
1
Creating Structured

Documents

In this chapter, you meet the first technologies you need to learn in order to write web pages: HTML
and XHTML. In fact, what you will really be learning is XHTML—although I will be explaining the
differences between HTML and XHTML as we go along. (As I already mentioned, you can consider
XHTML simply to be the latest version of HTML.)

The main goal of this chapter is to demonstrate how the primary role of XHTML is to describe the
structure of your documents.

In this chapter, then, you:

❑ Learn the difference between tags, elements, and attributes

❑ See how a web page uses markup to describe how the page should be structured

❑ Meet the elements that allow you to mark up text such as headings and paragraphs

❑ Learn many other elements that can add additional presentation information and phrasing
to your documents

❑ See how to add bulleted and numbered lists to documents

❑ Are introduced to some core concepts that distinguish different types of elements in XHTML

By the end of the chapter you will have a good idea of how to structure a page in XHTML and will
have written your first web pages.

A Web of Structured Documents
Every day, you come across all kinds of printed documents—newspapers, train timetables, insur-
ance forms. The Web is like a sea of documents all linked together; these documents bear a strong
similarity to the documents that you meet in everyday life. So let’s think for a moment about the
structure of some of the documents we see around us, and how they compare to web pages.

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Every morning I used to read a newspaper. A newspaper is made up of several stories or articles (and
probably a fair smattering of advertisements, too). Each story has a headline and then some paragraphs,
perhaps a subheading, and then some more paragraphs; it may also include a picture or two.

I don’t buy a daily paper anymore, as I tend to look at news online, but the structure of articles on news
web sites is very similar to the structure of articles in newspapers. Each article is made up of headings,
paragraphs of text, and the odd picture. The parallel is quite clear; the only real difference is that each
story gets its own page on a web site, and that page is accessed by clicking on a headline or a brief sum-
mary either on the site’s main home page or one of the home pages for a subsection of the site (such as
the politics, sports, or entertainment sections).

Consider another example: Say I’m catching a train to see a friend, so I check the schedule to see what
time the trains go that way. The main part of the schedule is a table telling me what times trains arrive and
when they depart from different stations. In the same way that a lot of documents have headings and para-
graphs, a lot of other documents use tables; from the stocks and shares pages in the financial supplement
of your paper to the TV listings at the back, you come across tables of information every day—and these
are often recreated on the Web.

Another kind of document you often come across is a form. For example, I have a form sitting on my desk
(which I really must mail) from an insurance company. This form contains fields for me to write my name,
address, and the amount of coverage I want, and boxes I have to check to indicate the number of rooms in
the house and what type of lock I have on my front door. Indeed, there are lots of forms on the Web, from
a simple search box that asks what you are looking for to the registration forms you are required to go
through before you can place an online order for books or CDs.

As you can see, there are many parallels between the structure of printed documents you come across
every day and pages you see on the Web. So you will hardly be surprised to learn that when it comes to
writing web pages, your code tells the web browser the structure of the information you want to display—
what text to put in a heading, or in a paragraph, or in a table, and so on—so that the browser can present
it properly to the user.

In order to tell a web browser the structure of a document—how to make a heading, a paragraph, a table,
and so on—you need to learn HTML and XHTML.

Introducing XHTML
XHTML, or Extensible Hypertext Markup Language, and its predecessor HTML, are the most widely used
languages on the Web. As its name suggests, XHTML is a markup language, which may sound complicated,
until you realize that you come across markup every day.

When creating a document in a word processor, you can add styles to the text to explain the document’s
structure. For example, you can distinguish headings from the main body of the text using a heading style
(usually with a larger font). You can use the Enter (or Return) key to start a new paragraph. You can insert
tables into your document to hold data, or create bulleted lists for a series of related points, and so on.
While this does affect the presentation of the document, the key purpose of this kind of markup is to pro-
vide a structure that makes the document easier to understand.

When marking up documents for the Web, you are performing a very similar process, except you do it
by adding things called tags to the text. With XHTML the key thing to remember is that you are adding

2

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 2

the tags to indicate the structure of the document, which part of the document is a heading, which parts
are paragraphs, what belongs in a table, and so on. Browsers such as Internet Explorer, Firefox, and Safari
will use this markup to help present the text in a familiar fashion, similar to that of a word processor (head-
ings are bigger than the main text, there is space between each paragraph, lists of bullet points have a circle
in front of them). However the way these are presented is up to the browser; the XHTML specification does
not say which font should be used or what size that font should be.

While earlier versions of HTML allowed you to control the presentation of a document—things like
which typefaces and colors a document should use—XHTML markup is not supposed to be used to
style the document; that is the job of CSS, which you meet in Chapter 7.

Let’s have a look at a very simple web page. As I mentioned in the introduction, you don’t need any
special programs to write web pages—you can simply use a text editor such as Notepad on Windows or
TextEdit on a Mac, and save your files with an .html file extension. You can download this example along
with all the code for this book from the Wrox web site at www.wrox.com; the example is in the Chapter 1
folder and is called ch01_eg01.html.

<html>
<head>
<title>Popular Websites: Google</title>

</head>
<body>
<h1>About Google</h1>
<p>Google is best known for its search engine, although

Google now offers a number of other services.</p>
<p>Google’s mission is to organize the world’s

information and make it universally accessible and
useful.</p>

<p>Its founders Larry Page and Sergey Brin started
Google at Stanford University.</p>

</body>
</html>

This may look a bit confusing at first, but it will all make sense soon. As you can see, there are several sets
of angle brackets with words or letters between them, such as <html>, <head>, </title>, and </body>.
These angle brackets and the words inside them are known as tags, and these are the markup we have
been talking about. Figure 1-1 illustrates what this page would look like in a web browser.

Figure 1-1

3

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 3

As you can see, this document contains the heading “About Google” and a paragraph of text to introduce
the company. Note also that it says “Popular Websites: Google” in the top-left of the browser window;
this is known as the title of the page.

To understand the markup in this first example, you need to look at what is written between the angle
brackets and compare that with what you see in the figure, which is what you will do next.

Tags and Elements
If you look at the first and last lines of the code for the last example, you will see pairs of angle brackets
containing the letters <html>. The two brackets and all of the characters between them are known as a tag,
and there are lots of tags in the example. All the tags in this example come in pairs; there are opening tags and
closing tags. The closing tag is always slightly different from the opening tag in that it has a forward slash
after the first angled bracket </html>.

A pair of tags and the content these include are known as an element. In Figure 1-2, you can see the head-
ing for the page of the last example.

Figure 1-2

The opening tag says “This is the beginning of a heading” and the closing tag says “This is the end of a
heading.” Like most of the tags in XHTML, the text inside the angled brackets explains the purpose of the
tag—here h1 indicates that it is a level 1 heading (or top-level heading). As you will see shortly, there are
also tags for subheadings (<h2>, <h3>, <h4>, <h5>, and <h6>). Without the markup, the words “About
Google” in the middle of the tags would just be another bit of text; it would not be clear that they formed
the heading.

Now look at the three paragraphs of text about the company; each one is held between an opening <p>
tag and a closing </p> tag. And, you guessed it, the p stands for paragraph.

Because this basic concept is so important to understand, I think it bears repeating:
tags are the angle brackets and the letters and numbers between them, whereas
elements are tags and anything between the opening and closing tags.

closing
tag

element

<h1>About Google</h1>

opening
tag

4

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 4

As you can see, the markup in this example actually describes what you will find between the tags, and
the added meaning the tags give is describing the structure of the document. Between the opening <p>
and closing </p> tags are paragraphs, and between the <h1> and </h1> tags is a heading. Indeed, the
whole document is contained between opening <html> and closing </html> tags.

You will often find that terms from a family tree are used to describe the relationships between elements.
For example, an element that contains another element is known as the parent, while the element that is
between the parent element’s opening and closing tags is called a child of that element. So, the <title>
element is a child of the <head> element, the <head> element is the parent of the <title> element, and
so on. Furthermore, the <title> element can be thought of as a grandchild of the <html> element.

Separating Heads from Bodies
Whenever you write a web page in XHTML, the whole of the page is contained between the opening
<html> and closing </html> tags, just as it was in the last example. Inside the <html> element, there
are two main parts to the page:

❑ The <head> element: Often referred to as the head of the page, this contains information about
the page (this is not the main content of the page). It is information such as a title and a descrip-
tion of the page, or keywords that search engines can use to index the page. It consists of the
opening <head> tag, the closing </head> tag, and everything in between.

❑ The <body> element: Often referred to as the body of the page, this contains the information you
actually see in the main browser window. It consists of the opening <body> tag, closing </body>
tag, and everything in between.

Inside the <head> element of the first example page, you can see a <title> element:

<head>
<title>Popular Websites: Google</title>

</head>

Between the opening and closing title tags are the words Popular Websites: Google, which is the
title of this web page. If you remember Figure 1-1, which showed the screenshot of this page, I brought
your attention to the words right at the top of the browser window. This is where browsers like Internet
Explorer, Firefox, and Safari display the title of a document; it is also the name they use when you save a
page in your favorites.

The real content of your page is held in the <body> element, which is what you want users to read, and
is shown in the main browser window.

XHTML tags should always be written in lowercase letters.

5

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 5

You may have noticed that the tags in the example you have been looking at appear in a symmetrical order.
If you want to have one element inside another, then both the element’s opening and closing tags must be
inside the containing element. For example, the following is allowed:

<p> This paragraph contains some emphasized text.</p>

Whereas the following is wrong because the closing tag is not inside the paragraph element:

<p> This paragraph contains some emphasized text. </p>

In other words, if an element is to contain another element, it must wholly contain that element. This is
referred to as nesting your elements correctly.

