Thus, the process of dis-
covering new drugs relied almost entirely on the discovery of analogs of natural
products, prepared one at a time, with biological activity in whole animal
systems, through about two-thirds of the twentieth century. About that time,
the pace of discovery and understanding in the field of molecular biology began
to accelerate. We quickly learned that genes were expressed as proteins, and
that some of these proteins, either because they were overexpressed, or
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incorrectly expressed because of genetic mutations, were largely responsible for
many human diseases. We also learned that these proteins were in many cases
the targets of drugs shown to be effective in treating the disease. We learned
how to manipulate genetic sequences, how to transfect modified sequences into
cells that would then produce the modified protein, how to isolate those
proteins, and how to assay for protein function in the presence of a potential
drug. Advances in robotics allowed us to conduct tens of thousands of assays in
a matter of weeks or days, considered a trivial exercise by today’s standards. By
the early 1990s, high throughput screening (HTS) emerged as the ultimate
solution to drug discovery, if only we could provide the numbers of compounds
to stoke the robots. A company’s legacy compound collection became its
screening library. These collections, typically in the range of 50–100,000
compounds, reflected the past chemical interests of the company, and as a
result, were of a low order of chemical diversity, consisting rather of a relatively
small number of groups of similar compounds. This quickly gave rise to
compound acquisition strategies. New positions and new departments with new
budgets were created with the purpose of buying compounds from whomever
was willing to sell them, such as university professors and small chemical
companies that had closed their doors for whatever reason. Eastern European
chemical operations became a rich source of compounds with the collapse of
the Soviet Union. Still, screening libraries grew slowly during the early 1990s,
while screening robots and assay development moved forward at a similarly
slow pace. The situation is captured in this quote from the first paper published
on the hit-to-lead (HTL) process [1]:

Consider the fairly typical situation of a screening program consisting of
sixteen assays and a library of 150,000 compounds to be completed in one year. If
each compound is screened at a single concentration, then 2.4 million data points

will be generated. If the hit rate is only 0.01%, then 20 active compounds per
month can be expected.

At that time the question of how to sort out which compounds to work on was
a fairly daunting task.

1.3. THE HIT-TO-LEAD PROCESS

Several companies worked on the problem, but Sterling-Winthrop was the first
to publish a method [1]. They began by defining hit-to-lead chemistry as ‘‘a
process wherein the likelihood of failure or long term success for a given chemical
series can be evaluated in a systematic way.’’ They further defined an active as
‘‘any substance that shows reproducible activity in any screen.’’ They defined a
hit as having the following attributes: activity in a relevant bioassay is
reproducible; structure and high purity has been confirmed; selectivity data has
been generated; available analogs have been tested; the structure is chemically
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tractable; and there is potential for novelty. Finally, a lead was defined as a hit
with genuine SAR, which suggests that more potent and selective compounds
can be found. The process that was developed had five basic objectives that are
still valid today. The first is the validation of structure and purity. Many of the
screening samples were decades old, prepared and purified prior to the wide-
spread use of high field NMR spectroscopy for structure determination and
chromatographic techniques for purity assessment. Further, many samples
simply decomposed during long-term storage. It was found that 10–30 percent
of the samples in some collections either had incorrect structures or were less
than 90 percent pure. A second objective is to find the minimum active fragment
(pharmacophore) in a complex active molecule, as such information impacts the
strategy for SAR development of the series. A third objective is to enhance
selectivity in order to minimize activity at closely related molecular targets. A
fourth objective is to exclude compounds with inappropriate modes of action,
such as nonspecific binding to the molecular target. The fifth objective is to
increase potency. Actives often have activity in the micromolar range. Such
compounds can be problematic later in development with respect to achieving
effective concentrations in the target tissue or organ.

The overall objective of HTL chemistry is to find the best possible leads that
can be progressed to lead optimization (LO) in the shortest period of time.
Project leaders must be ruthlessly Darwinian in their willingness to drop
projects for which one or more of the above objectives cannot be achieved in
about six months. Beyond that, time-precious resources are increasingly
expended on projects with decreasing probabilities of success. The effectiveness
of an HTL chemistry group is determined solely by the rate and quality of leads
generated; the timely termination of hit series for cause must be considered to
play a vital role in that effectiveness.

