
15

Ruby on Rails is a Web application development framework built
using the Ruby programming language. Ruby is a dynamic language
 that was created in Japan by Yukihiro Matsumoto. You’ll often see

Matsumoto referred to simply as Matz. While Ruby had been growing and
flourishing in Japan and Europe, it took the Rails framework to finally thrust
Ruby into the limelight in the United States. Ruby is steadily growing in
popularity worldwide as a programming language of choice.

It is often described as an elegant language that allows developers to create
concise and very readable code.

If you already consider yourself a Ruby expert, you can probably skip this
chapter; otherwise, I highly recommend reading this chapter before getting
into the details of using Rails. A solid knowledge of the Ruby programming
language makes an excellent foundation for learning and using the Ruby on
Rails framework. A solid understanding of Ruby will also help you if you
want to explore the internals of Rails. Remember that Rails is an open source
project, meaning that all of its source code is available to anyone who wants
to look at it. You can learn a great deal about advanced Ruby techniques
from reading the Rails source code. The power of Ruby plays a large part in
the success of the Rails framework.

The Nature of Ruby
Programming languages tend to have various elements of commonality. I’m
not referring to the syntax of a language, but rather higher-level designs that
apply to a programming language. These elements are what make up the
nature of the language. Here you begin by learning about the nature of Ruby,

IN THIS CHAPTER
The nature of Ruby

Object Oriented Programming

The basics of Ruby

Classes, objects, and variables

Built-in classes and modules

Control flow

Organizing code with modules

Advanced Ruby techniques

Learning Ruby
CO

PYRIG
HTED

 M
ATERIA

L

16

First Steps with RailsPart I

or what kind of programming language Ruby is. Each of the characteristics you will read about in
this section will help you better understand the type of programming language that Ruby is, and
how it is different from or the same as other languages that you might have experience with. The
elements of Ruby discussed here are dynamic or static typing systems, duck typing, and compiled
or scripted language.

Dynamic or static typing
Programming languages can be classified by the type system they use. A type system defines how a
programming language classifies its data and methods into types. Examples of types used in vari-
ous languages include int, float, String, and Object. A type describes the kind of data used in a par-
ticular variable. There are two general classes of type systems that are used by programming
languages: dynamic typing and static typing. In a static typed language, the compiler enforces type
checking before run-time. In a dynamic typed language, type checking is deferred until run-time.

In a static typed system, the programmer uses variable declarations to provide type information.
For example, in Java, which is a statically typed language, variables must be declared with their
type prior to being used. Examples of statically typed languages include Java, C, C++, C#, and
Pascal.

NOTENOTE Other languages, such as OCaml and Haskell, use type inference. This is a form of
static typing where the type is determined at compile time but without the program-

mer having to declare it.

In a dynamically typed language, the programmer does not have to declare data types with variable
declarations. Data types are not known until run-time, and type checking of variables does not
occur until run-time. Examples of dynamically typed languages include Python, JavaScript, Perl,
Lisp, and Ruby.

A closely related concept is that of how strictly a type system enforces type rules. A strongly typed
system enforces type rules strongly, allowing for automatic conversions between types only when
information is not lost due to the conversion. A weakly typed system does not enforce type rules and
allows you to easily convert from one type to another without complaint. Ruby is a weakly typed,
dynamic programming language.

Languages that are statically typed are usually recommended for new developers, as they provide
more protection from run-time errors than a dynamically typed language provides. In a dynami-
cally typed language, it’s easy to make programming errors that are not detected until run-time.
However, if you have solid unit-testing practices, this can alleviate that concern. Because of this,
unit testing is even more important when you’re programming in a dynamically typed language
such as Ruby.

Duck typing
You will likely hear someone refer to Ruby as having duck typing. The term duck typing refers to
the popular quote, “If it looks like a duck and quacks like a duck, it must be a duck.” So how does
that quote have anything to do with a programming language? Let’s figure that out.

17

Learning Ruby 1

In Ruby, object instances are not forced to be of any certain type when they are used. As long as
the object being used meets the requirements of the situation in which it is being used, Ruby will
not complain. Another way of saying this is that in Ruby, an object’s type is determined by what it
can do, not by its class. Say you were calling a calculate_average method on an object. In
Ruby, as long as the object you are calling that method on implements a calculate_average
method, everything works fine.

Your code doesn’t have to require the object you are calling the calculate_average method
on to be of any certain class. You might have a method that is expecting an object of a certain class,
but if you had some code that passed in a different class of object, but implemented all the meth-
ods used within that method, the code would execute perfectly fine. This is how programming in
Ruby relates back to the quote, “If it looks like a duck and quacks like a duck, it must be a duck.”
If your objects behave like the type expected at any given place in your code, then as far as Ruby is
concerned, they are of that type, regardless of their real class.

This is very different than the way that many other languages work, including Java. In Java, you
must declare the class type of all of your method parameters. You cannot pass in an instance of a
class that does not match the class type that the method is expecting, even if that instance imple-
ments the same methods as the expected class.

Compiled or scripting language
Another way you can classify languages is by whether they require a compile step or not.
Depending on whether or not they require compilation, a language can be said to be a compiled
language or a scripting language.

Compiled languages
A compiled language requires you to perform a compile step before running the application you are
writing. The language’s run-time executable that runs applications cannot directly understand the
source code of a compiled language. The compiler converts your source code into a binary format
that can be understood by the run-time executable. After you compile your source code, you end
up with files in the compiled format, such as the .class files used by Java. Examples of compiled
languages include C, C++, C#, and Java.

Scripted languages
A scripted language does not require you to compile your source code into another form. The
source code that you write is also the code that the language’s run-time executable uses to execute
your application. The run-time executable of a scripting language is usually called an interpreter.
The interpreter interprets the source code at run-time and converts it to a format that the computer
can execute. The interpreter is specific to a particular language. Examples of scripted languages
include Perl, Python, JavaScript, and Ruby.

Compiled languages are usually faster at run-time because the code is already closer to that of the
computer, whereas code from a scripted language has to be interpreted at run-time. However,
many people believe that scripted languages make up for the run-time performance deficit by

18

First Steps with RailsPart I

being faster to develop an application in. With a compiled language, every time you make a
change, you have to go through a compile phase and an application restart to see the results of
that change. In a scripting language, your application can immediately see the results of a source
code change, as it is running directly from your source code.

Object Oriented Programming
Object oriented programming (OOP) is a style of programming that uses objects to represent data,
and actions that you can perform on that data. OOP allows you to more closely model the real
world with your objects than was possible prior to the advent of OOP. Instead of dealing with
functions and procedures when designing an application, OOP allows you to model the applica-
tion in terms of objects that make up the application’s domain. For example, if you were creating
an application that catalogued books, in an OOP design you would model the application using
objects extracted from the domain, such as Books, Titles, Inventory, and Publisher.

In OOP, you’ll often hear the terminology of sending messages to objects. Sending a message to an
object is the equivalent of asking that object to perform some action for you. The action usually
manipulates or provides you with data that the object contains. These actions are called methods.
For example, with a Book object, you might have a method called get_page_count that would
return the book’s page count.

An object can have both methods and data. An object stores data in fields called attributes.
Considering the Book object example again, a Book object may have attributes of title,
 publisher, and publication_date. Methods and attributes are the two components that
make up the definition of an object.

The objects in your application will relate to the domain your application serves. For example, if you
are writing an accounting application, you might have objects called Account, User, and Bank. Your
Account object might contain methods for depositing and withdrawing money from an account. The
attributes of the Account object might include an account number, an account name, and an account
balance. When you are writing an application using an object-oriented language, your work consists
of defining objects and using those objects to perform the logic of your application.

Ruby is a pure object-oriented programming language. In Ruby, everything is an object, including
literal strings and numeric types. Objects are at the center of all the code you will write in Ruby.
Unlike most other languages, Ruby does not have any native types that are not objects. Even
numeric types such as integers and floats are represented as objects in Ruby.

People new to Ruby often don’t initially grasp the fact that in Ruby, everything is an object. As an
example, look at the following line of code:

3.methods

This is a valid line of Ruby code that might look a bit strange to you if you’re coming to Ruby from
an object-oriented language that considers numeric values as native types instead of objects. This

19

Learning Ruby 1

line asks for the methods that are available on the 3 object. If you wanted to find out what type of
object the number 3 is, you could find that out using this line of code:

3.class

This will return the class Fixnum. In Ruby, integer numbers are instances of the Fixnum class.
The methods class and methods are available on any object that you use in Ruby.

The Basics of Ruby
Before you get into the details of working with Ruby objects, this section provides you with some
of the basics that you should be familiar with when writing and running Ruby programs. With the
knowledge that this section provides you, you should have no problem walking through the exam-
ples that are used throughout the remainder of this chapter. You’ll also know how to interactively
follow along with the examples and run them on your own computer. If you are new to Ruby, an
active learning style in which you try out the examples yourself will help you master the language
more efficiently than if you choose to only read through all of the examples.

The basics of Ruby that will prepare you to successfully learn the remainder of the language are
Ruby’s interactive shell, Ruby syntax basics, and Running Ruby programs.

Ruby’s interactive shell
Assuming that you already have Ruby installed on your computer, you have access to a powerful,
interactive Ruby-programming environment called irb. The irb environment is a command-line
Ruby interpreter that lets you enter any valid Ruby syntax and instantly see the results of your
actions. This is being covered before you even learn Ruby because of its great use as a Ruby learn-
ing tool. Throughout this chapter, you will be able to try out the short snippets of Ruby code that
are discussed so that you can interactively follow along as you read. That is a much better style of
learning than just reading through the code samples.

Use the following steps to start irb:

 1. Start irb in any command-line environment simply by typing irb. This assumes that
the bin directory of the Ruby installation is in your executable path, which would be the
case if you used an automatic installer like the one-click Ruby installer for Windows.

C:\> irb

 2. After typing irb, you should see a command prompt that looks like this:

irb(main):001:0>

 3. At the command prompt, go ahead and type the following line of Ruby code:

irb(main):001:0> puts “Hello, World”

 The puts method writes the passed-in string to the console output.

20

First Steps with RailsPart I

 4. Press Enter. You should see this:

Hello, World
=> nil
Irb(main):002:0>

You see the “Hello, World” string printed. You may not have expected the next line: => nil.
Anytime you execute a line of code in irb, the return value of the executed method is printed to the
console after any values that the method itself may have printed. The puts method always returns
a nil value. The value nil is Ruby’s equivalent to a null or empty value.

