Buy, Not Build

The very basis of our jobs as developers is to write code. If you can’t write code, there is no work
for you to do as a software engineer. We spend long years learning to write better, tighter, faster,
more elegant code. There comes a time, however, when what we really need to do is not write code.
It turns out to be one of the hardest parts of the job: learning when to say no and letting someone
else do the work. Why should you say no? Isn’t writing code what we do? Yes, it is what we do.
Yet the reality of the business of software engineering is that business owners or project sponsors
or whoever holds the purse strings don’t hire us to write code. Sounds odd, doesn’t it? But it’s true.
They don’t hire us to write code. They hire us to solve problems using software. Sometimes (in fact,
most of the time) that means we get to write code. But more often than we like to think, what we
really should do is let someone else do the fun part.

As software systems have become increasingly complex, it has become impossible for any one
developer to know everything there is to know about building a single system. We’d like to believe
that isn’t the case, but unless you are working on a very small project devoted to a very narrow
domain, it’s true. Someone who is an expert in crafting HTML to look exactly right in every browser
and still knows how to write kernel-mode hardware drivers might exist somewhere in the world,
but he certainly isn’t in the majority. There is simply too much to know, which naturally leads to
specialization. So we end up with some developers who know the ins and outs of HTML, and others
who write device drivers.

Even in the case of a moderately sized commercial project, no average team of developers will be
able to write all the software that it needs to accomplish its goals — nor should it. We get paid to
solve problems that businesspeople have, not to write code because it’s fun. Okay, the fact that for
most of us writing code also happens to be fun comes as a nice bonus, but our business is really
business.

So what’s the point of all that? It is that before we write a single line of code for any project, we
should be asking ourselves one simple question: Is this code providing business value to my customers?

At the core of that question lies an understanding of what business value means to your organiza-

tion. For example, if your company sells online banking software, then the core business value that
you are delivering to your customers is banking. When it comes time to build your banking web site,

—p—

—p—

Part |: Philosophy

and you need to ask the user what day he wants his bills paid, you might want to add a calendar
control to your web page. That certainly makes sense, and it will make the user’s experience of your
software better. It's tempting (because we all like to write code) to immediately start writing a calen-
dar control. After all, you can write one in no time, and you always wanted to. Besides, nobody else’s
calendar control is as good as the one that you can write. Upon reflection, however, you realize that there
is nothing about being able to write a calendar control that provides value directly to online banking
customers. “Of course there is,”” you say. “The users want a calendar control.” True, they do. But the
business of a company that builds banking software is not to build calendar controls.

Cost versus Benefit

As I said, this is one of the hardest parts of this job to really get your head around. We’ve all encountered
and suffered from the “not invented here”” syndrome. Every developer thinks that he writes better code
than any other developer who ever lived. (That’s healthy and exactly the way it should be. It leads to
continuous improvement.) Besides, some stuff is more fun than other stuff. It would be fun to spend time
writing the perfect calendar control. But what business value does it provide? If you work for a company
that builds control libraries and competes daily with a dozen other control vendors, then by all means
you should be working on the perfect calendar control. That’s your business. But if you write banking
software or health care software or warehouse management software, then you need to let those control
vendors worry about the calendar controls.

Luckily, there are developers who specialize in writing user interface (UI) controls so that the rest of us
don’t have to. The same principal applies to a very wide range of services and components. It’s not just
things like controls or serial drivers.

As the complexity of software has increased, so has the level of support provided by operating systems
and base class libraries. Only 10 years ago if you wanted to write a windowing application, you had to
start by writing a message pump, followed closely by windowing procedures for each and every window
in the application. Most of us would never think of writing code at that low a level now because there
wouldn’t be any point to it. It's been done; problem solved. If you're writing in C#, there are now not one
but two window management systems (Windows Forms and Windows Presentation Foundation) that
handle all the work in a much more complete way than you would ever have enough time to do yourself.
And that’s okay. As software becomes bigger and more complex, the level of problems we write code to
solve has moved up to match it. If you wrote a bubble sort or a hashtable yourself anytime in the last five
years, then you have wasted both your own time and your employer’s money (unless you happen to be
one of the relatively small number of developers building base class libraries).

