Chapter 1: Programming in Linux

In This Chapter

v Figuring out programming

v+~ Exploring the software-development tools in Linux

v+ Compiling and linking programs with GCC

1 Using make

+ Debugging programs with gdb

v Understanding the implications of GNU, GPL, and LGPL

Linux comes loaded with all the tools you need to develop software. (All
you have to do is install them.) In particular, it has all the GNU software-
development tools, such as GCC (C and C++ compiler), GNU make, and the
GNU debugger. This chapter is intended to introduce you to programming,
describe the software-development tools, and show you how to use them.
Although there are examples in the C and C++ programming languages, the
focus isn’t on showing you how to program in those languages, but on show-
ing you how to use various software-development tools (such as compilers,
make, and debugger).

The chapter concludes with a brief explanation of how the Free Software
Foundation’s GNU General Public License (GPL) may affect any plans you
might have to develop Linux software. You need to know this because you
use GNU tools and GNU libraries to develop software in Linux.

An Overview of Programming

If you've written computer programs in any programming language, you can
start writing programs on your Linux system very quickly. If you've never
written a computer program, however, you need two basic resources before
you get into it: a look at the basics of programming and a quick review of
computers and the major parts that make them up. This section offers an
overview of computer programming — just enough to get you going.

520 An overview of Programming

Figure 1-1:
A simplified
view of a
computer
and how it
runs
programs.

A simplified view of a computer

Before you get a feel for computer programming, you need to understand
where computer programs fit into the rest of your computer. Figure 1-1
shows a simplified view of a computer, highlighting the major parts that are
important to a programmer.

Memory
Transient storage where programs are
loaded and executed by the CPU.

Output
Central Processing Unit (CPU)
The computer’s brain — the microprocessor —
that executed the instructions contained in
the program loaded into memory.
Input

Hard Drive
Permanent storage where programs are
loaded and data are stored in files.

At the heart of a computer is the central processing unit (CPU) that performs
the instructions contained in a computer program. The specific piece of
hardware that does the job (which its makers call a microprocessor and the
rest of us call a chip) varies by system: In a Pentium PC, it’s a Pentium; in

a Sun SPARC workstation, it’s a SPARC chip; in an HP UNIX workstation,

it’s a PA-RISC chip. These microprocessors have different capabilities but
the same mission: Tell the computer what to do.

Random Access Memory (RAM), or just memory, serves as the storage for
computer programs while the CPU executes them. If a program works on
some data, that data is also stored in the memory. The contents of the
memory aren’t permanent; they go away (never to return) when the com-
puter is shut down or when a program is no longer running.

The hard drive (also referred to as the hard disk or disk) serves as the perma-
nent storage space for computer programs and data. The hard drive is organ-
ized into files, which are in turn organized in hierarchical directories and
subdirectories (somewhat like organizing paper folders into the drawers in a
file cabinet). Each file is essentially a block of storage capable of holding a

An Overview of Programming 521

variety of information. For example, a file may be a human-readable text file —
or it may be a collection of computer instructions that makes sense only to
the CPU. When you create computer programs, you work a lot with files.

For a programmer, the other two important items are the input and output —
the way a program gets input from the user and displays output to the user.
The user provides input through the keyboard and mouse and output
appears on the monitor. However, a program may also accept input from a
file and send output to a file.

Role of the operating system

The operating system is a special collection of computer programs whose pri-
mary purpose is to load and run other programs. The operating system also
acts as an interface between the software and the hardware. All operating
systems include one or more command processors (called shells in Linux)
that allow users to type commands and perform tasks, such as running a
program or printing a file. Most operating systems also include a graphical
user interface (such as GNOME and KDE in Linux) that allows the user to
perform most tasks by clicking on-screen icons. Linux, Windows (whether
the NT, 2000, or XP version), and various versions of UNIX, including Linux,
are examples of operating systems.

It’s the operating system that gives a computer its personality. For example,
you can run Windows 2000 or Windows XP on a PC. On that same PC, you
can also install and run Linux. That means, depending on the operating
system installed on it, the selfsame PC could be a Windows 2000, Windows
XP, or a Linux system.

Computer programs are built on top of the operating system. That means a
computer program must make use of the capabilities that the operating system
includes. For example, computer programs read and write files by using built-in
capabilities of the operating system. (And if the operating system can’t make
coffee, no program can tell it to and still expect positive results.)

Although the details vary, most operating systems support a number of simi-
lar concepts. As a programmer, you need to be familiar with the following
handful of concepts:

4+ A process is a computer program that is currently running in the
computer. Most operating systems allow multiple processes to run
simultaneously.

4+ A command processor, or shell, is a special program that allows the user
to type commands and perform various tasks, such as run any program,
look at a host of files, or print a file. In Windows 2000 or Windows XP,
you can type commands in a Command Prompt window.

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

522 An overview of Programming

WMBER
é“'
&

<+

The term command line refers to the commands that a user types to the
command processor. Usually a command line contains a command and
one or more options — the command is the first word in the line and the
rest are the options (specific behaviors demanded of the computer).

