CHAPTER 1

HISTORY OF THE SUBJECT

1.1 HISTORY OF THE IDEA

In a broad sense, much of mathematics is devoted to the decomposition, or analysis,
of a whole entity into its component paris and the reconstiuction, or synthesis, of
the whole from its pasis. There is in this an expectation thai the whole is somehow
egual to the sum of its parts, which are simpier individually, We discuss briefly a few
examples of this aspect of mathematics.

It was nearly three thousand years ago that Babylonian asironomers successfully
predicted the times of lunar and solar eclipses by expressing these complicated
events as summations of numerous simpler periodic events. The predictions were
fairly accurate, io the exient of predicting eclipses that would be visible at least from
some part of the world. That remarkable achicvement may be interpreted as the first
appearance on Earth of barmonic {or Fourier) analysis.

Measurement has been a special interest for mathematicians and scientists since
the eaily days of civilization. Two thousand years ago, the classical geometers of
Gieece made profound coniributions to the study of measurement. A line segment
could be measured by a shorter segment if the short one could be laid off end to end
in such a way that the long segment would be seen 1o be an exact positive integer
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2 HISTORY OF THE SUBJECT

multiple of the shoit one. Two segmenis were calied commensurable if both could
be measured by a common shorter segment, or unit of length. And the discovery by
Pythagoras or his associates of incommensurable segments was a momentous event
in the history of mathematics. Inherent in the definition Greek geometers used for
measurement of segments was the concept that the measure of the whole segment
must be the sum of the measures of its nonoverlapping parss. as indicaied by the
lengihs marked off according o the shorier segment,

The Greek geometers pushed this technique much farther, successfully siudying
the circumference and area of a circle and the surface area and voluine of a sphere.
These chalienges were met by the applicaiion of what is called the principle of
exhaustion. The method was to approximate a geometrical measurement from below,
and at each successive ¥eraiion of the approximation technigue, at least of half of
whai remained to be counted was to be included. {Greek geometers understood that
if too litile were taken at each stage, even an endless succession of steps might not
approach the goal.) For example, the area of a circle is approximated from within
by means of an inscribed 27-sided regular polygon. As n increases, the area of the
resuliing 2”-sided polygon grows in a computable manner. {See Figure |.1.) We
begia with an inscribed square consuming the bulk of the area of the circle. The
next polygon is an octagon, which adds the areas of four thin wiangles to that of the
square. At each stage, one can construct the 27} -gon by bisecting the arcs that are

Figure 1.1 Area of a circle by exhaustion.

subtended by the sides of the inscribed 2"-gon. In effect, the {n + 1)th stage of the
approximaiion resulis from adding a small increment (o what was obtained at the nth
stage. Such classical achievements in geometry may have been the first instances in
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which a measure (of area, for example) was sought that would be countably additive,
meaning that the measure of the whole shouid be the sum of the measures of its
infinite sequence of nonoverlapping pas.

Greek geometers and philosophers may not have been entirely convinced of the
validity of the principle of exhaustion. The expression of some dissatisfaction with
this geometric technigue may have been the purpose of the famous paradox of Zeno.
in which the legendary warrior Achilles was pitted unsuccessfully in a footrace with
a persistent forioise.

The notion that the whole should be the sum of even an infinite sequence of its
nonoverlapping parts appears very strongly in modern analysis, both pure and applied.
For example, in 1822 Jjoseph Fourier presented a seminal paper oa the heat equation
to the French Academy, in which he introduced the use of infinite trigonometric
series for the purpose of determining the solution of the heat equation on a finite
interval. or rod [6]. Fourier’s method requived that the hypothetical solution function
be expressible as the sum of an infiniie trigonomeiric series:

s
flz)y = Z(an cosnz + b, sinnz).
0

Unfortunately, these so-called Fourier series can diverge for very large sets of nuinbers
a in the domain of even a rather nice function f. Yet, if one ignored the embarrassing
reality that f(x) need not be the sum of its parts, Fourier’s method actually worked.
And the search was on for suitable concepts and toeols to analyze cotrectly the right
ciasses of functions for which the Fourier series would converge in a useful sense to
the functions being represenied.