Attributes Tell Us About Elements
What really differentiates web documents from standard documents are the links (or hyperlinks) that take
you from one web page to another. Let’s take a look at an example of a link by adding one to the example
you just looked at. Links are created using an <a> element (the a stands for anchor).

Here we will add a link from this page to Google in a new paragraph at the end of the document. There
is just one new line in this example (code sample ch01_eg02.html) and that line is highlighted:

<html>
<head>
<title>Popular Websites: Google</title>

</head>
<body>
<h1>About Google</h1>
<p>Google is best known for its search engine, although Google now offers a

number of other services.</p>
<p>Google’s mission is to organize the world’s information and make it

universally accessible and useful.</p>
<p>Its founders Larry Page and Sergey Brin started Google at Stanford

University.</p>
<p>Click here to visit Google’s Web
site.</p>

</body>
</html>

Inside this new paragraph is the <a> element that creates the link. Between the opening <a> tag and the
closing tag is the text that you can click on, which says “Click here to visit Google’s Web site.”
Figure 1-3 shows you what this page looks like in a browser.

The head element contains information about the document, which is not displayed
within the main page itself. The body element holds the actual content of the page
that is viewed in your browser.

6

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 6

Figure 1-3

If you look closely at the opening tag of the link, it carries something called an attribute. In this case it’s
the href attribute; this is followed by an equal sign, and then the URL for Google’s web site in quotation
marks. In this case, the href attribute is telling you where the link should take you. You look at links in
greater detail in the next chapter, but for the moment this illustrates the purpose of attributes.

Attributes are used to say something about the element that carries them, and they always appear on
the opening tag of the element that carries them. All attributes are made up of two parts: a name and
a value:

❑ The name is the property of the element that you want to set. In this example, the <a> element
carries an attribute whose name is href, which you can use to indicate where the link should
take you.

❑ The value is what you want the value of the property to be. In this example, the value was the URL
that the link should take you to, so the value of the href attribute is http://www.Google.com.

The value of the attribute should always be put in double quotation marks, and it is separated from the
name by the equal sign. If you wanted the link to open in a new window, you could add a target attrib-
ute to the opening <a> tag as well, and give it a value of _blank:

This illustrates that elements can carry several attributes, although an element should never have two
attributes of the same name.

All attributes are made up of two parts, the attribute’s name and its value, separated
by an equal sign. Values should be held within double quotation marks. All XHTML
attribute names should be written in lowercase letters.

7

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 7

The XML Declaration
Sometimes you will see something that is known as the XML Declaration at the beginning of an XHTML
document. The XHTML language was actually written using another language called XML (Extensible
Markup Language, which is used to create markup languages), and any XML document can begin with
this optional XML declaration:

<?xml version=”1.0” encoding=”UTF-8” ?>

If you include the XML declaration, it must be right at the beginning of the document; there must be nothing
before it, not even a space. The encoding attribute indicates the encoding used in the document.

An encoding (short for character encoding) represents how a program or operating system stores characters
that you might want to display. Because different languages have different characters, and indeed because
some programs support more characters than others, there are several different encodings.

Document Type Declaration
As mentioned previously, XHTML is the successor to HTML—although you can just think of it as being
the latest version. XHTML employs a stricter syntax than its predecessor HTML. For example, your element
and attribute names in XHTML must all be written in lowercase (whereas earlier versions of HTML were
not case-sensitive), every element that has some content must have a corresponding closing element, and
some of the elements and attributes may be marked as deprecated—meaning that they were likely to be
phased out in future versions of XHTML.

Each XHTML page should therefore begin with a DOCTYPE declaration to indicate to a browser (or any
other program) the version of HTML or XHTML that is being used in that page.

While I have been talking about XHTML as one language, there were actually three versions or flavors
of XHTML released—this was done to help existing web developers make the transition from HTML to
XHTML:

❑ Transitional XHTML 1.0, which still allowed developers to use the deprecated markup from
HTML 4.1 (which is likely to be phased out) but required the author to use the new stricter
syntax.

❑ Strict XHTML 1.0, which was to signal the path forward for XHTML, without the deprecated
stylistic markup and obeying the new stricter syntax.

❑ Frameset XHTML 1.0, which is used to create web pages that use a technology called frames (you
meet frames in Chapter 6).

If by now you are feeling a little overwhelmed by all the different versions of HTML and XHTML, don’t
be! Throughout this book, you will be primarily learning Transitional XHTML 1.0. In the process, you
will learn which elements and attributes have been marked as deprecated and what the alternatives for
using these are. If you avoid the deprecated elements and attributes, you will automatically be writing
Strict XHTML 1.0.

The DOCTYPE declaration goes before the opening <html> tag in a document, and after the optional XML
Declaration if you have used it.

8

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 8

If you are writing Transitional XHTML 1.0 (and include stylistic markup in your document), then your
DOCTYPE declaration should look like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

If you are writing Strict XHTML 1.0, your DOCTYPE declaration will look like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

For frameset documents (discussed in Chapter 6), your DOCTYPE declaration would look like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

Having learned Transitional XHTML 1.0, you should be able to understand older versions of HTML and
be safe in the knowledge that (unless specifically warned), your XHTML code will work in the majority
of browsers used on the Web today.

Core Elements and Attributes
Now that you understand how the contents of a web page are marked up using elements that describe
the structure of the document, the next step is to learn all the elements you can use to describe the struc-
ture of the various kinds of document you might wish to display on the Web. The rest of this chapter, and
much of the next few chapters, will introduce you to all these elements.

As each element is introduced, I will be quite thorough about how it may be used, and which attributes it
may take. This allows the book to act as a complete reference once you have learned how to write web pages.
But, when you are first going through it, if you feel you understand what an element is used for, feel free to
skip further ahead in that chapter if you want to—you can always come back later and read about it again.

Let’s start by taking a closer look at the four main elements that form the basic structure of every document:
<html>, <head>, <title>, and <body>. These four elements should appear in every XHTML document that
you write, and you will see them referred to throughout this book as the skeleton of the document.

The <html> Element
The <html> element is the containing element for the whole XHTML document. After the optional XML
declaration and required DOCTYPE declaration, each XHTML document should have an opening <html>
tag and each document should end with a closing </html> tag.

A Strict XHTML document must contain the DOCTYPE declaration before the root
element; however, you are not required to include the DOCTYPE declaration if you
are creating a transitional or frameset document.

9

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 9

If you are writing Strict XHTML 1.0, the opening tag must also include something known as a namespace
identifier (this indicates that the markup in the document belongs to the XHTML 1.0 namespace). Therefore
the opening tag should look like this:

<html xmlns=”http://www.w3.org/1999/xhtml”>

While it is not strictly required in Transitional XHTML documents, it is a good practice to use it on all
XHTML documents.

Only two elements appear as direct children of an <html> element: <head> and <body> (although the
<head> and <body> elements will usually contain many more elements).

The <html> element can also carry the following attributes, which you will meet in the “Attribute Groups”
section later in this chapter:

id dir lang xml:lang

The <head> Element
The <head> element is just a container for all other header elements. It should be the first thing to appear
after the opening <html> tag.

Each <head> element should contain a <title> element indicating the title of the document, although it
may also contain any combination of the following elements, in any order:

❑ <base>, which you will meet in Chapter 2.

❑ <object>, which is designed to include images, JavaScript objects, Flash animations, MP3 files,
QuickTime movies, and other components of a page. It is covered in Chapter 3.

❑ <link> to link to an external file, such as a style sheet or JavaScript file, as you will see in
Chapter 7.

❑ <style> to include CSS rules inside the document; it is covered in Chapter 7.

❑ <script> for including script in the document, which you’ll see in Chapter 11.

❑ <meta>, which includes information about the document such as keywords and a description,
which are particularly helpful for search applications; this is covered in Chapter 13.

The profile attribute is not actually in use yet, although it was included so it could
be used in the future to specify a URL for something known as a profile that would
describe the content of the document. The other attributes are covered in the “Attribute
Groups” section later in this chapter.

You may sometimes come across the use of the version attribute in HTML 4.1 and
earlier to indicate which version of HTML the document uses, although it is usually
left off. XHTML documents should use the DOCTYPE declaration along with the xmlns
attribute instead to indicate which version of XHTML they use.

10

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 10

The opening <head> tag can carry the following attributes:

id dir lang xml:lang profile

The <title> Element
You should specify a title for every page that you write. It lives inside the <title> element (which, as
you saw earlier in the chapter, is a child of the <head> element). It is used in several ways:

❑ At the very top of a browser window (as you saw in the first example and Figure 1-1)

❑ As the default name for a bookmark in browsers such as IE, Firefox, and Safari

❑ By search engines that use its content to help index pages

Therefore, it is important to use a title that really describes the content of your site. For example, the home
page of our site should not just say “Home Page”; rather it should describe what your site is about. For
example, rather than just saying Wrox Home Page, it is more helpful to write:

<title>Wrox: Books for programmers written by programmers</title>

The test for a good title is whether a visitor can tell what she will find on that page just by reading the
title, without looking at the actual content of the page.

The <title> element should contain only the text for the title; it may not contain any other elements. The
<title> element can carry the following attributes, which are covered in the “Attribute Groups” section
later in the chapter:

id dir lang xml:lang

The <body> Element
The <body> element appears after the <head> element and contains the part of the web page that you
actually see in the main browser window, which is sometimes referred to as body content. It may contain
anything from a couple of paragraphs under a heading to more complicated layouts containing forms
and tables, and is likely to constitute the majority of any XHTML document. Most of what you will be
learning in this and the following four chapters will be written between the opening <body> tag and
closing </body> tag.