The key is evaluating the benefits versus cost at the level of individual software components. Say that
you write banking software for a living, and you need a hashtable. There happens to be a hashtable built
into the class library that comes with your development environment, but it doesn’t perform quite as
fast as it could. Should you write a 20% faster hashtable yourself? No. The time it takes you to write

a better hashtable costs your employers money, and it has gained them nothing. Another aspect of

the increasing complexity of software is that performance issues have changed in scope. Coupled with
the fact that Moore’s Law (the number of transistors that can be placed in an integrated circuit
doubles every two years) still seems to be working, increasing complexity means that the extra 20%
you get out of that perfect hashtable is likely to mean absolutely nothing in the greater scope of

your project.

—p—

Chapter 1: Buy, Not Build

There are a few narrow exceptions to this general principal. There are always cases where some piece of
software that is critical to your application has already been written but lacks a key bit of functionality —
functionality that might constitute a competitive advantage for your company. Let’s say that your
application needs a calendar control, and you have one that does just about everything that you need.
However, you have just been told that there is a deal in the works with a customer in the Middle East
that could mean big money for your company. The calendar control that you have been using doesn’t
support alternative calendars such as those used in much of the Middle East. Now you might just find
it a competitive advantage to write your own calendar control. Sure, it’s not core to your business, but
if it means getting a deal that you might not get otherwise, then it adds business value.

Unfortunately, it is situations such as this, coupled with the inherent desire to write more code, that
makes it difficult to decide when to buy and when to build. It is often not a simple question to answer. It
almost always comes down to money. I think that this is one of the core issues that separate “’computer
science” from “‘software engineering.”” Software engineers always have to keep in mind that they cost
money. Academic “‘computer scientists”” have a much different value proposition to consider. Coming
up with activities that are grantworthy is vastly different (although no less difficult) from trying to decide
which software to write and which to buy to save your company time and money. Writing software that
could have been purchased at less cost is a good way to get your project canceled. No project owner is
likely to question the need to write software that adds business value to your project if the value is real
and demonstrable.

The part of the equation that can be particularly galling to software engineers is that the 80% solution
often ends up being just fine. It’s hard to let go of that last 20% and accept the idea that the overall project
will come out just fine even if every piece isn’t 100% the way you want it to be. The last 20% is almost
never worth the money that it costs your project’s sponsors. This means that if a component that you
can buy off the shelf solves most of your problem, it’s almost certainly more cost-effective than trying to
write it yourself.

Creating a Competitive Advantage

So what should you be writing? The parts that constitute a competitive advantage for your organization.
Software is a competitive business, and the part of any project that you have to do yourself is the part
that will beat the competition. If you are writing banking software, that’s probably the part that talks to
the bank’s mainframes, and not calendar controls. If you are writing inventory management software,
it’s probably the algorithms that decide when to order new parts, not the drivers for a bar code scanner.
The important part is to focus on the key piece of your project, which provides the most business value
to your customers. That is, after all, our real job. Writing code is fun, but what we really do is solve
problems for business owners.

It can be very difficult to decide which parts you really should write yourself and which you can leave
to someone else. Sometimes the choice is clear. Most of us wouldn’t consider writing an SQL query
engine just so that our project could use a database. We would use MySQL or purchase a commercial
database product. That one seems pretty clear. An SQL engine intuitively feels too big to take on, and it
would require such specialized skills to implement that it is easy to see why it makes sense to buy one.
Low-level components also tend to be easy to write off. Even if the product must communicate over the
WAN, most of us wouldn’t start by writing a TCP/IP stack. It's been done. Our value proposition as
software engineers lies in solving problems and writing code in a way that hasn’t been done.

—p—

—p—

Part |: Philosophy

Base Class Libraries

One of the most productive activities you can spend time on is learning your base class library (BCL).
Every language and development platform comes with some kind of base class library. Whether that
means the .NET BCL, the standard Java libraries, the basic Ruby class library, or the stdlib for C++, you
will receive a sizable return on investment if you spend some time getting to know all of its ins and outs.
The more you know about your BCL (or basic application programming interfaces (APIs) or built-in
methods or whatever they happen to be called), the less likely you are to find yourself writing code that
has already been written. It will take some time. Over the years, the code most of us write has moved
toward ever-higher levels of abstraction. The base libraries have grown larger and larger over time, and
continue to do more for us. That enables us to focus more on business problems and less on plumbing. We
don’t have to write windowing procedures or bubble sorts, so we can concentrate on complex algorithms
and better user experiences.

