
CHAPTER 1

INTRODUCTION

1.1 WHY ERROR CONTROL?

The fundamental idea of information theory is that all communication is essentially
digital—it is equivalent to generating, transmitting, and receiving randomly chosen
bi nary digits, bits. When these bits are transmitted over a communication channel—
or stored in a memory—it is likely that some of them will be corrupted by noise. In his
1948 landmark paper “A Mathematical Theory of Communication” [Sha48] Claude
E. Shannon recognized that randomly chosen binary digits could (and should) be used
for measuring the generation, transmission, and reception of information. Moreover,
he showed that the problem of communicating information from a source over a
channel to a destination can always be separated—without sacrificing optimality—
into the following two subproblems: representing the source output efficiently as a
sequence of binary digits (source coding) and transmitting binary, random, indepen-
dent digits over the channel (channel coding). In Fig. 1.1 we show a general digital
communication system. We use Shannon’s separation principle and split the encoder
and decoder into two parts each as shown in Fig. 1.2. The channel coding parts can
be designed independently of the source coding parts, which simplifies the use of the
same communication channel for different sources.
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2 INTRODUCTION

To a computer specialist, “bit” and “binary digit” are entirely synonymous. In
information theory, however, “bit” is Shannon’s unit of information [Sha48, Mas82].
For Shannon, information is what we receive when uncertainty is reduced. We get
exactly 1 bit of information from a binary digit when it is drawn in an experiment in
which successive outcomes are independent of each other and both possible values,
0 and 1, are equiprobable; otherwise, the information is less than 1. In the sequel,
the intended meaning of “bit” should be clear from the context.
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Figure 1.1 Overview of a digital communication system.
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Figure 1.2 A digital communication system with separate source and channel coding.

Shannon’s celebrated channel coding theorem states that every communication
channel is characterized by a single parameter Ct, the channel capacity, such that
Rt randomly chosen bits per second can be transmitted arbitrarily reliably over the
channel if and only if Rt ≤ Ct. We call Rt the data transmission rate. Both Ct
and Rt are measured in bits per second. Shannon showed that the specific value of
the signal-to-noise ratio is not significant as long as it is large enough, that is, so
large that Rt ≤ Ct holds; what matters is how the information bits are encoded.
The information should not be transmitted one information bit at a time, but long
information sequences should be encoded such that each information bit has some
influence on many of the bits transmitted over the channel. This radically new idea
gave birth to the subject of coding theory.

Error control coding should protect digital data against errors that occur during
transmission over a noisy communication channel or during storage in an unreliable
memory. The last decades have been characterized not only by an exceptional increase
in data transmission and storage but also by a rapid development in micro-electronics,
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providing us with both a need for and the possibility of implementing sophisticated
algorithms for error control.

Before we study the advantages of coding, we shall consider the digital com-
munication channel in more detail. At a fundamental level, a channel is often an
analog channel that transfers waveforms (Fig. 1.3). Digital data u0u1u2 . . ., where
ui ∈ {0, 1}, must be modulated into waveforms to be sent over the channel.

Modulator
Waveform

channel
Demodulator

Noise

Analog
waveform

Analog
waveform

Figure 1.3 A decomposition of a digital communication channel.

In communication systems where carrier phase tracking is possible (coherent
demodulation), phase-shift keying (PSK) is often used. Although many other mod-
ulation systems are in use, PSK systems are very common and we will use one of
them to illustrate how modulations generally behave. In binary PSK (BPSK), the
modulator generates the waveform

s1(t) =

{√
2Es
T cosωt, 0 ≤ t < T

0, otherwise
(1.1)

for the input 1 and s0(t) = −s1(t) for the input 0. This is an example of antipodal
signaling. Each symbol has duration T seconds and energy Es = ST , where S is
the power and ω = 2π

T . The transmitted waveform is

v(t) =

∞∑
i=0

sui(t− iT ) (1.2)

Assume that we have a waveform channel such that additive white Gaussian noise
(AWGN) n(t) with zero mean and two-sided power spectral density N0/2 is added
to the transmitted waveform v(t), that is, the received waveform r(t) is given by

r(t) = v(t) + n(t) (1.3)

where
E[n(t)] = 0 (1.4)
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and
E[n(t+ τ)n(t)] =

N0

2
δ(τ) (1.5)

where E[·] and δ(·) denote the mathematical expectation and the delta function,
respectively.