Environment variables are essentially text strings with names. For exam-
ple, the PATH environment variable refers to a string that contains the
names of directories. Operating systems use environment variables to
provide useful information to processes. To see a list of environment
variables in a Windows 2000 or Windows XP system, type set in the
Command Prompt window. In Linux, you can type printenv to see the
environment variables.

Basics of computer programming

A computer program is a sequence of instructions for performing a specific task,
such as adding two numbers or searching for some text in a file. Consequently,
computer programming involves creating that list of instructions, telling the
computer how to complete a specific task. The exact instructions depend on
the programming language that you use. For most programming languages, you
have to go through the following steps to create a computer program:

1.

3.

4.

Use a text editor to type the sequence of commands from the program-
ming language.

This sequence of commands accomplishes your task. This human-
readable version of the program is called the source file or source code.
You can create the source file with any application (such as a word
processor) that can save a document in plain-text form.

Always save your source code as plain text. (The filename depends on
the type of programming language.) Word processors can sometimes put
extra instructions in their documents that tell the computer to display
the text in a particular font or other format. Saving the file as plain text
deletes any and all such extra instructions. Trust me; your program is
much better off without such stuff.

Use a compiler program to convert that text file — the source code —
from human-readable form into machine-readable object code.

Typically, this step also combines several object code files into a single
machine-readable computer program, something that the computer can
actually run.

Use a special program called a debugger to track down any errors and
find which lines in the source file might have caused the errors.

Go back to Step 1 and use the text editor to fix the errors and repeat
the rest of the steps.

Exploring the Software-Development Tools in Linux 52 3

These steps are referred to as the Edit-Compile-Debug cycle of programming
because most programmers have to repeat this sequence several times
before a program works correctly.

In addition to knowing the basic programming steps, you also need to be
familiar with the following terms and concepts:

+

Variables are used to store different types of data. You can think of each
variable as being a placeholder for data — kind of like a mailbox, with a
name and a room to store data. The content of the variable is its value.

Expressions combine variables by using operators. An expression may
add several variables; another may extract a part of a string.

Statements perform some action, such as assigning a value to a variable
or printing a string.

Flow-control statements allow statements to execute in various orders,
depending on the value of some expression. Typically, flow-control state-
ments include for, do-while, while, and if-then-else statements.

Functions (also called subroutines or routines) allow you to group several
statements and give the group a name. This feature allows you to exe-
cute the same set of statements by invoking the function that represents
those statements. Typically, a programming language provides many
predefined functions to perform tasks, such as opening (and reading
from) a file.

Exploring the Software-Development Tools in Linux

Linux includes these traditional UNIX software-development tools:

§

+

Text editors such as vi and emacs for editing the source code. (To find
out more about vi, see Book II, Chapter 6.)

A C compiler for compiling and linking programs written in C — the pro-
gramming language of choice for writing UNIX applications (though
nowadays, many programmers are turning to C++ and Java). Linux
includes the GNU C and C++ compilers. Originally, the GNU C Compiler
was known as GCC — which now stands for GNU Compiler Collection.
(See a description at http://gcc.gnu.org.)

The GNU make utility for automating the software build process — the
process of combining object modules into an executable or a library.
(The operating system can load and run an executable, and a library is
a collection of binary code that can be used by executables.)

A debugger for debugging programs. Linux includes the GNU debug-
ger gdb.

Book VI
Chapter 1

Xnui ui
Bulwweiboig

52 4 Exploring the Software-Development Tools in Linux

P
QY S| E(,‘/‘}o

(9

Q\sﬂ‘lB(/,)

4+ A version-control system to keep track of various revisions of a source
file. Linux comes with RCS (Revision Control System) and CVS
(Concurrent Versions System). Nowadays, most open-source projects
use CVS as their version-control system, but a recent version control
system called Subversion is being developed as a replacement for CVS.

You can install these software-development tools in any Linux distribution:

4+ Xandros: Usually, the tools are installed by default.
4+ Fedora: Select the Development Tools package during installation.

4+ Debian: Type apt-get install gcc and then apt-get install libc6-dev in a
terminal window.

4 SUSE: Choose Main Menu=>System=>YaST, click Software on the left side
of the window, and then click Install and Remove Software. Type gec in
the search field in YaST, select the relevant packages from the search
results, and click Accept to install. If you find any missing packages, you
can install them in a similar manner.

The next few sections briefly describe how to use these software-
development tools to write applications for Linux.

GNU C and C++ compilers

The most important software-development tool in Linux is GCC — the GNU C
and C++ compiler. In fact, GCC can compile three languages: C, C++, and
Objective-C (a language that adds object-oriented programming capabilities
to C). You use the same gcc command to compile and link both C and C++
source files. The GCC compiler supports ANSI standard C, making it easy to
port any ANSI C program to Linux. In addition, if you've ever used a C com-
piler on other UNIX systems, you should feel right at home with GCC.

Using GCC

Use the gcc command to invoke GCC. By default, when you use the gcc
command on a source file, GCC preprocesses, compiles, and links to create
an executable file. However, you can use GCC options to stop this process at
an intermediate stage. For example, you might invoke gcc by using the -c
option to compile a source file and to generate an object file, but not to per-
form the link step.