This is another area where the 80% solution is usually good enough. For example, the NET BCL comes
with a ReaderWriterLock implementation that does exactly what you would expect it to do. It allows
multiple readers to access the same resource without blocking, and it causes writes to be done one at a
time. Additionally, a write operation blocks all readers until the write is finished. I have heard it said
that the NET Framework 1.1 implementation is susceptible to a condition whereby it basically blocks
everyone, even if there is no write operation pending. I've never seen it happen in my code, but the
developer who told me about it had looked into the code and proclaimed that it was a theoretical
possibility. The solution he proposed was to write his own ReaderWriterLock that would theoretically be
faster and not prone to this problem. I would never use this as a reason not to use the ReaderWriterLock
in the BCL. The fact is that the one in the BCL is done. Every line of code I don’t have to write (and more
importantly maintain) saves my team time and money. I would absolutely go forward with the BCL ver-
sion unless I found out that my code was actually experiencing the theorized problem, and that it really
had an impact on my users.

That second part is just as important. If I looked at my application while it was running and saw that
once a week I got a deadlock on a ReaderWriterLock that caused one web server to recycle itself, I would
probably go right on using the BCL class. The fact that a handful of users would have to relogin to my
site once a week wouldn’t make it worth spending the time and effort to rewrite the ReaderWriterLock,
or worse, to try to come up with an alternative solution that worked around it. Consider your actual
Service Level Agreement with your customers before deciding to write a single line of code you don’t
have to.

Of course, your application might not be able to tolerate that kind of failure, in which case you would
have to make that hard choice about rewriting or working around the problem class. Making those
decisions is what project sponsors pay us for. Before you decide, though, take a hard look at what is
good enough versus what you would like to have in a perfect world. The reality is that almost always,
you can live with the less-than-perfect solution and still deliver valuable functionality to your
customers.

To know which components you really do have to write from scratch, you should be intimately familiar
with your platform’s libraries. That doesn’t necessarily mean that you have to know every method of
every class. It means that you should have a broad understanding of which functionality your application
might need is provided by the framework, and which is not. That way when it comes up in a project
meeting that the project really needs functionality XYZ, you can make a high-level estimate based on
whether the class library already has that functionality or you will have to write your own. It may turn
out that the BCL already has only 60% of what you need, in which case you may be able to reuse parts of

—p—

—p—

Chapter 1: Buy, Not Build

its implementation. Or you might have to start from scratch. Either way you will be making an informed
choice.

Open Source Software

Whether to incorporate Open Source software (OSS) into any given project is a huge and potentially
controversial issue. Legal, moral, or other questions aside, let’s pursue it from the buy-versus-build
perspective.

Like any other third-party component, Open Source or other freely available software may save you a lot
of time and money by replacing code you would otherwise have to build and maintain yourself. Truly
Open Source, or even “source available” software is additionally attractive because if any issues come
up, you can probably fix them yourself.

On the other hand, there are good reasons for not choosing an Open Source component. Before you
decide to adopt any Open Source component, take a good look at the code. There are some very well-
designed and built Open Source software projects, and there are some less-well-designed and built ones.
If incorporating an OSS component into your project (legal issues aside) means that you are adopting a
body of code that you didn’t write, it may turn out to be more trouble than it is worth. If the code looks
overly complicated or poorly designed, or is difficult to build or test, you may want to think about writing
that part yourself rather than relying on the OSS project. You could easily end up spending more time and
effort dealing with buggy or unreliable code that is difficult to debug than if you had started from scratch.

A common argument in favor of OSS projects is that there is a whole community of people who can help
you solve any problems you have with the project. For a large and active project, that is certainly true.
However, just because a project has been released to the OSS world doesn’t mean that there is anyone
around who is working on it or who knows how it works. Before adopting any OSS component, see how
active the community is, how often new releases are made, and how active the source base is. That will
give you some hints as to how much help you can expect if you have problems.

There are some very useful, and even a few brilliant, Open Source projects that you may be able to take
advantage of to save you time and money on your project. Just keep in mind that ““freely available” isn’t
the same thing as ““free.” “No charge” does not equal ““no cost.”