You can even create methods and then execute them within irb. Try this within irb:

irb(main):001:0> def add_nums(a,b)
irb(main):001:0> return a+b
irb(main):001:0> end
=> nil

You have just created a method named add_nums that takes two parameters. The method returns
the value of those two parameters added together. You can now try out your new method.

Make sure you are still in the same irb session and type this:

irb(main):001:0> add_nums(5,7)
=> 12

Here, you called the method that you created and passed the values 5 and 7. The method returned
the sum of those two values, 12, and so that value is printed to the console.

The irb tool will become one of your best friends as a Ruby programmer.

TIPTIP As you work through the remainder of this chapter, I strongly suggest that you leave
the irb console open and try out the small code snippets as you see them.

Ruby syntax basics
Ruby’s syntax borrows some of the best features from languages such as Java and Perl. Before you
begin to program in Ruby, there are a few basic syntax elements that you’ll learn here. These
include adding comments in Ruby, use of parentheses, use of white space, and use of semicolons.

Adding comments
A language’s support for comments allows you to add lines to your source code that the interpreter or
compiler ignores. Comments can be added to Ruby source code using the hash (or pound) symbol,
#. All text that follows a # symbol is considered a comment and ignored by the Ruby interpreter.

This is a comment in a Ruby source code file
puts ‘Camden Fisher’ # This line outputs a string to the console

21

Learning Ruby 1

As you see in the example above, a comment can be a complete line, or it can follow a line of
Ruby code.

If you have a large block of text that you want to use as a comment, instead of beginning each line
of the comment with a # symbol, you can use Ruby’s multi-line comment syntax shown here:

=begin
This is a multi-line block of comments in a Ruby source file.
 Added: January 1, 2008
 By: Timothy Fisher
=end
Puts “This is Ruby code”

The =begin marks the beginning a multi-line comment, and the =end closes the multi-line
comment.

It’s a good idea to add comments explaining any code that is not understandable simply by looking at
it. If you often find yourself writing complex code that requires comments to explain, you may con-
sider refactoring that code to make it easier to understand and eliminate the need for the comments.

Using parentheses
The use of parentheses in Ruby is most often optional. For example, when you call a method that
takes parameters, you could call it like this:

movie.set_title(“Star Wars”)

or you could call it like this without the parentheses:

movie.set_title “Star Wars”

If you are chaining methods together, you may get a warning (depending on the version of Ruby
you are using) if you do not use parentheses around your parameters. For example, if you were
writing this code:

puts movie.set_title “Star Wars”

You may see the a warning message similar to this:

warning: parenthesize argument(s) for future version

You can avoid the warning by using parentheses like this:

puts move.set_title(“Star Wars”)

It is a generally accepted convention amongst Ruby developers to use parentheses if they help a
reader understand an expression. If the parentheses add no value to the readability of an expres-
sion, your code usually looks cleaner without them.

22

First Steps with RailsPart I

Using white space
White space is not relevant in Ruby source code. You can use indentation, blank lines, and other
white space to make your code readable with no effect on its syntax. While white space has no
effect on Ruby syntax, it does have a significant effect on the readability of Ruby code. You should
therefore pick a consistent style that uses white space to enhance the readability of your code.

Common convention is to indent your class bodies, method bodies, and blocks. Here is an exam-
ple showing recommended use of white space in a class:

class
 def a_method
 puts ‘You called a method’
 end

 def b_method
 puts ‘You called b method’
 end
end

Most text editors that understand Ruby syntax will help you apply appropriate indentation of your
methods and code blocks. Many Ruby authors have adopted an informal standard in the Ruby
community of indenting with two spaces and no tabs, so this may be the standard applied in much
of the code that you find in the open source community. However, I believe that you should
choose an indentation size that works best for you and your team.

Using semicolons
Semicolons are a common indicator of a line or statement ending. In Ruby, the use of semicolons
to end your lines is not required. The only time using semicolons is required is if you want to use
more than one statement on a single line.

Take a look at a method in Ruby:

def add_super_power(power)
 @powers.add(power)
end

Notice that there are no semicolons in any of this code, and yet this is perfectly valid Ruby code.
Not requiring semicolons is part of what gives Ruby its reputation as allowing for very clean and
readable code.

Here is an example of Ruby code that would require the use of a semicolon:

def add_super_power(power)
 @powers.add(power);puts “added new power”
end

In this method, two Ruby statements are being executed in one line of code. The semicolon sepa-
rates the statements. In most cases, though, this style of coding is not recommended. Unless you

23

Learning Ruby 1

have a good reason to do otherwise, you should always give each statement its own line of code.
This avoids the use of semicolons and makes the code more readable by other developers.

Running Ruby programs
The Ruby source files that you create become the input to the Ruby interpreter. Unlike with compiled
languages, with Ruby there is no build step required prior to running your Ruby programs. Running
a Ruby program is as simple as calling the Ruby executable and passing it the name of the file con-
taining your Ruby code. The actual executable program that you use to run your Ruby source code
files is named ruby. Throughout the book, when you see ruby written in lowercase letters in the
mono-space code font, you can assume it is referring to the actual Ruby executable program.

CROSS-REFCROSS-REF Before you continue, you should have Ruby installed on your computer. Installation
instructions were provided in the Quick Start chapter. If you skipped that, now is a

good time to go back and get Ruby installed.

You also need a text editor to create your Ruby source code in. You can use any text editor that you
are comfortable with. The Quick Start chapter gave a few recommendations for good text editors to
use that feature Ruby code recognition to give you syntax highlighting and some other nice features.

At this time, you should create a directory that you can use to store all of the samples you write in
this chapter. Anytime you want to create a Ruby source file, go to that directory and create the file.
From that same directory, you can run it with the ruby program.

Let’s walk through an example of creating and running a simple Ruby program.

 1. In a text editor of your choice, create a file called test_app.rb. Enter the following
Ruby source code:

class SimpleRubyClass
 def simple_method
 puts ‘You have successfully run a Ruby program.’
 end
end

my_class = SimpleRubyClass.new
my_class.simple_method

 2. From a command line, use the Ruby interpreter to run your program.

> ruby test_app.rb

 3. You should see the output from the method you wrote.

> You have successfully run a Ruby program.

In this example, you created a simple Ruby class and two additional statements outside of the Ruby
class. When you run a Ruby source file, lines of code that are outside of a class definition are auto-
matically executed. In the file you created, the last two lines are automatically executed when you
call ruby test_app.rb. The first line executed creates an instance of the SimpleRubyClass,
and the next line calls the simple_method on that instance.

24

First Steps with RailsPart I

When you create a Ruby source file, you do not have to use any classes. Many useful scripts can be
written without using any Ruby classes at all.

Table 1.1 lists some commonly used options that you can use with the ruby interpreter. For
example, especially if you have a large program file, you might find it useful to run a syntax check
on the source file before you execute it. You can do that with the -c command-line option.

 TABLE 1.1

Command-line Options Used with the Ruby Interpreter
Option Description Usage

-c Checks the syntax of a source file without
executing it.

ruby -c test_script.rb

-e Executes code provided in quotation marks. ruby -e ‘puts “Hello World”’

-l Prints a new line after every line; also called line
mode.

ruby -l -e ‘print “Add a
newline”’

-v Displays the Ruby version information and
executes the program in verbose mode.

ruby -v

-w Provides warnings during program execution. ruby -w test_script.rb

-r Loads the extension whose name follows the -r
option.

ruby -rprofile

--version Displays Ruby version information. ruby --version

Classes, Objects, and Variables
Objects are not tacked on to the Ruby language as an afterthought as they are in some languages,
such as Perl or early versions of PHP. Nor are objects optional as they are in C++. As you learned
previously, Ruby is a pure object-oriented language. In Ruby, everything is an object. This makes
learning about objects in Ruby very important. They are the foundation for all of the code you will
write in Ruby, and so that is where you’ll now begin to explore the details of the Ruby language.

Using objects in Ruby
Since objects and classes are core to Ruby programming, Ruby provides a rich syntax for using
them. In this section, you’ll learn how to create objects and classes in Ruby. You’ll also learn how
to create methods and variables that will be contained by the classes and objects that you create.

Defining objects
Objects provide a way of modeling your application’s data and actions. In Ruby, you define the
structure of your objects inside of a class. A class is similar to the concept of a type. A class defines
a type of data structure. Looking at Figure 1.1, you see a User class that contains two attributes

25

Learning Ruby 1

(login, password) and two methods (set_password, set_login). When you use the User
class, you create an instance of the class. An instance of a class is also called an object. In Figure 1.1,
the object a_user is an instance of the User class. A class is a way of defining common behavior
for all of the objects that are of that class type. In this example, all instances of the User class will
have the login and password attributes, and the set_password and set_login methods.

 FIGURE 1.1

The User class

login
password

User

class User
 def set_password(password)
 @password = password
 end

 def set_login(login)
 @login = login
 end
end

set_password
set_login

a_user = User.new
a_user.set_password(’changeme’)

You define a class in your source code using the class keyword. The minimum code you need to
define a class is a class statement with your class name, and the end statement to close the class
definition. The following code would define a User class:

class User
end

It is usually good practice to have each of your classes defined in a separate file. The User class
would typically be stored in a file called user.rb. If you follow this recommendation, your code
becomes better organized, and thus more readable and more maintainable.

Classes are made up of attributes and methods. The remainder of this section will show you the
details of how to create each of these elements in the Ruby classes you write.

Writing methods
A class’s methods define its behavior. Methods allow Ruby classes to perform useful actions and
process data in useful ways. When you are writing a Rails application, your application’s business
logic will be contained in methods that you add to classes. In Ruby, you define methods within
classes using syntax that looks like this:

class Notifier
 def print_message
 puts ‘Wherever you go, there you are.’
 end
end

26

First Steps with RailsPart I

In this example, the class Notifier contains one method, named print_message. Take a look
at that method definition line-by-line to understand all of its parts. The first line is

def print_message

Ruby uses the def keyword to signify the start of a method definition. The def keyword is followed
by the name of the method you are defining. The method name is also used when the method is
called someplace else in your code. In this example, the method name is print_message. Your
method names should be concise, yet descriptive of the actions that are performed within the
method. While some people don’t like long method names, it is better to have longer names than
short names that do not accurately convey the purpose of a method.

The next line of the method is the first line of the method body:

puts ‘Wherever you go, there you are.’