Using GCC to compile and link a few C source files is very simple. Suppose
you want to compile and link a simple program made up of two source files.
It is possible to use the following program source for this task; it’s stored in
the file area. ¢, and it’s the main program that computes the area of a circle
whose radius is specified through the command line:

Exploring the Software-Development Tools in Linux 525

#include <stdio.h>
#include <stdlib.h>
/* Function prototype */
double area_of_ circle(double r);
int main(int argc, char **argv)
{
if (argc < 2)
{
printf ("Usage: %s radius\n", argv[0]);
exit (1) ;
}
else

{
double radius = atof(argv[l]);
double area = area_of_circle(radius);
printf ("Area of circle with radius %f = %f\n",
radius, area);

}
return O;

}

You need another file that actually computes the area of a circle. Here’s the
listing for the file circle. c, which defines a function that computes the
area of a circle:

#include <math.h>
#define SQUARE (x) ((x)*(x))
double area_of_circle(double r)

{
return 4.0 * M_PI * SQUARE(r);

}

For such a simple program, of course, it’d be possible to place everything in
a single file, but this example was contrived a bit to show how to handle mul-
tiple files.

To compile these two files and to create an executable file named area, use
this command:

gcc -o area area.c circle.c

This invocation of GCC uses the -o option to specify the name of the exe-
cutable file. (If you don’t specify the name of an output file with the -o
option, GCC saves the executable code in a file named a . out.)

If you have too many source files to compile and link, you can compile the
files individually and generate object files (that have the . o extension). That
way, when you change a source file, you need to compile only that file — you

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

526 Exploring the Software-Development Tools in Linux

\\J

MBER
6“'
&

just link the compiled file to all the object files. The following commands
show how to separate the compile and link steps for the sample program:

gcec -c area.c
gcc -c¢ circle.c
gcc -o area area.o circle.o

The first two commands run gcc with the -c option compiling the source
files. The third gcc command links the object files into an executable named
area.

In case you're curious, here’s how you run the area program (to compute
the area of a circle with a radius of 1):

./area 1
The program generates the following output:
Area of circle with radius 1.000000 = 12.566371

Incidentally, you have to add the . / prefix to the program’s name (area) only
if the current directory isn’t in the PATH environment variable. You do no
harm in adding the prefix, even if your PATH contains the current directory.

Compiling C++ programs

GNU CC is a combined C and C++ compiler, so the gcc command also can
compile C++ source files. GCC uses the file extension to determine whether a
file is C or C++. C files have a lowercase . c extension whereas C++ files end
with .C or . cpp.

Although the gcc command can compile a C++ file, that command doesn’t
automatically link with various class libraries that C++ programs typically
require. That’s why compiling and linking a C++ program by using the g++
command is easy, which, in turn, runs gcc with appropriate options.

Suppose that you want to compile the following simple C++
program stored in a file named hello.C. (Using an
uppercase C extension for C++ source files is
customary.) #include <iostream>

int main()

{

using namespace std;
cout << "Hello from Linux!" << endl;

Exploring the Software-Development Tools in Linux 527

To compile and link this program into an executable program named hello,
use this command:

g++ -0 hello hello.C

The command creates the hello executable, which you can run as follows:
./hello

The program displays the following output:

Hello from Linux!

A host of GCC options controls various aspects of compiling C and C++
programs.

Exploring GCC options

Here’s the basic syntax of the gcc command:

gcc options filenames

Each option starts with a hyphen (-) and usually has a long name, such as
-funsigned-char or -finline-functions. Many commonly used
options are short, however, such as -c, to compile only, and -g, to generate
debugging information (needed to debug the program by using the GNU
debugger, gdb).

You can view a summary of all GCC options by typing the following com-
mand in a terminal window:

man gcc

Then you can browse through the commonly used GCC options. Usually,
you don’t have to provide GCC options explicitly because the default set-
tings are fine for most applications. Table 1-1 lists some of the GCC options
you may use.

Table 1-1 Commonly Used GCC Options
Option Meaning
-ansi Supports ANSI standard C syntax only. (This option disables some

GNU C-specific features, suchasthe __asm__and __typeof_
keywords.) When used with g++, supports ISO standard C++ only.

-c Compile and generate object file only

-DMACRO Define the macro with the string "1 " as its value

(continued)

Book VI
Chapter 1

Xnui ui
Bulwweiboig

528 Exploring the Software-Development Tools in Linux

Table 1-1 (continued)

Option Meaning

-DMACRO=DEFN Define the macro as DEFN where DEFN is some text string.

-E Run only the C preprocessor

-fallow-single- Perform all math operations in single precision

precision

-fpcc-struct- Return all struct and union values in memory, rather than

return return in registers. (Returning values this way is less efficient, but at
least it's compatible with other compilers.

-fPIC Generate position-independent code (PIC) suitable for use in a
shared library

-freg-struct- When possible, return struct and union values registers

return

-g Generate debugging information. (The GNU debugger can use this
information.)