In the ensuing years since the formulation of the HTL objectives, most if not
all lead discovery organizations established an HTL function. Beyond the five
fundamental objectives most had differences in degree, rather than kind, as to
the exact process to be followed. Nevertheless, essentially every drug discovery
organization in the world had incorporated, by the late 1990s, an HTL
function, by whatever name they chose, into their overall drug discovery
pathway. One such typical pathway is illustrated in Figure 1.1.

In general, such pathways captured the key activities and timelines for
progression of compounds, but often lacked specific criteria to be met. As
experience was gained, and successes and failures were evaluated, new attri-
butes of the process were developed. Many organizations became more rigid in
their milestone criteria for hits and leads. Perhaps one of the most complete yet
succinct descriptions of criteria in use was published by Steele and coworkers
[2] at AstraZeneca. While these criteria may not be universally applicable
because of the nature of a particular molecular or disease target, they were
developed as a result of their internal experience with the HTS–HTL–LO
history across many disease targets and therapeutic areas. Hit criteria are aimed
at providing post-HTS evidence that the activity is not associated with
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impurities or false positives, and that the issues to be addressed in HTL have at
least been evaluated. Lead criteria build on the hit criteria to demonstrate
sufficient scope and robustness to sustain a major LO project. Both sets of
criteria are subdivided into three categories as they relate to the compound
series; pharmacology; and absorption, distribution, metabolism, and excretion
(ADME), including in vivo data for leads. The authors admit that this is a
bewildering array of information to capture during a supposedly fast and low
resource plan. However, they state that, ‘‘this set of criteria has grown from
lessons learned by the unwitting progression of avoidable but time-consuming
issues into LO, leading to more attrition in a phase where it is less acceptable.’’
Subsequent publications from this company have included an abbreviated
version of the criteria to illustrate the HTL process (vide infra).

1.4. THE MAGNITUDE OF THE PROBLEM

Over the last two decades there have been tremendous advances both in
synthetic organic chemistry and in screening technology. The former, through
methods in combinatorial chemistry, and more recently in multiple parallel
syntheses, has increased the available numbers and diversity of screening
libraries, and the latter has increased the rate at which assays can be run. As
these technologies advanced, libraries of billions of compounds, and the robots
to screen them, were envisaged. A logical extension of these technologies would
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Figure 1.1. The drug discovery pathway from the target to the clinic. The figure was
kindly provided by Dr. Zoran Rankovic.
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be to synthesize and test all possible drug-like molecules against all possible
disease targets. This turns out to be utterly and completely impossible. Defining
as drug-like molecules that consist of no more than 30 nonhydrogen atoms,
limited to C, N, O, P, S, F, Cl, and Br, with molecular weight r500 Da, and
making an allowance for those unstable to moisture and oxygen at room
temperature, the total number of possible combinations has been estimated
to be of the order of 3� 1062 [3]. Assuming an average molecular weight of
350 Da, if one were to prepare only a single molecule of each of these possible
structures and place them in a sphere at a density of 1 g/cm3, the diameter of the
sphere would be approximately 40 billion miles. Note, however, that the best
small molecule drug for every disease is contained within this sphere of
chemistry space. Note also that we can never know whether any particular
drug is the best possible one for its use.

1.5. SCREENING LIBRARIES

Early thinking in the design of screening libraries was that biological activity
was to be found uniformly in diversity space. Accordingly, vast combinatorial
libraries, based solely on available synthetic methodologies, and the desire to be
as broadly diverse as possible, were prepared and screened against a broad
range of molecular targets. Hit rates turned out to be disappointingly low, and
attempts to progress many of these hits to leads were unsuccessful. It rapidly
became clear that within drug chemistry space biological activity occurred only
in certain regions, which in all likelihood occupied only a small portion of the
total space. Thus, the random approach to building productive screening
libraries had only a correspondingly small probability of success. This gave
rise to new thinking about how to describe biologically relevant chemistry
space, and how then to design libraries that expand and further explore that
space. Many approaches were taken, but all are, for the most part, variations
on one of the following three themes: physical properties, chemical structures,
and biological behavior. Most of the effort has been concentrated on the first
two of these, as structure and properties enjoy a high level of intellectual
comfort among chemists. The relationship of biological behavior to library
design is less intuitive, but may ultimately prove to be the most effective
approach.

