
Part I

Production-Ready
Software

Chapter 1: “Production” Readiness

Chapter 2: The Quality Landscape

Chapter 3: Preparing for “Production”

Chapter 4: The Ins and Outs of Construction

c01.indd 1c01.indd 1 1/20/09 10:41:47 AM1/20/09 10:41:47 AM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 1/20/09 10:41:48 AM1/20/09 10:41:48 AM

 “ Production ” Readiness

 Developing and implementing a software system is a complicated and tricky business. In fact,
 “ developing ” and “ implementing ” are really two different but very interrelated disciplines. For
the purposes of this book, “ implementing a software system ” refers to the activities and processes
required to get a software system from an initial concept into live service or production, whereas
 “ developing a software system ” refers to the activities and processes of actual software
construction and proving. Although the two disciplines are interrelated, they can also be very far
apart. Just because a piece of software has been developed doesn ’ t necessarily mean it will be
implemented. Many software projects don ’ t even get off the ground or are shelved part way
through. This is especially true when the overall project isn ’ t or hasn ’ t been planned, executed, and
delivered well. While the development is essential, the implementation is paramount. That said,
the project needs to have a sound business case, and the project needs to be firmly planned,
executed, and delivered.

 This chapter looks at the high - level criteria for production readiness as it relates to both software
development and its ultimate implementation. This chapter is organized into the following
sections:

 What Is Production Readiness? On the one hand, production readiness assesses whether
your system meets all the necessary criteria for live service. On the other hand, production
readiness also refers to your readiness to produce or manufacture software. This section
reviews the high - level activities involved in the system development lifecycle and how
they map to some mainstream software development methodologies. Software systems,
whether large or small, include a variety of applications, environments, processes, and tools ,
as well as a number of different users . The foundation criteria for software development and
 implementation are:

 Applications must be fit for purpose.

 Environments must be fit for purpose.

 Processes and tools must be fit for purpose.

 Users must be trained.

❑

❏

❏

❏

❏

c01.indd 3c01.indd 3 1/20/09 10:41:48 AM1/20/09 10:41:48 AM

Part I: Production-Ready Software

4

 Why Is Production Readiness Important? Some software projects fail or are seen to be a failure.
You need to do everything that you can to ensure that your software development and
implementation projects are successful. This section discusses some of the most important and
common contributors to project failure, including poor scope, poor planning and execution, and
poor quality.

 The Production - Readiness “ Process ” — This section builds on the previous ones to provide
some foundation principles for software development and implementation, which provide the
basis of the production - readiness “ process. ” I ’ ve put “ process ” in quotes because it is not really
a formal process; rather, it is a mindset. You need to really think about what you ’ re going to do,
how you ’ re going to it, and who you ’ re doing it for.

 In this chapter, I don ’ t look at specific technologies or vendors, nor do I go into a huge amount of detail.
This chapter provides a high - level overview of the production - readiness landscape and some of the
high - level actions to achieve it. At the end of this chapter, I ’ ll recap on what ’ s been covered and as the
book progresses, I will cover some of these items in more detail to show how everything fits together to
achieve the primary goal — successful software development and implementation .

 What Is Production Readiness?
 The term production readiness will mean different things to different people. In the world of software
systems implementation, the term refers to whether a software system is ready for live service. In its
simplest form, this means “ Is the system ready for implementation? ” It doesn ’ t matter whether you ’ re
developing software for external clients, for internal purposes, for general sale, or even for yourself —
 the question remains the same.

 The word production also means to produce or manufacture. In achieving production readiness for your
system, you need to ensure that you ’ re not only ready for its final implementation, but that you ’ re also
ready for everything that leads up to it.

 Modern software systems encompass many different applications, environments, processes, and tools, as
well a wide variety of users and uses. To fully assess whether a system is ready for go - live or production,
you must truly understand the production - readiness criteria. You should ask yourself the following
questions:

 Are your applications fit for purpose?

 Are your environments fit for purpose?

 Are your processes and tools fit for purpose?

 Are your users trained and ready?

❑

❑

❑

❑

❑

❑

c01.indd 4c01.indd 4 1/20/09 10:41:49 AM1/20/09 10:41:49 AM

Chapter 1: “Production” Readiness

5

 Production readiness is underpinned by the criteria associated with these questions. However, it is very
difficult to answer yes or no to any of these questions without fully understanding their true and entire
meaning. For instance, what is meant by “ Are your environments fit for purpose? ” or “ Are your users
trained and ready? ” Successful software development and implementation depend entirely on how well
you define, agree , and understand all the necessary criteria.

 When you start development and unit testing, you need a fit - for - purpose development environment.
You need a development machine that has all the right applications and tools installed on it. You need to
know how to use these properly, and, finally, you need to know what you ’ re doing and how you ’ re
going to do it. In short, you ’ ve just taken a little step in defining some criteria to assess your own
readiness to start producing software.

 I ’ ve called this chapter “ ‘ Production ’ Readiness ” to capture this dual meaning of the word production and
to highlight the very essence of this book: You must be ready for production and you must assess and
ensure your production readiness every step of the way, whether it is development or implementation .
Producing software is your job, irrespective of who you do it for. The activities involved in software
development are shown in Figure 1 - 1 .

Requirements
Definition

Configuration
Management

Development

Regular
Integration

Design

Change
Control

Testing

Defect
Management

Support and
Maintenance

Deployment

Figure 1-1

 How well you plan, execute, and deliver these activities will determine the outcome of your project. The
activities will be explained in more detail throughout this book. However, having a set of production -
 readiness criteria that relates to software development is just as important as a set of criteria for assessing
the end result for implementation. The following provides a brief overview of each of the activities
shown in the diagram:

 Requirements definition — This activity relates to analyzing the problem and defining and
solidifying the requirements for the solution. Requirements are often categorized into functional
requirements and non - functional requirements. Functional requirements document the
solution ’ s features and functions from a usage perspective. They can include business rules,
calculations, and other functional and transaction - processing rules. Non - functional
requirements document the solution ’ s technical characteristics rather than functional processing.

❑

c01.indd 5c01.indd 5 1/20/09 10:41:49 AM1/20/09 10:41:49 AM

Part I: Production-Ready Software

6

Non - functional requirements are often referred to as “ technical requirements ” or the quality
characteristics that the system must incorporate.

 Design — The design of a software system is typically performed in multiple stages. The design
starts out at a high - level and subsequent phases and activities break the information down and
provide additional low - level information. Traditionally, software design involves functional
specification, technical specification, architecture specification, and so forth.

 Development — This is the actual business of “ coding ” and “ building ” the solution. In a
custom - built application there will be a large proportion of coding, whereas a solution that
involves third - party products generally has a mix of coding, configuration, or customization.
Third - party products can often have their own proprietary programming language, although
some do support extensions that can be developed in mainstream languages and tools, such as
C# and Java.

 Regular integration — Continuous integration is a process whereby developers check - in their
code and the very act of checking in triggers the solution to be built and regression tested. This
ensures that all the code and artifacts are continually integrated and work together. Best
practices have for a long time stated that build and regression testing should be performed at
least once a day. The business of integration is about bringing all the components and artifacts
together, compiling them, and running the regression tests. This is typically referred to as
 software builds . Although continuous integration is a good thing in certain situations, I ’ m more
inclined to use the term “ regular integration ” to cover all situations. Bringing the artifacts
together at regular intervals reduces the number of integration issues and the effort required to
fix them.

 Testing — The testing that ’ s performed on most software development projects includes
unit testing, integration testing, and system testing. Unit testing validates that a single
unit of software works correctly. A unit is typically a single class, module or method/
function. Integration testing validates that a set of units work together in an integrated fashion.
Integration testing can often be referred to as “ assembly testing ” because the set of units is
generally referred to as an “ assemblage ” or “ assembly. ” This is not to be confused with a .NET
Assembly or Dynamic Link Library (DLL), which is also a collection of classes, interfaces, and so
forth. System testing validates that the entire solution works correctly. System testing is often
subdivided into multiple activities, including functional testing, technical testing, and
acceptance testing, where each focuses on particular aspects of the system. Regression testing,
mentioned earlier, executes as many of the test scenarios as possible from unit, integration, and
system testing. “ Smoke ” testing is also often used to test the system end - to - end prior to passing
the software on for further testing, and, as such, the test scenarios are more aligned to, and a
subset of, the formal functional (and possibly technical) test scenarios.

 Deployment — This covers a few discrete activities. The first activity, release management,
deals with the business of determining what constitutes a release, e.g., the actual contents of the
release package. The second activity is packaging the release so that it can be deployed to a
particular environment. And the third activity is the actual deployment, installation,
configuration, and verification of the software (and content) of a release in a particular
environment.

❑

❑

❑

❑

❑

c01.indd 6c01.indd 6 1/20/09 10:41:51 AM1/20/09 10:41:51 AM

Chapter 1: “Production” Readiness

7

 Configuration management — In terms of software development, configuration management
refers to the repository that is used to store documentation, source code, and other artifacts
relating to the system or solution being implemented.

 Change control — As projects progress, changes to functionality and requirements are often
identified. Including these changes in the overall scope of the project or release is referred to as
 change control . Incorporating change is typically based on an impact analysis that determines the
costs and timescales associated with incorporating the change. These costs and timescales can be
reviewed to determine whether there is a sufficiently valid business case for the change. It
depends on the chosen development methodology, but traditionally a “ change ” refers to “ a
change to the signed - off requirements. ” Changes that are identified late in the cycle can have a
dramatic affect on costs and timescales. Agile development methodologies embrace change,
even late in the development cycle. However, changes still need to be validated for their
business relevance and their impact in terms of costs and timescales.

