
 A Python Primer

 This chapter provides a quick overview of the Python language. The goal in this chapter is not to
teach you the Python language — excellent books have been written on that subject, such as
 Beginning Python (Wrox, 2005). This chapter describes Python ’ s lexical structure and programming
conventions, so if you are familiar with other scripting languages such as Perl or Ruby, or with
compiled programming languages such as Java or C#, you should easily be up to speed in no time.

 Getting Star ted
 Of course, the first thing you need to do is install Python, if you don ’ t already have it. Installers are
available for Windows, Macintosh, Linux, Unix, and everything from OpenVMS to the Playstation
(no, I ’ m not kidding).

 Obtaining Python and Installing It
 If you go to www.python.org/download you can find links to download the correct version of
Python for your operating system. Follow the install instructions for your particular Python
distribution — instructions can vary significantly depending on what operating system you ’ re
installing to.

 What Version Number to Install
 Although the examples in this book should work for any Python version above 2.0, it is
best to install the latest stable build for your operating system. For Windows (which is
the environment I primarily work in), the latest stable version is 2.51. There is an alpha
build of Python 3.0 available as of this writing, but other than just looking at it for fun,
I ’ d steer clear of it for the examples in this book — in some cases the syntax is very
 different, and the examples in this book won ’ t work with Python 3.0.

c01.indd 1c01.indd 1 6/2/08 12:03:06 PM6/2/08 12:03:06 PM

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: A Python Primer

2

 The Python Interpreter
 One of the most useful tools for writing Python code is the Python interpreter, an interactive editing and
execution environment in which commands are run as soon as you enter them and press Enter. On Unix
and Macintosh machines, the Python interpreter can usually be found in the /usr/local/bin/python
directory, which can be accessed by simply typing the command python .

 On Windows machines, the Python interpreter is installed to the c:\python25 directory (for a Python
2.5x installation). To add this directory to your path, type the following at a Windows command prompt:
 set path=%path%;C:\python25.

 On a Windows system, such as with Unix/Linux, you simply type python to bring up the interpreter
(either from the c:\python25 directory or from any directory if the Python directory has been added to
the path).

 When you enter the interpreter, you ’ ll see a screen with information like the following:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on win32
Type “help”, “copyright”, “credits” or “license” for more information.
 > > >

 Your Editing /Execution Environment
 Because the minimum requirements for writing and running Python programs are simply an editor that
can save text files and a command prompt where you can run the Python interpreter, you could simply
use Notepad on Windows, Vim on Linux/Unix, or TextEdit on Mac, and a command line for running
programs.

 One nice step up from that is IDLE, Python ’ s integrated development environment (IDE), which is
named after Monty Python ’ s Eric Idle and is included with Python. It includes the following useful
features:

 A full - featured text editor

 Syntax highlighting

 Code intelligence

 A class browser

 A Python path browser

 A debugger

 A Python interpreter environment

❑

❑

❑

❑

❑

❑

❑

c01.indd 2c01.indd 2 6/2/08 12:03:08 PM6/2/08 12:03:08 PM

Chapter 1: A Python Primer

3

 In addition to IDLE, you do have other options. On Windows, there is a nice IDE called PythonWin,
developed by Mark Hammond. It can be installed as a full Python distribution from ActiveState ’ s
website (www.activestate.com), or you can simply install the win32all package to add PythonWin to a
standard Python for Windows install. PythonWin is a great product, very slick and with all the features
you ’ d expect from an IDE.

 Other options include an Eclipse distribution for Python called EasyEclipse for Python. For my money,
I ’ d start out with IDLE, and then as your experience with Python grows, explore other options.

 Lexical Structure
 Following is a simple Python program. It shows the basic structure of many Python scripts, which is as
follows:

 1. Initialize variables (lines 1 – 3).

 2. Do some processing (lines 4 – 5).

 3. Make decisions and perform actions based on those decisions (lines 6 – 10).

name = “Jim”
age = 42
highschoolGPA = 3.89

enteredName = raw_input(“Enter your name: “)

print “\n\n”

if name == “Jim”:
 print “Your age is “, age
 print “You had a”, highschoolGPA, “GPA in high school”
 if (highschoolGPA > 3):
 print “You had better than a 3.0 GPA...good job!”