This line prints a message to the console. The method puts is a built-in Ruby method for writing
string output to the console. In this case, the method name, print_message, is good because it
accurately describes what this method does. If you find yourself wondering what a method does
after looking at its name, perhaps you should consider renaming the method.

The method body continues until an end statement is reached. The end statement marks the end
of the method. For those coming from Java or Perl, note that you do not surround your method
body in curly braces,{ and }, as you do in those languages.

Methods with parameters
You saw an example of a very simple method in the previous section. Methods can also have data
passed to them. The data passed to a method can then be used within the body of the method.
Data values passed to a method are called parameters, or arguments, of that method. Here is an
example of a method that uses parameters:

def add_numbers(number1, number2)
 number1 + number2
end

This method, add_numbers, takes two parameters, number1 and number2. The parameters are
then used within the body of the method. The variables listed between the parentheses are called
the parameter list. Anytime you use a parameter in the body of your method, you must use the
same name for it that is given in the parameter list. Notice that in your parameter list, you do not
declare any types for the parameters as you do in Java and other statically typed languages.

You might be wondering if a return statement was accidentally left out of the previous method.
Perhaps you were expecting to see the method body written like this:

return number1 + number2

In Ruby, that line is actually equivalent to the line that does not contain the return statement. In
Ruby, the value of the last statement executed is also returned from the method. Because the

27

Learning Ruby 1

 statement number1 + number2 is the last statement in this method body, its value is returned
from the method.

Creating instances of a class
A class defines a type of object. To use an object of that type, you must create an instance of that
class. Consider a class designed to implement simple math operations. You might start with a class
defined like this:

class SimpleMath
 def add_numbers
 number1+number2
 end
end

This is the definition of a class called SimpleMath containing one method called add_numbers.
To use the SimpleMath class as an object, you have to first create an instance of it. Every class
has a method called new that is used to create instances of that class. The new method is called
without any parameters, like this:

math = SimpleMath.new

The variable math now contains an instance of the SimpleMath class. Now you can call methods
on that instance, like this:

result = math.add_numbers(3, 5)

This is the first example you’ve seen of how methods are called in Ruby. Ruby uses the dot opera-
tor (.) to indicate that what follows is the name of a method that is to be called on the object pre-
ceding the dot operator.

NOTENOTE It is common naming practice in Ruby to begin class names with an uppercase letter
and capitalize the first letter of each additional word in the class name. Instance

names, and all other variables in Ruby, should begin with a lowercase letter and have multiple
words joined with an underscore character.

Initializing instances with the initialize() method
Often, you’ll want to initialize the state of an object when you create an instance. Many languages
include a method that is called when instances are created. Often, this is called an object construc-
tor. In Ruby, the concept of a constructor is implemented with the initialize method. You can
include an initialize method in any of your classes, and it will be called when an instance is
created using the new method. For example, you could have a class defined like this:

class PhotoAlbum
 def initialize
 @album_size = 10
 end
end

28

First Steps with RailsPart I

Here, you have a PhotoAlbum class containing an initialize method that sets the album size
to 10 each time an instance of the class is created.

The initialize method can also take parameters. Instead of hard-coding an album size, you
might prefer an initialize method like this:

class PhotoAlbum
 def initialize(album_size)
 @album_size = album_size
 end
end

In this example, the initialize method takes a single parameter, the album size. You pass this
parameter to the new method when you create an instance of the PhotoAlbum class, like this:

my_photo_album = PhotoAlbum.new(20)

This creates your new instance, initialized with an album size of 20.

Instance and class methods
There are two types of methods that a class can define: instance methods and class methods.
Instance methods allow you to interact with instance objects, and class methods allow you to inter-
act with class objects.

Instance methods
In the previous example, the add_numbers method that is declared in the SimpleMath class is
called an instance method. It can only be called on instances of the SimpleMath class. Instance
methods manipulate only the instance on which they are called. An object instance must be cre-
ated in order to use instance methods.

Any method defined in a class using the simple format of the def keyword followed by a method
name is an instance method. Here is a class that contains three instance methods:

class SuperHero
 def add_power
 # method body here…
 end

 def use_power
 # method body here…
 end

 def find_enemy
 # method body here…
 end
end

29

Learning Ruby 1

The three methods defined in this class are instance methods. You must create an instance of the
SuperHero class using the new method to be able to use any of these methods. Once an instance
is created, an instance method is called using the instance variable followed by the dot operator,
like this:

spiderman = SuperHero.new
spiderman.add_power(‘super_strength’)
spiderman.use_power

The majority of the methods you write within your classes will probably be instance methods.

Class methods
There is another type of method that classes can define, called class methods. A class method can
only be called on a class and cannot be called from an object instance. You’ve already seen one
example of a class method — the new method that is used to create instances of a class.

Class methods can be defined in a few different ways. You do one of the following to define a class
method:

n Prefix a method name with the class name and the dot operator.

n Prefix a method name with the self keyword and the dot operator.

n Use class << self syntax see the following example).

When you call methods or access attributes on a class, you are not using any specific instance of
that class. Class methods are called like this:

methods = User.methods

This line calls the methods class method of the User class. This would return you an array of all
the class methods for the User class.

The first way you can define a class method is to write it with a preceding class name, like this:

class PhotoAlbum
 def PhotoAlbum.delete(album_id)
 …
 end
end

In this example, the delete method is created as a class method of the PhotoAlbum class. The
delete method cannot be called from an instance of this class. Instead, you call the delete
method as shown in the following example, passing an integer that represents the ID of an album
you want to delete:

PhotoAlbum.delete(12)

30

First Steps with RailsPart I

Another way to define a class method is to use the self keyword like this:

class PhotoAlbum
 def self.delete
 …
 end
end

This creates a delete class method for PhotoAlbum that behaves identically to the previous
 version.

The final style you see for defining class methods is useful when you have several class meth-
ods that you want to define in one class. You can define a group of class methods using the
class << self syntax like this:

class PhotoAlbum
 class << self
 def delete(album_id)
 …
 end
 …
 def move(album_id)
 …
 end
 …
 def rename(album_id)
 …
 end
 end
end

In this example, all three of the methods contained within the block surrounded by class
<< self are defined as class methods.

Instance and class variables
Just as there are two types of methods that a class can contain, there are also two types of variables
that a class can contain. The two types are the instance variables and the class variables.

Instance variables
It is very common that you’ll want to associate data with specific instances of your classes. For exam-
ple, you might have a User class, with each instance representing a different user. Each instance of
user would need its own variables to maintain its object state. Variables that are associated with an
instance of a class are called instance variables. The following is true of all instance variables:

n Instance variable names always begin with @ (the at sign).

n You can access instance variables only through the specific class instance to which they
belong. Each instance of a class has its own instance variables.

31

Learning Ruby 1

n You can define an instance variable anywhere within a class and it will still be visible to
all instance methods within the class.

To illustrate these bullet points, consider this example:

class House
 def print_value
 puts @value
 end

 def set_value(a_value)
 @value = a_value
 end
end

In this example, because of the @ symbol, you should be able to identify @value as an instance
variable. Notice that you do not have to define instance variables outside of your methods as you
do in some other languages, such as Java. Anytime you use a variable that begins with an @ sym-
bol, that variable becomes an instance variable. The print_value method accesses the same @
value variable set by the set_value method. Each instance of the House class maintains its
own copy of the @value variable.

Class variables
In addition to instance variables, a class can also define class variables. A class variable is a variable
that is shared among all instances of a class. Class variables are not referred to in relation to an
instance, as instance variables were. You reference a class variable by using the Class name and the
dot operator, like this:

total_house_value = House.total_value

Using the example of the House class again, a house’s value was stored as an instance variable.
This makes sense because each instance of the House class represents a different house, and each
house will have its own value. The total value of all houses is a good example of a field that could
be represented as a class variable. Each instance, or house, does not need to maintain its own copy
of the total house value. This value is not a data element of any individual house, but rather a data
element that describes all of the houses. Therefore, it makes sense to represent this value as a class
variable.

Class variable names start with two @ signs, @@. The class definition for the House class, including
the total value class variable, would look like this:

class House
 @@total_value = 0

 def print_value
 puts @value
 end

32

First Steps with RailsPart I

 def set_value(a_value)
 @value = a_value
 end
end

In this code example, the @@total_value class variable is initialized to a value of zero. You
must initialize class variables before they are used. To keep track of the total value of all houses,
this variable must be updated every time a house value is updated. This requires a slight modifica-
tion of the set_value method, like this:

class House
 @@total_value = 0

 def print_value
 puts @value
 end

 def set_value(a_value)
 @value = a_value
 @@total_value = @@total_value + @value
 end
end

Now, every time the value of a house is set, that value is also added to the total value of all houses,
which is tracked with the @@total_value class variable. There is actually a potential problem
with this code. Did you spot it? If the set_value method is called more than once for a single
instance — that is, a single house — rather than updating the total value with the new value being
set for that particular house, both values that you’ve set for that house are added to the total value.
This gives a false total value. Having noted that, the code accurately illustrates the use of class and
instance variables.

Getters and setters in Ruby objects
If you’ve done any amount of object-oriented program in a different language, you are probably
familiar with the terms getters and setters. Even if you are not, the concept is relatively simple. As
you’ve learned, an object instance contains data stored in instance variables. Frequent tasks that
you will want to perform are setting the value of those variables and getting the value of those
 variables. The methods that perform those actions of setting and getting the values of instance vari-
ables are known as getters and setters.

NOTENOTE Getters and setters are also sometimes referred to as accessors and mutators in
some such as C++.

In many other object-oriented languages, you must explicitly define these getter and setter meth-
ods using relatively verbose and repetitive syntax. For example, in Java you might see code that
looks like this in many of the classes:

Class JavaObject {

33

Learning Ruby 1

 String stringVal
 int intVal;

 public String getStringVal() {
 return stringVal;
 }

 public void setStringVal(String stringVal) {
 this.stringVal = stringVal;
 }

 public int getIntVal() {
 return intVal;
 }

 public void setIntVal(int intVal) {
 this.intVal = intVal;
 }
}

While these methods are relatively simple, this can be very tedious and perhaps error-prone if you
make any typographic mistakes as you write these methods for every instance variable that you
want to access outside of a class instance. These methods clutter up your class definitions with
many lines of code that do relatively little. You’ve probably also noticed that the pattern for each
instance variable getter and setter is the same. It seems that by writing all of these methods, you are
doing a task that is more ideally suited for the computer. Isn’t getting the computer to do work for
you precisely the reason you are writing a software application in the first place?