 Defect management — Defects are identified during testing and review activities and can be
raised at any point in the project lifecycle. A defect is not a change because the system (or
solution) doesn ’ t do what it is supposed to do according to the requirements and specifications.
Defect management is the business of managing defects and their implementation within the
system. It is not uncommon for some defects to be debated by the project team because they ’ re
actually a change to the requirements, and not really a defect at all.

 Support and maintenance — Once a system is in live service, it will need to be supported and
maintained effectively. Back - end support concentrates on ensuring that the system is up and
running and performing how it should. The system is also backed up and kept in good working
order by the support team. Support also involves incident management and investigation when
the system fails for some reason or another. Where defects are identified, or additional
functionality is required, these will typically be implemented by the application maintenance
team, which can sometimes be the support team too. Support, and more importantly
maintenance activities, can be quite far-reaching and involve all the activities previously
mentioned. Front - end support typically deals with user queries. Part of production readiness is
ensuring that the system can be supported and maintained properly.

 There are many formal and informal methodologies that can be adopted for software development,
ranging from the traditional waterfall - style methods through to agile and spiral development methods.
In almost all cases, the methodology will encompass the primary activities shown in Figure 1 - 1 .
However, the extent to which the activities are performed is entirely dependent on the methodology.

 Figure 1 - 2 shows a very simple and high - level block plan based on the waterfall development approach.
The plan is not complete and the phases do not represent a true scale. The diagram is used simply to
highlight the key activities in the project lifecycle and when they are required and/or performed.

❑

❑

❑

❑

c01.indd 7c01.indd 7 1/20/09 10:41:51 AM1/20/09 10:41:51 AM

Part I: Production-Ready Software

8

 The waterfall approach focuses on phase containment. That is, one phase should not begin until the
previous one is complete. For example, the development or build phases should not begin until
the design phase is complete and signed off. Design should not start until the requirements are agreed
and signed off. However, the sample plan shows the activities overlapping — for example, design
overlapping with the build and unit test phases. It is very often the case that the development team will
start building certain elements of the solution prior to the entire design being complete. For example,
framework and utility components can often be started very early in the lifecycle. Functional testing can
start when enough of the application is in place. Integration testing can continue while this is ongoing to
finalize the design or development of other components. The plan shows functional testing, technical
testing, and acceptance testing overlapping with one another, while the development team provides fix
support — a very common scenario in the waterfall approach. In the early days of the project lifecycle,
one phase drops into the other nicely, or at least it is meant to. It is important that each phase be ready
for production (e.g. manufacture), and the waterfall approach provides some time to plan and mobilize
for the follow - up phases. For example, during requirements analysis, you can prepare for design; in
design, you can prepare for development; and so on.

 The waterfall approach can also be used with iterative development, whereby the system is developed
over a number of “ iterations ” or “ releases. ” Each release delivers a certain amount of functionality that
realizes business benefits and can be implemented in live service while future releases are under
construction. Each release would typically encompass all the activities previously highlighted. There

Figure 1-2

Requirements Analysis

Design

Build and Unit Testing

Integration Testing

R
eg

ul
ar

 In
te

gr
at

io
n

“Functional” Testing

System Testing

“Technical” Testing

“Acceptance” Testing

“Fix” Support
Production Deployment

Support and Maintenance

Configuration Management

Defect Management

Change Control

Deployment

c01.indd 8c01.indd 8 1/20/09 10:41:52 AM1/20/09 10:41:52 AM

Chapter 1: “Production” Readiness

9

could be many releases being developed in parallel (as shown in Figure 1 - 3), which can be very difficult
to manage.

Release 3

Go-Live

Release 2

Go-Live

Release 1

Go-Live

Figure 1-3

 The release strategy is not associated with the methodology; it is associated with the project and the
business priorities. Multiple releases all running in parallel have an impact on how you mobilize your
projects and should be considered early. You ’ ll see throughout this book how multiple releases affect
some of the activities that you perform.

 Although the high - level plan shown in Figure 1 - 2 would look somewhat different for an “ agile ”
approach, the activities performed are again similar to those shown in Figure 1 - 1 . A sample construction
iteration outline is shown in Figure 1 - 4 . The outline does not follow any specific agile development
methodology. It is simply used to demonstrate the similarity in the activities and tasks that are
performed during the project lifecycle.

Requirements
Analysis

Planning

Effort
Estimation

“Functional”
Testing

“Acceptance”
Testing

“Technical”
Testing

Integration
Testing

Construction

Build and Fix

Unit
Testing

Configuration Management

Defect Management

Change Control

System
Testing

Production Deployment

Support and Maintenance

Defects and Changes
Scope

Release and Deployment

R
egular Integration

Design
(Modeling)

Figure 1-4

c01.indd 9c01.indd 9 1/20/09 10:41:52 AM1/20/09 10:41:52 AM

Part I: Production-Ready Software

10

 Agile software development methodologies focus primarily on developing working software rather than
writing documentation (specifications and so forth). The software is developed over multiple iterations.
Each of the iterations lasts for a fairly short period of time, usually somewhere between 4 to 8 weeks, and
produces a working version of the system. An agile iteration would normally include requirements
gathering and prioritization, as well as estimating and planning. A certain amount of design and
modeling is also required. The code needs to be developed, tested, and fixed where defects are
identified. The output at the end of the iteration doesn ’ t necessarily contain all the features and functions
required for live service. However, there ’ s usually a discussion by the stakeholders, as to whether the
functionality would realize true business benefits. If so, the project team has further discussions and
plans meetings around what needs to be implemented to ensure the software is production-ready and
can be deployed into live service. The necessary production readiness activities and requirements are
then prioritized for the next iteration. Given that agile development methods focus on developing
working software at (almost) every stage, it is even more important that all the applications,
environments, processes, tools, and users be ready.

 The plans have shown that in both methodologies the activities pretty much remain the same. The
degree and quality to which each of the activities is performed ultimately determine the quality and
readiness of the outputs. Deciding where to set the quality bar depends entirely on the budget and time
constraints of the project, as discussed later. If the right processes and practices are in place, tuned, and
understood, then all development can follow the same practice and provide the same level of quality
even during fix and later application maintenance.

 The applications, environments, processes, and tools that underpin all these activities must be fit for
purpose. The development methodology, along with the activities it encompasses, is simply a
component of the overall scope of the project. As you can see from the figures, the development
methodology ultimately plays its part in the overall preparation, execution , and delivery of the project.

 This chapter, and this book, promote and examine production readiness as it relates to both the actual
 development of a software system and its ultimate implementation . It focuses primarily on the activities
involved in the project and what developers, architects, and team leaders can do to help ensure a
successful outcome. To achieve your goals for production readiness, you need to ensure that:

 Your applications are fit for purpose.

 Your environments are fit for purpose.

 Your processes and tools are fit for purpose.

 Your users are trained.

 “ Fit for purpose ” doesn ’ t necessarily mean best of breed. It simply means that everything must be fit for
the purpose its intended for. If you were working on next - generation software, it is quite likely that
you ’ d require the best of breed as well.

 Applications Must Be Fit for Purpose
 A software system doesn ’ t normally just involve a single application — for example, the one you ’ re
producing. Many other applications are usually involved. Some will be custom built and others will be
off - the - shelf and configured or customized. It is important that all of these be fit for purpose. The system is
really only as strong as its weakest links. It doesn ’ t help to say “ It ’ s the database. It just keeps falling over. ”
Or “ The logs don ’ t actually tell me anything ” All of your applications need to be production - ready and

❑

❑

❑

❑

c01.indd 10c01.indd 10 1/20/09 10:41:52 AM1/20/09 10:41:52 AM

Chapter 1: “Production” Readiness

11

meet all the necessary quality characteristics (which are discussed in the next chapter). Your system is
usually built from many custom and third - party applications. This is referred to as the “ solution stack. ”
Which applications are included in the final state solution stack will depend entirely on the size and scale
of the system being implemented. Figure 1 - 5 shows a sample final state solution stack for the purposes of
this book.

Monitoring & Reporting

Custom & Third-Party Applications

Application Runtime
Environments

Security Datastores

B
ackup &

 R
ecovery

Operating System & Extensions

D
ep

lo
ym

en
t

B
at

ch
 &

 H
ou

se
ke

ep
in

g

Figure 1-5

 You need to ensure that all the chosen applications, as well as the ones you develop, display the
necessary quality characteristics. The systems that you implement today will undoubtedly contain the
ones you develop yourself. However, they also include many other applications, as described here:

 The operating system and extensions — This is pretty obvious but it is worth mentioning as
everything else sits on top of the operating system and, if it is inherently flawed in some way,
this could impact your system. You must determine and understand which aspects and features
of the operating system you are using so that you can ensure they are properly tested and
evaluated for production readiness. The requirements of the system and the applications need to
be mapped to the features of the operating system and extensions. For example, a system may
provide failover capabilities and in a Windows environment, some of these could make use of
Windows Clustering Services. In this case, you need to ensure they meet the needs of the
system. For instance, you might have a requirement whereby the system needs to failover in 20
seconds. If the underlying services do not support this requirement, you ’ re going to have a
problem. Understanding all the applications you have in the stack will enable you to determine
which ones can be clustered properly. Some third - party applications might not support
clustering at all and, as such, alternative failure and recovery solutions need to be put in place to
ensure that they are fit for purpose. Furthermore, knowing which specific features of the
operating system your application is going to use enables you to better develop your
application. For example, knowing which application components will run as services,
clustered applications, or a combination of both will enable you to determine what you can and
should incorporate during development and testing.