-I DIRECTORY Search the specified directory for files that you include by using the
#include preprocessor directive

-L DIRECTORY Search the specified directory for libraries

-1 LIBRARY Search the specified library when linking

-mcpu=cputype Optimize code for a specific processor. (cputype can take many
different values — some common ones are 1386, 1486, 1586,
1686, pentium, pentiumpro, pentium?, pentium3,
pentiumd.)

-o FILE Generate the specified output file (used to designate the name of an
executable file)

-00 (two zeros) Do not optimize

-0 or -01 (letter 0) Optimize the generated code

-02 (letter 0) Optimize even more

-03 (letter Q) Perform optimizations beyond those done for -02

-0s (letter 0) Optimize for size (to reduce the total amount of code)

-pedantic Generate errors if any non-ANSI standard extensions are used

-pg Add extra code to the program so that, when run, it generates infor-

mation the gprof program can use to display timing details for
various parts of the program

-shared Generate a shared object file (typically used to create a shared library)
-UMACRO Undefine the specified macro

-v Display the version number of GCC

-w Don’t generate any warning messages

-W1, OPTION Pass the OPTTON string (containing multiple comma-separated

options) to the linker. To create a shared library named
1ibxXXX.so.1, for example, use the following flag: -wW1,
-soname, 11bXXX.so.1.

Exploring the Software-Development Tools in Linux 529

The GNU make utility

When an application is made up of more than a few source files, compiling
and linking the files by manually typing the gcc command can get very tire-
some. Also, you don’t want to compile every file whenever you change some-
thing in a single source file. These situations are where the GNU make utility
comes to your rescue.

The make utility works by reading and interpreting a makefile — a text file
that describes which files are required to build a particular program as well
as how to compile and link the files to build the program. Whenever you
change one or more files, make determines which files to recompile — and it
issues the appropriate commands for compiling those files and rebuilding
the program.

Makefile names

By default, GNU make looks for a makefile that has one of the following
names, in the order shown:

4 GNUmakefile
4 makefile
4 Makefile

In UNIX systems, using Makefile as the name of the makefile is custom-
ary because it appears near the beginning of directory listings where the
uppercase names appear before the lowercase names.

When you download software from the Internet, you usually find a
Makefile, together with the source files. To build the software, you only
have to type make at the shell prompt and make takes care of all the steps
necessary to build the software.

If your makefile doesn’t have a standard name (such as Makefile), you
have to use the -f option with make to specify the makefile name. If your
makefile is called myprogram.mak, for example, you have to run make
using the following command line:

make -f myprogram.mak

The makefile

For a program made up of several source and header files, the makefile
specifies the following:

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

530 Exploring the Software-Development Tools in Linux

\NG
s

4+ The items that make creates — usually the object files and the exe-
cutable. Using the term target to refer to any item that make has to
create is common.

4+ The files or other actions required to create the target.

4+ Which commands to execute to create each target.

Suppose that you have a C++ source file named form. C that contains the fol-
lowing preprocessor directive:

#include "form.h" // Include header file

The object file form. o clearly depends on the source file form.C and the
header file form.h. In addition to these dependencies, you must specify
how make converts the form. C file to the object file form. o. Suppose that
you want make to invoke g++ (because the source file is in C++) with these
options:

4 -c (compile only)
4+ -g (generate debugging information)

4+ -02 (optimize some)
In the makefile, you can express these options with the following rule:

This a comment in the makefile
The following lines indicate how form.o depends
on form.C and form.h and how to create form.o.
form.o: form.C form.h

g++ -¢ -g -02 form.C

In this example, the first noncomment line shows form. o as the target and
form.C and form.h as the dependent files.

The line following the dependency indicates how to build the target from its
dependents. This line must start with a tab. Otherwise, the make command
exits with an error message, and you're left scratching your head because
when you look at the makefile in a text editor, you can’t tell the difference
between tab and space. Now that you know the secret, the fix is to replace
the spaces at the beginning of the offending line with a single tab.

The benefit of using make is that it prevents unnecessary compilations. After
all, you can run g++ (or gcc) from a shell script to compile and link all the
files that make up your application, but the shell script compiles everything,
even if the compilations are unnecessary. GNU make, on the other hand,

Exploring the Software-Development Tools in Linux 53]

builds a target only if one or more of its dependents have changed since
the last time the target was built. make verifies this change by examining the
time of the last modification of the target and the dependents.

make treats the target as the name of a goal to be achieved; the target doesn’t
have to be a file. You can have a rule such as this one:

clean:
rm -f *.o0

This rule specifies an abstract target named clean that doesn’t depend on
anything. This dependency statement says that to create the target clean,
GNU make invokes the command rm -f *.o, which deletes all files that
have the . o extension (namely the object files). Thus, the net effect of creat-
ing the target named clean is to delete the object files.

Variables (or macros)

In addition to the basic capability of building targets from dependents, GNU
make includes many nice features that make expressing the dependencies
and rules for building a target from its dependents easy for you. If you need
to compile a large number of C++ files by using GCC with the same options,
for example, typing the options for each file is tedious. You can avoid this
repetitive task by defining a variable or macro in make as follows:

Define macros for name of compiler
CXX= g++
Define a macro for the GCC flags
CXXFLAGS= -02 -g -mcpu=1686
A rule for building an object file
form.o: form.C form.h

$(CXX) -c $(CXXFLAGS) form.C

In this example, CXX and CXXFLAGS are make variables. (GNU make prefers
to call them variables, but most UNIX make utilities call them macros.)