Fortunately, Ruby saves you from having to repeat these getter and setter methods in all of your
classes by giving you a built-in method that automatically generates the methods for you at run-
time. Before you see that, however, it is educational to see how you would implement getters and
setters in Ruby.

Getters in Ruby
Getters are relatively simple if you recall that methods in Ruby return the value of the last statement
executed, even if you do not include a return statement. Therefore, the above Java class could be
rewritten in Ruby like this (for the moment, you include only the getter methods, not the setters):

class RubyObject
 def string_val
 @string_val
 end

 def int_val
 @int_val
 end
end

34

First Steps with RailsPart I

In this Ruby code, notice that the instance variable names have been changed to reflect the style
commonly used in Ruby code: lowercase variable names with words separated by underscores.
Also notice that in Ruby, you do not have to declare the instance variables prior to using them.

Setters in Ruby
Let’s take a look at how you implement setters in Ruby code. With your growing knowledge of
Ruby code, your first attempt at creating a setter might look like this:

def set_string_val(new_string_val)
 @string_val = new_string_val
end

You would use this method to set the @string_val instance variable like this:

my_ruby_obj.set_string_val(‘a good string’)

This method is valid Ruby code and will work just fine, but you can do better. Keep reading to see
a more elegant way to express this setter method.

Using the equal sign in method names
Ruby allows you to define setter methods for the purpose of a more elegant setter method by using
an equal (=) sign at the end of the method name. The following example illustrates how you would
do this using an equal sign method:

def string_val=(new_string_val)
 @string_val = new_string_val
end

It doesn’t look like you’ve saved much in terms of the definition of the setter method. Its size is
similar, and some might even think this definition is a bit more complex. But, look at how this
method is used:

my_ruby_obj.string_val=(‘a good string’)

Here you see the new method being called just as the set_string_val method was called;
however, by ending the method name with an equal sign, you begin to see how this makes the
method call look less like calling a method and more like just setting the attribute value directly.
Go a step further and remember that, in Ruby, you do not have to surround your parameters with
parentheses. You can now write the setter like this:

my_ruby_obj.string_val=‘a good string’

Ruby lets you go even a step further by providing you with a syntax that is special to methods that
end with the equal sign. You can write these methods with a space between the method name and
the equal sign. For example, you could also write the setter like this:

my_ruby_obj.string_val = ‘a good string’

35

Learning Ruby 1

When the Ruby interpreter sees the string_val method followed by the =, it automatically
ignores the space and assumes you are calling the string_val= method. This line makes for a
very readable setter method. This type of special syntax is often referred to by Ruby programmers
as syntactic sugar.

The attr_ methods
Earlier, I said that you didn’t really have to write your own getter and setter methods in Ruby, and
I mentioned that there was a way to have these automatically generated for you at run-time. This is
where the attr_ methods come in. You will find yourself often using these methods.

The attr_reader method
Using the attr_reader method, you can avoid having to create getter methods for instance vari-
ables that you want to be readable from outside of your class. To use the attr_reader method,
simply call it with a symbol representing the instance variable that you want a getter method for,
like this:

class Message
 attr_reader :body

 def initialize(body)
 @body = body
 end
end

The @body instance variable is now readable from outside of the class by referencing it through an
instance, like this:

a_message = Message.new(“Dear John”)
message_body = a_message.body

The message_body variable would now contain the value “Dear John”, which was the value of
the @body instance variable.

The attr_writer method
Ruby also provides a method that will automatically create a setter method for you. The attr_
writer method creates an accessor method to allow assignment to an attribute that is equivalent
to a setter method. Using attr_writer is just as easy as attr_reader was. Take a look at this
example.

class Message
 attr_writer :body
end

a_message = Message.new
a_message.body = ‘I like school.’

36

First Steps with RailsPart I

In this example, you are able to set the body attribute of the a_message instance because an
attr_writer was created for the body attribute. In practice, you will not use the attr_
writer method very often. For attributes that you want to have both read and write access to, the
attr_accessor method, described next, is a better choice.

The attr_accessor method
If you want to use both getters and setters with instance variables, the attr_accessor method is
what you want to use. The attr_accessor method generates both getters and setters for the
instance variables you pass to it.

class Message
 attr_accessor :body, :recipients
end

Now the @body and @recipients instance variables can be read and set from outside of the class.
You get or set these instance variables just as if you were directly accessing the variable, like this:

a_message = Message.new
a_message.body = ‘’
a_message.recipients = [‘tim@timothyfisher.com’,’john@doe.com’]

You can see how easy this makes it to set instance variables without having to write any setter code
inside the class.

Inheritance
All object-oriented languages support inheritance. Inheritance is one of the ways in which classes
can be related. You may often hear the term class hierarchy, or maybe object hierarchy. A class
hierarchy is a hierarchical mapping of classes. Inheritance is the main building block of a class hier-
archy, and specifically models the IS-A relationship. For example, a baseball IS-A ball. A football
IS-A ball also.

Consider the example shown in Figure 1.2. You see the Ball class as a parent class of the
Baseball and Football classes. The Baseball and Football classes will inherit all of the
attributes and methods of the Ball class. In Figure 1.2, the Ball class has two attributes, a size
and a weight. These attributes will be inherited by both the Baseball and Football classes.
So instances of Baseball and Football will have size and weight attributes.

The Baseball and Football classes can also add their own attributes and methods to specialize
the class to their particular type. Again referring to Figure 1.2, the Baseball class has a hard_or_soft
attribute that is unique to the Baseball class. The Football class has an inflation_limit
attribute that is unique to the Football class. These attributes specify things about the specific
type of ball that the class represents that are not common to balls in general. Methods and attri-
butes that are inherited from a parent class can be used in the child class just as if they were
defined inside the child class. The parent class of an inheritance relationship is also commonly
called the base class.

37

Learning Ruby 1

 FIGURE 1.2

A class hierarchy

– size
– weight

Ball

– inflation_limit

Football

– hard_or_soft

Baseball

Inheritance is a technique that is very often used by object-oriented programmers. Rails applica-
tions rely very heavily on the use of inheritance. The classes that you write in a Rails application
gain the power of the Rails framework primarily by inheriting from existing Rails classes. When
you create a class that inherits from a parent class, you can also say that your new class extends the
parent class. Referring back to Figure 1.2, the Baseball and Football classes extend the par-
ent class, Ball.

To implement class inheritance in Ruby, you use the greater-than symbol (<) when you define
your class, like this:

class Football < Ball
 …
end

This code means that the Football class is extending or inheriting from the Ball class.

Built-in Classes and Modules
Now that you have learned the basic syntax and structure of Ruby programming, it is time to learn
about the built-in features of the language. Ruby contains a wealth of built-in capability that saves
you from having to write a tremendous amount of low-level code in your applications.

The built-in classes and modules that you’ll learn about in this section can be divided into two
areas: scalar objects and collections. As you learn about these built-in features, it’s a great idea to
follow along with an open irb session. You can type all of the code snippets used in this section
directly into irb. Lines in the code snippets that begin with => denote output that you will see in
irb if you try out the code snippet.

38

First Steps with RailsPart I

Scalar objects
Scalar objects are objects that represent single values, as opposed to collections of values. In this
section, you’ll learn about some of the built-in scalar objects that you’ll use often in Ruby pro-
grams. The scalar objects discussed here include the following:

n Strings

n Numerics

n Symbols

n Times and dates

Strings
Strings are used to represent text, or sequences of characters, in Ruby. You can create string literals
in Ruby using single or double quotes, like this:

“This is a string in Ruby.”

or like this:

‘This is a string in Ruby.’

However, there are differences in how strings are interpreted that you should be aware of so that
you can use the correct quote style in different situations.

Substitution in strings
Substitution occurs in strings when you type in one or more characters that the Ruby interpreter
will change into different characters. A backslash character followed by another character is a com-
mon indicator for string substitution. For example, in a single quoted string, you can place a single
quote inside of a string by escaping the quote with a backslash character, like this:

puts ‘I went to Dad\’s house.’

This string outputs the string value:

I went to Dad’s house.

The \’ is turned into a single quote. This allows you to use single quotes within single-quoted
strings. You can also use a backslash character within a single-quoted string by putting two back-
slashes in the string, like this:

puts ‘A backslash looks like this: \\’
=> A backslash look like this: \

These are the only two substitutions that occur in single-quoted strings. Any other backslash char-
acters remain just as you typed them.

Double-quoted strings, however, allow you to use a richer set of backslash sequences for substitu-
tion. For example, the \n sequence turns into a newline character in a double-quoted string.

39

Learning Ruby 1

String interpolation
String interpolation allows you to use Ruby expressions inside of double-quoted strings. Take a
look at the following example:

subject = ‘zombies’
puts “Timmy likes #{subject}.”

=> Timmy likes zombies.

The # and { sequences tell Ruby that what’s enclosed is a Ruby expression that you would like
evaluated, and its result is inserted into the string. In addition to using variables like this, you can
also interpolate other expressions, such as this:

puts “If you add 2 and 5 you get the value #{2+5}.”
=> If you add 2 and 5 you get the value 7.

You can skip the braces for instance, class, and global variables. For example, you could use inter-
polation with an instance variable like this:

@subject = ‘cooking’
puts “Camden likes #@subject.”

=> Camden likes cooking.

String interpolation allows you to write concise code without having to perform a lot of string con-
catenation that you might do in other languages.

String operations
Ruby provides your strings with a great deal of built-in functionality. Here are some of the more
common string methods that you’ll use:

n length

 This method returns the length of the string that it is called on.

short_str = “This is a short string.”
puts short_str.length
=> 22

n include?

 Returns true if the string it is called on contains the string passed as a parameter.

“Superman can fly”.include?(‘Superman’)
=> true

n slice

 This method returns a substring of the string that it is called on. The substring is speci-
fied by passing an argument of one of the following types: fixnum, range, regular
expression, or string. There is also a variant of this method that deletes the speci-
fied substring from the string that it is called on and returns the deleted substring. This
variant is named slice!.

40

First Steps with RailsPart I

 An example taken from the official Ruby documentation site at http://ruby-doc.org illus-
trates use of this function well:

string = “this is a string”
string.slice!(2) #=> 105
string.slice!(3..6) #=> “ is “
string.slice!(/s.*t/) #=> “sa st”
string.slice!(“r”) #=> “r”
string #=> “thing”

 In the above example, note that the end of the statements include a comment showing
what the return value of that method call would be. For example, string.slice!(2)
would return the ascii character value 105. The string #=> is commonly used to indicate
the return value of a statement in Ruby documentation.