 The Application Runtime Environment and extensions — This is again pretty obvious, but
whichever runtime environments your applications are going to run within must also be fit for

❑

❑

c01.indd 11c01.indd 11 1/20/09 10:41:53 AM1/20/09 10:41:53 AM

Part I: Production-Ready Software

12

purpose. You need to understand the requirements of your applications to determine that the
appropriate runtime environment is in place and is tested appropriately. Third - party
applications often have specific system requirements that stipulate specific runtime versions to
be used. For example, a third - party Customer Relationship Management (CRM) system might
stipulate that the .NET Framework version 2.0 should be used. Understanding these
requirements will ensure that you have compatible runtimes in place. If your custom
applications are built to run on the .NET Framework version 3.5, you might have a problem
running both applications on the same machine. Trying to run applications on an inappropriate
runtime can cause issues and delays. Choosing applications that can all run on the same version
of a runtime is often the best way forward. Understanding the runtime environment enables you
to determine what you can incorporate during development. For instance, knowing which
application components will run within Internet Information Services (IIS) will help you to
determine what you can and should incorporate during development and testing. Furthermore,
knowing the exact version of the runtime will enable you to avoid using incompatible,
deprecated, or even unsupported features during development, which can also cause issues
further down the line.

 The data stores — Again, this sounds pretty obvious, but the data stores (or databases) will be
used by many of the applications and tools you put in place. The database needs to support all
the requirements and needs of the applications and tools that use it. You need to map the
requirements of the applications to the features of the database. Applications that all use the
same database engine can help to reduce costs because you do not have to deal with multiple
database technologies, although this is sometimes not possible. Knowing the features of
the database that you are going to use will help you to determine what you can and should do
during development and testing. For instance, the system might utilize multiple databases to
improve performance and separate functionality. All these databases will require some form of
housekeeping, purging of old data, re - indexing, and perhaps even recompiling stored
procedures for optimal performance. Understanding the types of databases and engines that
you are going to use will help you to better design, build, and run your system.

 The security and encryption solutions — Some systems are often required to use an external
security or authentication system — for example, using Microsoft ’ s Active Directory to store
user - and role - based information. These applications will again have their own requirements
and considerations for design, development, and implementation. It is important that all of
these applications be production - ready and scaled appropriately for the entire system. The
project may also need to use an isolated encryption server or service. Hardware encryption/
decryption is quite common in large - scale secure systems, and it will also have its own
considerations and usage scenarios. It is important to understand these external systems
because, again, they need to be scaled and used appropriately. A single instance could cause a
bottleneck in the final solution, and finding this out toward the go - live date could be a very
costly business to rectify.

 The batch solution — Even in these days of 24/7 availability and service - orientated
architectures (SOA), batch can still form a large part of an overall solution. Batch is traditionally
thought of as an overnight process, with a lot of number crunching and data processing — and
this is still the case in a lot of systems. However, batch covers many different types of jobs. Batch
jobs and processes can be as fundamental as clearing out old data or taking the system down in

❑

❑

❑

c01.indd 12c01.indd 12 1/20/09 10:41:53 AM1/20/09 10:41:53 AM

Chapter 1: “Production” Readiness

13

readiness for routine housekeeping. It is important to ensure that the batch solution is fit for
purpose and meets all the necessary quality characteristics. The “ batch window ” (the time in
which all batch jobs must be completed) is ever decreasing due to the high availability demands
of today ’ s systems. In some situations, the batch window is almost non - existent and the majority
of the system must remain up and running while batch or routine maintenance is performed.
You need to ensure that your batch solution takes the batch window into account.
Understanding the batch solution and its features will help you to develop better batch jobs and
frameworks within your applications. Knowing which application components will run as batch
or background processes will also determine what you can and should do during design,
development, and testing.

 The reporting and analytics solutions — I ’ ve often said, “ It ’ s not what you put into a system,
it ’ s what you get out of it. ” The truth is that the two are related. “ Rubbish in, rubbish out ” is an
old saying. The reporting solution and the resultant reports also need to be fit for purpose. The
information in the reports is used for many different purposes by many different people. Some
reports can be used to make financial or investment decisions; others might be used to assess
performance; and some can be used during incident investigation. The reporting solution needs
to be understood so that you can determine what you can and should do during design,
development, and testing. For instance, reports can often be executed against a replicated
database and a report can be as simple as running a SQL query. There are also third - party
reporting applications, such as SQL Server Reporting Services which allow you to design, build
and execute custom reports. These reporting applications require specific knowledge, not only
on how to develop reports but also how to implement the overall reporting solution. Knowing
which reports you need to produce and how and where they will run will help you to better
design, build, and test your application. There are also many applications that provide web
analytics. These applications very often analyze web logs and provide usage and trend analysis
reports. The use of these applications also introduces the need for additional development and
training. The applications will have their own hardware and software requirements, as well as
various deployment considerations. Additional batch jobs or scripts might be required to copy
the log files from various servers to a central location for processing, analyzing, and reporting.

 The monitoring solution — All your applications and infrastructure will require monitoring.
You need to know when something goes wrong in order to investigate and correct it. You may
also need to know when something good happens in the system. The monitoring solution needs
to be fit for purpose. If the monitoring solution is unstable or ineffective, you risk entering a
black hole. You don ’ t know what the application is doing because you don ’ t know what the
monitoring solution is doing. Monitoring is often divided into different levels and can involve
different monitoring applications. Understanding the various applications involved will help
you to determine what you can and should do during development and testing. For instance,
most monitoring solutions are capable of extracting information from the Windows Event Log,
WMI (Windows Management Instrumentation) events, and performance counters, which you
can use to provide better monitoring and instrumentation capabilities in your applications.

 The backup (and recovery) solution — A number of artifacts go along with the applications you
put in place, each artifact having its own backup requirements. Understanding what needs to be
backed up and when is important. Your backup strategy needs to be fit for purpose. You saw
earlier that the batch window is ever decreasing, and backups are generally included in this
window. You need to ensure that you back up only what you have to. For instance, if you lose a
server, you can generally re - image it or a new one (apply the base operating system, applications

❑

❑

❑

c01.indd 13c01.indd 13 1/20/09 10:41:54 AM1/20/09 10:41:54 AM

Part I: Production-Ready Software

14

and configuration) much faster than restoring from a backup. Furthermore, most companies
send backup tapes off - site at regular intervals. You may need to take this into account, as the
time it takes to get a backup restored could also cover the time it takes to get the tape back.
Understanding the recovery strategy also helps to better design the application for
recoverability.

 The deployment solution — You have many applications that need to be deployed to your
different environments. Your deployment solution needs to support all these requirements and
needs. If you can ’ t get the software out in the environment, you ’ re not going to be able to run it.
Understanding the deployment requirements and applications will help you to better design,
build, and test your applications. Automated deployment tools still require configuration and
customization, and knowing what needs to be installed and where will help you to better
design, build, and test the solution.

 There are usually many other applications apart from those listed, and these include applications such as
anti - virus software that will also need to be production-ready. However, I am not going to cover all of
these in this book. The key point is that all the applications and solutions (including your own) need to
be production-ready and display all the necessary quality characteristics in every environment that they
are going to be used in.

 I ’ ve chosen to highlight the preceding areas because it is in these areas that we as software designers and
developers can have a major impact, both positively and negatively, during the project lifecycle.
Understanding the purpose of these applications, what they are used for, and how they integrate with
the system is a key factor which will improve the quality and success of your software. For example, it is
very important to understand all the features that are being used in the applications and that they are
fully documented (and supported) by the appropriate vendor. It is not uncommon to use undocumented
features directly or indirectly, which can cause issues for the entire project further down the line. It can
lead to applications not being supported. It can lead to upgrade and maintenance issues, as well as
different behaviors in testing and production environments.

 Environments Must Be Fit for Purpose
 Applications don ’ t usually jump straight from the development environment into the production
environment without going through other environments and additional testing. Throughout the project
lifecycle there are a number of different environments used along the way. Production or live service
environments are generally not a single environment either; they can often involve a disaster recovery
counterpart and a pre - production counterpart. Every environment you design and use must be fit for
purpose and meet the necessary quality characteristics. It is important that each environment is scaled
and configured appropriately for its use. In some cases, it is not possible to test certain features of the
system without having access to an environment that is sized and scaled appropriately and contains all
the required features and functionality. For instance, testing the clustering failure and recovery scenarios
requires an environment with multiple clustered servers.

 Your environments all have their own requirements and specific uses. Depending on the size and scale of
the project, the number of environments will vary and some environments may be shared and used for
multiple purposes, which also introduces its own set of considerations. Figure 1 - 6 shows just a few very
basic and common environment configurations.