To use a variable anywhere in the makefile, start with a dollar sign ($) fol-
lowed by the variable within parentheses. GNU make replaces all occur-
rences of a variable with its definition; thus it replaces all occurrences of

$ (CXXFLAGS) with the string -02 -g -mcpu=1686

GNU make has several predefined variables that have special meanings.
Table 1-2 lists these variables. In addition to the variables listed in Table 1-2,
GNU make considers all environment variables (such as PATH and HOME) to
be predefined variables as well.

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

53 2 Exploring the Software-Development Tools in Linux

Table 1-2

Some Predefined Variables in GNU make

Variable

Meaning

oe

$

Member name for targets that are archives. If the target is
libDisp.a (image.o),for example, $% is image. o.

$*

Name of the target file without the extension

S+

Names of all dependent files with duplicate dependencies, listed in their
order of occurrence

S<

The name of the first dependent file

$?

Names of all dependent files (with spaces between the names) that are
newer than the target

sae

Complete name of the target. If the targetis 1ibDisp.a image.o),
for example, $@is 1ibDisp. a.

$/\

Names of all dependent files, with spaces between the names. Duplicates
are removed from the dependent filenames.

AR

Name of the archive-maintaining program (default value: ar)

ARFLAGS

Flags for the archive-maintaining program (default value: rv)

AS

Name of the assembler program that converts the assembly language to
object code (default value: as)

ASFLAGS

Flags for the assembler

ccC

Name of the C compiler (default value: cc)

CFLAGS

Flags that are passed to the C compiler

co

Name of the program that extracts a file from RCS (default value: co)

COFLAGS

Flags for the RCS co program

CpP

Name of the C preprocessor (default value: $ (CC) -E)

CPPFLAGS

Flags for the C preprocessor

CXX

Name of the C++ compiler (default value: g++)

CXXFLAGS

Flags that are passed to the C++ compiler

FC

Name of the FORTRAN compiler (default value: £77)

FFLAGS

Flags for the FORTRAN compiler

LDFLAGS

Flags for the compiler when it's supposed to invoke the linker 1d

RM

Name of the command to delete a file (Default value: rm - £)

A sample makefile

You can write a makefile easily if you use the predefined variables of GNU
make and its built-in rules. Consider, for example, a makefile that creates
the executable xdraw from three C source files (xdraw. ¢, xviewobj . c, and
shapes.c) and two header files (xdraw.h and shapes.h). Assume that

Exploring the Software-Development Tools in Linux 533

each source file includes one of the header files. Given these facts, here is
what a sample makefile may look like:

HHGHH SR H A HH S S S S HHH HH HH H H HH
Sample makefile

Comments start with '#°'

#

HASHHH SR AR H B H A H SRR AR
Use standard variables to define compile and link flags
CFLAGS= -g -02

Define the target "all"

all: xdraw

OBJS=xdraw.o xXviewobj.o shapes.o

xdraw: $(OBJS)

Object files

xdraw.o: Makefile xdraw.c xdraw.h

xviewobj.o: Makefile xviewobj.c xdraw.h

shapes.o: Makefile shapes.c shapes.h

This makefile relies on GNU make’s implicit rules. The conversion of .c
files to . o files uses the built-in rule. Defining the variable CFLAGS passes
the flags to the C compiler.

The target named all is defined as the first target for a reason — if you run
GNU make without specifying any targets in the command line (see the make
syntax described in the following section), the command builds the first
target it finds in the makefile. By defining the first target all as xdraw,
you can ensure that make builds this executable file, even if you don’t explic-
itly specify it as a target. UNIX programmers traditionally use all as the
name of the first target, but the target’s name is immaterial; what matters is
that it’s the first target in the makefile.

How to run make

Typically, you run make by simply typing the following command at the shell
prompt:

make

When run this way, GNU make looks for a file named GNUmakefile,
makefile, or Makefile — in that order. If make finds one of these
makefiles, it builds the first target specified in that makefile. However,

if make doesn’t find an appropriate makefile, it displays the following error
message and exits:

make: *** No targets specified and no makefile found. Stop.

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

53 4 Exploring the Software-Development Tools in Linux

If your makefile happens to have a different name from the default names,
you have to use the - f option to specify the makefile. The syntax of the
make command with this option is

make -f filename
where filename is the name of the makefile.

Even when you have a makefile with a default name such as Makefile,
you may want to build a specific target out of several targets defined in the
makefile. In that case, you have to use the following syntax when you
run make:

make target

For example, if the makefile contains the target named clean, you can
build that target with this command:

make clean

Another special syntax overrides the value of a make variable. For example,
GNU make uses the CFLAGS variable to hold the flags used when compiling
C files. You can override the value of this variable when you invoke make.
Here’s an example of how you can define CFLAGS as the option -g -02:

make CFLAGS="-g -02"

In addition to these options, GNU make accepts several other command-line
options. Table 1-3 lists the GNU make options.