The <body> element may carry all of the attributes from the attribute groups you are about to meet in the
next section. If you are using Transitional XHTML or HTML 4.1, you can use any of the following depre-
cated attributes on the <body> element (which are covered in Appendix I):

background bgcolor alink link vlink text

There are also several browser specific attributes that you might see used on the <body> element; these
also are covered in Appendix I:

language, topmargin, bottommargin, leftmargin, rightmargin, scroll,
bgproperties, marginheight, marginwidth

11

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 11

Attribute Groups
As you have seen, attributes live on the opening tag of an element and provide extra information about the
element that carries them. All attributes consist of a name and a value; the name reflects a property of the ele-
ment the attribute is describing, and the value is a value for that property. For example, the xml:lang
attribute describes the language used within that element; a value such as EN-US would indicate that the
language used inside the element is U.S. English. Many of the elements in XHTML can carry some or all
of the attributes you will meet in this section.

There are three groups of attributes that many of the XHTML elements can carry (as you have already
seen, the <html>, <head>, <title>, and <body> elements share some of these attributes). Don’t worry
if they seem a little abstract at the moment; they will make more sense as you read on, but because they are
used by so many elements I have grouped them here to avoid having to repeat them each time they come
up. As I say, don’t worry if they do not make complete sense at the moment, as long as you remember where
you read this. You can keep referring back to them when you need to. The three attribute groups are:

❑ Core attributes: The class, id, and title attributes

❑ Internationalization attributes: The dir, lang, and xml:lang attributes

❑ UI events: Attributes associated with events onclick, ondoubleclick, onmousedown,
onmouseup, onmouseover, onmousemove, onmouseout, onkeypress, onkeydown, and
onkeyup (these are covered in more detail in Chapter 11)

Core Attributes
The four core attributes that can be used on the majority of XHTML elements (although not all) are:

id title class style

Where these attributes occasionally have special meaning for an element that differs from the description
given here, I revisit them; otherwise their use can generally be described as you see in the subsections
that follow.

The id Attribute
The id attribute can be used to uniquely identify any element within a page. You might want to uniquely
identify an element so that you can link to that specific part in the document, or to specify the element so
that you can associate a CSS style or JavaScript to the content of that one element within the document.

The syntax for the id attribute is as follows (where string is your chosen value for the attribute):

id=”string“

Together, the core attributes and the internationalization attributes are known as the
universal attributes.

12

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 12

For example, the id attribute could be used to distinguish between two paragraph elements, like so:

<p id=”accounts”>This paragraph explains the role of the accounts department.</p>
<p id=”sales”>This paragraph explains the role of the sales department.</p>

Note that there are some special rules for the value of the id attribute. It must:

❑ Begin with a letter (A–Z or a–z) and can then be followed by any number of letters, digits (0–9),
hyphens, underscores, colons, and periods (you may not start the value with a digit, hyphen,
underscore, colon, or period).

❑ Remain unique within that document; no two id attributes may have the same value within
that XHTML document.

Before the id attribute was introduced, the name attribute served a similar purpose in HTML documents,
but its use was deprecated in HTML 4.01, and now you should generally use the id attribute in XHTML
documents. If you need to use the name attribute, it is available in Transitional XHTML, but not Strict
XHTML (you might want to use the name attribute if you are dealing with older browsers that were
written before the id attribute was introduced).

The class Attribute
Although the id attribute uniquely identifies a particular element, the class attribute is used to specify that
an element belongs to a class of element. It is commonly used with CSS, so you will learn more about the use
of the class attribute in Chapter 7, which introduces CSS. The syntax of the class attribute is as follows:

class=”className“

The value of the attribute may also be a space-separated list of class names. For example:

class=”className1 className2 className3“

The title Attribute
The title attribute gives a suggested title for the element. The syntax for the title attribute is as follows:

title=”string“

The behavior of this attribute will depend upon the element that carries it, although it is often displayed
as a tooltip or while the element is loading.

Not every element that can carry a title attribute really needs one, so when we meet an element that par-
ticularly benefits from use of this attribute, I will show you the behavior it has when used with that element.

The style Attribute (deprecated)
The style attribute allows you to specify CSS rules within the element. You meet CSS in Chapter 7, but
for the moment here is an example of how it might be used:

<p style=”font-family:arial; color:#FF0000;”>Some text </p>

13

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 13

As a general rule, however, it is best to avoid the use of this attribute. This attribute is marked as depre-
cated in XHTML 1.0 (which means it will be removed from future versions of XHTML). If you want to
use CSS rules to govern how an element appears, it is better to use a separate style sheet instead. You will
see each of these techniques in Chapter 7, which introduces CSS.

Internationalization
There are three internationalization attributes that help users write pages for different languages and
character sets, and they are available to most (although not all) XHTML elements (which is important in
multi-lingual documents).

dir lang xml:lang

Even in current browsers, support for these attributes is still very patchy, and you are best off specifying
a character set that will create text in the direction you require, although the xml:lang attribute could be
used by other XML-aware applications.

Here is the web address of a helpful W3C document that describes internationalization issues in greater
detail, although we will briefly look at each of these attributes next:

http://www.w3.org/TR/i18n-html-tech/

The internationalization attributes are sometimes referred to as the i18n attributes, an odd name that
comes from the draft-ietf-html-i18n specification in which they were first defined.

The dir Attribute
The dir attribute allows you to indicate to the browser the direction in which the text should flow. When
you want to indicate the directionality of a whole document (or the majority of the document), it should
be used with the <html> element rather than the <body> element for two reasons: the <html> element
has better support in browsers, and it will then apply to the header elements as well as those in the body.
The dir attribute can also be used on elements within the body of the document if you want to change
the direction of a small portion of the document.

The dir attribute can take one of two values, as you can see in the table that follows.

The lang Attribute
The lang attribute allows you to indicate the main language used in a document, but this attribute was
kept in XHTML only for backwards compatibility with earlier versions of HTML. It has been replaced by
the xml:lang attribute in new XHTML documents (which is covered in the next section). However, the

Value Meaning

ltr Left to right (the default value)

rtl Right to left (for languages such as Hebrew or Arabic that are read right to left)

14

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 14

XHTML recommendation suggests that you use both the lang and the xml:lang attributes on the <html>
element in your XHTML 1.0 documents (to achieve maximum compatibility across different browsers).

The lang attribute was designed to offer language-specific display to users, although it has little effect in
the main browsers. The real benefit of using the lang attribute is with search engines (which can tell the
user which language the document is authored in), screen readers (which might need to pronounce dif-
ferent languages in different ways), and applications (which can alert users when they either do not sup-
port that language or it is a different language than their default language). When used with the <html>
element it applies to the whole document, although it can be used on other elements, in which case it just
applies to the content of those elements.

The values of the lang attribute are ISO-639 standard two-character language codes. If you want to spec-
ify a dialect of the language, you can follow the language code with a dash and a subcode name. The table
that follows offers some examples.

A list of language codes for most of the main languages in use today can be found in Appendix G.

The xml:lang Attribute
The xml:lang attribute is the XHTML replacement for the lang attribute. It is an attribute that is available
in all languages that are written in XML (you may remember earlier in the chapter that I mentioned that
XHTML was written in XML), which is why it is prefixed by the characters xml:. The value of the xml:lang
attribute should be an ISO-639 country code like those listed in the previous section; a full list appears in
Appendix G.

While it has no effect in the main browsers, other XML-aware applications and search engines may use
this information, and it is good practice to include the xml:lang attribute in your documents. When used
with the <html> element, it applies to the whole document, although it can be used on other elements,
in which case it just applies to the content of those elements.

UI Events
The UI event attributes allow you to associate an event, such as a key press or the mouse being moved over
an element, with a script (a portion of programming code that runs when the event occurs). For example,
when someone moves a mouse over the content of a certain element you might use a script to make it
change color.

Value Meaning

ar Arabic

en English

en-us U. S. English

zh Chinese

15

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 15

You will meet the UI events in more detail in Chapter 14, although their names indicate quite clearly what
event they are associated with; for example, onclick fires when a user clicks on that element’s content,
onmousemove fires when a mouse moves, and onmouseout fires when a user moves the mouse out of
the content of a particular element.

There are ten events, known collectively as common events:

onclick, ondoubleclick, onmousedown, onmouseup, onmouseover, onmousemove,
onmouseout, onkeypress, onkeydown, onkeyup

The <body> and <frameset> elements also have the following events for when a page opens or is
closed:

onload onunload

Finally, there are a number of events that work with forms only (which are mentioned in Chapter 5 and
again in Chapter 11):

onfocus, onblur, onsubmit, onreset, onselect, onchange

Now that you have made your way through the preliminaries and learned about the elements that make
up the skeleton of an XHTML document, it’s time to get down to business marking up the text that will
appear on your web pages.

Basic Text Formatting
You’ve seen the skeleton structure of an XHTML document and the core attributes, so it is now time to get
back to looking at how you mark up text in order to describe its structure. Because almost every document
you create will contain some form of text, the elements you are about to meet are the fundamental build-
ing blocks of most pages.

While going through this section it is important to remember that, while one browser might display each
of these elements in a certain way, another browser could display very different results; the font sizes
(and therefore the amount of space a section of text takes up) will change between browsers, as will the
typefaces used. You will not really be learning how to control the appearance (typefaces, colors, and font
sizes) of text until Chapter 7.

In this section, you learn how to use what are known as basic text formatting elements:

h1, h2, h3, h4, h5, h6

p, br, pre

If you want people to read what you have written, then structuring your text well is even more important
on the Web than when writing for print. People have trouble reading long, wide paragraphs of text on web
sites unless they are broken up well (as you will see in Chapter 9), so getting into good habits from the
start of your web development career will help ensure that your pages get the attention they deserve.

16

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 16

Before you get started on the elements that you will use to mark up your text, it helps to know how text
is displayed by default (it is up to you to tell the browser if you want it to treat text differently).

White Space and Flow
Before you start to mark up your text, it is best to understand what XHTML does when it comes across
spaces and how browsers treat long sentences and paragraphs of text.