❑

c01.indd 14c01.indd 14 1/20/09 10:41:54 AM1/20/09 10:41:54 AM

Chapter 1: “Production” Readiness

15

 Whether an environment is a single machine or multiple machines; whether the servers are standalone,
clustered, or load balanced; and whether they have local or shared data stores is entirely dependent on
what the environment is being used for. However, the environment configuration will typically bring its
own considerations for management, usage, and maintenance. The development methodology will
generally dictate the various activities that are performed during the project lifecycle, and these activities
will require an environment in which they can be performed (including all the required access,
applications, and other required resources). It is possible that some of these activities will be performed
in the same environment, which may also need to be considered. The following lists some of the
environments required to perform the preceding activities:

 Design environment — The design environment is used to produce the system and solution
designs. It is an environment that is often taken for granted; however, the design environment
needs to be fit for purpose and sized and scaled appropriately. Modern software design tools are
becoming more and more prevalent and require increasing amounts of memory. The size and
scale of the design environments will depend entirely on the design tools and technologies
being used. In the race for better quality and reduced timescales, software design tools often
produce a lot of code and templates, which can help to reduce the development timescales.
However, this would also need to be considered and assessed. It is possible that the code
generated by the tool doesn ’ t meet the coding standards of the project. It could be configurable,
but then again, it could also require a large amount of rework following its generation. In
addition, when a machine doesn ’ t have enough memory or when it is not fast enough to
support the design activities, the effects can ripple through the project, affecting development as
well as hindering the design activities. There may be multiple design applications, each of which
has its own requirements and constraints that need to be considered when defining the design
environment.

 Development environment — The development environment is primarily used to write and fix
your code, write reports and batch jobs, configure applications, and perform unit testing and
integration testing. It is the environment that you use on a day - to - day basis to get your job done.
If this environment is not fit for purpose, you really don ’ t have a chance of developing anything.
That is not to say that it has to be the most powerful environment available. It needs to be sized
and scaled appropriately. The tools and technologies that are being used determine the

❑

❑

Single Machine
with Local Data Store(s)

Data
Store

Multiple Machines
with Local Data Store(s)

Standalone, Clustered or Load Balanced

Multiple Machines
with Shared Data Store(s)

Data Store

Data
Store

Data
Store

Figure 1-6

c01.indd 15c01.indd 15 1/20/09 10:41:54 AM1/20/09 10:41:54 AM

Part I: Production-Ready Software

16

development environment requirements. Development machines are often multi - purpose and
this needs to be taken into account. For instance, some development machines may be used to
develop architecture and application components; some machines may be used to develop batch
components or reports; and still other machines may be used to develop packaging and
deployment solutions. The development environment needs to support the requirements of its
usage and the tools that will be used in it.

 Regular integration environment — The regular integration and build environment needs to be
fit for purpose; otherwise, you ’ re not going to be able to build a complete software release. The
build process usually involves compiling everything from the bottom up and includes
compiling the tools and tests you ’ ve developed as well. Understanding the build process often
helps during design and development to ensure that components are placed in the correct
libraries or assemblies, as this can affect the way the solution is built, packaged, and deployed.
For example, you could have a code generator that generates data access objects from the
database. If this is built correctly, it should really use common low - level framework components
for logging, tracing, and instrumentation. This really means that the common low - level
framework components need to be built before the code generator. But, if these common low -
 level components rely on some generated database access objects, a cyclic dependency between
the components results, which can lead to trouble. The number of applications that need to be
built and the dependencies can sometimes require more than one machine to be used to build
the various components of the solution. This can often reduce the time it takes to build a
complete release. Where this book refers to the build environment , it is also essentially referring to
the regular integration environment. Builds and releases can be executed on a daily or weekly
basis, depending on the project ’ s needs. They can also be taken more frequently, if required.
Committing artifacts, building, and regression testing regularly reduce the number of failed or
broken builds and issues. There are many practices for the regular integration “ process, ” but
they typically stipulate the following three principles:

 Maintaining a source repository and checking in code and artifacts at regular intervals —
 Typically, the latest code is taken into the build, although other techniques and labeling can
also be employed to mark files as “ ready to build. ” The source code repository stores all the
source code and related artifacts.

 Automating the build — The application build shouldn ’ t really require manual
intervention or processes, unless, of course, it fails for some reason. There are a lot of tools
to help with automating builds and releases. However, these tools often need configuration
and often require custom scripting and development, which needs to be considered.

 Automatically testing the release — The built software should be tested, and this testing
should be automated to reduce manual effort. This is referred to as regression testing .

 Configuration management environment — Although this environment is typically accessed
from other environments, I ’ ve listed it separately because it is a very important environment
and one that does need to be fit for purpose and meet all the necessary quality characteristics. If
this environment isn ’ t backed up, there ’ s a possibility of losing all the source code and other
project artifacts. If it is unstable or connectivity to it is slow, it could cause delays to the project
by increasing down time.

 Regression test environment — The regression test environment is used to test the application
to a suitable degree. However, it could be the same environment as the regular integration
environment. I much prefer to use a “ clean machine ” because it ensures that nothing is lingering
on the build machine that ’ s not included in the release. It is not always possible to test

❑

❏

❏

❏

❑

❑

c01.indd 16c01.indd 16 1/20/09 10:41:55 AM1/20/09 10:41:55 AM

Chapter 1: “Production” Readiness

17

everything in the regression test environment, so it is good to have an understanding of what
the limitations are. Ideally, as much as possible will be tested in this environment, so it needs to
be sized and scaled accordingly. The number of tests that need to be run and the time it takes
end-to-end will determine whether more than one machine needs to be used to execute different
tests in parallel. Wherever possible, all regression testing should be automated to reduce manual
effort, and the regression test data should be aligned to that of a functional test and/or technical
test to avoid unnecessary issues in other environments or later testing.

 Test environments — Test environments are where the application will be put through its paces,
functionally and technically. You need to ensure that these are fit for purpose and scaled
appropriately. Understanding the different test environments will help you to understand your
deployment requirements and your test tool requirements. Each test has its own purpose, and as
such the applications and environment may be configured in different ways to support these
requirements. The size and scale of the project, as well as the methodology, will typically dictate
the number of test activities or phases and the environments required to perform them in. Some
test environments need to compress multiple days of testing into one day to save time and
effort. For instance, lifecycle testing usually involves testing Day 0 (the day prior to go - live), Day
1 (the day of go - live), Day 2 (the day after), and so on. For example, a transaction entered on
Day 1 that is not processed (for any reason) may need to be picked up and processed on Day 2.
Another example is data expiration whereby a record has a specific expiry date or elapsed time.
The application needs to be able to support this level of testing and it can sometimes be as
simple as allowing the application to have a specific date/time configuration rather than relying
on the system clock or, even worse, having to test in “ real time. ”

 Training environments — The training environments are often forgotten but provide an
invaluable service. Training environments can sometimes be referred to as sandboxes —
 environments where users can experiment using the applications and try out features and
functions. The training environments can also help to pull together the training documentation
and other associated artifacts. It is important to understand the training requirements and the
potential training environment requirements. A training environment can sometimes be as
simple as a single desktop machine, although it could also be a full - scale, production - like
environment.

 Production environments — The production environments are ultimately where the system
belongs. There may be disaster recovery environments and pre - production environments that
can and often are used in the event of failures in the live environment. The pre - production
environment can be thought of as a separate test environment because of its usage, although I
prefer to include it as a production environment because it is typically more controlled and can
be used as a production fall - back in certain situations. You need to ensure that the production
environments are fit for purpose. The production environments will generally have their own
configuration settings, and sometimes the first time you get to test something is in a production
environment. For instance, usernames and credentials will often be different across the
production environments. The access rights of these users and credentials need to be clearly
stated to avoid unnecessary issues after deployment.

 Operations and support environments — Although these can be considered part of the
production environments, I ’ ve listed them separately because they, too, must be fit for purpose.
A system that is monitoring another system needs to be fit for purpose. It is no good if the
operations and support environments don ’ t meet all the necessary quality criteria. If the
monitoring environment isn ’ t robust, you won ’ t be able to tell whether your own system is up
and running. If the batch environment isn ’ t robust, you won ’ t be able to perform routine
maintenance of your applications and environments.

❑

❑

❑

❑

c01.indd 17c01.indd 17 1/20/09 10:41:55 AM1/20/09 10:41:55 AM

Part I: Production-Ready Software

18

 Application maintenance environments — The application maintenance environments are
actually the same as the development environments. I ’ ve again listed these separately because
they must be fit for purpose. Once a system has been handed over to live support and
application maintenance, changes will probably need to be made and the environment must be
fit for purpose and support all the necessary activities for development, testing, and
deployment.

 There may be other environments that have specific requirements and uses; however, most environments
fit into one of the preceding categories. The key message is that all of your environments need to be
understood, sized, and scaled appropriately, and display the required quality characteristics to ensure
that you can smoothly progress through the project lifecycle. In addition, not all of them need to be on
separate hardware. There are many situations where the same physical hardware is used for multiple
activities, which also has its own considerations.

 Processes and Tools Must Be Fit for Purpose
 Throughout the project lifecycle there are a number of processes that need to be followed and a number
of tools that are associated with them. Each process has its own purpose and often there are tools
associated with them to enhance productivity. If the tools don ’ t work or do not display the same quality
characteristics of a production - ready solution, they can negatively impact the ability to perform a given
task. In the same way, the processes need to be robust and streamlined to avoid unnecessary work or re -
 work. Figure 1 - 1 showed a number of different activities and processes that will be performed on a
typical software development project. Each process will typically involve the use of a number of
different tools and technologies. The following processes and tools must be fit for purpose:

 Requirements analysis and tracking processes and tools — You need to capture your
requirements and constraints, and they need to be documented, agreed on, and accessible. You
need to ensure that the requirements also capture the relevant quality characteristics to avoid
issues later on. The appropriate processes and tools need to be in place to ensure that the
solution requirements are tracked and implemented accordingly. It should be possible to trace
your requirements through all the project artifacts to ensure that all have been captured and
implemented accordingly.