 Keywords
 Keywords are words that are “ reserved ” — they cannot be used as variable names. In the preceding code,
the keyword if is used multiple times.

c01.indd 3c01.indd 3 6/2/08 12:03:08 PM6/2/08 12:03:08 PM

Chapter 1: A Python Primer

4

 The keywords are as follows:

 and del for is raise

 assert elif from lambda return

 break else global not try

 class except if or while

 continue exec import pass

 def finally in print yield

 Lines and Indentation
 In Python, unlike a compiled language such as C, line breaks are significant, and the end of a program
statement is defined by a hard return. Program blocks are defined by a combination of statements (each
on a separate line, but with no end - of - statement character visible) and program blocks, delimited
visually by the use of indentation.

 As shown in the code from the preceding section, lines are indented in Python. This is not simply a
stylistic choice — indentation is not just recommended in Python, but enforced by the interpreter. This is
probably the most controversial aspect of Python, and it has been the subject of many a flame war online.

 Basically, it means that the following code would generate an interpreter error, because the action
associated with an if statement must be indented:

if variable1 == “Jim”:
print “variable1 eqiuals Jim”

 You ’ ll learn more about the actual if statement itself later.

 Data Types and Identifiers
 Python provides a rich collection of data types to enable programmers to perform virtually any
programming task they desire in another language. One nice thing about Python is that it provides many
useful and unique data types (such as tuples and dictionaries), and stays away from data types such as
the pointers used in C, which have their use but can also make programming much more confusing and
difficult for the nonprofessional programmer.

c01.indd 4c01.indd 4 6/2/08 12:03:08 PM6/2/08 12:03:08 PM

Chapter 1: A Python Primer

5

 Data Types
 Python is known as a dynamically typed language, which means that you don ’ t have to explicitly identify
the data type when you initialize a variable. In the code example above, the variable name is assigned to
the string value “ Jim ” . However, you don ’ t specifically identify the variable as a string variable. Python
knows, based on the value it has been given, that it should allocate memory for a string. Likewise for the
 age integer variable and the highschoolGPA float variable.

 The following table shows the most commonly used available data types and their attributes:

 Data Type Attributes Example

 Numeric Types

 Float Implemented with C doubles. 5.43
 9483.123

 Integer Implemented with C longs. 1027
 211234

 Long Integer Size is limited only by system resources. 567893L

 Sequence Types

 String A list of characters. Is immutable (not changeable
in - place). Can be represented by single quotes or
double quotes. Can span multiple lines.

 “ This is a string ”

” ””
 This is an example
of a DocString
 ” ” ”

 List A mutable (changeable) sequence of data types.
List elements do not have to be “ like. ” In other
words, you could have a float element and an
integer element in a single list.

 [1, 2.3, “ Jim ”]
 [1, 2, 3]
 [1.5, 2.7, 3.0]
 [“ Jim ” , “ Joe ” , “ Bob ”]

 Tuple An immutable sequence of data types. Other
than the fact that it can ’ t be changed, it works
just like a list.

 (1, 2.3, “ Jim ”)
 (1, 2, 3)
 (1.5, 2.7, 3.0)
 “ Jim ” , “ Joe ” , “ Bob ”

 Dictionary A list of items indexed by keys . d = { “ first “ : ” Jim ” ,
 “ last “ : “ Knowlton “ }

 Identifiers
 An identifier is a unique name that enables you to identify something. Identifiers are used to label
variables, functions, classes, objects, and modules. They begin with either a letter or an underscore, and
they can contain letters, underscores, or digits. They cannot contain punctuation marks.

c01.indd 5c01.indd 5 6/2/08 12:03:09 PM6/2/08 12:03:09 PM

Chapter 1: A Python Primer

6

 Operators
 If you have programmed in other languages, the operators in Python will be familiar to you. The Python
operators are fundamentally similar to those used in other languages. In the code shown earlier, the
conditions evaluated in both if statements involve comparison operators. The following table describes
the operators most commonly used in Python, and the ones used in this book:

 Operator Symbol Example

 Numeric Operators

 Addition + x + y

 Subtraction − x – y

 Multiplication * x * y

 Division / x / y

 Exponent (Power) ** x ** y (x to the y power)

 Modulo % x % y (the remainder of x/y)

 Comparison Operators

 Greater than > x > y (x is greater than y)

 Less than < x < y (x is less than y)

 Equal to == x == y (x equals y)

 Greater than or equal to > = x > = y (x is greater than or equal to y)

 Less than or equal to < = x < = y (x is less than or equal to y)