 The fourth line of the above example containing the expression string.slice!(/
s.*t/) uses a regular expression as a parameter. In Ruby, regular expressions are cre-
ated with the / delimiter. Ruby provides strong support for using regular expressions,
and though this book does not get into the details of how to use regular expressions,
I strongly advise you to become familiar with them. Regular expressions are very useful
in any programming language.

n gsub

 This method allows you to specify a portion of a string to be replaced with a different
string. Just as with the slice method, there is a variant available that will change the
string that the method is called on. This variant is named gsub!. These methods take
two parameters. The first parameter is a regular expression or a string to match on, and
the second parameter is a string that you want to replace the matched text with. The fol-
lowing examples show how this method is used:

“hello”.gsub(/[aeiou]/, ‘*’) #=> “h*ll*”
“Superman”.gsub(“Super”, “Bat”) #=> “Batman”
“hello”.gsub(/([aeiou])/, ‘<\1>’) #=> “h<e>ll<o>”

 In the last line of the example, the replacement string is ‘<\1>’. In this string, the \1
sequence will match the result of the [aeiou] regular expression. Surrounding the reg-
ular expression in parentheses, as in this example, creates a matching group. You could
have additional matching groups in the regular expression by including additional regular
expressions surrounded by more sets of parentheses. In the replacement string, you can
match subsequent matching groups using \2, \3, and so on. See this line of code for an
example of multiple matching groups:

“hello”.gsub(/(e)(ll)/, ‘<\1><\2>’) #=> “h<e><ll>o”

 In the previous line of code, the \1 sequence matches the regular expression group (e)
and the \2 sequence matches the regular expression group (ll).

There are many more methods that you can use on String objects. For a complete description of all
of the methods available for String objects, you should refer to the official Ruby documentation for
Strings at www.ruby-doc.org/core/classes/String.html.

41

Learning Ruby 1

Numerics
Ruby has special classes that represent numbers that you use in a Ruby application. These classes
include Float, Fixnum, and Bignum. The Bignum and Fixnum classes represent integers. They
both extend the Integer class. The classes Float and Integer extend the Numeric class,
which provides basic functionality to all numeric objects.

You can find out the class that a particular number uses by calling its class method, like this:

1980.class
=> Fixnum

3.1459.class
=> Float

10000000000.class
=> Bignum

Now, take a look at a few methods that are commonly used with numbers:

n integer?

 Returns true if the number is an integer value.

1980.integer?
=> true

n round

 Rounds the number to the nearest integer.

18.3.round #=> 18
18.7.round #=> 19

n to_f

 Converts a Fixnum or Bignum to a Float.

15.to_f #=> 15.0
1000000000000.to_f #=> 1000000000000.0

n to_i

 Converts a Float to an Integer type (either Fixnum or Bignum depending on its
size). The decimal portion of the number is truncated. There is no rounding performed
during the truncation.

15.1.to_i #=> 15
15.8.to_i #=> 15

n zero?

 Reruns true if the value has a zero value, otherwise it returns false.

There are many more methods available for the numeric classes. For complete method informa-
tion, refer to the official Ruby doc Web site.

42

First Steps with RailsPart I

Symbols
If you are coming to Ruby from a Java or C language background, symbol objects are probably
going to be something new to you. You can think of symbols as placeholders for strings. Symbols
are easily recognized in Ruby code because they are always prefixed with a colon (:). You can con-
vert any string into a symbol by using the to_sym method. The following is an example of creat-
ing a symbol using this method:

city = “Detroit”
city_sym = city.to_sym
puts city_sym

The to_sym method converts the string “Detroit” into an equivalent symbol object. The sym-
bol, city_sym, contains the value :Detroit. When you print the symbol to the console using
the puts method, the console output is:

Detroit

You might be wondering why the value printed was not :Detroit. The reason why you don’t see
that value printed is because the puts method automatically converts the symbol back into a
string before printing it. The string equivalent of a symbol is the symbol value without the colon.
However, if you look at the class type of the variable city_sym, you will see that it is indeed a
Symbol object.

city_sym.class #=> Symbol

You can convert a symbol back into a string using the id2name method. Here, you see how the
:Detroit symbol is converted back to the original string value:

city_string = city_sym.id2name

When you get into Rails development, you will use symbols frequently. Although they may seem a
bit foreign at first, they are simple to use and often make for cleaner and faster code.

Times and dates
In many applications you write, you will have to work with times and dates and usually perform
some manipulation of those values. Ruby provides you with built-in classes to support times and
dates in your application. The classes that provide Ruby’s support for times and dates are Date,
Time, and DateTime. The Time class is the only one of those three that is included with the
Ruby core. The Date and DateTime classes are a part of the Ruby standard library which is
included with Ruby but they must be explicitly included using a require statement when you want
to use them. Below is an example of how you would include the Date and DateTime classes in
your code:

require ‘date’

The date library included using the above require statement will give you both the Date and the
DateTime classes.

43

Learning Ruby 1

The require statements should always be placed at the very top of your source files. You can also
use these classes within an irb session simply by using the same require syntax at the com-
mand prompt.

Below you’ll see some of the methods and features of the date and time classes. There are many
more methods available for these classes than what is covered in this book. For complete informa-
tion, refer to the official Ruby documentation site www.ruby-doc.org.

Using the Time class
You can create instances of the Time class using the new method as shown here:

time = Time.new

When you use the new method of the Time class, an instance of the Time object representing the
current time is created. To get a Time instance referring to the current time you can also use the
Time.now method. If you want to create an instance that is preset to a given time, you the Time.
local method as shown here:

time = Time.local(2008, “jun”, 22, 10, 30, 25)
#=> Sun Jun 10:30:25 -0400 2008

In this example, an instance of Time is created and set to the date June 22, 2008, and the time
10:30 and 25 seconds. The parameters passed to Time.local in this example are in this order
year, month, date, hours, minutes, and seconds.

You can also call Time.local to create a time instance with these parameters: seconds, minutes,
hour, day, month, year, day of the week, day of the year, is it daylight savings time?, and timezone.
Here is an example of how you would create the same time using these parameters:

time = Time.local(25, 30, 10, 22, “jun”, 2008, 0, 174, true,
“EST”)

#=> Sun Jun 10:30:25 -0400 2008

Once you have a Time instance created, you can easily get specific field information from it using
instance methods available. Here are some examples:

time.day #=> 22
time.yday #=> 174
time.wday #=> 0
time.year #=> 2008
time.month #=> 6
time.zone #=> “Eastern Daylight Time”
time.hour #=> 10
time.min #=> 30
time.sec #=> 25

44

First Steps with RailsPart I

You can also perform addition and subtraction of time instances. To get the difference between two
times, subtract them, as shown here:

time1 = Time.local(2008, “jun”, 22, 10, 30, 25)
time2 = Time.local(2008, “jun”, 20, 10, 30, 25)
time1 - time2 #=> 172800.0

The value returned from subtracting the two times is the time difference expressed in seconds.
Knowing that there are 86,400 seconds in a day (60*60*24), you could convert the result to days
by dividing the result by 86,400, to get two days.

You can add seconds to a time using the addition operator, as shown here:

time = Time.local(2008, “jun”, 22, 10, 30, 25)
time + 60 #=> Sun Jun 10:31:25 -0400 2008

In this example, 60 seconds are added to the time instance.

You can compare time instances using either the eql? method or the <=> operator. The eql?
method will return true if the time that it is called on and the time passed to it are both Time
objects with the same seconds and fractional seconds. The <=> operator also compares time
objects down to the fractional seconds, however its return value is different. Instead of returning
true or false, the <=> operator will return 0 if the time instances are equal, -1 if the time instance
on the left occurs before the time instance on the right, and +1 if the time instance on the left
occurs after the time instance on the right. Here are some comparison examples:

time1 = Time.local(2008, “jun”, 22, 10, 30, 25)
time2 = Time.local(2008, “aug”, 12, 10, 30, 25)
time3 = Time.local(2008, “jun”, 22, 10, 30, 25)

time1.eql? time2 #=> false
time1.eql? time3 #=> true

time1 <=> time2 #=> -1
time2 <=> time1 #=> 1
time1 <=> time3 #=> 0

Using the Date class
To create a new Date instance, you use the new method, as you did with the Time class. However,
unlike the Time class, when you create a date with the new method, you will not get the current
date. To get a meaningful date instance you should pass parameters to the new method like this:

date = Date.new(2008, 3, 12)

This creates a date instance representing March 12, 2008. The Date class represents dates only and
does not include time information. To see a string representation of the date, use the to_s method:

date.to_s #=> “2008-03-12”

45

Learning Ruby 1

There are accessor methods provided for getting the year, month, and day components of the date:

date.year #=> 2008
date.month #=> 3
date.day #=> 12

Another useful method is the next method. This method will return the next day, as shown here:

date.next.to_s #=> “2008-03-13”

In the above example, the next method is chained with the to_s method to return the string rep-
resentation of the next date. Method chaining can be a convenient way of writing concise expres-
sions in Ruby. If you want to get the next month, or perform month addition, you can use the >>
operator with the date instance. The >> operator will advance a date by the given number of
months. Similarly, the << operator will subtract the given number of months from the date. Both
of these operators will return the modified date but will not change the date instance on which
they are called. Here are some examples:

(date >> 1).to_s #=> “2008-04-12”
(date << 1).to_s #=> “2008-02-12”
date.to_s #=> “2008-03-12”

Just as with Time instances, you can test the equality of two dates using the eql? method, or the
<=> operator. The operators behave just as they do for the Time instances, except dates are com-
pared instead of times. Here are some examples:

date1 = Date.new(2008, 3, 12)
date2 = Date.new(2008, 7, 15)
date3 = Date.new(2008, 3, 12)

date1.eql? date2 #=> false
date1.eql? date3 #=> true

date1 <=> date2 #=> -1
date2 <=> date1 #=> 1
date1 <=> date3 #=> 0

Using the DateTime class
The DateTime class is a subclass of the Date class and thus inherits its methods and much of its
behaviour. The DateTime class adds time information to the date information provided by the
Date class.