Through about the early to mid-1990s medicinal chemistry strategy for drug
discovery was to make compounds of similar structure to some lead compound
with the hope of finding increasingly potent compounds. The most potent
compounds were then advanced. When a compound failed in development it
was replaced with a related potent compound and the process repeated. The
relationship between physical properties and successful drug development was
not fully appreciated until publication of the ‘‘rule of five’’ by Lipinski and
coworkers [4]. The importance of this paper is apparent from its well over
1500 citations. The rule states that poor absorption or permeability are more
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likely when the calculated 1-octanol/water partition coefficient is W5, the
molecular mass is W500 Da, the number of hydrogen bond donors (OH plus
NH count) is W5, and the number of hydrogen bond acceptors (O plus N
atoms) is W10. Somewhat later the importance of the number of rotatable
bonds [5] and polar surface area [6] to oral bioavailability was established.
These six easily calculated physical properties have become important con-
siderations in the design of screening libraries, as well as HTL and lead
optimization programs. Just how important these properties are was assessed
by Wenlock and coworkers [7]. This work compared profiles of compounds in
various stages of development (Phase I, II, III, Preregistration, and Marketed
oral drugs), and included data on compounds that were discontinued from the
first three phases in order to evaluate properties trends. The properties studied
did not include polar surface area, but did include logD7.4, a measure of the
lipid water distribution of ionizable compounds at pH 7.4. The data was
reported as the mean value and standard deviation of each property for the set of
compounds in each phase, both active and discontinued. The mean molecular
weights for drugs in all phases of development are higher than that of marketed
oral drugs. The mean logP of compounds in the active phases are very similar to
that of marketed oral drugs, whereas the values for discontinued compounds are
approximately 0.6 units higher. The situation is exactly the same for logD7.4. For
H-bond donors, only the Phase I group was significantly different at the
95 percent level from the marketed drugs. For H-bond acceptors, four groups
differed from the mean value for marketed drugs. For rotatable bonds, five
groups differed significantly from marketed drugs. One of the clearest findings of
this work is that mean molecular weight in development decreases on passing
through each of the phases. The same appears to be true for logP and logD7.4.
Thus, molecular weight and lipophilicity are two properties that show the
clearest influence on the successful passage of a candidate drug through the
different stages of development.

Leeson and Springthorpe [8] extended this work to evaluate trends in
physical properties of launched drugs from 1983 to 2006. The number of drugs
trended steadily downward, while the molecular weights trended steadily
upward. Indeed, over this time period, there are increases in three of the four
rule-of-five properties, with lipophilicity changing less appreciably. Polar sur-
face area and rotatable bond count also increased. The authors suggest that
factors driving the increases in physical properties include a greater number of
apparently less druggable new targets, for which larger and more lipophilic
molecules appear to be necessary for high affinity binding to active sites. But
the fact that drug lipophilicity is changing less over time than other physical
properties suggests that this is an especially important drug-like property. This
property essentially reflects the key event of molecular desolvation in transfer
from aqueous phases to cell membranes and to protein binding sites, which are
mostly hydrophobic in nature. The authors’ thesis is that if lipophilicity is too
high, there is an increased likelihood of binding to multiple targets. They used
the Cerep BioPrint database of drugs and reference compounds to examine the
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role of physical properties in influencing drug promiscuity and side effects.
They found that promiscuity is predominantly controlled by lipophilicity and
ionization state. Thus, they concluded that the most important challenge today
is delivering candidate drugs that will not eventually fail owing to properties-
based toxicity. The implications of working increasingly closer to the extre-
mities of drug-like chemical space appear serious for overall productivity and
promiscuity, leading to increased risks of pharmacologically based toxicity.