You might think that if you put several consecutive spaces between two words, the spaces would appear
between those words onscreen, but this is not the case; by default, only one space will be displayed. This
is known as white space collapsing. Similarly, if you start a new line in your source document, or you have
consecutive empty lines, these will be ignored and simply treated as one space, as will tab characters. For
example look at the following paragraph (taken from ch01_eg03.html in the code samples):

<p>This paragraph shows how multiple spaces between words are
treated as a single space. This is known as white space collapsing, and
the big spaces between some of the words will not appear in the
browser.

It also demonstrates how the browser will treat multiple carriage returns
(new lines) as a single space, too.</p>

As you can see in Figure 1-4, the browser treats the multiple spaces and several carriage returns (where
text appears on a new line) as if there were only one single space.

Figure 1-4

As Figure 1-4 also shows, when a browser displays text it will automatically wrap the text onto new
lines when it runs out of space. If you look again at the code for this example, and look at where each
new line starts, the results are different on the screen than they are in the code. You can try this out for
yourself, as all of the examples are available with the download code for this book; just try resizing the
browser window (making it smaller and larger) and notice how the text wraps at new places on the
screen.

17

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 17

This can be particularly helpful because it allows you to add spaces to your code that will not show up in the
actual document, and these spaces can be used to indent your code, which makes it easier to read. The first
two examples in this chapter demonstrated indented code, where child elements are indented from the left
to distinguish them from their parent elements. This is something that I do throughout this book to make
the code more readable. (If you want to preserve the spaces in a document, you need to use either the <pre>
element, which you learn about later in the chapter or the entity reference, which you learn about
in Appendix F.)

It is therefore extremely important that you learn how to use the elements in the rest of this chapter to
break up and control the presentation of your text.

Creating Headings Using hn Elements
No matter what sort of document you are creating, most documents have headings in some form or other.
Newspapers use headlines, a heading on a form tells you the purpose of the form, the title of a table of
sports results tells you the league or division the teams play in, and so on.

In longer pieces of text, headings can also help structure a document. If you look at the table of contents
for this book, you can see how different levels of headings have been arranged to add structure to the book,
with subheadings under the main headings.

XHTML offers six levels of headings, which use the elements <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>.
While browsers can display headings differently, they tend to display the <h1> element as the largest of
the six and <h6> as the smallest, CSS can be used to override the size and style of any of the elements.
The levels of heading would look something like those in Figure 1-5 (ch01_eg04.html).

Figure 1-5

By default, most browsers display the contents of the <h1>, <h2>, and <h3> elements
larger than the default size of text in the document. The content of the <h4> element
would be the same size as the default text, and the content of the <h5> and <h6>
elements would be smaller.

18

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 18

Here is another example of how you might use headings to structure a document (ch01_eg05.html),
where the <h2> elements are subheadings of the <h1> element (this actually models the structure of this
section of the chapter):

<h1>Basic Text Formatting</h1>
<p> This section is going to address the way in which you mark up text.
Almost every document you create will contain some form of text, so this
will be a very important section. </p>
<h2>Whitespace and Flow</h2>
<p> Before you start to mark up your text, it is best to understand what
XHTML does when it comes across spaces and how browsers treat long sentences
and paragraphs of text.</p>
<h2>Creating Headings Using hn Elements</h2>
<p> No matter what sort of document you are creating, most documents have
headings in some form or other...</p>

Figure 1-6 shows how this will look.

Figure 1-6

The six heading elements can all carry the universal attributes as well as a deprecated attribute called align:

align class id style title dir lang xml:lang

The align Attribute (deprecated)
The deprecated align attribute indicates whether the heading appears to the left, center, or right of the
page (the default is the left). It can take the three values discussed in the table that follows.

19

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 19

I mention the align attribute here because you are likely to see it used on various elements. It has been
marked as deprecated because it does not help describe the structure of the document—rather it is used
to affect the presentation of the page, which should now be done using CSS. Here is an example of using
the deprecated align attribute (ch01_eg06.html):

<h1 align=”left”>Left-Aligned Heading</h1>
<p>This heading uses the align attribute with a value of left.</p>

<h1 align=”center”>Centered Heading</h1>
<p>This heading uses the align attribute with a value of center.</p>

<h1 align=”right”>Right-Aligned Heading</h1>
<p>This heading uses the align attribute with a value of right.</p>

Figure 1-7 shows the effect of the align attribute in a browser.

Figure 1-7

Value Meaning

left The heading is displayed to the left of the browser window (or other containing
element if it is nested within another element). This is the default value if the
align attribute is not used.

center The heading is displayed in the center of the browser window (or other contain-
ing element if it is nested within another element).

right The heading is displayed to the right of the browser window (or other containing
element if it is nested within another element).

20

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 20

The align attribute has been replaced with the text-align property in CSS and the ability to float block-
level elements (as you will see in Chapter 7). The align attribute is covered in more detail in Appendix I.

Creating Paragraphs Using the <p> Element
The <p> element offers another way to structure your text. Each paragraph of text should go in between
an opening <p> and closing </p> tag, as in this example (ch01_eg07.html):

<p>Here is a paragraph of text.</p>
<p>Here is a second paragraph of text.</p>
<p>Here is a third paragraph of text.</p>

When a browser displays a paragraph, it usually inserts a new line before the next paragraph and adds a
little bit of extra vertical space, as in Figure 1-8.

Figure 1-8

The <p> element can carry all of the universal attributes and the deprecated align attribute:

align class id style title dir lang xml:lang

Creating Line Breaks Using the
 Element
Whenever you use the
 element, anything following it starts on the next line. The
 element
is an example of an empty element, where you do not need opening and closing tags, because there is nothing
to go in between them.

The
 element has a space between the characters br and the forward slash. If you omit this
space, older browsers will have trouble rendering the line break, whereas if you miss the forward slash
character and just use
, it is not valid XHTML.

Most browsers allow you to use multiple
 elements to push text down several lines, and many
designers use two line breaks between paragraphs of text rather than using the <p> element to structure
text, as follows:

Paragraph one

Paragraph two

Paragraph three

21

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 21

While this creates a similar effect to using the paragraph element, if you do not use the <p> element itself for
each paragraph then the document is no longer describing where each paragraph starts and finishes. Further -
more, in Strict XHTML the
 element can be used only within what are known as block-level elements.
These are elements such as the <p> element—elements that tend to naturally act as though they have a
line break before and after them. You learn more about block-level elements near the end of the chapter.

Avoid using
 elements just to position text; such usage can produce unexpected results because
the amount of space created when you do so depends upon the size of the font. Instead, you should use
CSS, which you learn about in Chapter 7.

Here you can see an example of the
 element in use within a paragraph (ch01_eg08.html):

<p>When you want to start a new line you can use the
 element.
So, the next
word will appear on a new line.</p>

Figure 1-9 shows you how the line breaks after the words “next” and “do” look.

Figure 1-9

The
 element can carry the core attributes as well as an attribute called clear, which can be used
with images, and is covered in Appendix I.

clear class id style title

Creating Preformatted Text Using the <pre> Element
Sometimes you want your text to follow the exact format of how it is written in the XHTML document—
you don’t want the text to wrap onto a new line when it reaches the edge of the browser; you don’t want
it to ignore multiple spaces; and you want the line breaks where you put them.

22

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 22

Any text between the opening <pre> tag and the closing </pre> tag will preserve the formatting of the
source document. You should be aware, however, that most browsers would display this text in a mono-
spaced font by default. (Courier is an example of a monospaced font, because each letter of the alphabet
takes up the same width. In non-monospaced fonts, an i is usually narrower than an m.)

Two of the most common uses of the <pre> element are to display tabular data without the use of a
table (in which case you must use the monospaced font or columns will not align correctly) and to repre-
sent computer source code. For example, the following shows some JavaScript inside a <pre> element
(ch01_eg09.html):

<pre>
function testFunction(strText){

alert (strText)
}
</pre>

You can see in Figure 1-10 how the content of the <pre> element is displayed in the monospaced font;
more important, you can see how it follows the formatting shown inside the <pre> element—the white
space is preserved.

Figure 1-10

While tab characters can have an effect inside a <pre> element, and a tab is supposed to represent eight
spaces, the implementation of tabs varies across browsers, so it is advisable to use spaces instead.

You will come across more elements that can be used to represent code later in this chapter in the section
“Phrase Elements,” which covers the <code>, <kbd>, and <var> elements.

Firefox, IE, and Safari support an extension to the XHTML recommendation that prevents line breaks:
the <nobr> element. (This retains the normal style of its containing element and does not result in the
text being displayed in a monospaced font.) Because it is an extension, it is not valid XHTML. The
<nobr> element is covered in Appendix I.

Try It Out Basic Text Formatting
Now that you’ve seen the basic elements that you will be using to format your text—headings and
paragraphs—it’s time to try putting that information to work.