Table 1-3 Options for GNU make

Option Meaning

-b Ignore but accept for compatibility with other versions of make

-C DIR Change to the specified directory before reading the makefile

-d Print debugging information

-e Allow environment variables to override definitions of similarly named vari-

ablesinthe makefile

-f FILE Read FILE asthemakefile

-h Display the list of make options
-1i Ignore all errors in commands executed when building a target
-I DIR Search specified directory for included makefiles. (The capability to

include a file in amakefileis unique to GNU make.)

Exploring the Software-Development Tools in Linux 535

Option Meaning
-j NUM Specify the number of commands that make can run simultaneously
-k Continue to build unrelated targets, even if an error occurs when building

one of the targets

-1 LOAD Don't start a new job if load average is at least LOAD (a floating-point number)

-m Ignore but accept for compatibility with other versions of make

-n Print the commands to execute but do not execute them

-o FILE Do not rebuild the file named FILE, even if itis older than its dependents

-p Display the make database of variables and implicit rules

-q Do not run anything, but return 0 (zero) if all targets are up to date; return 1 if
anything needs updating; and 2 if an error occurs

-r Get rid of all built-in rules

-R Get rid of all built-in variables and rules

-s Work silently (without displaying the commands as they execute)

-t Change the timestamp of the files

-v Display the version number of make and a copyright notice

-w Display the name of the working directory before and after processing the
makefile

-W FILE Assume that the specified file has been modified (used with —n to see what
happens if you modify that file).

The GNU debugger

Although make automates the process of building a program, that part of
programming is the least of your worries when a program doesn’t work cor-
rectly or when a program suddenly quits with an error message. You need a
debugger to find the cause of program errors. Linux includes gdb — the ver-
satile GNU debugger with a command-line interface.

Like any debugger, gdb lets you perform typical debugging tasks, such as the
following:

4+ Set the breakpoint so that the program stops at a specified line

4 Watch the values of variables in the program

4+ Step through the program one line at a time

4+ Change variables in an attempt to fix errors

The gdb debugger can debug C and C++ programs.

Book VIII
Chapter 1

Xnurj ui
Bulwweiboig

53 6 Exploring the Software-Development Tools in Linux

\\J

Preparing to debug a program

If you want to debug a program by using gdb, you have to ensure that the
compiler generates and places debugging information in the executable. The
debugging information contains the names of variables in your program and
the mapping of addresses in the executable file to lines of code in the source
file. gdb needs this information to perform its functions, such as stopping
after executing a specified line of source code.

To ensure that the executable is properly prepared for debugging, use the -g
option with GCC. You can do this task by defining the variable CFLAGS in the
makefile as

CFLAGS= -g

Running gdb

The most common way to debug a program is to run gdb by using the fol-
lowing command:

gdb progname

progname is the name of the program’s executable file. After it runs, gdb
displays the following message and prompts you for a command:

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux".

(gdb)

You can type gdb commands at the (gdb) prompt. One useful command is
help — it displays a list of commands as the next listing shows:

(gdb) help
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands
Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

Exploring the Software-Development Tools in Linux 53 /

To quit gdb, type q and then press Enter.

gdb has a large number of commands, but you need only a few to find the
cause of an error quickly. Table 1-4 lists the commonly used gdb commands.

Table 1-4

Commonly Used gdb Commands

This Command

Does the Following

break NUM Sets a breakpoint at the specified line number. (The debugger
stops at breakpoints.)
bt Displays a trace of all stack frames. (This command shows you the

sequence of function calls so far.)

clear FILENAME:

Deletes the breakpoint at a specific line in a source file. For

NUM example, clear xdraw.c:8 clearsthe breakpoint at line 8 of
file xdraw. c.
continue Continues running the program being debugged. (Use this com-

mand after the program stops due to a signal or breakpoint.)

display EXPR

Displays the value of expression (consisting of variables defined in
the program) each time the program stops

file FILE Loads a specified executable file for debugging

help NAME Displays help on the command named NAME

info break Displays a list of current breakpoints, including information on
how many times each breakpointis reached

info files Displays detailed information about the file being debugged

info func Displays all function names

info local Displays information about local variables of the current function

info prog Displays the execution status of the program being debugged

info var Displays all global and static variable names

kill Ends the program you're debugging

list Lists a section of the source code

make Runs the make utility to rebuild the executable without leaving
gdb

next Advances one line of source code in the current function without

stepping into other functions

print EXPR

Shows the value of the expression EXPR

quit

Quits gdb

run

Starts running the currently loaded executable

set variable

VAR=VALUE

Sets the value of the variable VAR to VALUE

(continued)

Book VIII
Chapter 1

Xnurj ui
Bulwweiboig

53 8 Exploring the Software-Development Tools in Linux

Table 1-4 (continued)

This Command Does the Following

shell CcMD Executes a UNIX command cmD, without leaving gdb

step Advances one line in the current function, stepping into other
functions, if any

watch VAR Shows the value of the variable named VAR whenever the value
changes

where Displays the call sequence. Use this command to locate where

your program died.

x/F ADDR Examines the contents of the memory location at address ADDR in
the format specified by the letter 7, which can be o (octal), x (hex),
d (decimal), u (unsigned decimal), t (binary), £ (float), a (address),
i (instruction), c (char), or s (string). You can append a letter indi-
cating the size of data type to the format letter. Size letters are b
(byte), h (halfword, 2 bytes), w (word, 4 bytes), and g (giant,
8 bytes). Typically, ADDR is the name of a variable or pointer.