The assessment and characterization of the structures of all known biolo-
gically active molecules would be a daunting task. A simpler and arguably still
representative approach would be to study the structural attributes of known
drugs. Bemis and Murcko [9] used some 5000 compounds from the Compre-
hensive Medicinal Chemistry database. They analyzed only the graph repre-
sentation of the molecule, that is, the representation of the molecule by
considering each atom to be a vertex and each bond to be an edge on a graph,
without regard to atom type or hybridization. Ring systems were defined as
cycles within the graph representation and cycles sharing an edge. Linker atoms
are on the direct path connecting two ring systems. A framework was defined as
the union of ring systems and linkers. Interestingly, only 6 percent of the
molecules were acyclic, and only 32 frameworks were found to occur in 20 or
more compounds, accounting for 50 percent of the total compounds. By
separating rings from linkers it was found that only 14 rings and 8 linkers
(chains of 0–7 atoms) were represented. While it is tempting to speculate about
reasons for finding so few frameworks among so many drugs, the authors
stated that the results do not necessarily reveal some fundamental truths about
drugs, receptors, metabolism, or toxicity. Instead, it may reflect the constraints
imposed by the scientists who have produced the drugs. Synthetic and patent
considerations, and a tendency to make new compounds that are similar to
known compounds, may all be reflected in these findings.

In a second publication by these authors [10] a similar analysis was carried
out for the side chains, defined as nonring, nonlinker atoms. They found that
73 percent of side-chain occurrences were accounted for by only 20 side chains.
This suggests that the diversity that side chains provide to drug molecules is
quite low, and may explain the poor performance of combinatorial screening
libraries in which diversity elements are added as side chains. The authors
suggest that one way their findings could be used is to generate a large virtual
library by attaching side chains to frameworks at various points. The virtual
library could then be computationally filtered to optimize a particular property
of interest prior to the library actually being synthesized. They have illustrated
this application by designing a library optimized for blood brain barrier
penetration [11].

Most companies began to analyze in detail the composition and HTS hit
rates of their legacy libraries, combinatorial libraries, and natural products
libraries. Jacoby and coworkers published a detailed analysis of their experi-
ence at Novartis [12]. They found that the validated hit rate of the combina-
torial collection was 0.02 percent. The hit rate of the historic medicinal
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chemistry archive was higher at 0.03 percent, but both were outperformed by
the natural products collection that had a hit rate of 0.12 percent. However,
when the percentage of assays with hits from each compound source is
considered, a very different picture emerges. The combinatorial and natural
products collections were successful in about 60 percent of the assays, whereas
the historic archive collection always produced hits. They suggested that the
higher performance of the latter collection is due in part to its consisting of
individually synthesized compounds with a resulting overall higher scaffold
diversity, and in part to the compounds having been driven toward a historic
target focus, and therefore have more similarity to active compounds of similar
classical druggable targets. Using this and additional analyses based on
cheminformatics, as well as the molecular framework approach of Bemis and
Murcko (vide supra), these authors developed a compound collection enhance-
ment program that also included the extraction of privileged scaffolds from
HTS data.