Based on the received waveform during a signaling interval, the demodulator
produces an estimate of the transmitted symbol. The optimum receiver is a matched
filter with impulse response

h(t) =

{√
2/T cosωt, 0 ≤ t < T

0, else
(1.6)

which is sampled each T seconds (Fig. 1.4). The matched filter output Zi at the
sample time iT ,

Zi =

∫ iT

(i−1)T

r(τ)h(iT − τ)dτ (1.7)

is a Gaussian random variable N(µ, σ2) with mean

µ = ±
∫ T

0

(√
2Es

T
cosωτ

)(√
2

T
cosω(T − τ)

)
dτ = ±

√
Es (1.8)

where the sign is + or − according to whether the modulator input was 1 or 0,
respectively, and variance

σ2 =
N0

2

∫ T

0

(√
2

T
cosωτ

)2

dτ =
N0

2
(1.9)

√
2
T cosωt

iT, i = 1, 2, . . .
r(t) Zi

Figure 1.4 Matched filter receiver.

After the sampler we can make a hard decision, that is, a binary quantization
with threshold zero, of the random variable Zi. Then we obtain the simplest and
most important binary-input and binary-output channel model, the binary symmetric
channel (BSC) with crossover probability ε (Fig. 1.5). The crossover probability is
of course closely related to the signal-to-noise ratioEs/N0. Since the channel output
for a given signaling interval depends only on the transmitted waveform and noise
during that interval and not on other intervals, the channel is said to be memoryless.

Because of symmetry, we can without loss of generality assume that a 0, that is,
−
√

2Es/T cosωt, is transmitted over the channel. Then we have a channel “error”
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Figure 1.5 Binary symmetric channel.

if and only if the matched filter output at the sample time iT is positive. Thus, the
probability that Zi > 0 given that a 0 is transmitted is

ε = P (Zi > 0 | 0 sent) (1.10)

where Zi is a Gaussian random variable, Zi ∈ N(−
√
Es,
√
N0/2), and Es is the

energy per symbol. Since the probability density function of Zi is

fZi(z) =
1√

2πσ2
e−

(z−µ)2

2σ2 (1.11)

we have

ε =
1√
πN0

∫ ∞
0

e−
(z+
√
Es)

2

N0 dz

=
1√
2π

∫ ∞
√

2Es/N0

e−y
2/2dy = Q

(√
2Es/N0

)
(1.12)

where

Q(x) =
1√
2π

∫ ∞
x

e−y
2/2dy (1.13)

is the complementary error function of Gaussian statistics (often called the Q-
function).

When coding is used, we prefer measuring the energy per information bit, Eb,
rather than per symbol. For uncoded BPSK, we have Eb = Es. Letting Pb denote
the bit error probability (or bit error rate), that is, the probability that an information
bit is erroneously delivered to the destination, we have for uncoded BPSK

Pb = ε = Q
(√

2Eb/N0

)
(1.14)

How much better can we do with coding?
It is clear that when we use coding, it is a waste of information to make hard

decisions. Since the influence of each information bit will be spread over several
channel symbols, the decoder can benefit from using the value of Zi (hard decisions
use only the sign of Zi) as an indication of how reliable the received symbol is.
The demodulator can give the analog value of Zi as its output, but it is often more
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Figure 1.6 Binary input, 8-ary output, DMC.

practical to use, for example, a three-bit quantization—a soft decision. By introducing
seven thresholds, the values of Zi are divided into eight intervals and we obtain an
eight-level soft-quantized discrete memoryless channel (DMC) as shown in Fig. 1.6.

Shannon [Sha48] showed that the capacity of the bandlimited AWGN channel
with bandwidth W is2

CWt = W log

(
1 +

S

N0W

)
bits/s (1.15)

where N0/2 and S denote the two-sided noise spectral density and the signaling
power, respectively. If the bandwidth W goes to infinity, we have

C∞t
def
= lim

W→∞
W log

(
1 +

S

N0W

)
=

S

N0 ln 2
bits/s (1.16)

If we transmit K information bits during τ seconds, where τ is a multiple of bit
duration T , we have

Eb =
Sτ
K

(1.17)

Since the data transmission rate isRt = K/τ bits/s, the energy per bit can be written

Eb =
S

Rt
(1.18)

Combining (1.16) and (1.18) gives

C∞t
Rt

=
Eb

N0 ln 2
(1.19)

2Here and hereafter we write log for log2.
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Figure 1.7 Capacity limits and regions of potential coding gain.