Finding bugs by using gdb

To understand how you can find bugs by using gdb, you need to see an
example. The procedure is easiest to show with a simple example, so the fol-
lowing is a rather contrived program, dbgtst . c, that contains a typical bug.

#include <stdio.h>
static char buf[256];
void read_input (char *s);
int main(void)
{
char *input = NULL; /* Just a pointer, no storage for
string */
read_input (input) ;
/* Process command. */
printf ("You typed: %$s\n", input);
/* ... %/
return 0;
}
void read_input (char *s)
{
printf ("Command: ") ;
gets(s);
}

This program’s main function calls the read_input function to get a line of
input from the user. The read_input function expects a character array in
which it returns what the user types. In this example, however, main calls
read_input with an uninitialized pointer — that’s the bug in this simple
program.

Exploring the Software-Development Tools in Linux 539

Build the program by using gcc with the -g option:
gcc -g -o dbgtst dbgtst.c

Ignore the warning message about the gets function being dangerous; 'm
trying to use the shortcoming of that function to show how you can use gdb
to track down errors.

To see the problem with this program, run it and type test at the Command:
prompt:

./dbgtst
Command: test
Segmentation fault

The program dies after displaying the Segmentation fault message. For
such a small program as this one, you can probably find the cause by exam-
ining the source code. In a real-world application, however, you may not
immediately know what causes the error. That’s when you have to use gdb
to find the cause of the problem.

To use gdb to locate a bug, follow these steps:

1. Load the program under gdb. To load a program named dbgtst in
gdb, type the following:

gdb dbgtst

2. Start executing the program under gdb by typing the run command.
When the program prompts for input, type some input text.

The program fails as it did previously. Here’s what happens with the
dbgtst program:

(gdb) run

Starting program: /home/naba/swdev/dbgtst

Command: test

Program received signal SIGSEGV, Segmentation fault.
0x400802b6 in gets () from /lib/tls/libc.so.6

(gdb)

3. Use the where command to determine where the program died.

For the dbgtst program, this command yields this output:

(gdb) where

#0 0x400802b6 in gets () from /lib/tls/libc.so.6
#1 0x08048474 in read_input (s=0x0) at dbgtst.c:16
#2 0x08048436 in main () at dbgtst.c:7

(gdb)

The output shows the sequence of function calls. Function call #0 —
the most recent one — is to a C library function, gets. The gets call

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

5 460 Exploring the Software-Development Tools in Linux

originates in the read_input function (at line 16 of the file dbgtst. c),
which in turn is called from the main function at line 7 of the dbgtst . c file.

4. Use the 1ist command to inspect the lines of suspect source code.
In dbgtst, you may start with line 16 of dbgtst . c file, as follows:

(gdb) list dbgtst.c:16

11 return 0;

12 }

13 void read_input (char *s)
14 {

15 printf ("Command: ") ;
16 gets (s);

17 }

18

(gdb)

After looking at this listing, you can tell that the problem may be the way
read_input is called. Then you list the lines around line 7 in dbgtst.c
(where the read_input call originates):

(gdb) list dbgtst.c:7

2 static char buf[256];

3 void read_input (char *s);

4 int main(void)

5 {

6 char *input = NULL; /* Just a pointer, no
storage for string */

7 read_input (input) ;

8 /* Process command. */

9 printf("You typed: %$s\n", input);
10 VA

11 return 0;

(gdb)

At this point, you can narrow the problem to the variable named input.
That variable is an array, not a NULL (which means zero) pointer.

Fixing bugs in gdb

Sometimes you can fix a bug directly in gdb. For the example program in the
preceding section, you can try this fix immediately after the program dies
after displaying an error message. Because the example is contrived, there is
an extra buffer named buf defined in the dbgtst program, as follows:

static char buf[256];

It is possible to fix the problem of the uninitialized pointer by setting the
variable input to buf. The following session with gdb corrects the problem

Understanding the Implications of GNU Licenses 5 4 1

of the uninitialized pointer. (This example picks up immediately after the
program runs and dies, due to the segmentation fault.)

(gdb) file dbgtst
A program is being debugged already. Kill it? (y or n) y
Load new symbol table from "/home/naba/sw/dbgtst"? (y or n) y
Reading symbols from /home/naba/sw/dbgtst...done.
(gdb) 1list
1 #include <stdio.h>
2 static char buf[256];
3 void read_input (char *s);
4 int main(void)
5 {
6 char *input = NULL; /* Just a pointer, no storage
for string */

7 read_input (input) ;

8 /* Process command. */

9 printf ("You typed: %s\n", input);
10 VA

(gdb) break 7
Breakpoint 2 at 0x804842b: file dbgtst.c, line 7.