The literature soon saw a proliferation of computational methods to extract
the best compounds and the most information from screening libraries. Many
of these methods, while interesting in their own right, were unavailable to the
broad scientific community because of issues of hardware, software support,
and the proprietary nature of the method. The most valuable of these methods,
then, were the empirical, practical, hands-on strategies. In these cases, chemists
developed sets of rules to define the acceptability of compounds. This approach
is not without its pitfalls. For example, Lajiness and coworkers [13] conducted
a study in which 13 experienced medicinal chemists reviewed a total of about
22,000 compounds with regard to their acceptability for purchase for use in
screening. The compounds had already passed a number of standard compound
filters designed to eliminate chemically and/or pharmaceutically undesirable
compounds. The compounds were divided into 11 lists of about 2000 compounds
each. Most of the chemists reviewed two lists. Unknown to the chemists, each list
contained a subset of 250 compounds previously rejected by a very experienced
senior medicinal chemist. The results indicated that there is very little consistency
among medicinal chemists in deciding which compounds to reject. It was also
shown that when medicinal chemists review the same compounds a second time
but embedded within a different 2000 compound set, they reject the same
compounds only about 50 percent of the time. The authors were careful to point
out that the results make no judgments of right or wrong, but only that opinions
often differ. There is probably better agreement among chemists when considering
substructures and functional groups. Steele and coworkers [2] at AstraZeneca
developed a set of such chemistry filters for eliminating undesirable compounds.
Their resultant rules are quite simple. The first rule states that compounds must
have at least one N or O atom and at least one noncyclic bond. The second rule
states that compounds must not have any of the substructures or functional
groups listed in a table of chemistry filters with 46 entries. In contrast to the above
discussion of a low level of consistency among individual chemists considering
specific compounds, these filters were derived from a consensus of opinions of a
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panel of experienced medicinal chemists considering only substructures and
functional groups. Similar tables have certainly been developed at other compa-
nies, and it would be interesting to compare them if they were to become
available. The AstraZeneca group went on to partition their collection into the
Good Set (largely lead-like compounds passing all chemical filters, molecular
weighto 400, logPo 5.0); the Bad Set (pass all chemical filters, molecular weight
o 550, logPo 7.0); and the Ugly Set (molecular weightW 550, or logPW 7.0, or
fail any chemical filter). The Ugly Set was excluded from HTS.

1.6. MOLECULAR COMPLEXITY

Molecular complexity is probably impossible to define precisely, but like art,
most chemists know it when they see it. Such molecular features as multiple
chiral centers, polycyclic structures, and multiple functionality, symmetry,
heteroatoms, etc., all contribute to one’s perception of complexity. Notwith-
standing our inability to define it, there have been numerous attempts to
quantitate it [14–16]. All of these attempts have been structured from an
organic synthesis perspective. For example, using these methods the complexity
index of each intermediate of a synthesis can be calculated and the change in
complexity plotted as a function of step number in the synthesis. In this way,
several syntheses of the same molecule can be compared with respect to
progression of complexity as the syntheses proceed. Of course, a complex
molecule may require a complex synthesis today, but new developments in
synthetic methodology may result in a dramatically simplified synthesis. Does
this mean the molecule is no longer considered complex? From a biological
perspective, however, the notion of molecular complexity has a rather different
meaning. The extent to which two molecules bind, or not, is dependent on the
complementarity of their various surface features, such as charge, dipole
effects, hydrogen binding, local hydrophobicity, etc. If complementarity is
thought of in terms of complexity, it seems intuitive that the more complex a
molecule is, the less likely it is to bind to multiple protein binding sites. In other
words, the more complex the molecule, the more likely it is to be selective for a
single, or small number of protein targets. This notion appears to have been
first expressed by Bentley and Hardy in 1967 [17]. They were trying to discover
analgesics superior to morphine (1, Fig. 1.2) by separating desirable from
undesirable effects. All efforts to that point had been in the direction of making
structures simpler than morphine, such as meperidine (2). They reasoned that
compounds of simpler structure would be able to fit all of the receptor surfaces
associated with the different effects. These considerations led them to examine
bases more complex and more rigid than morphine, in the hope that the
reduced flexibility and the differences in peripheral shape between such
compounds and other known analgesics would result in the new bases being
unacceptable at some of the receptor surfaces, and thus to a separation of the
various effects. Among the molecules that have emerged from this work is
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buprenorphine (3), clearly more complex than morphine by the addition of a
bridged bicylic system, a hydroxyl group, two new chiral centers, and
peripheral hydrophobicity. A strict comparison of the promiscuities of 2 and
3 apparently has not been done. However, using the Cerep BioPrint database
(vide supra) it was found that meperidine produced 24 hits, and buprenorphine
produced only 8 hits, defined as W30 percent inhibition at 30 mM.1 It thus
appears that higher orders of complexity are consistent with the Bentley and
Hardy hypothesis. A second example using structures more closely related to
each other is from the glutamate field. For each structure, the Barone–Chanon
complexity index [16] has been calculated and is shown in Figure 1.2.