 Not equal to != or < > x != y, x < > y (x does not equal y)

 Boolean Operators

 and and x and y (if both are true, then the expression is true)

 or or x or y (if either is true, then the expression is true)

 not not not x (if x is false, then the expression is true)

 Assignment Operator

 Assignment = X = 15
name = “ Jim ”

c01.indd 6c01.indd 6 6/2/08 12:03:09 PM6/2/08 12:03:09 PM

Chapter 1: A Python Primer

7

 Expressions and Statements
 Expressions and statements are the building blocks of Python programs. They are the equivalent of
phrases and sentences in English. To understand Python, it ’ s critical to understand how to put these
building blocks together.

 Expressions
 Expressions consist of combinations of values , which can be either constant values, such as a string
(“ Jim ”) or a number (12), and operators , which are symbols that act on the values in some way.

 The following examples are expressions:

 10 - 4

 11 * (4 + 5)

 x - 5

 a / b

 Operator Precedence in Expressions
 When you have a multiple expression like 5 + 4 * 7 , which operation is done first, the addition or the
multiplication? If it isn ’ t too painful to recall your high school algebra class, you might remember
learning the rules of operator precedence . These kinds of complex expressions require a set of rules
defining which expressions are executed first.

 The following list describes the basic rules of operator precedence in Python (don ’ t worry if you don ’ t
understand all the terms right now; they ’ ll be explained as you need them):

 Expressions are evaluated from left to right.

 Exponents, multiplication, and division are performed before addition and subtraction.

 Expressions in parentheses are performed first.

 Mathematical expressions are performed before Boolean expressions (AND , OR , NOT)

 Statements
 The statement is the basic unit of programming. In essence, it says “ do this to this. ” Statements in Python
are not delimited by a visible character, such as the semicolon in C or C#. Every time you press Enter and
start a new line, you are entering a new statement.

❑

❑

❑

❑

c01.indd 7c01.indd 7 6/2/08 12:03:10 PM6/2/08 12:03:10 PM

Chapter 1: A Python Primer

8

 For example, if you type :

Print 12 + 15

 into the Python interpreter, you ’ ll get the following output:

 > > > print 12 + 15
27
 > > >

 This is because you told the system to “ print the result of the expression 12 + 15, ” which is a complete
statement.

 However, if you type :

print 12 +

 you ’ ll get a syntax error, as shown here:

 > > > print 12 +
SyntaxError: invalid syntax
 > > >

 Clearly, the system cannot read this because it isn ’ t a complete statement, so it results in an error.

 Multi - line Statements
 It is possible to have a single statement span multiple lines. You could do this for aesthetic reasons or
simply because the line is too long to read on one screen. To do this, simply put a space and a backslash
at the end of the line. Here are a few examples:

name = “Jim \
 Knowlton”

sum = 12 + \
 13

 Iteration and Decision - Making
 There are two basic ways to control the flow of a program: through iteration (looping) and through
decision - making.

c01.indd 8c01.indd 8 6/2/08 12:03:10 PM6/2/08 12:03:10 PM

Chapter 1: A Python Primer

9

 Iteration
 Iteration in Python is handled through the “ usual suspects ” : the for loop and the while loop. However,
if you ’ ve programmed in other languages, these seemingly familiar friends are a little different.

 For Loops
 Unlike in Java, the for loop in Python is more than a simple construct based on a counter. Instead, it is a
sequence iterator that will step through the items of any sequenced object (such as a list of names, for
instance). Here ’ s a simple example of a for loop:

 > > > names = [“Jim”, “Joe”]
 > > > for x in names:

 print x

 Jim
 Joe
 > > >

 As you can see, the basic syntax is for < variable > in < object > : , followed by the code block to be
iterated.

 While Loops
 A while loop is similar to a for loop but it ’ s more flexible. It enables you to test for a particular
condition and then terminate the loop when the condition is true. This is great for situations when you
want to terminate a loop when the program is in a state that you can ’ t predict at runtime (such as when
you are processing a file, and you want the loop to be done when you reach the end of the file).