23

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 23

In this example, you create a new page for a site about jazz legends, and this page tells people about Miles
Davis. So, start up your text editor or web page authoring tool and follow these steps:

1. You will be creating a Strict XHTML document, so add the XML declaration and a DOCTYPE
declaration to indicate that you will be writing Strict XHTML:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

2. Add the skeleton of the document: the <html>, <head>, <title>, and <body> elements. The root
<html> element carries the xmlns attribute to indicate that the markup belongs to the XHTML
namespace.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>
<head>
<title>Jazz Legends - Miles Davis</title>

</head>
<body>
</body>

</html>

3. Your page will have a main heading and some level 2 headings, which show the general structure
of the page people will see:

<body>
<h1>Jazz Legends - Miles Davis</h1>
<h2>Styles of Miles</h2>
<h2>Davis the Painter</h2>

</body>
4. You can now fill out the page with some paragraphs that follow the headings:

<body>
<h1>Jazz Legends - Miles Davis</h1>
<p>Miles Davis is known to many as one of the world’s finest jazz musicians
and an outstanding trumpet player. He also earned great respect in the
world of music as an innovative bandleader and composer.</p>

<h2>Styles of Miles</h2>
<p>Miles Davis played and wrote in a variety of styles throughout his
career, from tunes that have become jazz standards to his more
experimental improvisational work. </p>
<p>In the 1950s Miles was known for a warm, rich, wispy sound and was able
to vary the color of his sound, pitch. He was also adept in using a Harmon
mute. In the 1960s Miles began to play more in the upper register. In 1969
he even incorporated the use of electronic instruments in his music.</p>

<h2>Davis the Painter</h2>
<p>Miles’ love was not only for music; he is also considered a fine
painter. Inspired by a Milan-based design movement known as Memphis,
Miles painted a series of abstract paintings in 1988.</p>

</body>
</html>

24

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 24

5. Save the file as miles.html and then open it in a web browser. The result should look something
like Figure 1-11.

Figure 1-11

How It Works
The opening line of this page is the optional XML declaration. Because this is a Strict XHTML document
(and therefore is an XML document), it has been included here. The next line is the DOCTYPE declaration,
which is required in Strict XHTML documents. The DOCTYPE declaration indicates which version of
XHTML the document conforms to.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

The entire page is then contained in the root <html> element. The opening <html> tag carries the name-
space identifier, which is just another way of indicating that the markup your document contains is XHTML.
The <html> element also carries the lang attribute, which indicates the language that the document is
written in. Our web page is written in English, so it uses the two-letter ISO code for English (the full list
of country codes can be found in Appendix G). While the lang attribute has little practical use at the
moment, it will help future-proof your documents.

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>

The <html> element can contain only two child elements: the <head> element and <body> element. The
<head> element contains the title for the page, and you should be able to tell from the title of the page
the type of information the page will contain.

<head>
<title>Jazz Legends: Miles Davis</title>

</head>

25

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 25

Meanwhile, the <body> element contains the main part of the web page—the part that viewers will actu-
ally see in the main part of the web browser. Note how this page contains headings to structure the
information on the page just as you would find in a word-processed document.

There are different levels of headings to help enforce structure. In this example, there is a main heading
introducing Miles Davis—the main topic for this page—and then subheadings, each containing specific
information about his music and other interests.

Don’t forget the closing </html> tag at the end—after all, you must close every element correctly.

Presentational Elements
If you use a word processor, you are familiar with the ability to make text bold, italic, or underlined; these
are just three of the ten options available to indicate how text can appear in HTML and XHTML. The full
list is bold, italic, monospaced, underlined, strikethrough, teletype, larger, smaller, superscripted, and
subscripted text.

Technically speaking, these elements affect only the presentation of a document, and the markup is of no
other use, but they remain in both Transitional and Strict XHTML 1.0. As you will see later in the chapter,
there are dedicated elements for indicating things like emphasis within a piece of text, and these will result
in a similar presentation of the information.

All of the following presentational elements can carry the universal attributes and the UI event attributes
you met earlier in the chapter.

You should also be aware that you can use CSS to get similar results, as you will see in Chapter 7.

The Element
Anything that appears in a element is displayed in bold, like the word bold here:

The following word uses a bold typeface.

This does not necessarily mean the browser will use a boldface version of a font. Some browsers use an
algorithm to take a font and make the lines thicker (giving it the appearance of being bold), while others
(if they cannot find a boldface version of the font) may highlight or underline the text.

This element has the same effect as the element, which you will meet later, and is used
to indicate that its contents have strong emphasis.

The <i> Element
The content of an <i> element is displayed in italicized text, like the word italic here:

The following word uses an <i>italic</i> typeface.

26

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 26

This does not necessarily mean the browser will look for an oblique or italicized version of the font. Most
browsers use an algorithm to put the lines on a slant to simulate an italic font.

The <i> element has the same effect as the element, which you will meet later, and which is used
to indicate that its contents have emphasis.

The <u> Element (deprecated)
The content of a <u> element is underlined with a simple line:

The following word would be <u>underlined</u>

The <u> element is deprecated in HTML 4 and XHTML 1.0, although it is still supported by current
browsers. The preferred method is to use CSS to achieve this effect, which you’ll learn about in
Chapter 7.

The <s> and <strike> Elements (deprecated)
The content of an <s> or <strike> element is displayed with a strikethrough, which is a thin line through
the text (<s> is just the abbreviated form of <strike>).

The following word would have a <s>strikethrough</s>.

Both the <s> and <strike> elements are deprecated in HTML 4.1 and Transitional XHTML 1.0, and were
removed from Strict XHTML 1.0, although they are still supported by current browsers. The preferred
method is to use CSS to achieve this effect, which you learn about in Chapter 7.

The <tt> Element
The content of a <tt> element is written in monospaced font.

The following word will appear in a <tt>monospaced</tt> font.

Figure 1-12 shows the use of the , <i>, <u>, <s>, and <tt> elements (ch01_eg10.html).

Figure 1-12

27

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 27

The <sup> Element
The content of a <sup> element is written in superscript; the font size used is the same size as the characters
surrounding it but is displayed half a character’s height above the other characters.

Written on the 31st February.

The <sup> element is especially helpful in adding exponential values to equations, and adding the st, nd,
rd, and th suffixes to numbers such as dates. However, in some browsers, you should be aware that it can
create a taller gap between the line with the superscript text and the line above it.

The <sub> Element
The content of a <sub> element is written in subscript; the font size used is the same as the characters
surrounding it, but is displayed half a character’s height beneath the other characters.

The EPR paradox₂ was devised by Einstein, Podolsky, and Rosen.

The <sub> element is particularly helpful when combined with the <a> element (which you meet in the
next chapter) to create footnotes.

The <big> Element
The content of the <big> element is displayed one font size larger than the rest of the text surrounding
it. If the font is already the largest size, it has no effect. You can nest several <big> elements inside one
another, and the content of each will get one size larger for each element.

The following word should be <big>bigger</big> than those around it.

In general, you should use CSS rather than the <big> element for formatting purposes.

The <small> Element
The content of the <small> element is displayed one font size smaller than the rest of the text surrounding
it. If the font is already the smallest, it has no effect. You can nest several <small> elements inside one
another, and the content of each gets one size smaller for each element.

The following word should be <small>smaller</small> than those around it.

In general, you should use CSS rather than the <small> element for formatting purposes.

The <hr /> Element
The <hr /> element creates a horizontal rule across the page. It is an empty element, rather like the

element.

<hr />

This is frequently used to separate distinct sections of a page where a new heading is not appropriate.

28

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 28

Figure 1-13 shows the use of the <sup>, <sub>, <big>, <small>, and <hr /> elements (ch01_eg11.html).

Figure 1-13

Phrase Elements
The following elements are not used as widely as the elements you have met so far. As the element names
indicate, they are designed to describe their content:

❑ and for emphasis

❑ <blockquote>, <cite>, and <q> for quotations and citations

❑ <abbr>, <acronym>, and <dfn> for abbreviations, acronyms, and key terms

❑ <code>, <kbd>, <var>, and <samp> for computer code and information

❑ <address> for addresses

While some of these phrase elements are displayed in a manner similar to the , <i>, <pre>, and <tt>
elements you have already seen, they are designed for specific purposes. For example, the and
 elements give text emphasis and strong emphasis respectively and there are several elements
for marking up quotes.

It is tempting to ignore these elements and just use the presentational elements you just met to create the
same visual effect, but you should be aware of them and preferably get into the habit of using them where
appropriate. For example, where you want to add emphasis to a word within a sentence you should use
the and elements rather than the presentational elements you just met; there are several
good reasons for this, such as:

❑ Applications such as screen readers (which can read pages to web users with visual impairments)
could add suitable intonation to the reading voice so that users with visual impairments could
hear where the emphasis should be placed.

❑ Automated programs could be written to find the words with emphasis and pull them out as
keywords within a document, or specifically index those words so that a user could find impor-
tant terms in a document.

29

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 29

As you can see, appropriate use of these elements adds more information to a document (such as which
words should have emphasis, which are parts of programming code, which parts are addresses, and so
on) rather than just saying how it should be presented visually.

All of the following phrase elements can carry the universal attributes and the UI event attributes you met
earlier in the chapter.

The Element Adds Emphasis
The content of an element is intended to be a point of emphasis in your document, and it is usually
displayed in italicized text. The kind of emphasis intended is on words such as “must” in the following
sentence:

<p>You must remember to close elements in XHTML.</p>

You should use this element only when you are trying to add emphasis to a word, not just because you
want to make the text appear italicized. If you just want italic text for stylistic reasons—without adding
emphasis—you can use either the <i> element or CSS.

The Element Adds Strong Emphasis
The element is intended to show strong emphasis for its content—stronger emphasis than the
 element. As with the element, the element should be used only when you want to
add strong emphasis to part of a document. Rather than being rendered in an italic font, most visual
browsers display the strong emphasis in a bold font.

<p>Always look at burning magnesium through protective colored
glass as it can cause blindness.</p>

Figure 1-14 shows how the and elements are rendered in Firefox (ch01_eg12.html).

You need to remember that how the elements are presented (italics or bold) is largely irrelevant. You
should use these elements to add emphasis to phrases, and therefore give your documents greater mean-
ing, rather than to control how they appear visually. As you will see in Chapter 7, it is quite simple with
CSS to change the visual presentation of these elements—for example to highlight any words inside an
 element with a yellow background and make them bold rather than italic.

Figure 1-14

30

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 30

The <abbr> Element Is for Abbreviations
You can indicate when you are using an abbreviated form by placing the abbreviation between opening
<abbr> and closing </abbr> tags.

When possible, consider using a title attribute whose value is the full version of the abbreviations. If
you are abbreviating a foreign word, you can also use the xml:lang attribute in XHTML (or the lang
attribute in HTML).