 Design processes and tools — The design process involves ensuring that your requirements are
validated and that your designs meet those requirements. The tools that you use can be as
simple as diagrams and documents. Alternatively, you may be using some advanced Model
Driven Engineering (MDE) or CASE (Computer - Aided Software Engineering) tools and
techniques. MDE and CASE tools are used to model the software design. In most cases, these
tools can be used to generate code and other artifacts, such as database scripts and even
documentation. The tools you use must be fit for purpose and not impact your ability to design
software. The process you are going to use for design needs to be in place, along with the
appropriate review checkpoints. Your estimates need to take your process into account to avoid
potential overruns or missed milestones. Design covers the application functionality, the
hardware architecture, and the software architecture. Understanding the requirements and the
design is crucial during the development process. That does not mean things are not going to
change as you move on, but it ensures that everyone is working from the same page. If things
change, you will need to update your designs, so the tools and processes need to be fit for this
purpose as well.

 Development processes and tools — The development process is where you are going to do
your coding. You ’ ve seen that development involves architecture, application, batch, reporting,

❑

❑

❑

❑

c01.indd 18c01.indd 18 1/20/09 10:41:55 AM1/20/09 10:41:55 AM

Chapter 1: “Production” Readiness

19

deployment, and tools development. These areas may involve a variety of different tools and it
is important that all the development tools and processes be fit for purpose. Timescales can be
increased dramatically by not having the right tools and processes in place. Your tools need to
display the required quality characteristics of a production - ready application. To avoid
slippages, your estimates need to take into account your development tools and processes.
Understanding the development requirements is paramount to supporting the development
activities. You also need to ensure that the components you develop during construction are fit
for purpose and ready to build; otherwise, you could experience issues when you submit your
development work into the build process.

 Configuration management processes and tools — The tools and processes that you use to
manage your source code and other development and test artifacts need to be in place and fit for
purpose. Not being able to check in or check out can have an impact on development and test
timescales. The version/source control system may also have its own database and
housekeeping recommendations or requirements. It is important that these are also understood
to ensure that the source control system is kept in good shape and doesn ’ t adversely affect your
ability to develop and test. Releases are often developed in parallel, involving branching and
merging activities. It is important that all these factors are understood to ensure that the source
control tools and processes support these requirements as well as all the other required quality
characteristics. If implemented incorrectly, branching and merging can be a painful business, so
the process needs to be defined, understood, and executed well to avoid failures and delays.

 Regular integration processes and tools — It is important to define and understand this process
so that you avoid failed builds and don ’ t have to go back around the loop. The tools you use to
build a release must be fit for purpose and have the required quality characteristics. If you can ’ t
build a release, you can ’ t get it into the deployment process. Ensuring that you provide ready -
 to - build components and artifacts is vital to the successful building of a release. You need to
ensure that your components work with the latest versions, and that your components are tested
and that the tests work with the latest versions. Submitting incorrect or non - ready - to - build
components has a negative impact on the build process and your ability to get the appropriate
components into the deployment process.

 Deployment processes and tools — The deployment process covers everything from including
all the final artifacts in a deployment package to getting releases into the environments with all
the correct set-ups and configurations ready for use. It is important that the tools you use are fit
for purpose and that you get your software out where it is required. The requirements of the
environments need to be understood to ensure that the relevant artifacts are deployed, including
binaries, tests, documentation, and data (including base data and test data). A lot of time can be
wasted installing and re - installing releases because of incorrect options or settings being
selected.

 Testing processes and tools — The testing process is where the software will be tested. It is
important that the tools and processes used to test the software be fit for purpose. Simple things
such as trying to bring the environment up can impact testing negatively. You need to ensure
that you have all the productivity tools and processes in place so that testing can continue
without environment or process issues. That ’ s not to say that there will not be defects in your
code, but it will ensure smoother testing of your software without unnecessary issues, and help
you to find the real issues to concentrate on and fix.

 Defect tracking processes and tools — Software is very rarely defect - free, although we strive to
achieve it. Having a good defect tracking system in place helps you understand the defects you
need to take into account and plan for. It is important that this system is also fit for purpose and

❑

❑

❑

❑

❑

c01.indd 19c01.indd 19 1/20/09 10:41:56 AM1/20/09 10:41:56 AM

Part I: Production-Ready Software

20

displays the required quality characteristics. The defect tracking system is often customized to
the project ’ s needs, so understanding these needs helps greatly. These needs will also change as
the project progresses, so you need to be able to react to this and change accordingly.
Understanding the defect tracking system and what information needs to be included in a defect
will help to improve your ability to react to them. There ’ s nothing worse than trying to work on
fixing a defect and finding that there isn ’ t enough information to go on.

 Change control processes and tools — Things change as you move through the development
lifecycle, and having a good change control process and the tools to support it is a key factor for
success. Understanding and implementing a formal change control process and adhering to it
will enable you to avoid unnecessary delays and improve the transparency of changes. Delays
are often suffered during development by working on out - of - date information. Sometimes it is
better to complete a development piece prior to taking updates into account, but knowing that it
is going to change assists in planning and estimating and improves the entire process.

 Application support and maintenance processes and tools — Your system needs to be
supported in the event that any issues arise that need to be fixed. This is not just for your own
applications; it includes third - party applications, as well. You need to have the right processes
and tools in place to assist with support queries. You can greatly improve the supportability of
the applications you develop; however, third - party applications are not always the same.
Understanding the support requirements of these will help you to define your support processes
and the productivity tools that you should put in place. I ’ ve never had a support call in which
the support person didn ’ t ask for the version numbers of the operating system, patches, the
hardware it is running on, the version of the application, the logs files, and so on. These are basic
support requirements, and having robust and streamlined processes to obtain this information
will help you better react to support calls and incidents.

 There are potentially many other processes and tools involved during software development and
implementation. However, the preceding list captures all the processes discussed in this book.

 Users Must Be Trained
 It is important that all the users of your system be educated correctly and sufficiently. There are a
number of users of the system and each has his or her own agenda and work to do. Understanding the
requirements of your users is important to the success of your project.

 Education can be as simple as providing productivity guides and documentation, or it can be instructor -
 led training courses on the environments, applications, languages, and/or technologies. The processes
that you put in place need to be well-documented so that everyone understands them and, more
importantly, follows them.

 A lot of different people and roles are involved in a software implementation project. Figure 1 - 7 shows
just some of the roles and responsibilities that can be involved in an end - to - end software implementation
project.

❑

❑

c01.indd 20c01.indd 20 1/20/09 10:41:56 AM1/20/09 10:41:56 AM

Chapter 1: “Production” Readiness

21

 Although Figure 1 - 7 doesn ’ t depict every person and role, as you can see, it is possible for a number of
different people to be involved in the overall project, all of which need to understand the applications,
tools, and processes that they use. Furthermore, in many cases a single individual can perform many
roles, which could require knowledge of many different applications, tools, and processes.

 It is important that everyone involved in the project know how to use the applications, environments,
processes , and tools that they are going to use throughout the project. The documentation and education
that you put in place will generally be multi - purpose — that is, it will be used by a variety of different
people. There are, of course, documents that are specific to a particular process or technology and, as
such, target a particular group of users. Understanding your users and their needs is an important part

Business
Analysts

Project
Managers

Usability
Architects

Functional
Designers

Technical
Designers

Application
Designers

Usability
Specialists

Technical
Architects

Service Delivery
and Operations

Support
Staff

End Users

Database
Administrators

Data
Architects

Functional
Architects

Solution
Developers

Testers

Infrastructure
and Environments

Quality
Control

Packaging
and Deployment

Graphic
Designers

Reports and Analytics
Developers

Configuration
Managers

Figure 1-7

c01.indd 21c01.indd 21 1/20/09 10:41:56 AM1/20/09 10:41:56 AM

Part I: Production-Ready Software

22

of production readiness, and having access to the relevant documentation is equally important. Your
project will have a variety of documentation, including:

 Project documentation and guides — This set of documentation includes a variety of materials,
including the project overview and business case, the requirements and specifications (both
functional and technical), architecture diagrams and documentation, the project plans, and the
organization structure. These documents are important for you to understand what you are
building and why. It is important that they contain all the relevant information to allow you to
do your job properly.

 Application and technology guides — This set of documentation covers all your applications
and technologies. Third - party applications come with their own documentation that can be
supplemented with your own additions and extensions. These may be as simple as installation
and configuration guides. These documents need to contain the information necessary to ensure
that whoever is using them can get up to speed quickly and efficiently. For example, one such
guide would be about how to configure application - specific clustering, including the specific
naming standards that must be adhered to and which prerequisites must be in place.

 Environment guides — The environment guides provide an overview of the environments you
are using, how they are scaled, what they are used for and when. The information can come
from many sources, such as architecture diagrams and other specifications. You need to
understand the environments and how to use them, which may be as simple as knowing how to
get access to the functional test environment. The important thing is that the information is
available and includes everything required to use the environment effectively.