 Here ’ s an example of a while loop:

 > > > counter = 5
 > > > x = 0
 > > > while x < counter:
 print “x=”,x
 print “counter = “, counter
 x += 1

x = 0
counter = 5
x = 1
counter = 5
x = 2
counter = 5
x = 3
counter = 5
x = 4
counter = 5
 > > >

c01.indd 9c01.indd 9 6/2/08 12:03:10 PM6/2/08 12:03:10 PM

Chapter 1: A Python Primer

10

 Break and Continue
 As with C, in Python you can break out of the innermost for or while loop by using the
break statement. Also as with C, you can continue to the next iteration of a loop by using
the continue statement.

 What about switch or case?
 Many of you familiar with other programming languages are no doubt wondering
about a decision - tree structure similar to C ’ s switch statement or Pascal ’ s case.
 Unfortunately, you won ’ t find it in Python. However, the conditional if - elif - else
structure, along with other constructs you ’ ll learn about later, make their absence not
such a big deal.

 Decision - Making
 When writing a program, it is of course critical to be able to evaluate conditions and make decisions.
Having an if construct is critical for any language, and Python is no exception.

 The if Statement
 The if statement in Python, as in other languages, evaluates an expression. If the expression is true,
then the code block is executed. Conversely, if it isn ’ t true, then program execution jumps to the end.
Python also supports use of zero or more elif statements (short for “ else if ”), and an optional else
statement, which appears at the end if you also have elif statements, and would be the “ default ”
choice if none of the if statements were true.

 Here ’ s an example:

 > > > name = “Jim”
 > > > if name == “Jim”:
 print “your name is Jim”
elif name == “Joe”:
 print “your name is Joe”
else:
 print “I have no idea what your name is”

your name is Jim
 > > >

c01.indd 10c01.indd 10 6/2/08 12:03:11 PM6/2/08 12:03:11 PM

Chapter 1: A Python Primer

11

 Functions
 In many ways, the principle behind a function is analogous to turning on a TV. You don ’ t have to
understand all the electronics and communications technology behind getting the TV signal to your
receiver in order to operate the TV. You do have to know some simple behaviors, however, such as how
to turn it on, where the volume switch is, and so on. In a similar fashion, a function gives the program an
interface through which it can run program code without knowing the details about the code being run.

 Defining a Function
 You define a function in Python with the following simple syntax:

def functionName(paramenter1, parameter2=default_value):
 < code block >
 return value (optional)

 Note two elements in the preceding example:

 Parameters — As you can see, parameters can simply be a variable name (making them required
as part of the function call), or they can have a default value, in which case it is optional to pass
them in the function call.

 The return statement — This enables the function to return a value to the code that called it. The
nice thing about this is that you can run a function and assign its output to a variable.

 Here ’ s an example of a function definition:

 > > > def getname(name):
 return name + “ is very hungry”

 > > >

 Calling a Function
 To call a function, simply enter the function name with the function signature:

functionName(paramenter1, parameter2)

 If a parameter has a default value in its definition, then you can omit that parameter when you call the
function, and the parameter will contain its default value. Alternately, you can override the default value
by entering the value yourself when you call the function.

❑

❑

c01.indd 11c01.indd 11 6/2/08 12:03:11 PM6/2/08 12:03:11 PM

Chapter 1: A Python Primer

12

 For example, if a function were defined as follows:

def jimsFunc(age, name = “Jim”):

 Then you could call the function in any of the following three ways:

jimsFunc(23)

jimsFunc(42, “James”)
jimsFunc(42, firstName=”Joe”)

 In the first example, I simply took the default value for the first parameter; in the second, I replaced it
with “ James. ”

 Modules
 A module is the highest - level programming unit in Python. A module usually corresponds to a program
file in Python. Unlike in Ruby, modules are not declared — the name of the *.py file is the name of the
module. In other words, basically each file is a module, and modules import other modules to perform
various programming tasks.

 Importing Modules
 Importing modules is done with either the import or reload command.

 Import
 To use a module, you import it. Usually import statements occur at the beginning of the Python
module. Importing modules is a fairly simple operation, but it requires a little explanation. Consider the
following examples:

1. import os
2. import os, sys
3. from os import getcwd
4. import os as operatingSystem

 These examples highlight some variations in how you can import modules:

 1. This first example is the simplest and easiest to understand. It is merely the keyword import
followed by the module name (in this case, os).

 2. Multiple modules can be imported with the same import command, with the modules
separated by a comma.

c01.indd 12c01.indd 12 6/2/08 12:03:11 PM6/2/08 12:03:11 PM

Chapter 1: A Python Primer

13

 3. You can import specific names only within a module, without importing the whole module, by
using the from < module > import < name > statement. This can be useful for performance
reasons if you only need one function from a large module.