The efforts took place on a grand scale. Even the theory of sets was invented by
Georg Canior for the purpose of analyzing sets of convergence and divergence of
Fourier sertes. Though Cantor’s approach was not sufficient for the needs of Fourier
series, it became a cornerstone of modern mathematics.

Early in the twentieth century Henri Lebesgue invened his new and very refined
concept of the integral, based on the measure of suitable subsets of the line. Lebesgue
measure became the fowndation not only for Fourier analysis, bui also for probability,
and for funciional analysis which perieates medern analysis,

1.2 DEFICIENCIES OF THE RIEMANN INTEGRAL

The Riemann integral is the integral of elementary calculus. It is the integral devel-
oped intuitively by Newtor and Leibnitz and put to great use in the classical sciences.
Before undertaking the considerable work of developing the Lebesgue integral, the
reader and student need to becoime acquainted with the deficiencies of the Riemann
integral. This will motivate the effort that follows.

First, we review the definition of the Riemann integral of a bounded real-valued
function f on a closed, finite interval [a. 5] of the real line.
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Definition 1.2.1 A pariition P is an ordered list of iinitely many poinis starting with
a and ending with b > a. Thus P = {xg,x,..., &, }, where

a=Tg<¥] < <3, =h

These points are regarded as partitioning [a,b] inte n contignous subintervals,
[#ie1.2:0. £ = 1,...,n. The length of the éth subinterval is given by Ar; =
3 — ¥i~1. The mesh of the partition is denoted and defined by

|P| = max {Ax; |i=1,2,...n}.

Definition 1.2.2 Let f be any bounded function on [«, b] and let P be any partition
of [a,b]. Let

M, =sup {f(&) | v € [wi-1. 2]} andm,; = inf{fe} |z € [es 4]}

Define the upper sum,

i

U(f,P) =Y MiAa;.

i=1

and the lower suni,

L{if.Py= E 1 .
i=1

We say that f is Riemann integrable on [n, b] with Sz flx)dz = L if and only if both
L{f,PYy= Land U(f, P} — Las||P| — 0.

Nole that Af; and m; are real numbers in Definition 1.2.2 because f is bounded.
B EXAMPLE 1.1
Since the set € of rational numbers is countably infinite, the same is true of the

set.S of all rational numbers in [a, b] forany a < b. So, write $ = {g, | n € N}.
Now define the functions

.1 ifze {¢,....¢n},
fula) = {0 if z € [e,b]\{e1....,¢a}.

It is known from advanced calculus’ that each function f, Lies in R[a, b], the
set of Riemann integrable functions on [a, &]. In the following exercises, the
reader will prove that the pointwise limit of the sequence f,, is not Riemann
integrable.

ISee 1201, for example.
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EXERCISES

The exercises below refer to the functions f, in Example 1.1.

1.1 Prove that each function f,, lies in R[a,b], the set of Riemann integrable
functions on [a, b].

1.2 Prove thai for each z in [e, 5], f.{(z) — 1g(x), where
1 ifxesS,
lg{z) = '
s(@) {0 if2 € [a.B]\S,
the indicator function of the set S of rational nuimbers in [a, b].

1.3 Prove that the function 1 ¢ is pot Riemann integrable. That is,

b b
Iinlr; Folz) da # Iin}r_ Falz)de,

because the latter integral does not exist.

The failure of the pointwise limit of a sequence of Riemana integrable functions to
be Riemann integrable is considered a serious shortcoming of the Riemann integral.
The following example will illustrate a deficiency that is shared by the Riemann
integral and the Lebesgue integral that we will define.

M EXAMPLE 1.2

Let
n i<k ;1;,
0 ifzx=10

for all n € IN. The reader should do the following exercise.

EXERCISE

14 Let f, be as in Example 1.2. Prove that f,,{x} — f(x)} = 0 pointwise on
[0, 1].
Also, it is clear that f,, € [0, 1] for all », and f € M[0. 1] as well. Yet

X 1
j frldde =1 5120 =f flzyde.
o 0

Thus it occurs for some convergent sequences of fuactions that

b ]
lim J Falwdde # j lim f.{z)dz (L.D)
Ta=rL- a a b

even when all the integrals exist. For the Lebesgue integral, however, Theorem 5.3.1

will identify useful conditions under which equality would be guaranteed in Equation

{1.1).
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M EXAMPLE 1.3

Let
i +
=i ve
fal) {0

foreach n € IN. The reader should check thateach f, is Riemann integrable but
that if f(z) = limy,—,- f,{z). then / ¢ R[0,1] because f is not bounded. The
reader should recail from elementary caiculus that f is, however, improperiy
Riemann integrable. In Exercise 5.44 the reader will see a generalization of
this example that satisfies Lebesgue convergence theorems but that cannot be
correcied with improper Riemann integration.