For example, if you want to indicate that Bev is an abbreviation for Beverly, you can use the <abbr>
element like so:

I have a friend called <abbr title=”Beverly”>Bev</abbr>.

The <acronym> Element Is for Acronym Use
The <acronym> element allows you to indicate that the text between an opening <acronym> and closing
</acronym> tags is an acronym.

When possible use a title attribute whose value is the full version of the acronyms on the <acronym>
element, and if the acronym is in a different language, include an xml:lang attribute in XHTML docu-
ments (or a lang attribute in HTML documents).

For example, if you want to indicate that XHTML was an acronym, you can use the <acronym> element
like so (ch01_eg13.html):

This chapter covers marking up text in <acronym title=”Extensible Hypertext
Markup Language”>XHTML</acronym>.

As you can see from Figure 1-15, Firefox gives the <abbr> and <acronym> elements a dashed-underline,
and when you hover your mouse over the word, the value of the title attribute shows as a tooltip. Internet
Explorer 7 does not change the appearance of the element, although it does show the title as a tooltip.

Figure 1-15

31

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 31

The <dfn> Element Is for Special Terms
The <dfn> element allows you to specify that you are introducing a special term. Its use is similar to
the words that are in italics in the midst of paragraphs in this book when new key concepts are
introduced.

Typically, you would use the <dfn> element the first time you introduce a key term and only in that
instance. Most recent browsers render the content of a <dfn> element in an italic font.

For example, you can indicate that the term “XHTML” in the following sentence is important and should
be marked as such:

This book teaches you how mark up your documents for the Web using
<dfn>XHTML</dfn>.

Figure 1-15, on the previous page, shows the use of the <dfn> element (ch01_eg13.html).

The <blockquote> Element Is for Quoting Text
When you want to quote a passage from another source, you should use the <blockquote> element.
Note that there is a separate <q> element for use with smaller quotations, as discussed in the next sec-
tion. Here’s ch01_eg14.html:

<p>The following description of XHTML is taken from the W3C Web site:</p>
<blockquote> XHTML 1.0 is the W3C’s first Recommendation for XHTML,
following on from earlier work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML
2.0. </blockquote>

Text inside a <blockquote> element is usually indented from the left and right edges of the surround-
ing text, and sometimes uses an italicized font (but it should be used only for quotes; if you simply
want this effect on a paragraph of text, you should use CSS). You can see what this looks like in
Figure 1-16.

Using the cite Attribute with the <blockquote> Element
You can use the cite attribute on the <blockquote> element to indicate the source of the quote. The
value of this attribute should be a URL pointing to an online document, if possible the exact place in
that document. Browsers will not actually do anything with this attribute, but it means the source of the
quote is there should you need it in the future—it could also be used by other processing applications
(ch01_eg14.html).

<blockquote cite=”http://www.w3.org/markup/”> XHTML 1.0 is the W3C’s first
Recommendation for XHTML, following on from earlier work on HTML 4.01, HTML
4.0, HTML 3.2 and HTML 2.0.</blockquote>

At the time of this writing, some validators had trouble with the cite attribute, such as the W3C
validator, which does not recognize the presence of the cite attribute on the <blockquote>
element.

32

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 32

Figure 1-16

The <q> Element Is for Short Quotations
The <q> element is intended to be used when you want to add a quote within a sentence rather than as
an indented block on its own (ch01_eg14.html):

<p>As Dylan Thomas said, <q>Somebody’s boring me. I think it’s me</q>.</p>

The HTML and XHTML recommendations say that the text enclosed in a <q> element should begin and end
in double quotes. Firefox inserts these quotation marks for you, whereas IE7 does not. So, if you want your
quote to be surrounded by quotation marks, be warned that inserting them in the document will result in
two sets of quotes in Firefox. Neither IE nor Firefox changes the appearance of this element in any other way.

The <q> element can also carry the cite attribute. The value should be a URL pointing to the source of
the quote.

The <cite> Element Is for Citations
If you are quoting a text, you can indicate the source by placing it between an opening <cite> tag and
closing </cite> tag. As you would expect in a print publication, the content of the <cite> element is
rendered in italicized text by default (ch01_eg12.html).

This chapter is taken from <cite>Beginning Web Development</cite>.

33

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 33

If you are referencing an online resource, you should place your <cite> element inside an <a> element,
which, as you’ll see in Chapter 2, creates a link to the relevant document.

There are several applications that potentially could make use of the <cite> element. For example, a
search application could use <cite> tags to find documents that reference certain works, or a browser
could collect the contents of <cite> elements to generate a bibliography for any given document,
although at the moment it is not widely enough used for either feature to exist.

You can see the <blockquote>, <q>, and <cite> elements in Figure 1-16.

The <code> Element Is for Code
If your pages include any programming code (which is not uncommon on the Web), the following four
elements will be of particular use to you. Any code to appear on a web page should be placed inside a
<code> element. Usually the content of the <code> element is presented in a monospaced font, just like
the code in most programming books (including this one).

Here you can see an example of using the <code> element to represent an <h1> element and its content
in XHTML (ch01_eg15.html):

<p><code><h1>This is a primary heading</h1></code></p>

Figure 1-17 shows you how this would look in a browser.

The use of the <code> element could theoretically allow search applications to look at the content of <code>
elements to help them find a particular code segment. The <code> element is often used in conjunction
with the <pre> element so that the formatting of the code is retained.

The <kbd> Element Is for Text Typed on a Keyboard
If, when talking about computers, you want to tell a reader to enter some text, you can use the <kbd>
element to indicate what should be typed in, as in this example (ch01_eg15.html):

<p>Type in the following: <kbd>This is the kbd element</kbd>.</p>

The content of a <kbd> element is usually represented in a monospaced font, rather like the content of the
<code> element. Figure 1-17 shows you what this would look like in a browser.

Note that you cannot just use the opening and closing angle brackets inside these
elements if you want to represent XHTML markup. The browser could mistake
these characters for actual markup. You should use < instead of the left-angle
bracket <, and you should use > instead of the right-angle bracket >. A list of all
these character entities is in Appendix F.

34

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 34

Figure 1-17

The <var> Element Is for Programming Variables
The <var> element is another of the elements added to help programmers. It is usually used in conjunction
with the <pre> and <code> elements to indicate that the content of that element is a variable that can be
supplied by a user (ch01_eg15.html).

<p><code>document.write(“<var>user-name</var>”)</code></p>

Typically the content of a <var> element is italicized, as you can see in Figure 1-17.

If you are not familiar with the concept of variables, they are covered in Chapter 11.

The <samp> Element Is for a Program Output
The <samp> element indicates sample output from a program, script, or the like. Again, it is mainly used
when documenting programming concepts. For example (ch01_eg15.html):

<p>If everything worked you should see the result <samp>Test completed
OK</samp>.</p>

This tends to be displayed in a monospaced font, as you can see in Figure 1-17.

35

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 11/18/09 1:16 PM Page 35

The <address> Element Is for Addresses
Many documents need to contain a snail-mail address, and there is a special <address> element that is
used to contain addresses. For example, here is the address for Wrox, inside an <address> element
(ch01_eg16.html):

<address>Wrox Press, 10475 Crosspoint Blvd, Indianapolis, IN 46256</address>

A browser can display the address differently than the surrounding document, and IE, Firefox, and Safari
display it in italics, as you can see in Figure 1-18 (although you can override this with CSS).

Figure 1-18

Indicating who wrote a document or who is responsible for it adds credibility to a document that is other-
wise anonymous. The <address> element is a good way to add this at the end of the document. It can
also help automated applications read addresses from documents.

That brings you to the end of the phrase elements, but not quite the end of all the text elements.

Lists
There are many reasons why you might want to add a list to your pages, from putting your five favorite
albums on your home page to including a numbered set of instructions for visitors to follow (like the steps
you follow in the Try It Out examples in this book).

You can create three types of lists in XHTML:

❑ Unordered lists, which are like lists of bullet points

❑ Ordered lists, which use a sequence of numbers or letters instead of bullet points

❑ Definition lists, which allow you to specify a term and its definition

I’m sure you will think of more uses for the lists as you meet them and start using them.

Using the Element to Create Unordered Lists
If you want to make a list of bullet points, you write the list within the element (which stands for
unordered list). Each bullet point or line you want to write should then be contained between opening
 tags and closing tags (the li stands for list item).

36

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 36

You should always close the element, even though you might see some HTML pages that leave off
the closing tag. This is a bad habit you should avoid.

If you want to create a bulleted list, you can do so like this (ch01_eg17.html):

Bullet point number one
Bullet point number two
Bullet point number three

In a browser, this list would look something like Figure 1-19.

Figure 1-19

The and elements can carry all the universal attributes and UI event attributes.

The element could also carry an attribute called compact in HTML 4.1—which is still allowed in
Transitional XHTML but not in Strict XHTML 1.0—the purpose of which was to make the bullet points
vertically closer together. Its value should also be compact, like so:

<ul compact=”compact”>
Item one
Item two
Item three

Ordered Lists
Sometimes, you want your lists to be ordered. In an ordered list, rather than prefixing each point with a bullet
point, you can use either numbers (1, 2, 3), letters (A, B, C), or Roman numerals (i, ii, iii) to prefix the list item.

An ordered list is contained inside the element. Each item in the list should then be nested inside
the element and contained between opening and closing tags (ch01_eg18.html).

Point number one
Point number two
Point number three

37

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 37

The result should be similar to what you see in Figure 1-20.

Figure 1-20

If you would rather have letters or Roman numerals than Arabic numbers, you must use the now-deprecated
type attribute on the element.

Using the type Attribute to Select Numbers, Letters, or Roman
Numerals in Ordered Lists (deprecated)

The type attribute on the element allows you to change the ordering of list items from the default of
numbers to the options listed in the table that follows, by giving the type attribute the corresponding character.