 4. If a module has a name that ’ s difficult to work with or remember, and you want to use a name
to represent it that is meaningful to you, simply use the as keyword and import < module > as
 < identifier > .

 Reload
 Reload is another very useful command, especially when entering code within the Python interactive
interpreter. It enables you to reload a particular module without reloading Python. For example, if you
wanted to reload the os module, you would simply enter reload os .

 If you ’ re wondering why you would ever want to do that, one scenario would be if you have a Python
script that runs all the time and it accesses a module on another machine. Assuming you always want to
ensure that you ’ re running the most current version of the remote module you ’ re accessing, you ’ d use
the reload command.

 How Python Finds Modules to Load
 When you use an import statement, you don ’ t tell Python where the module that needs to be loaded
is located. How, then, does it know where to find the file? The answer to that question is the module
search path .

 The Module Search Path
 Python has a predefined priority specifying where it should look for modules, known as the module
search path. When you enter an import command and the name of the module, Python checks the
following locations in the order shown here:

 1. The home directory — This is either the directory from which you launched the Python
interactive interpreter or the directory where the main Python program is located.

 2. PYTHONPATH — This is an environment variable set in the system. Its value is a list of
directories, which Python will search for modules.

 3. Standard library directories — The directory in which the standard libraries are located are
searched next.

c01.indd 13c01.indd 13 6/2/08 12:03:11 PM6/2/08 12:03:11 PM

Chapter 1: A Python Primer

14

 Exploring sys.path
 If you ever want to see your system ’ s Python search path, all you have to do is bring up the interactive
interpreter, import the sys module, and type sys.path . The full Python module search path will be
returned, as shown in the following example:

 > > > import sys
 > > > sys.path
[‘C:\\Python25’, ‘C:\\Python25\\Lib\\idlelib’, ‘C:\\Program Files\\PythonNet’,
‘c:\\scripts\\python’, ‘c:\\python25’, ‘C:\\Python25\\pyunit-1.4.1’,
‘c:\\python25\\pamie’, ‘C:\\WINDOWS\\system32\\python25.zip’, ‘C:\\Python25\\DLLs’,
‘C:\\Python25\\lib’, ‘C:\\Python25\\lib\\plat-win’, ‘C:\\Python25\\lib\\lib-tk’,
‘C:\\Python25\\lib\\site-packages’, ‘C:\\Python25\\lib\\site-packages\\win32’,
‘C:\\Python25\\lib\\site-packages\\win32\\lib’, ‘C:\\Python25\\lib\\site-
packages\\
Pythonwin’, ‘C:\\Python25\\lib\\site-packages\\wx-2.8-msw-ansi’]
 > > >

 Classes
 Python is a language that can support both procedural programming and object - oriented programming.
Here is an example of a Python class:

 > > > class name1():
 def setmyname(self, myname):
 self.name = myname

 > > > jimname = name1()
 > > > jimname.setmyname(“Jim”)
 > > > print jimname.name
Jim
 > > >

 Note some points about Python ’ s implementation of class programming as demonstrated in the
preceding example:

 If we were inheriting from other classes, those class names would have been inside the
parentheses of the class name1(): definition.

 In this case, there is one class method, setmyname . If we wanted to create a constructor for the
class, it would be named __init__ .

 To create an instance of a class, you simply assign a variable to the class definition, as in
 jimname = name1() .

 Attributes are accessed with familiar dot notation (instance variable.attribute) such as
jimname.name .

❑

❑

❑

❑

c01.indd 14c01.indd 14 6/2/08 12:03:12 PM6/2/08 12:03:12 PM

Chapter 1: A Python Primer

15

 Summary
 This chapter provided a brief tour of the Python language, including the following highlights:

 How to get up and running with Python

 Python ’ s lexical structure

 Operators, expressions, and statements

 Iteration and decision - making

 Functions and modules

 Classes and object - oriented programming

 Of course, there is much more to the Python language than what this short chapter has outlined.
Much of it you ’ ll discover as you work through the projects in this book.

 Let ’ s get started!

❑

❑

❑

❑

❑

❑

c01.indd 15c01.indd 15 6/2/08 12:03:12 PM6/2/08 12:03:12 PM

c01.indd 16c01.indd 16 6/2/08 12:03:12 PM6/2/08 12:03:12 PM