1.3 MOTIVATION FOR THE LEBESGUE INTEGRAL.

The Lebesgue integral begins with a seemingly stmple reversal of the intuitively
appealing process of Definition 1.2.2. Instead of partitioning the interval [, 5] on the
x-axis into subintervals and considering the range of values of a bouaded function f
on each small subinterval, Lebesgue began with the interval [, A ] on the y-axis,
where

M =sup{f(z) | xre[a.b]}, and m =inf{f{z) |z € [a,b]}.

Thus P = {yo, %1, - Un}, Where m = yo < w1 < --- < y, = M. Next, instead
of forming a sum of the lengths Ax; of the z-intervals weighted by the heights AJ;
or m;, Lebesgue sought to form a sum of the heights, ¥;. each weighted by soine
suitable concept of the length, or measure p, of the set £~ ({y;—1. yi]), the set of
points x for which f{x) € [y;—(,3:]. The difficuliy is that the set f = {[yi-1. %:])
does not need to be an interval. Indeed. f ~'([y;~1, 1:]) can be a very complicaied
subset of the x-axis.”

EXERCISE

L5 Give an example of a real-valued function f : R — R for which

P () -ne

the set of irrational nunbers.

[t turns out that the definition on the real line of the Lebesgue iniegral—a wonderful
improvement uwpon the Riemann integral—is very simple once one has defined a

*The comparison of Riemann with Lebesgue invegration has been likened to a story about a smart merchant
wher soris money into denominations before counting the day’s receipts. Riemann adds the figures as they
come in, bui Lebesgue sorts first according 1o values. Lebesgue integration is subsler, however, than this
analogy suggests, because the sets £~ 1{[y;_1,1:]) can be very intricaie indeed.
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suitable concept of the positive real-valued measure of a subset of the line. The
desired ineasure should agree with the concept of fength when applied to a subset
that 1s an interval. The key property that one needs for a concept of the measuie of
a set is that if ore takes any infinite sequence of muiually disjoint sets E,, one needs

io have
o o
[z U E:i = Z p{Eq).
i=1 i=1

That is, one needs a countably additive measure on subsets of the line which gen-
eralizes the concept of length of an interval. Unfortunately, no measure exisis that
agrees with the concept of the length of an interval and that can be defined on aff the
subsets of the line. Thus it tins out that defining the family of Lebesgue measurable
sets 1$ a very sertous underiaking in the construction of the Lebesgue infegral. And
ihat is why we will begin our task in the next chapier with the definition of [ebesgue
measurable sets and the definition of Lebesgue measure on those sets. This will tein
out to be a fengrhy task. (Confession: the pun is iniended.)

We can see in advance how the Lebesgue integral will resolve some of the def-
ciencies of the Riemann integral. Suppose that we have defined already a countably
additive Lebesgue measure that generalizes the concept of the leagth of an interval in
the real line. The sei 5 = @ [, b] of Exercise 1.3 is a countably infiniie sei. Thai
is, the points of S can be arvanged into a single infinite sequence: § = {s, | n e N}
Each point is an interval of length zevro. Thus it will need to be the case that the
Lebesgue measure

1(S) = i Hsa) = 0.
n=1

If the reader finds it believable in advance that the Lebesgue integral of a constant
function on a measurable set will be that constant times the Lebesgue measure of the
set, then

b
J ls{iz)dz=1-0=10
a

in the sense of Lebesgue integration.

The reader can understand at this point why Lebesgue measure is required to be
only countably additive. If Lebesgue measure were o be uncountably additive, * then
every sel would have measure zero because every set is a disjoint union of singleton
sets, Thus the theory of Lebesgue measure would collapse.