 Process and productivity guides — There are a number of processes that will be created and
followed during the project. It is important that these processes be understood to ensure that
everyone is working from the same page and understands what to do and when to do it.
You will have a development process, a build process, a unit test process, an integration test
process, as well as many more throughout the project. The process guides need to document
the process and procedures in plain language to ensure that everyone can follow them.

 Tool guides — Understanding the tools, what they are used for, how to use them, and when to
use them is important. This set of documentation covers all your tools and the specifics of how
you are going to use them for your own purposes. These documents may cover how to use the
source control system, how to use the defect tracking system, and how to use the unit test tools
and integration test tools. The important thing is that all the tools are well-documented so that
users of these tools can understand their purpose and use them effectively.

 Completion reports and handover documents — Part of the overall development cycle involves
producing completion reports. Depending on the methodology chosen, each phase or activity
may involve a hand - off between phases or teams. The completion criteria for the activity or
phase will need to be met, and the completion report documents how this has been achieved —
 for example, documenting the test results, reviews and profiling results. The handover
documentation will typically also include the number of defects that have been raised and
addressed within the current activity. It may also include outstanding defects or other items that
have not been addressed and need to be carried over to a further release.

 Release notes — Although release notes strictly belong within the handover documentation
category, I ’ ve pulled them out separately as they are very important documents. In summary, a
release note typically includes the current version, system requirements, installation
instructions, and resolved issues as well as known issues. Whenever you produce a release, an

❑

❑

❑

❑

❑

❑

❑

c01.indd 22c01.indd 22 1/20/09 10:41:57 AM1/20/09 10:41:57 AM

Chapter 1: “Production” Readiness

23

associated release note should be produced to go along with it. Although automated
deployment tools might be available to help with the installation, the release note still needs to
show the contents of the overall release.

 There will probably be other useful documents that are produced throughout the project lifecycle.
However, I ’ ve chosen the preceding because during design, development, and early testing, you can have
a dramatic impact on their production and readiness. As this book progresses, you ’ ll see how some of
these documents are used and the people that will use them.

 Having these documents and guides in place helps to reduce the time and effort you spend on education
and one - on - one training. You might have many developers or testers starting on your project, and being
in a position to provide them with an induction pack will greatly help to reduce your costs and improve
their readiness to start developing or testing. All the documentation that you produce needs to be fit for
purpose to ensure that everyone is ready to do their jobs. The documentation will be used throughout
the project and will form a valuable part in the handover to live service.

 It is also important to note that I ’ m not necessarily suggesting that all of this information be captured in
formal “ documents. ” Online help files, wikis, and other electronic - based methods can be employed to
reduce overheads and improve the overall level of communication, collaboration, and education within
the team. A wiki is really a set of web pages that can be read and/or updated by project resources. A wiki
can often save a lot of documentation effort by focusing on the actual information that ’ s required by the
reader. I personally like guides and certain other documentation to be very article - based and quick to the
point, and to provide all the necessary information and step - by - step instructions to perform a task.

 I ’ m a firm believer in the “ project portal ” concept. It is great to have a single project website where
people can go to find out information about the project, which can include status, plans, designs,
specifications, process guides, training guides, induction guides, and so on. In my opinion, the project
portal is essentially a one - stop shop for everyone and everything to do with the project. I try to think of
the content as “ day one developer, ” which basically just means that I imagine what a new resource
would need to get up - to - speed when they first come to the project, aside from access and an
environment to work in. It is not a full time - and - motion study, but it works very well to ensure that
inducting a new resource is efficient and successful. If a new resource can get up - to - speed quickly, all
resources should be up - to - speed. A well - laid - out portal can provide a rich user experience and ensure
that everyone has access to the latest status, plans, information, templates, and project documentation.
Setting up and maintaining a project portal, however, offer up their own challenges that need to be
factored into the scope, budgets, and timescales. And, of course, it too, needs to be fit for purpose and
production-ready.

 Why Is Production Readiness Important?
 Failure is not an option. I can only assume that almost all projects start off with this stance. Most of the
projects that I ’ ve worked on certainly have. The trouble is that a number of projects do fail or are seen to
be a failure in the eyes of customers or stakeholders. The question is not “ Why do they fail? ” The
ultimate question is “ How do we succeed? ” A cursory search on the Internet would yield an abundance
of results on both these subjects. However, I ’ m not going to go into the statistics and findings of these
studies. I ’ m going to provide my personal point of view on what I think are the main causes of failure
and what I think are the key factors for success. To answer the second question “ How do we succeed? ” it
is often necessary to examine your past mistakes, understand what went wrong, and put measures in

c01.indd 23c01.indd 23 1/20/09 10:41:57 AM1/20/09 10:41:57 AM

Part I: Production-Ready Software

24

place so that it doesn ’ t happen again — which is just commonsense. In recent times, there have been
some very newsworthy software outages, some of which have cost millions of dollars in lost revenues
and crashing stock prices. Mission - critical systems can ’ t sustain serious outages in live service. In some
extreme circumstances, the outages have cost many high - ranking personnel their jobs and sometimes
their careers. It is not always so bad, however. On the less extreme side, a project can be seen as a failure
because of delays and budget overruns. A successful project is typically referred to as one that delivers
all the required scope, on time and on budget. To achieve this goal requires you fully to understand the
scope, timescales, and budgets for the project.

 My first experience of “ commercial ” software development: I remember back to around the mid - 80s
when I wrote a program for a small business in my hometown. The program was written on a BBC
Model B computer in BBC BASIC. The owner of the firm told me what he wanted the program to do,
and I thought I could write it in a couple of days and said I ’ d do it for £ 50. For a couple of evenings I
wrote the initial version and tested it (as best as I could) on the machine in his office. The following day
he came in and “ played around ” with it. When I arrived that evening, he dictated his “ improvements ”
and it took me literally weeks to include them. After which, I never heard from him again and I didn ’ t
get any more money for doing the additional work! I ’ m not trying to be funny, but the moral of the story
is to get it right up front (or at least as best you can) because success is not solely based on customer
satisfaction! It can cost an awful lot of time and effort to satisfy the customer. In a fix - priced agreement
it is important to understand the implications of this very early on.

 It is a fact that some software implementation projects fail. There are many different reasons for why
these projects fail. Sometimes a project is simply scrapped because it doesn ’ t have a truly viable business
case. Others are scrapped because of budget cuts, contractual disputes, and poor implementation. In my
personal experience on the shop floor, projects fail or are seen to be a failure for these three reasons:

 Poor scope — Scope really refers to the requirements, constraints, and quality of the project,
software, or even task. When the scope is poorly defined, the outcome can ’ t be assessed
effectively, the effects of which can have far - reaching consequences. Poorly defined or missing
requirements as well as changes in scope lead to “ scope creep. ” This can contribute to a project ’ s
failure by increasing costs and timescales and potentially delaying go - live. Changes or
corrections to scope can also be caused by an incorrect or erroneous interpretation. For instance,
consider what a response might be to the following extreme statement: “ You told me you
wanted an online store. You never actually said you wanted it to run on UNIX. ” Interpretation
only works when the recipient of the final product actually agrees with what has been
interpreted and delivered. If not, it has the potential to cause major disputes. More often than
not, requirements and constraints are missing or misinterpreted and not sufficiently clarified,
which results in an incorrect or incomplete solution. Furthermore, assumptions, like
interpretation, can also lead to incorrect or incomplete deliveries, for example, “ Oh, I thought
that you were going to write that bit, ” or “ I assumed it only needed to work with Internet
Explorer. ”

 Poor scope is not just about the functionality of the software, either. Poorly defined processes and tasks
also affect the overall outcome of a project. For example, not stipulating the relevant quality criteria and
reviews can also affect the final result. Having a well - defined and agreed scope will help to avoid these
types of common problems. The quality criteria apply to all components of the delivery, including
documentation, source code, and all other areas and artifacts. For instance, a technical specification can
be seen as defective or sub - standard if it doesn ’ t include certain elements, such as class diagrams,
interaction diagrams, and component walkthroughs. The developer may not be in a position to develop
the solution without such information. The impact and effort to include these items can then have a big

❑

c01.indd 24c01.indd 24 1/20/09 10:41:57 AM1/20/09 10:41:57 AM

Chapter 1: “Production” Readiness

25

impact on the budget and timescales. In this example, the elements that need to be included in the
document are simply part of the scope of work. Minor failings can build up over time and cause
overruns and slippages, which can ultimately result in the project being seen as a failure. Rework is a
costly business. For the purposes of this book, the term “ scope ” also includes all the applications,
environments, processes, and tools. I ’ m also bundling customer and/or stakeholder involvement under
this heading because without the appropriate level of involvement, it is nearly impossible to define (and
agree on) the appropriate scope for a project, solution, or task. A very clear scope allows for much better
preparation, execution, and delivery.

 Poor planning and execution — This heading includes a variety of different tasks and the
environments they need to be performed in. One of the most common planning errors is setting
or agreeing to unrealistic timescales. Although aggressive timescales can sometimes positively
and constructively stretch project resources, unrealistic timescales can often break them.
Unrealistic timescales can totally compromise quality and functionality. For instance, the
documentation may not be as complete as it could be, there may be a major rush to start coding,
and the quality may be dropped over the race to deliver. In this scenario, the plans are based on
when a task needs to be finished and not how long it will realistically take to perform (according
to a reasonable set of estimates). Plans should be based on realistic estimates, and the estimates
should be based on a very clear scope and understanding. Furthermore, just because one
particular person can complete a given task to the specific scope in a given timeframe, doesn ’ t
necessarily mean that someone else can.