For example, here is an ordered list that uses small Roman numerals (ch01_eg18.html):

<ol type=”i”>
This is the first point
This is the second point
This is the third point

You can see what this might look like in Figure 1-21.

The type attribute was deprecated in HTML 4.1 in favor of the CSS list-style-type property; it will
therefore work only in Transitional XHTML not Strict XHTML 1.0. The CSS replacement will work only
in browsers since IE4 and Netscape 4 browsers.

Value for type Attribute Description Examples

1 Arabic numerals (the default) 1, 2, 3, 4, 5

A Capital letters A, B, C, D, E

a Small letters a, b, c, d, e

I Large Roman numerals I, II, III, IV, V

i Small Roman numerals i, ii, iii, iv, v

38

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 38

Figure 1-21

You used to be able to use the type attribute on elements, which would override the value in the
 element, but it was deprecated in HTML 4.1 and its use should be avoided. All of the universal
attributes and UI event attributes can be used with the elements, and also a special attribute start,
to control the number a list starts at.

Using the start Attribute to Change the Starting Number in Ordered
Lists (deprecated)

If you want to specify the number that a numbered list should start at, you can use the start attribute on
the element. The value of this attribute should be the numeric representation of that point in the list,
so a D in a list that is ordered with capital letters would be represented by the value 4 (ch01_eg18.html).

<ol type=”i” start=”4”>
Point number one
Point number two
Point number three

You can see the result in Figure 1-22 .

Figure 1-22

The start attribute was deprecated in HTML 4.1; it will therefore work in Transitional XHTML 1.0 but
not in Strict XHTML 1.0.

Definition Lists
The definition list is a special kind of list for providing terms followed by a short text definition or
description for them. Definition lists are contained inside the <dl> element. The <dl> element then contains
alternating <dt> and <dd> elements. The content of the <dt> element is the term you will be defining.

39

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 39

The <dd> element contains the definition of the previous <dt> element. For example, here is a definition
list that describes the different types of lists in XHTML (ch01_eg19.html):

<dl>
<dt>Unordered List</dt>
<dd>A list of bullet points.</dd>

<dt>Ordered List</dt>
<dd>An ordered list of points, such as a numbered set of steps.</dd>

<dt>Definition List</dt>
<dd>A list of terms and definitions.</dd>

</dl>

In a browser, this would look something like Figure 1-23 (ch01_eg19.html).

Figure 1-23

Each of these elements can carry the universal attributes and UI event attributes.

Nesting Lists
You can nest lists inside other lists. For example, you might want a numbered list with separate points
corresponding to one of the list items. Each list will be numbered separately unless you specify otherwise
using the start attribute. And each new list should be placed inside a element (ch01_eg20.html):

<ol type=”I”>
Item one
Item two
Item three
Item four
<ol type=”i”>
Item 4.1
Item 4.2
Item 4.3

Item Five

40

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 40

In a browser, this will look something like Figure 1-24.

Figure 1-24

Try It Out Using Text Markup
Now that you’ve looked at the different elements and attributes you can use to mark up text, it is time to
put the information into practice. In this example, you use a mixture of the text markup to create a page
that displays a recipe. So, open up your text editor or web page authoring tool and follow these steps:

1. You will be writing this example in Transitional XHTML 1.0, so add the optional XML declaration,
and the DOCTYPE declaration:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2. Add the skeleton elements for the document: <html>, <head>, <title>, and <body>. Don’t for-
get to put the namespace identifier on the root element, along with an attribute to indicate the
language of the document:

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>
<head>
<title>Wrox Recipes - World’s Best Scrambled Eggs</title>

</head>
<body>
</body>

</html>

3. Add some appropriate heading elements into the body of the document:

<body>
<h1>Wrox Recipes - World’s Best Scrambled Eggs</h1>
<h2>Ingredients</h2>
<h2>Instructions</h2>

</body>

41

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 41

4. After the <h1> element, there will be a bit of an explanation about the recipe (and why it is the
World’s Best). You can see that several of the elements you have met so far are tucked away in
these two paragraphs.

<h1>Wrox Recipes - World’s Best Scrambled Eggs</h1>
<p>I adapted this recipe from a book called
<cite cite=” http://www.amazon.com/exec/obidos/tg/detail/-
/0864119917/”>Sydney Food</cite> by Bill Grainger. Ever since tasting
these eggs on my 1st visit to Bill’s restaurant in Kings
Cross, Sydney, I have been after the recipe. I have since transformed
it into what I really believe are the best scrambled eggs
I have ever tasted.</p>

<p>This recipe is what I call a <q>very special breakfast</q>; just look at
the ingredients to see why. It has to be tasted to be believed.</p>

5. After the first <h2> element, you will list the ingredients in an unordered list:

<h2>Ingredients</h2>
<p>The following ingredients make one serving:</p>

2 eggs
1 tablespoon of butter (10g)
1/3 cup of cream <i>(2 3/4 fl ounces)</i>
A pinch of salt
Freshly milled black pepper
3 fresh chives (chopped)

6. Add the instructions after the second <h2> element; these will go in a numbered list:

<h2>Instructions</h2>

Whisk eggs, cream, and salt in a bowl.
Melt the butter in a non-stick pan over a high heat <i>(taking care
not to burn the butter)</i>.
Pour egg mixture into pan and wait until it starts setting around
the edge of the pan (around 20 seconds).

Using a wooden spatula, bring the mixture into the center as if it
were an omelet, and let it cook for another 20 seconds.

Fold contents in again, leave for 20 seconds, and repeat until
the eggs are only just done.

Grind a light sprinkling of freshly milled pepper over the eggs
and blend in some chopped fresh chives.

<p>You should only make a maximum of two servings per
frying pan.</p>

7. Save this example as eggs.html. When you open it in a browser you should see something like
Figure 1-25.

42

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 42

Figure 1-25

How It Works
You have seen the XML declaration and the skeleton of this document enough times already, so now it’s
time to focus on the new elements you have available to mark up text.

After the main heading for the document, which is contained in the <h1> elements, you can see two
paragraphs of text. Start by looking at the first paragraph.

In the first sentence, the <cite> element has been used to indicate a reference to the book this recipe is
adapted from. The next sentence makes use of the <sup> element so you can write “1st” and use super-
script text—although you will note that this makes the gap between the first line and the second line of
text larger than the gap between the second and third lines of text (as the superscript letters poke above

43

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 43

the line). In the final sentence there is emphasis on the word “best,” as these really are the best scrambled
eggs I have ever tasted:

<h1>Wrox Recipes- World’s Best Scrambled Eggs</h1>
<p>I adapted this recipe from a book called
<cite cite=”http://www.bills.com.au”>Sydney Food</cite> by Bill Grainger.
Ever since tasting these eggs on my 1st visit to Bill’s
restaurant in Kings Cross, Sydney, I have been after the recipe. I have
since transformed it into what I really believe are the best
scrambled eggs I have ever tasted. </p>

You can see another new element at work in the second element: the <q> element for quotes that are
sprinkled into a sentence:

<p>Although this recipe may be what I call a <q>very special breakfast</q>,
just look at the ingredients to see why, it has to be tasted to be
believed.</p>

The ingredients (listed under an <h2> element) contain an unordered list, and an italicized alternative
measure for the amount of cream required:

2 eggs
10g butter
1/3 cup of cream <i>(2 3/4 fl ounces)</i>
a pinch of salt
freshly milled black pepper
3 fresh chives (chopped)

The instructions for cooking the eggs (listed under the second <h2> element) contain a numbered list and
a couple of additional paragraphs. You might note that the numbered list contains an italicized comment
about not burning the butter, and the final paragraph contains a strong emphasis that you should cook
no more than two batches of these eggs in a pan.

<h2>Instructions</h2>
<p>The following ingredients make one serving.</p>

Whisk eggs, cream, and salt in a bowl.
Melt the butter in a non-stick pan over a high heat <i>(taking care
not to burn the butter)</i>.

Pour egg mixture into pan, and wait until it starts setting
around the edge of the pan (around twenty seconds).

Using a wooden spatula, bring the mixture into the center as
if it was an omelet, and let it cook for another 20 seconds.

Fold contents in again, leave for 20 seconds, and repeat until
the eggs are only just done.

Grind a light sprinkling of freshly milled pepper over the eggs
and blend in some chopped fresh chives.

<p>You should only make a maximum of two servings per
frying pan.</p>

44

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 44

The page then finishes up as usual with closing </body> and </html> tags. I hope you will enjoy the
eggs—go on, you know you want to try them now.

Editing Text
When working on a document with others, it helps if you can see changes that another person has made.
Even when working on your own documents, it can be helpful to keep track of changes you make. Two
elements are specifically designed for revising and editing text:

❑ The <ins> element for when you want to add text

❑ The element for when you want to delete some text

Here you can see some changes made to the following XHTML (ch01_eg21.html):

<h1>How to Spot a Wrox Book</h1>
<p>Wrox-spotting is a popular pastime in bookshops. Programmers like to find
the distinctive blue<ins>red</ins> spines because they know that
Wrox books are written by 1000 monkeys<ins>Programmers</ins> for
Programmers.</p>
<ins><p>Both readers and authors, however, have reservations about the use
of photos on the covers.</p></ins>

This example would look something like Figure 1-26 in a browser.

Figure 1-26

These features would also be particularly helpful in editing tools to note changes and modifications made
by different authors.

If you are familiar with Microsoft Word, the <ins> and elements are very similar to a feature
called Track Changes (which you can find under the Tools menu). The track changes feature underlines
new text additions and crosses through deleted text.

45

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 45

You must be careful when using <ins> and to ensure that you do not end up with a block-level
element (such as a <p> or an <h2> element) inside an inline element such as a or <i> element. You
learn more about block-level elements and inline elements at the end of the chapter.