From Shannon’s celebrated channel coding theorem [Sha48] it follows that for
reliable communication we must have Rt ≤ C∞t . Hence, from this inequality and
(1.19) we have

Eb

N0
≥ ln 2 = 0.69 = −1.6 dB (1.20)

which is the fundamental Shannon limit.
In any system that provides reliable communication in the presence of additive

white Gaussian noise the signal-to-noise ratioEb/N0 cannot be less than the Shannon
limit, −1.6 dB!

On the other hand, as long as Eb/N0 exceeds the Shannon limit, −1.6 dB,
Shannon’s channel coding theorem guarantees the existence of a system—perhaps
very complex—for reliable communication over the channel.

In Fig. 1.7, we have plotted the fundamental limit of (1.20) together with the bit
error rate for uncoded BPSK, that is, equation (1.14). At a bit error rate of 10−5, the
infinite-bandwidth additive white Gaussian noise channel requires an Eb/N0 of at
least 9.6 dB. Thus, at this bit error rate we have a potential coding gain of 11.2 dB!
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For the bandlimited AWGN channel with BPSK and hard decisions, that is, a BSC
with crossover probability ε (Fig. 1.5) Shannon [Sha48] showed that the capacity is

CBSC
t = 2W (1− h(ε)) bits/s (1.21)

where
h(ε) = −ε log ε− (1− ε) log(1− ε) (1.22)

is the binary entropy function. If we restrict ourself to hard decisions, we can use
(1.21) and show (Problem 1.2) that for reliable communication we must have

Eb

N0
≥ π

2
ln 2 = 1.09 = 0.4 dB (1.23)

In terms of capacity, soft decisions are about 2 dB more efficient than hard decisions.
Although it is practically impossible to obtain the entire theoretically promised

11.2 dB coding gain, communication systems that pick up 2–8 dB are routinely in use.
During the last decade iterative decoding has been used to design communication
systems that operate only tenths of a dB from the Shannon limit.

We conclude this section, which should have provided some motivation for the
use of coding, with an adage from R. E. Blahut [Bla92]: “To build a communication
channel as good as we can is a waste of money”—use coding instead!

1.2 BLOCK CODES—A PRIMER

For simplicity, we will deal only with binary block codes. We consider the entire
sequence of information bits to be divided into blocks of K bits each. These blocks
are called messages and denoted u = u0 u1 . . . uK−1. In block coding, we let
u denote a message rather than the entire information sequence as is the case in
convolutional coding to be considered later.

A binary (N,K) block codeB is a set ofM = 2K binaryN -tuples (or row vectors
of lengthN ) v = v0 v1 . . . vN−1 called codewords. N is called the block length and
the ratio

R =
logM

N
=
K

N
(1.24)

is called the code rate and is measured in bits per (channel) use. The data transmission
rate in bits/s is obtained by multiplying the code rate (1.24) by the number of
transmitted channel symbols per second:

Rt = R/T (1.25)

If we measure the channel capacity for the BSC in bits/channel use (bits/c.u.),
then the capacity of the BSC equals

C = 1− h(ε) (bits/c.u.) (1.26)

According to Shannon’s channel coding theorem, for reliable communication, we
must have R ≤ C and the block length N should be chosen sufficiently large.
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u v r û or v̂

Figure 1.8 A binary symmetric channel (BSC) with (channel) encoder and decoder.

EXAMPLE 1.1

The set B = {000, 011, 101, 110} is a (3, 2) code with four codewords and rate
R = 2/3.

An encoder for an (N,K) block code B is a one-to-one mapping from the set of
M = 2K binary messages to the set of codewords B.

EXAMPLE 1.2

u0 u1 v0 v1 v2

00 000
01 011
10 101
11 110

and

u0 u1 v0 v1 v2

00 101
01 011
10 110
11 000

are two different encoders for the code B given in the previous example.

The rate R = K/N is the fraction of the digits in the codeword that are necessary
to represent the information; the remaining fraction, 1−R = (N−K)/N , represents
the redundancy that can be used to detect or correct errors.

Suppose that a codeword v corresponding to message u is sent over a BSC (see
Fig. 1.8). The channel output r = r0 r1 . . . rN−1 is called the received sequence.
The decoder transforms the receivedN -tuple r, which is possibly corrupted by noise,
into theK-tuple û, called the estimated message u. Ideally, ûwill be a replica of the
messageu, but the noise may cause some decoding errors. Since there is a one-to-one
correspondence between the message u and the codeword v, we can, equivalently,
consider the corresponding N -tuple v̂ as the decoder output. If the codeword v was
transmitted, a decoding error occurs if and only if v̂ 6= v.