It will be seen in the coming chapters thai ihe Lebesgue measure of each interval
on the line will be its Euclidean length, ihat each Riemann integrable funciion will
still be Lebesgue integrable, and that the valve of that integral will be unchanged.
Thas the reader is advised not to forget everything that he or she has learned before!

*One could define a concept of the sum of an uncouniable family {x, | a € A} of nonnegative real
numbers indexed by an vncouniable sei A. For example, the sum could be 1aken 1o inean the supremum
of the sums over all couniable subsets of 4. 1t is a simple exercise to show thai, with this definiiion, 2 som
st be infinte unless »; = O for all ¢ cutside some countable subsei of 4.
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B EXAMPLE L4

The fact that the Lebesgue measure of a countable set, such as the set of rational
numbers, is zero will resolve another shortcoming of the Riemann integral. Let
S=Qn[0,1] = {gn | n € N}, as before. Define the functions

if a v n ks
fatmy = {7 el
0 fxel[0,1]\{g1,... 9}
Tiis casy to see thai £, () divergesto o0 on the dense sei S, whereas f,{z} — 0
at every other value of z € [0, 1]. We can define a tunciion

Jy={P mees
0 if xe[0,1\S.

This function f is noi real-vatued at the points of S—we say that it is extended

real-valued. Bui because the sei S has Lebesgue measure zero, it will turn out

that f is Lebesgue integrable and that Sé F{x)dw = 0, in the sense of Lebesgue.

Thus we do have

1 )
J lisn fo (&} de = limj Solx) da,
o " EAN Y

despife the fact that the pointwise limit of f,, exists only in the exfended real-
valued sense. Here we have benefited from the fact that the functions f,, are
uniformiy bounded. excepl on a set of measure zero. The reader should note
that the function f is not even improperly Riemann integrable in any plausible
sense,

Before proceeding io the task at hand, we explain why it is necessary (o develop
both Lebesgue measure and the Lebesgue integral for functions mapping a domain
X ihat is an abstract set into the set R of real numbers. One reason for working
at this level of generality, in which X is simply a set {not necessarily a sei of real
numbers) and f : X — R, is that it is imporiant io define ihe Lebesgue integral
for functions of several variables, That is, we wish also i0 be able to integrate
f:R*® — R. An elemeni of R is not a real number, bui rather an re-tuple of real
numbers. Moreover. in higher analysis, both pure and applied, it is aecessary to work
with functions defined on groups, such as the importani classical groups of matrices,
and this requires knowledge of Lebesgue integration on abstract sets. Moreover, the
study of Fourier inversion for functions defined on groups requires the introduction of
a measure on what is called the dual objecr* of the group, and the Fourier (ransform
must be integrated on that object.

*The dual object of a group is the set of all unitary equivalence classes of irreducible unitary representations
of the underlying group. When endowed with a usable topology. such objects can be quite complex
wpologically.
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Finally, there is a very important motivation for the abstract study of measure
theory from probability. In a probability nodel, the outcomes of an experiment are
pictured as poisnts in a so-called sample space X. An event is concepinalized as a
subset E € X. The idea behind this is that £ denotes the eveat that the experiment
yields a resuli that is an element of E. For example, X could be the veal line. The
experiment could be measuring the temperature of the mathematics classroom at 3
PM. on a certain day. The interval E' = [80, 90] would represent the eveni that the
iemperature turns out to be between 80° and 90°F.

In probability theory, one wishes very strongly to have a concept of the probability
#(E)) that has the following properties:

o The probability #(E) € [0, 1] for each eveni E.

» The probability imeasure g is additive on all couniably infinite sequences of
mutually disjoint events.

As discussed above, this cannot be done for all subseis of R—at leasi not with a
measure thai generalizes reasonably the length of an interval. Thus for probability
also, we must sfudy the concept of measurable sets and the measure of such a set.

The sample space for a probability model need not be a subset of the real line. For
example, Brownian motion is the type of motion exhibited by a particle suspended in
a fluid. In order to study Brownian motioi by means of probability theory, one must
place a measure on the set of all possible paths that a Brownian motion may follow. >

Since the sample space of an experiment could be a set guite different from R, we
must develop the theory of measure and integration on abstract sets.

*It turns out that these paihs are continuous, but they are nowhere differeniiable with probability 1!
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