(gdb) run

Starting program: /home/naba/sw/dbgtst
Breakpoint 1, main () at dbgtst.c:7

7 read_input (input) ;
(gdb) set var input=buf

(gdb) cont

Continuing.

Command: test

You typed: test

Program exited normally.
(gdb)g

As the previous listing shows, if the program is stopped just before
read_input is called and the variable named input is set to buf (which is
avalid array of characters), the rest of the program runs fine.

After finding a fix that works in gdb, you can make the necessary changes to
the source files and make the fix permanent.

Understanding the Implications of GNU Licenses

You have to pay a price for the bounty of Linux — to protect its developers
and users, Linux is distributed under the GNU GPL (General Public License),
which stipulates the distribution of the source code.

Book VIII
Chapter 1

Xnui ui
Bulwweiboig

5 42 Understanding the Implications of GNU Licenses

“NG‘
Q \| !

The GPL doesn’t mean, however, that you can’t write commercial software
for Linux that you want to distribute (either for free or for a price) in binary
form only. You can follow all the rules and still sell your Linux applications in
binary form.

When writing applications for Linux, be aware of two licenses:

4 The GNU General Public License (GPL), which governs many Linux pro-
grams, including the Linux kernel and GCC

4+ The GNU Library General Public License (LGPL), which covers many
Linux libraries

The following sections provide an overview of these licenses and some sug-
gestions on how to meet their requirements. Don’t take anything in this book
as legal advice, but instead you should read the full text for these licenses in
the text files on your Linux system; show these licenses to your legal counsel
for a full interpretation and an assessment of applicability to your business.

The GNU General Public License

The text of the GNU General Public License (GPL) is in a file named COPYING
in various directories in your Linux system. For example, type the following
command to find a copy of that file in your Linux system:

find /usr -name "COPYING" -print

After you find the file, you can change to that directory and type more
COPYING to read the GPL. If you can’t find the COPYING file, turn to the
back of this book to read the GPL.

The GPL has nothing to do with whether you charge for the software or dis-
tribute it for free; its thrust is to keep the software free for all users. GPL
requires that the software is distributed in source-code form and by stipulat-
ing that any user can copy and distribute the software in source-code form
to anyone else. In addition, everyone is reminded that the software comes
with absolutely no warranty.

The software that the GPL covers isn’t in the public domain. Software cov-
ered by GPL is always copyrighted, and the GPL spells out the restrictions
on the software’s copying and distribution. From a user’s point of view, of
course, GPL’s restrictions aren’t really restrictions; the restrictions are really
benefits because the user is guaranteed access to the source code.

If your application uses parts of any software the GPL covers, your applica-
tion is considered a derived work, which means that your application is
also covered by the GPL, and you must distribute the source code to your
application.

\\J

Understanding the Implications of GNU Licenses 5 43

Although the GPL covers the Linux kernel, the GPL doesn’t cover your appli-
cations that use the kernel services through system calls. Those applica-
tions are considered normal use of the kernel.

If you plan to distribute your application in binary form (as most commercial
software is distributed), you must make sure that your application doesn’t
use any parts of any software the GPL covers. Your application may end up
using parts of other software when it calls functions in a library. Most
libraries, however, are covered by a different GNU license, which is
described in the next section.

You have to watch out for only a few library and utility programs the GPL
covers. The GNU dbm (gdbm) database library is one of the prominent libraries
GPL covers. The GNU bison parser-generator tool is another utility the GPL
covers. If you allow bison to generate code, the GPL covers that code.

Other alternatives for the GNU dbm and GNU bison aren’t covered by GPL.
For a database library, you can use the Berkeley database library db in place
of gdbm. For a parser-generator, you may use yacc instead of bison.

The GNU Lesser General Public License

The text of the GNU Lesser General Public License (LGPL) is in a file named
COPYING.LIB. If you have the kernel source installed, a copy of COPYING.LIB
file is in one of the source directories. To locate a copy of the COPYING.LIB file
on your Linux system, type the following command in a terminal window:

find /usr -name "COPYING*" -print

This command lists all occurrences of COPYING and COPYING.LIB in your
system. The COPYING file contains the GPL, whereas COPYING.LIB has the
LGPL.

The LGPL is intended to allow use of libraries in your applications, even if
you don’t distribute source code for your application. The LGPL stipulates,
however, that users must have access to the source code of the library you
use and that users can make use of modified versions of those libraries.

The LGPL covers most Linux libraries, including the C library (1ibc. a).
Thus, when you build your application on Linux by using the GCC compiler,
your application links with code from one or more libraries the LGPL covers.
If you want to distribute your application in binary form only, you need to
pay attention to LGPL.

One way to meet the intent of the LGPL is to provide the object code for
your application and a makefile that relinks your object files with any
updated Linux libraries the LGPL covers.

Book VI
Chapter 1

Xnui ui
Bulwweiboig

5 44 Understanding the Implications of GNU Licenses

WMBER
s&
&

A better way to satisfy the LGPL is to use dynamic linking, in which your
application and the library are separate entities, even though your applica-
tion calls functions in the library when it runs. With dynamic linking, users
immediately get the benefit of any updates to the libraries without ever
having to relink the application.