You can create a DateTime instance with both date and time values set using the new method and
parameters passed in this order (year, month, day, hour, minute, second) as shown here:

date_time = DateTime.new(2008, 3, 12, 10, 30, 25)
date_time.to_s #=> “2008-03-12T10:30:25+00:00”

46

First Steps with RailsPart I

The DateTime class has access to these accessor methods for getting the time information:

date_time.hour #=> 10
date_time.min #=> 30
date_time.sec #=> 25
date_time.zone #=> “+00:00”

Formatting times and dates
All three of the time and date related classes, Time, Date, and DateTime, include a to_s method that
allows you to get a string representation of the time or date. However, the format provided by the
to_s method may not always be what you want. You can create a formatted date string using a for-
mat that you define using the strftime method that is available to all of these time and date
classes. The strftime method takes a single parameter that is the format string. The format string
can contain text and any of the format specifiers listed in Table 1.2 for printing date and time fields.

 TABLE 1.2

Date and Time Formatting Codes for Use with strftime
Format Code Description Example

%a The abbreviated weekday name Sun

%A The full weekday name Sunday

%b The abbreviated month name Jan

%B The full month name January

%c The preferred local date and time representation 03/12/08

%d Day of the month 10

%H Hour of the day, 24-hour clock 21

%I Hour of the day, 12-hour clock 10

%j Day of the year 215

%m Month of the year 11

%M Minute of the hour 25

%p Meridian indicator AM or PM

%S Second of the minute 55

%U Week number of the current year, starting with the
first Sunday as the first day of the first week

5

%W Week number of the current year, starting with the
first Monday as the first day of the first week

4

%w Day of the week (Sunday is 0) 2

%y Year without a century 95

%Y Year with century 1995

%Z Time zone name EST

47

Learning Ruby 1

Here are some examples of dates and times formatted using the strftime method:

date = Date.new(2008, 10, 18)
date.strftime(“The day is %A, %B %d %Y”)
#=> “The day is Saturday, October 18 2008

time = Time.local(2008, “jun”, 22, 10, 30, 25)
time.strftime(“Date: %a %b %d %Y, Time: %I:%M:%S”)
#=> “Date: Sun Jun 22 2008, Time: 10:30:25”

Collections
All program languages support some method of representing groups of objects or other data ele-
ments. The objects that store collections of other objects are called the collection objects. These
objects are defined by the collection classes, which are some of the most often used classes in any
programming language. In almost any application you write, you will find times when you have to
work with multiple items, and that is where collection classes help you.

Ruby provides you with built-in support for collections using the following collection classes,
which you’ll learn about in this section:

n Arrays

n Hashes

n Ranges

Arrays
The array is the most common collection class and is also one of the most often used classes in
Ruby. An array stores an ordered list of indexed values, with the index starting at 0. Ruby imple-
ments arrays using the Array class. Here is an example of how arrays are used in Ruby:

great_lakes = [“Michigan”,”Erie”,”Superior”,”Ontario”,”Huron”]
puts great_lakes[0]
puts great_lakes[4]

This code creates an array containing the names of the Great Lakes, and stores it in the great_
lakes variable. The second and third lines print the names of the first and fifth elements of the
array. The output would be:

> Michigan
> Huron

Arrays do not have to be populated when they are created. You can also create an array object
using the Array.new method, like this:

sports = Array.new

48

First Steps with RailsPart I

You can also create a new empty array using this style of declaration:

sports = []

The Array class also gives you plenty of built-in functionality. Here are some commonly used
methods that you’ll use when working with arrays:

n empty?

 Returns true if the array is empty.

sports = Array.new
puts sports.empty?
=> true

n delete

 Deletes the named element from the array and returns it.

sports = [‘Baseball’,’Football’,’Soccer’]
sports.delete(‘Soccer’)
sports
=> [‘Baseball’,’Football’]

n first

 Returns the first element of the array.

names = [‘Tim’,’John’,’Mike’]
puts names.first
=> Tim

n last

 Returns the last element of the array.

names = [‘Tim’,’John’,’Mike’]
puts names.last
=> Mike

n push

 Adds a new element to the array.

sports = [‘Baseball’,’Football’,’Soccer’]
sports.push(‘Tennis’)
=> [‘Baseball’,’Football’,’Soccer’,’Tennis’]

n size

 Returns the number of elements contained in the array.

sports = [‘Baseball’,’Football’,’Soccer’]
puts sports.size
=> 3

Hashes
Like arrays, hashes store a list of values. However, if you use a hash instead of integer indexing, a
hash lets you specify a unique index for each element that you store in the hash.

49

Learning Ruby 1

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
puts leagues[“AL”]

Once you have a hash, you can retrieve the value for an element in the hash by referencing its key
value, as you see being done in the second line above. Notice that when you create a hash, you use
the curly braces to enclose the hash, but when you refer to an element of the hash, you use the
straight brackets. If you attempted to use the curly braces when referring to an element of the hash,
you would get a syntax error.

You will also often hear the contents of a hash described as key-value pairs. The terms index and key
are used interchangeably with respect to hashes.

Just as with arrays, the Hash class gives you plenty of built-in functionality. Here are some com-
monly used methods that you’ll use when working with hashes:

n empty?

 Returns true if the hash is empty.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
puts leagues.empty?
=> false

n keys

 Returns an array of the hash’s keys.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
leagues.keys
=> [‘AL’,’NL’]

n values

 Returns an array of the hash’s values.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
leagues.values
=> [‘American League’,’National League’]

n size

 Returns the number of key or value pairs contained in the hash.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
leagues.size
=> 2

Ranges
Ruby provides another type of collection that you are probably not familiar with if you are new to
Ruby: the Range class. You can use ranges to represent a sequence that has a defined start point, a
defined end point, and a well-defined procession of elements. You create a range in Ruby using a
start point, two dots, and an end point, like this:

(0..6)

50

First Steps with RailsPart I

This would create a range containing all the integer numbers from zero to six. You can verify that
you have indeed created a Range object by looking at its class, using the following code:

(0..6).class
=> Range

A good way to verify what are all of the elements contained within a range is to convert the range into
an array. You can convert the range into an array using the to_a method of the range, like this:

(0..6).to_a
=> [0,1,2,3,4,5,6]

You can use ranges not only for representing sequences of numbers, but also for representing any
elements that have a well-defined sequence. Here is an example that expresses a sequence of letters
as a range:

(‘a’..’e’).to_a
=> [‘a’,’b’,’c’,’d’,’e’]

As with the other collection types in Ruby, you get plenty of built-in functionality with the Range
class. Here are some common methods you can use with ranges:

n first

 Returns the first element of a range.

(1..6).first #=> 1

n last

 Returns the last element of a range.

(1..6).last #=> 6
(1...6).last #=> 6

 Notice that the last the last element specified in the Range declaration is returned as the
last element of the range, even if that element is not included in the range, such as when
you use the triple period range notation.

n include?

 Checks to see if the passed parameter value is included within the range.

(‘a’..’f’).include? ‘k’ #=> false
(‘a’..’f’).include? ‘d’ #=> true

 There is also a method available named member? that has the same behavior as
include?.

n each

 This method allows you to iterate through each of the elements of a range and pass them to
a block specified as a parameter. Blocks are covered later in this chapter, so if this doesn’t
make sense to you now, feel free to have another look after you’ve read about blocks.

51

Learning Ruby 1

(1..4).each do |number|
 puts number
end

 Each element of the range 1, 2, 3, 4 will be printed to the screen on a separate line using
the puts method.

n step

 Like the each method, the step method is also an iterator method. Using the step
method, you can iterate through a range using a stepping size specified by the parameter
passed.

(1..6).step(2) do |number|
 puts number
end

 This example will print out the numbers 1, 3, and 5 each on a separate line.

Control Flow
The control flow features of a programming language specify how the programming language allows
you to control the path of execution through the code that you write. For example, there may be a
group of statements that you only want to be executed under certain conditions, or there may be a
group of statements that you want to repeat until a specified condition becomes true. These are the
types of things that you will use control flow techniques to accomplish. Every programming language
has control flow features built into it, and Ruby is no exception. Ruby’s primary control flow mecha-
nisms are:

n Conditionals

n Loops

n Blocks

n Iterators

Each of these mechanisms provides a different style of controlling the flow of your application. As
you write more Ruby programs, you will find scenarios in which each of these mechanisms
becomes valuable.

Conditionals
Conditionals allow you to specify a block of code that is executed conditionally, based on the
result of some expression. Ruby supports three types of conditional statements:

n if statement

n unless statement

n case statement

52

First Steps with RailsPart I

The if statement
The if statement tests whether an expression is true or false. The expression being tested immedi-
ately follows the keyword if in a line of code. If the expression evaluates to true, the block of code
following the if statement is executed. If the expression evaluates to false, the contained block of
code is skipped.

In this example, the variable value_a is compared with the variable value_b. The statement
value_a is bigger is only executed if the statement value_a > value_b is true.

if value_a > value_b
 puts ‘value_a is bigger’
end

You can also specify a second block that is executed if the if expression evaluates to false. This is
called the else block and is preceded by an else statement, like this:

if value_a > value_b
 puts ‘value_a is bigger’
else
 puts ‘value_b is bigger’
end

In this example, the correct statement is printed, depending on the values of the two variables.

There is one more statement that you can use with an if statement. That is the elsif statement.
The elsif statement allows you to specify a block that is executed conditionally if the previous
if or elsif statement did not evaluate to true. Here is an example:

if color == ‘red’
 puts ‘The color is red’
elsif color == ‘blue’
 puts ‘The color is blue’
else
 puts ‘Could not determine color’
end

The unless statement
Another conditional supported by Ruby is the unless statement. The unless statement works
opposite to how the if statement works. The block of code contained by the unless statement is
executed only if the expression passed to the unless statement evaluates to false. Take a look at
the following example:

unless value_a > value_b
 puts ‘Value B is the larger number’
end

This code would print the message ‘Value B is the larger number’ only if the value stored in
value_b is larger than the value stored in value_a.

53

Learning Ruby 1

The case statement
The case statement allows you to compare a variable to a number of different possible values and
execute a group of methods based on which of the values it matches. This construct can replace a
series of if..else statements. Consider the following block of if..else statements:

if color == ‘red’
 puts ‘The color is red’
elsif color == ‘blue’
 puts ‘The color is blue’
elsif color == ‘green’
 puts ‘The color is green’
else
 puts ‘Unrecognized color name.’
end

In this series of if..else statements, the color variable is compared against a series of different
values to find one that matches. If it does not find a match, there is an ending else to print a
default message. This example illustrates how you could implement the very same logic using a
case statement:

case color
 when ‘red’
 puts ‘The color is red’
 when ‘blue’
 puts ‘The color is blue’
 when ‘green’
 puts ‘The color is green’
 else
 puts ‘Unrecognized color name.’
end

As you see here, after the case statement, you specify the variable that you want to match. Each
when statement is the equivalent of an elseif in the previous implementation. When a matching
condition is found, the statement or statements following that when statement (up until the next
when statement) are executed. After executing those statements, the control flow passes to the line
after the case statement’s closing end statement.