Glutamic acid itself (4) has an index of 138, and is obviously a ligand for all
20-plus glutamate receptors. (S)-AMPA (5) has an index of 237 and is highly
selective for the ionotropic glutamate receptors, and LY-354740 (6), with an
index of 243, is highly selective for a subset of metabotropic glutamate
receptors. Again, there does seem to be a relationship between molecular
complexity and receptor selectivity.2 This suggests that for an LO program,
increasing complexity while holding the values of other properties within drug-
like boundaries might be a viable strategy. But what about screening libraries?
The above observations suggest that libraries of very complex molecules might
produce relatively few hits because the compounds are too complex to fit the

1 We thank Dr. Paul D. Leeson for providing this information.
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binding sites on the protein targets. Indeed, Tan et al. [18] assembled a library
of over two million compounds based on a very complex natural product core.
Screened in three assays, the library produced no hits in two of them, and only
one hit in the third, with an EC50 of 50 mM. Hann and coworkers [19] developed
a very simple model to represent probabilistic aspects of molecular recognition.
The model does not incorporate flexibility in either the ligand or the binding
site. With this type of model it is possible to explore how the complexity of a
ligand affects its chance of matching a binding site of given complexity. They
found that the probability of finding any type of match decays exponentially as
the complexity of the ligand increases, and that the chance of finding a ligand
that matches only one way, that is, a unique binding mode, in a random choice
of ligand peaks at a very low ligand complexity. The results further suggested
that libraries containing very complex molecules have a low chance of
individual molecules binding. In their view it is better to start with less complex
molecules, and to increase potency by increasing complexity. They suggest that
there is an optimal complexity of molecules that should be considered when
screening collections of molecules, but did not speculate as to what that
complexity should be, or how to measure it. Schuffenhauer and coworkers
[20] used historical IC50/EC50 summary data of 160 assays run at Novartis
covering a diverse range of targets, and compared this to the background of
inactive compounds. As complexity measures they used the number of
structural features present in various molecular fingerprints and descriptors.
They found that with increasing activity of the ligands, their average complex-
ity also increased. They could therefore establish a minimum number of
structural features in each descriptor needed for biological activity. They did
not, however, address the issue of complexity versus selectivity.

1.7. SIMILARITY

Generations of medicinal chemists have developed SAR by synthesizing
molecules similar to an active molecule. This is generally considered successful,
although any experienced chemist will agree that the approach is full of
surprises. When considering compounds for purchase to augment an existing
library, it is important to consider whether structurally similar molecules have
similar biological activity. This question was specifically addressed by Martin
and coworkers [21]. They defined similar as a compound with Z0.85 Daylight
Tanimoto similarity to an active compound. They showed that for IC50 values
determined as a follow-up to 115 HTS assays, there is only a 30 percent chance
that a compound similar to an active is itself active.

They also considered whether biologically similar compounds have similar
structures. They compared the nicotinic agonists acetylcholine (7) and nicotine
(8), and the dopaminergic agonists dopamine (9) and pergolide (10) (Fig. 1.3).
They found that the highest Daylight Tanimoto similarity within this group of
four compounds (0.32) was between nicotine and pergolide, and the second
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highest (0.22) was between nicotine and dopamine. These results were likely in
part due to deficiencies in the similarity calculations, and in part because similar
compounds may not necessarily interact with the target macromolecule in
similar ways. The latter explanation was addressed elegantly by Boström et al.
[22]. They exhaustively analyzed experimental data from the protein database
(PDB). The complete PDB was searched for pairs of structurally similar ligands
binding to the same biological target. The binding sites of the pairs of proteins
complexing structurally similar ligands were found to differ in 83 percent of the
cases. The most recurrent structural change among the pairs involves different
water molecule architecture. Side-chain movements were observed in half of the
pairs, whereas backbone movements rarely occurred.