 This leads to another common planning error: inappropriate resource planning and staffing — that is,
insufficient numbers of resources, assigning the wrong resources to the tasks, or using insufficiently
trained personnel. Other typical planning mistakes are — failing to include all the required tasks in the
plan, overlapping tasks without fully understanding their dependencies, and not building in the
appropriate review, hand - over, and potential corrective activities. When the plans are agreed and in
place, they need to be executed. That doesn ’ t mean that the plan won ’ t change — you often need to
make adjustments — it just means that there is a solid way forward and changes can be incorporated
according to the agreed process. It is also not worth denying that poor workmanship can lead to poor
execution. There are a lot of reasons why certain resources don ’ t perform very well. It can certainly
happen when the resources aren ’ t sufficiently trained or qualified. Therefore, it is important to ensure
that all resources be sufficiently trained and educated to perform the required tasks. Finally, unnecessary
downtime can occur when there are conflicts and major differences of opinion. Disputes can often cause
delays and overruns when rework is needed. The entire team needs to understand and subscribe to the
scope and the plans.

 Poor quality — Poor quality can occur for many reasons, including insufficient quality controls
and insufficient scope, insufficient planning and “ squeezed ” timescales (as previously
mentioned). Inappropriate resource allocation can also lead to poor quality — for example,
using inexperienced resources when experienced personnel are required. The term “ quality ”
refers to more than just code quality; it encompasses all the components of the delivery. If the
technical specification is poor, it typically results in delays and multiple iterations before it is
acceptable. In the worst case, it results in a poor implementation, especially when the gaps or
errors are not caught early enough.

 Poor quality is generally uncovered during testing, reviews and/or checkpoints. When testing and
reviews take place early and regularly, it is much easier to manage the outcome and corrective workload.
There ’ s a very good opportunity for planning the corrective actions that need to be taken — for instance,
categorizing the defects into their appropriate severity, prioritizing in order of implementation, and/or
justifying and discounting them. Re - work and updates can be a costly and time - consuming task,

❑

❑

c01.indd 25c01.indd 25 1/20/09 10:41:58 AM1/20/09 10:41:58 AM

Part I: Production-Ready Software

26

especially when a lot of issues are discovered and even more so when they ’ re discovered very late in the
process. It can be even more costly when the issues are raised by an external body, which could be the
customer or another organization and perhaps sometimes even both. There are costs and implications
associated with the time and effort required to go through the issues, assess and agree on them (where
necessary), and then plan and address them. It might not be possible to address all the issues within the
timescales and/or budgets, which could incur severe commercial penalties and/or delay go - live dates.
The implications can be very far-reaching and it is really not worth getting caught in these situations.
Defining the scope early, and understanding and agreeing on the criteria for quality and regular check -
 pointing and correction will avoid unnecessary disputes. Quality is an extremely important part of the
overall implementation, which is why I truly believe it is a component of scope. A poorly defined scope,
that doesn ’ t encompass quality, can lead to a perception of failure. Testing will uncover defects. If it
didn ’ t, you wouldn ’ t need to test. Testing should really be done early and frequently to ensure that as
many defects as possible are captured and addressed (where necessary) as early as possible.

 The Production - Readiness “ Process ”
 Production readiness is all - encompassing. It includes everything to do with your system and ensuring
that you are ready for development as well as live service through all of your processes and practices. It
is not actually a formal process. It is really just a collection of foundation principles for successful
software development and implementation, including:

 Good preparation

 Good execution

 Good delivery

 These are all just umbrella terms that encompass many discrete and varied tasks, although they all play a
vital role in the production readiness process, which simply underpins these primary success factors by
specifying the steps — prepare, execute , and deliver (see Figure 1 - 8).

❑

❑

❑

Prepare

Ex
ec

ut
eD

eliver

Figure 1-8

c01.indd 26c01.indd 26 1/20/09 10:41:58 AM1/20/09 10:41:58 AM

Chapter 1: “Production” Readiness

27

 “ Why do you need to prepare? Just do it! ” Although this might seem like a good idea, racing ahead
unprepared can cause major issues further down the line. There ’ s no point in hiring a bunch of
developers when there aren ’ t enough development machines for them to work on. Similarly, it would be
dangerous to start development on an application when the architecture and frameworks aren ’ t
sufficiently in place or the designs are inadequate. There ’ s clearly a balance to the amount of upfront
preparation that should be performed on a project, iteration, or task. However, the preparation really
does need to consider what must be in place and what the scope is to ensure effective execution and
delivery. You look at this in more detail later.

 It is important to do the most critical upfront work as soon as possible to ensure that everything is fit for
purpose and ready when it is required. This book places its focus on the elements of scope, execution,
and delivery. As the book progresses, you ’ ll see more on the tasks and activities that underpin these
high - level, production - readiness steps. In the meantime, the following provides a brief overview of the
steps in the process:

 Prepare — This step involves planning and defining the scope, including the applications,
environments, processes, and tools, as well as defining the associated inputs, standards, checks,
and outputs. It covers the definition of the acceptance criteria between one process and another.
It also includes the definition of timescales and costs associated with each of these elements and
the necessary checks and governance required for them.

 Execute — This step encompasses the actual execution of the plans and processes. It is the
physical work being carried out on the production line (including any additional planning). For
construction, this would cover the development team accepting inputs, producing designs,
having them reviewed and agreed, coding, testing, packaging, releasing, and so forth. For
testing this would include all the inputs required to produce test scripts, execute tests, and
so on.

 Deliver — This step refers to the hand - off between processes and teams. In terms of software
implementation, this would ultimately include handing over the solution to a support team or
an application maintenance team once the system is in live service. Hand - offs are performed at
many points in the development cycle, and one of the key areas is handing over a solution to a
test team for testing or acceptance.

 The activities should not be overly prescriptive, nor should they slow down the overall process. The
processes and activities should always aim to reduce overheads and improve the performance of the
overall project and the team. The processes that are implemented should be reviewed regularly and
continually improved.

 The Project Management Triangle
 The commercial world of software implementation is typically all about squeezing as much as possible
into given budgets and timescales. It is very rare that you ’ re given a free hand and unlimited budgets to
do what you want. Projects are typically constrained by a set of defined boundaries — scope, budget, and
 timescales , as shown in Figure 1 - 9 . This is generally referred to as the project management triangle .

❑

❑

❑

c01.indd 27c01.indd 27 1/20/09 10:42:00 AM1/20/09 10:42:00 AM

Part I: Production-Ready Software

28

 The figure shows the traditional project constraints and the axes are defined as follows:

 Scope — Refers to the requirements (functional and non - functional), constraints, and quality
characteristics. In some cases, quality is treated as a separate dimension; however, as I ’ ve
mentioned before, I treat quality as nothing more than a component of the overall scope.

 Timescales — Refers to the overall project timeline, from start to finish.

 Budget (or costs) — Refers to the amount of money available or required to complete the
project.

 The figure is drawn as an equilateral triangle, which simply reinforces the basic premise that changes to
a single axis will affect the other two in a similar and consistent way. Although this point could very well
be argued, an increase in the scope of a project will generally increase costs and timescales, whereas a
reduction in scope will generally decrease costs and timescales (see Figure 1 - 10).

❑

❑

❑

Scope

TimescalesBudget

Figure 1-9

TimescalesBudget

Scope

Figure 1-10

c01.indd 28c01.indd 28 1/20/09 10:42:00 AM1/20/09 10:42:00 AM

Chapter 1: “Production” Readiness

29

 It is really just a matter of how much the changes affect the overall project. There ’ s a theory that two of
these boundaries can be constrained or fixed, but not all three (especially when initiating and planning a
project). When everything is agreed and finalized, all three boundaries are typically set and the project is
then underway. The following list details some of the various options when setting these boundaries:

 If the scope is fixed (that is, the solution must meet all the specified scope), the following options
can be assessed:

 Both the timescales and the budgets must be aligned according to the scope.

 The timescale remains fixed and the budget is set to allow for more resources and parallel
activities. This works on the principle that by using more people, the tasks can be done in a
shorter timeframe. However, this in itself is sometimes challenging to achieve, given
staffing and task dependencies. It is also possible that the budget or costs can be balanced
elsewhere if performing the specific tasks in a shorter timeframe will reduce costs further
down the line or in other areas.

 The budget remains fixed and the timescales are set accordingly. This generally works on
the assumption that by using fewer resources, the task (or tasks) will take longer to
complete but the costs will remain the same. For example, if you assume each resource
costs $ 100 per day, a task (or set of tasks) that takes five person days will cost $ 500. If the
task can be completed with five people, it could theoretically be completed in a single day.
Using only a single resource, it would take five days. However, in both cases the cost is the
same.

 If the timescales are constrained (that is, the software must be delivered on a specified date), the
following options can be assessed:

 Both the scope and the budgets must be aligned according to the timescales.

 The scope remains fixed and the budget is set accordingly — again, using more (or less)
people to achieve a particular result.

 The budget remains fixed and the scope is set accordingly. This works on the basis of
delivering only what can be achieved within the timeframe and budget.

 If the budgets are fixed (that is, the software must be delivered within a specific amount of
costs), the following options can be assessed:

 Both the scope and timescales are aligned accordingly.