TIPTIP You can also specify groups of valid values, as in the following example:

when ‘red’,’purple’

Loops, blocks, and iterators
Loops, blocks, and iterators allow you to define sections of code that you want to execute repeat-
edly, often until a given condition is satisfied. The constructs you’ll learn about here include:

n for loops

n while and until loops

n code blocks

54

First Steps with RailsPart I

If you have experience with other programming languages, you are probably familiar with the con-
cept of for, while, and until loops. However, code blocks may be very new to you. They are a
feature that gives Ruby a great deal of its unique power and capability for writing clean, elegant,
and concise code.

for loops
The Ruby for loop allows you to execute a given block of code an amount of times specified by an
expression preceding the block. If you are used to using the for loops in Java, JavaScript, C, C++,
or a language similar to one of those, pay particular attention here, as the Ruby for loops are differ-
ent than the for loops in those languages. Here is an example of a Ruby for loop:

cities = [‘Southgate’,’Flat Rock’,’Wyandotte’,’Woodhaven’]
for city in cities
 puts city
end

Executing this loop would result in each of the city names contained in the cities array being
printed to the console. Here is another example of a for loop that iterates over a hash variable,
using both the key and value elements as variables within the block.

hash = {:r=>’red’, :b=>’blue, :y=>’yellow’}
for key,value in hash
 puts “#{key} => #{value}”
end

Executing this loop will result in the following output:

y => yellow
b => blue
r => red

while and until loops
In addition to the for loop, Ruby supports other looping constructs that are also common in
many other programming languages: the while loop and the until loop. The while and
until loops execute a block of code while a certain condition is true, or until the condition
becomes true. Here are some examples:

num = 10
while num >= 0 do
 puts num
 num = num - 1
end

num = 0
until num > 10 do
 puts num
 num = num + 1
end

55

Learning Ruby 1

Blocks
In several of the previous examples that used iterators, such as the each or step method of a
Range object, you have seen Ruby blocks in use. Blocks are groups of statements that can be
passed into a method as a parameter. They are commonly used with iterators. The each method,
which is available on any class that is enumerable in Ruby, is probably the place you will use
blocks most often. Here is an example of a block used with the each statement:

colors = [‘red’,’blue’,’yellow’,’green’]
colors.each do |color|
 puts color
 color_count = color_count + 1
end

In this example, the block is enclosed by the do and end statements. The block is passed a single
parameter which is enclosed in the pipes. The block is passed as a parameter to the each method.
Blocks can also be enclosed by curly brackets. The example below is equivalent to the previous one:

colors = [‘red’,’blue’,’yellow’,’green’]
colors.each { |color|
 puts color
 color_count = color_count + 1
}

Although not a syntax rule, common usage is to use the curly brackets around blocks when you
have a short block that will fit on the same line as the method invocation to which the block is
passed, such as this example:

colors.each { |color| puts color}

If your block spans multiple lines, the do/end syntax is preferred.

Blocks are a construct that is new to many programmers, especially those coming from Java or C
language backgrounds. They are frequently used in Ruby code so you should become very familiar
with them. I have just touched on what you can do with blocks. There is a great deal more to learn
about them. You can learn more with many good online references; just do a Google search on
Ruby Blocks.

The yield statement
You can create your own methods that accept blocks as a parameter and be able to pass parameters
into those blocks using the yield statement. Take a look at an example of a method that can
accept a block as a parameter:

class TimsBooks
 def initialize
 @books = [‘Ruby on Rails Bible’, ‘Java Phrasebook’]
 end

 def each
 @books.each {|book| yield book }

56

First Steps with RailsPart I

 end
end

books = TimsBooks.new
books.each do |book|
 puts book
end

In this example, the TimsBooks class contains an instance variable that is an array of books. The
@books variable is initialized at object creation time. The each method is implement to iterate
through the @books array and yield each book value to the block that is passed to the each method.
Toward the bottom of the example, you see how the each method can be used with an instance of
TimsBooks to print the name of each book. Using this technique you could write your own each
methods for any classes that you write that contain some data that can be iterated upon.

The yield statement calls the passed in block, passing any parameters that are passed to it along
to the block. So in the above example, each time yield is called, the block containing the puts
book statement is called passing the name of a book from the @books array. The resulting output
will be a list of the books in the @books array.

Iterators
An iterator is a method that allows you to step through a group of values in a systematic way.
Iterators are featured in many programming languages, and Ruby has rich support for them. You
have seen some of the iterator methods already. Some of the iterator methods supported by Ruby
described here.

n each

 The each method is the most common iterator. You can use the each method to step
through any element that is enumerable such as an array or hash.

students = [‘Tim’,’Camden’,’Kerry’,’Timmy’]
students.each do |student|
 puts student.name
end

n times

 The times method is an iterator used on integer values. It is used to repeatedly execute
a block of code.

3.times {puts ‘Ruby rules’}

 This will print the line ‘Ruby Rules’ three times.

n map

 The map method is commonly used with Array objects. It calls the passed block once
for each element of the array on which it is called. Its return value is a new array contain-
ing each of the values returned by the subsequent calls to the block.

[1,2,3].map {|x| x * x}
#=> [1,4,9]

57

Learning Ruby 1

 This example returns an array that contains the squares of each of the elements contained
in the original array.

n upto

 The upto method is an iterator used with elements that have some form of ordering
associated with them. Common examples of where you can use this method include inte-
gers and alphabetic characters as shown below:

4.upto(7) {|x| puts x}

‘a’.upto(‘c’) {|char| puts char}

 In the first example above, the values 4, 5, 6, and 7 are printed. In the second example,
the characters a, b, and c are printed.

Exception handling
Every good developer should be familiar with error handling techniques and know how to handle
errors that occur in a program. No matter how well you have written and tested your program, there
will always be error conditions that occur in your program. These error conditions are not always the
fault of the developer, but could be triggered by a number of things, including bad input from an
external component , unavailable external resources, or incorrect usage by the end user

Before OOP became popular, error handling was mostly accomplished using return values and
error codes. All of your functions would return a value that would indicate whether the function
succeeded or failed. On failure, the return value would contain an error code or perhaps an error
message. Unfortunately, this style of programming tends to require error-handling code around all
of your functions and within the functions. Often, the purpose of a particular function is lost in so
much error-handling code.

Object-oriented languages introduced a new style of error handling with a more object-oriented
approach. This style uses exception objects that can be thrown and caught by your code and handled
where appropriate. This style of error handling is usually referred to as exception handling. The
exception handling features of Ruby allow you to handle unexpected conditions that occur while
your code is running.

Exceptions in Ruby
In Ruby when an exceptional condition occurs, you can raise an exception using either the raise
statement or the throw statement. When you raise an exception, control flow is diverted away
from the current context to exception handling code. Exceptions that are raised can be caught with
a rescue block. Rescue blocks are created with the rescue statement. Exceptions are represented
as Exception objects. Exception objects are instances of the Exception class or a subclass of
the Exception class. Ruby includes a hierarchy of built-in exception classes. There are seven
classes that are direct subclasses of Exception. These are the following:

n NoMemoryError

n ScriptError

58

First Steps with RailsPart I

n SecurityError

n SignalException

n SystemExit

n SystemStackError

n StandardError

The StandardError exception class represents exceptions that are considered normal and that
you should attempt to handle in your application code. The other exception classes represent
lower-level and more serious errors that you most likely will not be able to recover from. Most pro-
grams do not attempt to handle these exception classes. There are many built-in subclasses of
StandardError, and you are free to also create your own subclasses to define custom excep-
tions for your application.

The Exception class defines two methods that will help you get more information
 about the problem that occurred. These two methods should be implemented by all of its subclasses.
The two methods are message and backtrace. The message method returns a string that gives
human-readable information about the cause of the exception. The backtrace method returns an
array of strings that represent the call stack at the point the exception was raised.

Using begin, raise, and rescue
The three statements that are used most often to perform exception handling in Ruby are the
raise, begin, and rescue statements. The raise statement is used to create, or throw, and
exception. You can call raise with zero, one, two, or three arguments. If you use raise with no
arguments, a RuntimeError object is raised. If you use one argument with raise, one of the fol-
lowing conditions will apply:

n If the single argument is an Exception argument, that exception is raised.

n If the argument is a string, a RuntimeError is raised and the string is set as its message.

n If the argument is an object that has an exception method, that method should return
an Exception class. The Exception class returned will be raised.

If you use raise with two arguments, the second argument should be a string that will get set as the
message of the exception defined by the first argument. Finally, you can call raise with three argu-
ments also. In that case, the first argument will define an exception class, the second argument will
define a string to be set as the exception’s message, and the third argument will contain an array of
strings which will be set as the backtrace for the exception object.

Here is an example of how you might raise a RuntimeError exception with a specified message:

raise RuntimeError, “Bad value used.”

The begin statement designates the start of a block of code for which you want to apply excep-
tion handling. The rescue statement specifies the start of a block of code that is executed if an
exceptional condition occurs within the block of code that began with the begin statement. To

59

Learning Ruby 1

illustrate the uses of exception handling in Ruby, you’ll see how exception handling is commonly
used along with Ruby’s built-in file support to catch errors that might occur when you are trying to
open a file.

def read_file(file_name)
 begin
 afile = File.open(file_name, “r”)
 buffer = afile.read(512)
 end

 rescue SystemCallError
 # handle error
 end

 rescue StandardError
 # handle error
 end

 rescue
 # default exception handler
 end
end

This method attempts to open a file with the name you pass into the method, and to read the first
512 bytes from it. An exception can be raised from within either the File.open or the afile.
read methods. If an exception is raised within either of those methods, the control flow of the
code will jump out of the begin block. The block that begins with the code rescue
SystemCallError will be executed if a SystemCallError exception is raised. If the excep-
tion raised is a StandardError exception, the block that rescues StandardError will be exe-
cuted. If the exception thrown is neither of those two types, the default exception handling block
will be executed (this is the rescue block that does not specify a parameter).