1.8. BIOLOGY-BASED LIBRARIES

Consideration of the foregoing discussions of complexity, structural similarity,
and binding mode dissimilarity suggests that the vast majority of the possible
compounds in drug-like chemistry space are simply not biologically active.
However, the fact that a compound similar to another biologically active
compound has a 70 percent probability of being inactive at that molecular
target does not preclude its being active at a different unrelated molecular
target. This suggested to us that compounds that have exhibited biological
activity at any target, as well as compounds similar to biologically active
compounds, might have activity at other targets, and would therefore serve as
the basis for building efficient screening libraries, which we dubbed biology-
based libraries. We tested this hypothesis2 by selecting all the compounds in the
AstraZeneca compound collection that had shown confirmed activity in any
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Figure 1.3. Biologically similar molecule pairs: acetylcholine (7) and nicotine (8), and
dopamine (9) and pergolide (10).
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screen, including compounds that had been prepared for SAR development in
LO projects. At the time of this work the set consisted of approximately 72,000
compounds. The compounds were filtered to retain only those that had lead-
like physicochemical properties and were devoid of objectionable functionality.
We then selected against frequent hitters by choosing only those compounds
that had been tested in a minimum of 10 assays, and found active in at least 2,
but in no more than 5 assays. This resulted in 25,536 compounds. We assumed
that if this set consisted largely of frequent hitters, the distribution of
compounds would be weighted toward those that were active in five assays,
with correspondingly fewer actives in four, three, and two assays. However,
the distribution was exactly the opposite: 15,351 were active in two, 5,849 were
active in three, 2,863 were active in four, and only 1,473 were active in five
assays. We then compared the performance of these compounds against the
performance of the general screening collection across 40 new assays of diverse
molecular targets and found that hit rates for the selected set exceeded those of
the general collection in 38 of the assays, in some cases dramatically so. The
25,536 compounds consisted of about 9,000 clusters, of which about 5000 were
singletons. We concluded that these singletons would serve as good starting
points for expanding the screening collection. The advantages of this approach
is that hits could be quickly found in time-consuming and expensive low
throughput assays, and that new privileged cores will be found. The disadvan-
tage is that new chemotypes are not likely to be found very often. Nevertheless,
we believe that the approach can add value to an overall screening program.

Another interesting approach to new hit and lead discovery has been
developed at Telik, and described in detail with examples in a paper by Beroza
et al. [23]. Briefly, target-related affinity profiling (TRAP) is based on the
principle that almost all drugs produce their effects by binding to proteins. This
fact suggests that protein-binding patterns might be a particularly relevant way
to classify molecules. In TRAP, the characterization of a molecule’s protein-
binding preferences is captured by assaying it against a panel of proteins, the
‘‘reference panel.’’ The panel is fixed, and each molecule in a set is assayed
against it. The vector of each compound’s binding affinities to the panel is its
affinity fingerprint. A library of compounds can therefore be considered a set of
vectors in ‘‘affinity fingerprint space,’’ an alternative space to those defined by
molecular structure. Molecules that interact with the same affinity toward the
same proteins would be considered biologically similar, regardless of their
chemical structures. For example, met-enkephalin and morphine are obviously
very different structurally, but exhibit very similar opioid pharmacology. They
also have very similar affinity fingerprints, as shown in Figure 1.4.

By contrast, morphine, an agonist, and naloxone, an antagonist, have very
similar structures, but very different biological activities. The use of affinity
fingerprints for lead discovery has a limitation because there is no in silico
method to generate an affinity fingerprint for a compound. A physical sample
of the compound must be available, which carries with it the costs associated
with compound acquisition, chemical inventory, and assaying the compounds
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against the protein panel. Despite this limitation, affinity fingerprints have been
shown to be an effective descriptor for identifying drug leads. The screening
process that uses them for low throughput, high information assays reliably
identifies molecules with activities in the low micromolar range.