Using <ins> to Indicate New Additions to Text
Any text added to a document inside an <ins> element will be underlined to indicate that it is new text
(refer to Figure 1-26).

<ins><p>This paragraph is contained inside an <ins> element.</p></ins>

You can use the cite attribute on the <ins> and element to indicate the source or reason for a
change, although this attribute is quite limiting as the value must be a URI.

You might also use the title attribute to provide information as to who added the <ins> or element
and why it was added or deleted; this information is offered to users as a tooltip in the major browsers.

The <ins> and elements can also carry a datetime attribute whose value is a date and time in
the following format:

YYYY-MM-DDThh:mm:ssTZD

This formula breaks down as follows:

❑ YYYY represents the year.

❑ MM represents the month.

❑ DD represents the day of the month.

❑ T is just a separator between the date and time.

❑ hh is the hour.

❑ mm is the number of minutes.

❑ ss is the number of seconds.

❑ TZD is the time zone designator.

For example, 2004-04-16T20:30-05:00 represents 8:30 p.m. on April 16, 2004, according to U.S. Eastern
Standard Time.

The datetime attribute is likely to be entered only by a program or authoring tool, as the format is
rather long to be entered by hand.

Using to Indicate Deleted Text
If you want to delete some text from a document, you can place it inside a element to indicate that
it is marked to be deleted. Text inside a element will have a line or strikethrough (refer to Figure 1-26).

<p>This paragraph is contained inside a element.</p>

46

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 46

The element can carry the cite, datetime, and title attributes just like the <ins> element.

When you learn how to use CSS, you will see how it would be possible to show and hide the inserted
and deleted content as required.

Using Character Entities
for Special Characters

You can use most alphanumeric characters in your document and they will be displayed without a prob-
lem. There are, however, some characters that have special meaning in XHTML, and for some characters
there is not an equivalent on the keyboard you can enter. For example, you cannot use the angle brackets
that start and end tags, as the browser can mistake the following letters for markup. You can, however, use
a set of different characters known as a character entity to represent these special characters. Sometimes
you will also see character entities referred to as escape characters.

All special characters can be added into a document using the numeric entity for that character, and some
also have named entities, as you can see in the table that follows.

A full list of character entities (or special characters) appears in Appendix F.

Comments
You can put comments between any tags in your XHTML documents. Comments use the following syntax:

<!-- comment goes here -->

Anything after <!-- until the closing --> will not be displayed. It can still be seen in the source code for
the document, but it is not shown onscreen.

It is good practice to comment your code, especially in complex documents, to indicate sections of a doc-
ument, and any other notes to anyone looking at the code. Comments help you and others understand
your code.

Character Numeric Entity Named Entity

“ " "

& & &

< < <

> > >

47

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 47

You can even comment out whole sections of code. For example, in the following snippet of code you
would not see the content of the <h2> element. You can also see there are comments indicating the section
of the document, who added it, and when it was added.

<!-- Start of Footnotes Section added 04-24-04 by Bob Stewart -->
<!-- <h2>Character Entities</h2> -->
<p>Character entities can be used to escape special
characters that the browser might otherwise think have special meaning.</p>

<!-- End of Footnotes section -->

The Element (deprecated)
You should be aware of the element, which was introduced in HTML 3.2 to allow users more con-
trol over how text appears. It was deprecated in HTML 4.0, and has since been removed from XHTML.
In its short life, however, it got a lot of use, and if you look at other people’s code you will see it used a
lot. If you want to read more about the element, it is covered in Appendix I. You might see the
 element used like so:

<h3>Using the element</h3>
The
 element has been deprecated since HTML 4.0. You should now use
CSS to indicate how text should be styled.

Understanding Block and Inline Elements
Now that you have seen many of the elements that can be used to mark up text, it is important to make
an observation about all of these elements that live inside the <body> element because each one can fall
into one of two categories:

❑ Block-level elements

❑ Inline elements

This is quite a conceptual distinction, but it will have important ramifications for other features of
XHTML (some of which you are about to meet).

Block-level elements appear on the screen as if they have a carriage return or line break before and after
them. For example the <p>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, , , <dl>, <pre>, <hr />,
<blockquote>, and <address> elements are all block-level elements. They all start on their own new
line, and anything that follows them appears on its own new line, too.

Inline elements, on the other hand, can appear within sentences and do not have to appear on a new line
of their own. The , <i>, <u>, , , <sup>, <sub>, <big>, <small>, , <ins>, ,
<code>, <cite>, <dfn>, <kbd>, and <var> elements are all inline elements.

48

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 48

For example, look at the following heading and paragraph. These elements start on their own new line
and anything that follows them goes on a new line, too. Meanwhile the inline elements in the paragraph
are not placed on their own new line. Here is the code (ch02_eg22.html):

<h1>Block-Level Elements</h1>
<p>Block-level elements always start on a new line. The
<code><h1></code> and <code><p></code> elements will not sit
on the same line, whereas the inline elements flow with the rest of the
text.</p>

You can see what this looks like in Figure 1-27.

Figure 1-27

You should also be aware that in Strict XHTML, block-level elements can contain other block-level elements,
and inline elements. However, inline elements can appear only within block-level elements, and they may
not contain block-level elements (so you should not have a element outside a block-level element).

Grouping Elements with <div> and
The <div> and elements allow you to group several elements to create sections or subsections of
a page. On their own, they will not affect the appearance of a page, but they are commonly used with CSS
to allow you to attach a style to a section of a page (as you will see in Chapter 7). For example, you might
want to put all of the footnotes on a page within a <div> element to indicate that all of the elements within
that <div> element relate to the footnotes. You might then attach a style to this <div> element so that
they appear using a special set of style rules.

The <div> element is used to group block-level elements:

<div class=”footnotes”>
<h2>Footnotes</h2>
<p>1 The World Wide Web was invented by Tim Berners-Lee</p>
<p>2 The W3C is the World Wide Web Consortium who maintain many Web

standards</p>
</div>

49

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 49

The element, on the other hand, can be used to group inline elements only. So, if you had a part
of a sentence or paragraph you wanted to group, you could use the element. Here you can see
that I have added a element to indicate which content refers to an inventor. It contains both a bold
element and some text:

<div class=”footnotes”>
<h2>Footnotes</h2>
<p>1 The World Wide Web was invented by Tim
Berners Lee</p>

<p>2 The W3C is the World Wide Web Consortium who maintain many Web
standards</p>

</div>

On its own, this would have no effect at all on how the document looks visually, but it does add extra
meaning to the markup, which now groups the related elements. This grouping can either be used by a
processing application, or (as you will see in Chapter 7) can be used to attach special styles to these ele-
ments using CSS rules.

The <div> and elements can carry all of the universal attributes and UI event attributes, as well
as the deprecated align attribute (which is no longer available in Strict XHTML 1.0).

Summary
In this chapter you have seen how XHTML is used to add structure to the text that appears in a document.

You have learned that the contents of a web page is marked up using elements that describe the structure
of the document. These elements consist of an opening tag, a closing tag, and some content between the
opening and closing tags. In order to alter some properties of elements, the opening tag may carry attrib-
utes, and attributes are always written as name value pairs. You know that XHTML can be thought of as
the latest version of HTML, and that there are three different flavors of XHTML—in order to tell the
browser which you are using, you can use a DOCTYPE declaration.

You also met a lot of new elements and learned the attributes they can carry. You’ve seen how every
XHTML document should contain at least the <html>, <head>, <title>, and <body> elements, and
how the <html> element should carry a namespace identifier.

You then met some attributes: the core attributes (class, id, and title), the internationalization attributes
(dir, lang, and xml:lang), and the UI event attributes, each of which will crop up regularly throughout
the book, as most of the elements can support them.

The rest part of this chapter dealt with elements that describe the structure of text:

❑ The six levels of headings: <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>

❑ Paragraphs <p>, preformatted sections <pre>, line breaks
, and addresses <address>

❑ Presentational elements , <i>, <u>, <s>, <tt>, <sup>, <sub>, <strike>, <big>, <small>,
and <hr />

50

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 50

❑ Phrase elements such as , , <abbr>, <acronym>, <dfn>, <blockquote>, <q>,
<cite>, <code>, <kbd>, <var>, <samp>, and <address>

❑ Lists such as unordered lists using and , ordered lists using and , and
definition lists using <dl>, <dt>, and <dd>

❑ Editing elements such as <ins> and

❑ Grouping elements <div> and

You will obviously use some of these elements more than others, but where an element fits the content
you are trying to mark up, from paragraphs to addresses, you should try to use it. Structuring your text
properly will help it last longer than if you just format it using line breaks and presentational elements.

You will come across many of these elements in later examples in this book, starting with the next chapter,
which introduces you to the very important topic of linking between documents (and linking to specific
parts of a document).

Finally, I should mention that you can learn a lot from looking at how other people have written their pages,
and you can view the HTML or XHTML of pages on the Web by going to the View or Tools menu in your
browser and selecting the Source (sometimes listed as View Source or Page Source) options. (You can also
learn a lot of bad habits this way too—so you still need to read on in order to avoid them.)

Exercises
The answers to all of the exercises are in Appendix A.

1. Mark up the following sentence with the relevant presentational elements.

The 1st time the bold man wrote in italics, he underlined several key words.

2. Mark up the following list, with inserted and deleted content:

Ricotta pancake ingredients:

❑ 1 1/2 3/4 cups ricotta

❑ 3/4 cup milk

❑ 4 eggs

❑ 1 cup plain white flour

❑ 1 teaspoon baking powder

❑ 75g 50g butter

❑ pinch of salt

51

Chapter 1: Creating Structured Documents

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 51

59313c01.qxd:WroxPro 3/22/08 2:32 PM Page 52