Taking Advantage of Your Platform

As software in general has become more complex, so too has the operating system software that pow-
ers computers. More and more services are provided by the operating system “out of the box,” and
those services are there for you to take advantage of. Operating systems provide simple services such
as encryption, as well as potentially complex services such as LDAP directories, authorization systems,
and even database systems. Every function, subsystem, or application provided by an operating system
platform represents work that you don’t have to do, and code you don’t have to write or maintain. That
can save time and money when building an application.

Design

Just as it behooves every developer to know all the features provided by his or her base class libraries,
it behooves every architect to learn about all the services provided by each operating system. Before

—p—

—p—

Part |: Philosophy

designing any new system, it’s important to isolate those features that you can rely on an OS to provide
and those that you will have to construct yourself, or buy from a third party.

As with any other buy-versus-build decision, the key to this process is understanding a sufficient per-
centage of your requirements early in the design process so that you can decide if the services provided
by the platform are “good enough.”

I recently hosted a discussion session that centered on Microsoft’s Authorization Manager, which ships
as a part of its Windows 2003 Server operating system. Windows Authorization Manager provides a
role-based authorization system that can be integrated into other applications. You can add users, orga-
nize those users into groups, and then assign those users and groups to roles. Those roles, in turn, are
assigned rights to operations or sets of operations. When your application runs, you can ask Authoriza-
tion Manager if user X can execute operation Y, and get back a yes or no answer. Authorization Manager
represents exactly the kind of software it would be nice not to have to write. It is very useful as part of
another application that requires security, but it is functionality that is “‘generic” enough not to provide
what for most applications would represent a “competitive advantage.”” One of the participants in the
discussion asked, “Why would I use the one provided by Microsoft when I could just write it myself?”’
The implication was that if he wrote it himself, he would have full control and could achieve that perfect
100% solution instead of compromising by using the Microsoft implementation. My response was exactly
the opposite: “Why would I write it myself when Microsoft’s already done it for me?”

Do I really need more than what is provided? In all likelihood, no. Even if there were “‘nice to have”
features that were missing, I might choose to work around those deficiencies. Why? Because there is
nothing about a simple role-based authorization system that gives my product an advantage over the
competition. It then becomes more advantageous for me to save the time and money it would take for
me to write the 100% solution. Delivering software faster and cheaper represents more of a competitive
advantage in many cases than adding additional features.

Risk

There is always a risk, however. If you bank on functionality provided by the operating system (or
any third-party software, for that matter), you could find yourself backed into a corner. Months into
your development process, it might turn out that some functionality that is critical will be impossible to
implement using the third-party software. If that happens, the only alternative is to write it yourself after
all, only now you have to do it with time and resources you didn’t budget for at the beginning of the
project.

The best way to mitigate this risk is by building a “baseline architecture.” If you can build out as much
of your design as possible in “width” rather than “depth”” (meaning that you touch as much of the
macro-level functionality of the system as you can without going into detail), you will have a much
better estimate of whether any third-party systems will meet your needs. It is particularly important to
include third-party or operating system functionality into that baseline architecture because that is where
the greatest risk often lies. As long as you can implement enough critical functionality in your baseline,
you can be reasonably sure you won’t end up backed into a corner later on.

Building a baseline architecture is discussed in greater detail in later chapters.

—p—

Chapter 1: Buy, Not Build

Sevrvices

Operating systems provide a wide range of services. Some of those services are in the form of
simple method calls, such as encryption or text formatting. Others — such as messaging or networking
services — are more complex. Once upon a time, applications had to include their own routines for 3D
graphics, but now those are provided by subsystems like OpenGL and DirectX. Some operating systems
even provide whole applications such as an LDAP directory (Microsoft’s Active Directory Lightweight
Directory Services is one example) or a database (such as the Berkeley DB that ships with many *nix
systems).

The one thing that all of those services have in common is that they represent functionality that can be
exploited by developers writing non-operating-system software. Every time you can take advantage of
such a service, you are not writing code that you will have to maintain someday. That shaves valuable
time off of your development schedule, and can save a great deal of money in maintenance. Supporting
code already written can be much more expensive than developing it in the first place, so code not written
is that much cheaper.