1.9. A HIT-TO-LEAD EXAMPLE

Baxter and coworkers at AstraZeneca have published a number of papers [24–26]
that specifically illustrate the HTL process applied to various molecular targets
following HTS campaigns. These works are distinguished by their emphasis on
meeting a set of generic lead criteria. These criteria are an abbreviated version of
those listed in Reference 2, and are shown in Table 1.1. Lead compounds should
fulfill the majority of the lead criteria, but it is understood that very few
compounds will be found that meet them all. By way of example, Reference 26
describes the process as applied to a series of thiazolopyrimidine CXCR2 receptor
antagonists. The profile of the screening hit 11 is shown in Table 1.2.

The compound is not particularly potent (10 mM) in the binding assay, but
did show comparable potency (2 mM) in a functional FLIPR assay, suggesting
that the observed activity was real. The HTL strategy was to examine in turn
the three thiazolopyrimidine substituents looking for SAR leading to increasing
potency. Replacement of the 2-amino group with hydrogen retained activity,
but other changes eliminated activity. The 2-amino group was therefore held
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Figure 1.4. Chemical structures and affinity fingerprints for met-enkephalin and
morphine. The protein panel is able to recognize the biological similarities between
these two structurally distinct molecules. The two molecules have the same affinity for

over half the proteins in the 12-member panel.
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constant. The 7-hydroxy group could be replaced by hydroxyethylamines, but
not by the slightly larger hydroxypropylamine. The 5-alkylthio group could be
replaced by a benzylthio group with a significant increase in potency. The
chemistry lent itself readily to combinatorial expansions at positions 5 and 7,

Table 1.1. Generic lead target profile

Generic assay Generic criteria

Potency IC50 o 0.1 mM
Rat hepatocytes Clearance o 14 mL/min/106 cells
Human liver microsomes Clearance o 23 mL/min/mg
Rat iv pharmacokinetics Clearance o 35 mL/min/kg, Vss W 0.5 L/kg, T1/2 W 0.5 h

Oral bioavailability F W 10%, PPB o 99.5%
Physical chemical MW o 450, clogP o 3.0, logD o 3.0
Additionally Clear SAR, appropriate selectivity data, and patentable

multiple series

Table 1.2. Lead criteria profiles of screening active 11 and resulting lead 12

N

NS

N
NH2

OH

S N

NS

N
NH2

NH

S

OH

F
F

Generic lead criteriaa Compound 11 Compound 12

Binding IC50 o 0.1 mM 10 0.014
Ca flux IC50 o 0.1 mM 2.0 0.04
Rat hepatocyte clearance o14 49 4
Human microsome clearance o23 18 31

Rat iv clearance o35 – 25
Rat iv Vss W 0.5 L/kg – 1.9
Rat iv T1/2 W 0.5 h – 1.2

Rat po bioavailability W10% – 15
Plasma protein binding W99.5% – 98.4
Molecular weight o450 270 397

Solubility W10 mg/mL 27 0.5
clogP o 3.0 2.0 3.1
LogD o 3.0 2.9 3.4

aUnits as in Table 1.1 where not stated.
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resulting in a series of compounds with clear SAR. Of particular interest was
the observation that compounds with electron withdrawing groups in the aryl ring
of the 5-benzylthio substituent showed decreased clearance. The lead criteria profile
for one of the resulting compounds (12) is also shown in Table 1.2. The compound
fails in human microsome clearance and rat volume of distribution criteria, but by
only a small amount in either case. Further, the compound showed good oral
bioavailability, notwithstanding its low solubility. Supported by SAR for several of
the criteria, and considerable freedom to operate in intellectual property space, the
series exemplified by compound 12 formed the basis of a new LO project. Similar
successful HTL campaigns are described in References 25 and 26.

1.10. CONCLUSION

Developing new strategies for finding leads for drug discovery is an ongoing
process. Much progress has been made over the last two decades from the
elementary process of high throughput random screening. There has been
growing appreciation for drug-like physicochemical properties and earlier
ADME to prevent attrition further along the increasingly expensive development
pathway. As we have gained experience with current strategies, newer strategies
continue to emerge. The following chapters describe some of these emerging
strategies, and should be both exciting and informative for anyone involved in
what is arguably the most challenging aspect of modern medicinal chemistry.
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