 The scope remains fixed and the timescales are set accordingly. This works because you
use far fewer resources over a longer period of time to deliver the appropriate scope.

 The timescales are fixed and the scope is set accordingly. Again, this works because you set
the scope to what can be delivered within the budget and timescales.

 If a successful project is considered to be one that delivers all the scope, on time and on budget , to ensure
this, the scope, budget and timescales need to be very clearly defined and understood. In my opinion, it
really all starts with scope. Figure 1 - 11 shows the high - level components of scope related to software
development and implementation.

❑

❏

❏

❏

❑

❏

❏

❏

❑

❏

❏

❏

c01.indd 29c01.indd 29 1/20/09 10:42:01 AM1/20/09 10:42:01 AM

Part I: Production-Ready Software

30

 The scope will typically dictate the budgets and timescales. If the budgets and timescales are reduced,
this could have an impact on the scope. I know I ’ ve labored on this point, but clearly defining the entire
scope will ensure that everyone is on the same page and under no delusions or assumptions about what
will be delivered and how it will be delivered, and its quality characteristics. The following provides a
brief overview of the components of scope:

 Functional requirements — As the name implies, functional requirements define a set of
functions for a software system, application, or its components. Functional requirements
describe the functional behavior of the system. Functional requirements often include business
rules, calculations, and processing requirements that describe how the software must work or
behave from a functional perspective. Requirements are often born out of use - cases and high -
 level analysis and design activities.

 Non - functional requirements — Non - functional requirements, which can also be referred to as
 technical requirements , typically stipulate criteria for how the software should execute — for
example, the system ’ s expected performance characteristics, resource utilization, or security
measures. Non - functional requirements are often referred to as the “ ilities ” primarily because
they all end in “ ility ” — for example, reliability, scalability, availability, usability, maintainability,
and so on. There ’ s a fine line between functional requirements, technical requirements, and the
quality characteristics of a software system. In fact, non - functional requirements are very often
referred to as the quality goals, quality attributes, or quality characteristics . These types of
overlapping terms and meanings are rife within the software industry, so I feel that it is really
not worth getting hugely hung up on labeling and categorizing them and trying to define a truly
perfect boundary. However, in terms of a software implementation project, the technical
requirements could encompass execution qualities such as reliability and availability, whereas
the quality characteristics could include the static and evolutionary aspects such as
documentation, maintainability, and scalability. In the end, as far as I ’ m concerned, it is all just
scope — functional, technical, or otherwise.

 Quality characteristics — The quality characteristics often encompass the non - functional
requirements of a system. For instance, code quality can be seen as a technical or non - functional
requirement and can be categorized under the readability or maintainability characteristics. But
what really defines code quality? How is it measured, proven, and accepted? Chapter 2
examines some of the common quality characteristics and how they apply to not just the

❑

❑

❑

Technical
Requirements

Constraints
Quality

Characteristics

Functional
Requirements

Non-Functional Requirements

Scope

Figure 1-11

c01.indd 30c01.indd 30 1/20/09 10:42:01 AM1/20/09 10:42:01 AM

Chapter 1: “Production” Readiness

31

software but the entire system (which, as you ’ ve already seen, encompasses applications,
environments and processes , and tools). For example, a manual process that doesn ’ t “ scale ” can
easily impact a project. It is not just about the software, although the final application not being
able to scale for future demand can also impact the project.

 Constraints — Requirements can also be referred to as constraints , so you again face overlapping
terminology. However, I categorize requirements as the business rules, the functionality and
features of the system, as well as the technical aspects of the system. Constraints, on the other
hand, are restrictions on the degree of flexibility and freedom around implementing the system.
For example, constraints could include, cost and budget, location, environment, tools and
technologies, methodologies and process, resources, and timescales. A simple rule - of - thumb that
I use when differentiating a requirement from a constraint is to determine whether it pertains to
 how and when the system will be implemented, as opposed to what is being implemented and
 what it needs to do.

 While it is a very good idea to categorize all the various attributes of scope, it is actually far more
important to ensure that they are captured, agreed, and fully understood. To help achieve success, your
 preparation, execution, and delivery need to capture all the attributes within your scope, timescales , and
 budgets .

 Summary
 In this first chapter you ’ ve seen that production readiness relates to both software development and
implementation. It is about the quality and readiness of everything to do within the project and solution.
If you ’ re unfamiliar with some of the terms used in this chapter, don ’ t worry — they ’ ll be discussed
further as the book progresses. Your application is just one part of an entire system, and you ’ ve seen
what the individual parts can consist of, how they can be used, and who can use them. As you continue
reading, you will start to see how everything fits together. However, keeping these factors for success in
the back of your mind will help you to improve your own capabilities, help others to improve theirs, and
should positively impact the overall outcome of the project.

 The following are the key points to take away from this chapter:

 There are a core set of “ development ” and “ implementation ” activities. Irrespective of the
chosen development approach, there are a core set of activities that are performed during
the project lifecycle. The activities discussed in this chapter include:

 Requirements definition

 Design

 Development

 Regular integration

 Deployment

 Testing

 Configuration management

 Change control

❑

❑

❏

❏

❏

❏

❏

❏

❏

❏

c01.indd 31c01.indd 31 1/20/09 10:42:02 AM1/20/09 10:42:02 AM

Part I: Production-Ready Software

32

 Defect management

 Support and maintenance

 Failure is not an option. Good planning, good execution, and good delivery will help to ensure
successful development and implementation of software projects. As soon as the project starts,
you ’ re in a “ production mode ” of some sort, and any tools, technologies, environments, or
processes that are being used need to be fit for purpose to avoid unnecessary delays moving
forward. Considering all the production readiness and development readiness criteria will help
you to prepare better, execute better, and deliver better, resulting in a truly fit - for - purpose system.

 Clearly define the scope of the project, solution, or task. Only when you know the true scope
of a project, system, or task can you really determine what needs to be done, how it can be done,
and the associated budgets and timescales. A successful project delivers all the required scope on
time and on budget. Scope should include all the following for all your applications,
environments, processes, and tools:

 Functional requirements

 Technical requirements

 Quality characteristics

 Constraints

 Production readiness is all - encompassing. It is is not just about producing production - ready
code and testing it thoroughly. It encompasses everything to do with your system. You need to
ensure that everything is fit for purpose and ready for production usage.

 Applications must be fit for purpose. Identify as many of the other applications early in the
lifecycle, as this will help to ensure that the solution stack is well-defined and all the appropriate
steps can be taken to assess, design, develop, document, and implement them. It is also
important to understand all the features and functions of the applications being used, and that
they are documented and supported to avoid potential issues later in the cycle. The applications
highlighted and discussed in this chapter include:

 Operating system and extensions

 Application Runtime Environments and extensions

 The data stores

 The security and encryption solution

 The batch solution

 The reporting and analytics solutions

 The monitoring solution

 The backup and recovery solutions

 The deployment solutions

 Your own custom applications

 Environments must be fit for purpose. Key environments should be identified early. The
environments should be sized and scaled appropriately for their purpose and ready to use when

❏

❏

❑

❑

❏

❏

❏

❏

❑

❑

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❑

c01.indd 32c01.indd 32 1/20/09 10:42:02 AM1/20/09 10:42:02 AM

Chapter 1: “Production” Readiness

33

they are required. The environment includes all the necessary hardware, software, access, and
networking components. The environments highlighted and discussed in this chapter include:

 The design environments

 The development environments

 The regular integration and build environment

 The configuration management environment

 The regression test environments

 The test environments

 The training environments

 The production environments (including pre - production and disaster recovery)

 The support and operations environments

 The application maintenance environments

 Processes and tools must be fit for purpose. Ensure that all the processes that need to be
followed are documented and fully understood. Where necessary, tools should be used to
improve the overall performance and outcome of the process. The processes and tools discussed
in this chapter support the “ development ” and “ implementation ” activities.

 Users must be trained. Your users include many different people, including designers,
developers, infrastructure and release personnel, testers, support staff, as well as end users. Each
of these user groups needs to be trained, and there ’ s a variety of documentation that can be put
in place to help with this. Your documentation needs to cover all your applications,
environments, processes, and tools — not just the application you are developing.
Documentation doesn ’ t need to be exhaustive, but it does need to be fit for purpose, and a
project portal, online help, and wikis can help to speed up its production and usage. The
high - level user groups and roles discussed in this chapter include:

 Business analysts

 Designers

 Developers

 Testers

 Configuration management

 Release management

 Service delivery and operations

 Application maintenance

 Customers and business users

 The types of documentation and education material discussed in this chapter include:

 Project documentation and guides (including requirements, quality, and constraints)

 Application and technologies guides (covering all your applications)

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❑

❑

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

c01.indd 33c01.indd 33 1/20/09 10:42:02 AM1/20/09 10:42:02 AM

Part I: Production-Ready Software

34

 Environment guides (covering all your environments)

 Process and productivity guides (covering all your processes)

 Tools guides (covering all your tools)

 Completion reports

 Release notes

 Your systems involve multiple applications, environments, processes and tools. You need to
ensure that all of them are industrial strength and meet all the required quality characteristics
for production readiness.

 The following chapter examines some of the quality characteristics that should be considered for all your
environments, applications, processes, tools, and documentation.

❏

❏

❏

❏

❏

❑

c01.indd 34c01.indd 34 1/20/09 10:42:03 AM1/20/09 10:42:03 AM