In terms of risk management, the larger the scale of functionality you rely on the OS providing, the riskier
it is. If all you need is an encryption routine, the risk is very low. It either works or it does not. If you are
relying on an OS-provided LDAP directory, on the other hand, you had better do some baselining to
make sure that it really does what you need it to do before committing to it. That is a much more risky
proposition, and it must be approached with considerably more caution.

As with any other buy-versus-build decision, take a look at the features provided by your operating
system and decide which parts of your software are core to your business and which parts you can
rely on someone else to write and maintain. Write only the code that provides your software with its
competitive advantage, and leave the busy work to other people whenever you can.

Third-Party Components

In addition to features provided by base class libraries and operating systems, there’s a third category of
code you don’t have to write. That is third-party components provided by ISVs (independent software
vendors) — which basically means everyone except us and the operating system vendors. There are a
number of types of third-party components, ranging from small things like networking libraries and sets
of UI components, all the way up to very expensive and complex applications such as messaging systems
like IBM’s MQ series.

The reason to choose any of those third-party solutions is that they represent work you don’t have to do.
That has to be balanced against the risk associated with not being in control, although there are often
ways to mitigate that risk. Many component vendors will provide you with source code at an additional
cost, which is a great way to lessen risk. If you have the source code, it is easier to diagnose and possibly
fix any problems that may come up, or to add new features that are specific to your application. Other
vendors, particularly smaller ones, are happy to make changes to accommodate your needs in exchange
for a commitment to purchase X units, and so on.

—p—

Part |: Philosophy

Evaluating third-party components can be tricky. Every vendor will tell you that its product will solve all
of your problems, so the only way to know for sure is to try it out. Purchasing a third-party component
based solely on the demos given by technical salespeople is just asking for trouble. Get a trial copy, a
sample license, or whatever will allow you to get that software in your hands for real testing. Try it out
in what you think is a real scenario for your business to see if it really does what it is supposed to do.

Take the time to evaluate not just the product itself, but also the documentation, samples, and devel-
oper support. The most feature-rich of third-party components is useless if you can’t figure out how to
program against it or can’t get support from the company you purchased it from.

One of the most common places to use third-party components is in the user interface. User interface
code and components such as calendars, date pickers, and grids are excellent candidates for the use of
third-party software. Ul components are necessary for most applications but are hard and extremely
time-consuming to develop. A good UI control should be easy to use, feature rich, and support complex
user interaction, all of which means lots of code to write, and a great deal of testing. It would be nice,
then, to just buy someone else’s controls.

There are dozens of vendors for every platform providing rich suites of UI widgets. Unfortunately,

the user interface is often where applications have the most detailed and stringent requirements. Most
companies have a very specific vision of how users will interact with their applications, and very detailed
requirements regarding look and feel. The details of how an application looks and interacts with the user
can end up being a competitive advantage and differentiates applications from one another in terms of
user perception. For that very reason, Ul components are among the hardest to shop for. It can be very
difficult to find components that provide all the functionality you want and are still configurable enough
to match your application’s look and feel. Luckily, control vendors are often willing to work with you to
meet your needs, including writing custom code or a customized version of their components. Those are
details that need to be worked out ahead of time.

It is also very important to spend some time working with the different suites available to evaluate their
ease of use, documentation, customizability, and feature set. Don’t assume that you can learn everything
about a set of components by getting the demo or looking at sample applications. Try them out to see
for yourself before committing to any specific suite. If source code is available, try to get a sample so that
you can evaluate how easy it would really be to make changes or debug problems if you had to. You can
save large amounts of time and money by relying on off-the-shelf user interface components, but you do
have to choose carefully from among the available options.

Summary

10

Writing code is fun, and it is what we do, but ultimately it is not what we get paid for. Providing business
value to your project’s sponsors can often best be achieved by purchasing someone else’s code. It can be
difficult to balance the savings incurred by not writing code against the risks posed by adopting and
relying on code you don’t own, however. Focus on writing the parts of your application that provide the
most value to your project sponsors, and buy everything else if you can. Building a baseline architecture
that incorporates the functionality of all the third-party software is one of the best ways to mitigate the
risk of adopting third-party code and helps ensure that you find any potential problems early on.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