As you saw in the previous example, a rescue block can specify a specific type of exception to
handle, or not specify an exception type at all. If no exception type is specified, the block will han-
dle any exception type that has not been handled by a previous rescue block. You can specify
more than one exception type for a rescue block to handle also. For example, if you wanted to
handle SystemCallError and StandardError the same way, you might write an exception
handler like this:

rescue SystemCallError, StandardError
 # handle error
end

In many cases, you will want to get information about the exception that occurred in the rescue
block that handles it. You can access the exception object by defining a rescue block like this:

rescue => ex
 puts “#{ex.class}: #{ex.message}”
end

60

First Steps with RailsPart I

In the above example, the exception object is stored in the ex variable. You can access any of the
exception’s methods through the ex variable. If your rescue clause is for a specific type of excep-
tion, the syntax to get the exception object would look like this:

rescue ArgumentError => ex
 puts “#{ex.class}: #{ex.message}”
end

More exception handling using ensure, retry, and else
Now that you have the basics of Ruby exception handling down, let’s look at three additional state-
ments that are part of Ruby’s exception handling support. These are the ensure, retry, and
else statements.

The retry statement
If you put a retry statement inside of a rescue block, the block of code that the rescue block is
attached to will be run again. This is a good option for errors that are likely to resolve themselves.
For example, if the load on a server was too high when you called it the first time, if you wait a bit
and attempt the call again, it may succeed. The following code illustrates that scenario:

network_access_attempts = 0
begin
 network_access_attempts += 1
 open(‘http://www.timothyfisher.com/resource’) do |f|
 puts f.readlines
 end
rescue OpenURI::HTTPError => ex
 if (network_access_attempts < 4)
 sleep(100)
 retry
 else
 # handle error condition
 end
end

In the begin block of this code, it attempts to open a network resource. If an exception is thrown
while attempting to open that resource, the rescue block will be executed. Within the rescue
block, we check to see if we have attempted to access the resource less than four times. If so, the
code sleeps for 100 mS and then uses the retry statement to retry the begin block. If the same
exception occurs four times, we give up and attempt to handle the error.

The else statement
A begin-rescue code block may also include an else block. The else block will be executed
if the code in the begin block completes without raising any exceptions. Below is an example of
how you might use an else block:

begin
 network_access_attempts += 1

61

Learning Ruby 1

 open(‘http://www.timothyfisher.com/resource’) do |f|
 puts f.readlines
 end
rescue => ex
 puts ‘Error reading file’
 puts “#{ex.class}: #{ex.message}”
else
 puts ‘Successfully read the entire remote file’
end

If any exceptions are raised in the else block, they are not caught by any of the rescue state-
ments attached to the begin block.

The ensure statement
The ensure statement is used to start a block that will always be executed, no matter what hap-
pens in the preceding begin block. The ensure block will be run after the begin block com-
pletes, or after a rescue statement completes if the begin block resulted in an exception. If the
code also contains an else block, the else block will be run before the ensure block. The
ensure block will always be the last block run. If control is transferred away from the begin
block before it completes, perhaps by using a return statement, the ensure block will still be
run, however the else block would not be run in that case. An else block is only run if the
begin block runs to completion. An ensure block is always run no matter what happens in the
begin block. Here is an example of exception handling code that uses an ensure block:

begin
 file = open(“/some_file”, “w”)
 # write to the file
rescue => ex
 puts ‘Error writing file’
 puts “#{ex.class}: #{ex.message}”
else
 puts ‘Successfully updated file’
ensure
 file.close
end

In this example, the code opens a file and would then attempt to write to that file. If an exception
occurs, the exception is printed to the screen. If the write completes successfully, a success mes-
sage is printed to the screen using the else block. In either case, the ensure block runs to make
sure that the file gets closed.

The normal use of an ensure block is to ensure that your code performs necessary housekeeping
tasks, such as closing files, close database connections, or completing database transactions. Unless
an ensure block contains an explicit return statement, it will not affect the return value of your
method. For example, in the following code, the value returned will be hello and not goodbye.
If you’re wondering why hello is used as a return value, recall that the last value of a method is
also the value that gets returned. The ensure block will not overwrite that return value.

62

First Steps with RailsPart I

begin
 ‘hello’
ensure
 ‘goodbye’
end

Organizing Code with Modules
One of the most commonly touted benefits of object oriented programming is that it can result in
more reusable code. You can use reusable code in multiple applications, and it saves developers
time and money. Organizing your code into classes and separating your classes into different files
is one way of creating reusable chunks of code. Often, though, you may have a situation where you
have a bunch of methods that don’t naturally fall into a specific class, and yet they are methods
that you find yourself using again and again, perhaps in many of your classes. This is where Ruby’s
concept of a module can help you out.

A module in Ruby provides a namespace that allows you to group methods and constants together,
similar to the way a class groups methods and attributes. A Ruby module definition looks like this:

module Messaging
 def send_email
 ..
 end

 def send_im
 …
 end

 def send_text_message
 …
 end
end

This creates a Messaging module that bundles together methods related to sending a message
over various protocols, e-mail, instant messaging, or text messaging. Any place where you wanted
to use these methods, you could include this module as a mixin.

In addition to providing a convenient namespace and place to put methods and constants that do not
fall naturally into a class definition, modules also give you the ability to use mixins. The Ruby con-
cept of a mixin is a way of including methods and constants defined in a module into another module
or class. Previously you saw how to define a Messaging module. Now if you have a Notifier class
that you want to use these methods in, you would simply include this module like this:

require ‘messaging’

class Notifier

63

Learning Ruby 1

 include Messaging
 …
end

The Notifier class uses a require statement to import the file containing the Messaging
module. This example assumes that the module is stored in a file contained in the same directory
as the Notifier class, with a filename messaging.rb. The include statement imports all of
the methods contained in the Messaging module into the Notifier class.

Perhaps the most common examples of mixins are the Enumerable and Comparable modules
that are included with Ruby. These modules are mixed into quite a few classes by default, and you
can easily mix them into your own classes as well. The Enumerable module defines useful itera-
tors for any class that defines an each method. It is important to remember that the Enumerable
module does not define the each method. You must define the each method in any class that
you include the Enumerable module into. Enumerable defines methods such as all?, any?,
collect, find, find_all, include?, inject, map, and sort. See the Ruby documentation
Web site for a complete description of the methods of the Enumerable module www.ruby-
doc.org/core/classes/Enumerable.html.

The Comparable module defines general comparison methods for any class that defines the <=>
method. You can include the Comparable module into any class for which you have defined the
<=> method. The Comparable module defines methods that look like operators such as: <, <=,
==, >, and >=.

Advanced Ruby Techniques
In this section, you’ll learn some additional techniques that will be useful to you when you are
writing and studying Rails programs. The techniques described in this section are also used inter-
nally by Rails.

Variable length argument lists
All of the method examples that you’ve seen so far in this chapter have used fixed argument lists.
Ruby also supports variable length argument lists. A method that allows a variable length argument
list lets you call it with different numbers of methods in different situations. Take a look at the fol-
lowing example:

def print_strings(*strings)
 strings.each { |str| puts str }
end

This is a method that will accept a variable number of arguments. The strings variable contains
an array holding all of the arguments that are passed to this method. In the body of a method, the
each iterator is used to step through each of the strings passed in and to print its value.

64

First Steps with RailsPart I

Dynamic programming with method_missing
The method_missing method is a feature of Ruby that you will find very useful in certain situa-
tions. Before you get into the details of that, though, let’s talk about what is meant by the term
dynamic programming. Dynamic programming is a style of programming in which you create code
or change the nature of your program’s code at run-time.

If you attempt to call a method that does not exist for the object you are using it on, you normally
get an undefined method error. For example, try typing this code in irb:

class EmptyClass
end

obj = EmptyClass.new
obj.say_hello

In this code, you are attempting to call the method say_hello on an instance of the
EmptyClass. Because this method does not exist, you will see an error message like the following
printed to the console:

NoMethodError: undefined method ‘say_hello’ for
#<EmptyClass:0x28f7d64>

 from (irb):31
 from :0

Here, irb is telling you that it cannot find this method in your class. Go ahead and exit that irb
session to clear its memory and restart irb. Recreate the EmptyClass, slightly modified, as
shown here:

class EmptyClass
 def method_missing(method, *args)
 puts ‘Sorry, I could not find the method you are

calling.’
 Puts “The method you called is #{method}.”
 end
end

obj = EmptyClass.new
obj.say_hello

Now when you call the say_hello method in irb, you see this output:

Sorry, I could not find the method you are calling.
The method you called is say_hello.

As you can see, because the method you called could not be found in the EmptyClass, the
method_missing method was called. The method_missing method is called by Ruby anytime
you try to call a method that does not exist. The name of the method, and any arguments that you
passed to the method you were trying to call, are also passed to the method_missing method.

65

Learning Ruby 1

Reopening classes
In Ruby, no class definition is ever final. You can reopen the definition of any Ruby class, includ-
ing classes that you previously defined, even classes that are built into Ruby, and modify those
class definitions to change the behavior of those classes.

Let’s look at an example where you will reopen a commonly used built-in Ruby class, the String
class. Try this out by typing the following code into an irb session:

class String
 def reverse_and_capitalize
 self.reverse.capitalize
 end
end

You’ve added a new instance method named reverse_and_capitalize to the String class.
This method combines the features of the built-in reverse and capitalize methods. The
reverse_and_capitalize method is now available on any string that you create. Try it out:

str = “say hello”
str.reverse_and_capitalize
=> “Olleh yas”

You created a string object the normal way and called the new method that you added. Your method
is now a part of the String class, just like any other method that you use with the String class. In
addition to adding methods, you could also redefine a method by reopening the class.

You can use this technique to extend external libraries that you use, as well as the built-in Ruby
classes.

CAUTION CAUTION Developers have expectations from commonly used methods, and if you change
the behavior of those methods, you must make sure that it is well documented and

everyone who uses your modification is aware of those changes.

Summary
This chapter has provided you with a basic overview of the Ruby programming language. While
what it provided is far from a complete overview of Ruby, it should be more than enough to get
you started writing Rails applications, which is the ultimate goal of this book.

As you begin writing Rails applications and as you gain more experience with both Ruby and Rails,
your Ruby skills will increase, and I am certain you will seek out additional resources to further
enhance your Ruby programming skills. Programming Ruby: The Pragmatic Programmers’ Guide is
often referred to as the Ruby Bible (also commonly called the pickaxe book because of the image of a
pickaxe depicted on its cover) and is probably a book that you will want to own at some point. This
book is written by a Ruby pioneer, Dave Thomas, and was one of the first Ruby language books pub-
lished in the United States. It remains the most referenced and most used Ruby language book.