Let PE denote the block (or word) error probability, that is, the probability that
the decision v̂ for the codeword differs from the transmitted codeword v. Then we
have

PE =
∑
r

P (v̂ 6= v | r)P (r) (1.27)

where the probability that we receive r, P (r), is independent of the decoding rule
and P (v̂ 6= v | r) is the conditional probability of decoding error given the received
sequence r. Hence, in order to minimize PE, we should specify the decoder such
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that P (v̂ 6= v | r) is minimized for a given r or, equivalently, such that P (v | r)
def
=

P (v̂ = v | r) is maximized for a given r. Thus the block error probability PE is
minimized by the decoder, which as its output chooses û such that the corresponding
v̂ = v maximizes P (v | r). That is, v is chosen as the most likely codeword given
that r is received. This decoder is called a maximum a posteriori probability (MAP)
decoder.

Using Bayes’ rule we can write

P (v | r) =
P (r | v)P (v)

P (r)
(1.28)

The code carries the most information possible with a given number of codewords
when the codewords are equally likely. It is reasonable to assume that a decoder that
is designed for this case also works satisfactorily—although not optimally—when
the codewords are not equally likely, that is, when less information is transmitted.
When the codewords are equally likely, maximizing P (v | r) is equivalent to maxi-
mizing P (r | v). The decoder that makes its decision v̂ = v such that P (r | v) is
maximized is called a maximum-likelihood (ML) decoder.

Notice that in an erroneous decision for the codeword some of the information
digits may nevertheless be correct. The bit error probability, which we introduced in
the previous section, is a better measure of quality in most applications. However, it
is in general more difficult to calculate. The bit error probability depends not only on
the code and on the channel, like the block error probability, but also on the encoder
and on the information symbols!

The use of block error probability as a measure of quality is justified by the
inequality

Pb ≤ PE (1.29)

When PE can be made very small, inequality (1.29) implies that Pb can also be made
very small.

The Hamming distance between the two N -tuples r and v, denoted dH(r,v), is
the number of positions in which their components differ.

EXAMPLE 1.3

Consider the 5-tuples 10011 and 11000. The Hamming distance between them is
3.

The Hamming distance, which is an important concept in coding theory, is a
metric; that is,

(i) dH(x,y) ≥ 0, with equality if and only if x = y (positive definiteness)

(ii) dH(x,y) = dH(y,x) (symmetry)

(iii) dH(x,y) ≤ dH(x, z) + dH(z,y), all z (triangle inequality)

The Hamming weight of an N -tuple x = x0x1 . . . xN−1, denoted wH(x), is
defined as the number of nonzero components in x.
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For the BSC, a transmitted symbol is erroneously received with probability ε
where ε is the channel crossover probability. Thus, assuming ML decoding, we must
make our decision v̂ for the codeword v to maximize P (r | v); that is,

v̂ = arg max
v
{P (r | v)} (1.30)

where

P (r | v) = εdH(r,v)(1− ε)N−dH(r,v) = (1− ε)N
(

ε

1− ε

)dH(r,v)

(1.31)

Since 0 < ε < 1/2 for the BSC, we have

0 <
ε

1− ε
< 1 (1.32)

and, hence, maximizing P (r | v) is equivalent to minimizing dH(r,v). Clearly,
ML decoding is equivalent to minimum (Hamming) distance (MD) decoding, that is,
choosing as the decoder output the message û whose corresponding codeword v̂ is
(one of) the closest codeword(s) to the received sequence r.

In general, the decoder must compare the received sequence r with allM = 2K =
2RN codewords. The complexity of ML or MD decoding grows exponentially with
the block length N . Thus it is infeasible to decode block codes with large block
lengths. But to obtain low decoding error probability we have to use codes with
relatively large block lengths. One solution of this problem is to use codes with
algebraic properties that can be exploited by the decoder. Other solutions are to use
codes on graphs (see Section 1.3) or convolutional codes (see Section 1.4).

In order to develop the theory further, we must introduce an algebraic structure.
A field is an algebraic system in which we can perform addition, subtraction,

multiplication, and division (by nonzero numbers) according to the same associative,
commutative, and distributive laws as we use with real numbers. Furthermore, a field
is called finite if the set of numbers is finite. Here we will limit the discussion to
block codes whose codewords have components in the simplest, but from a practical
point of view also the most important, finite field, the binary field, F2, for which the
rules for addition and multiplication are those of modulo-two arithmetic, namely

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

We notice that addition and subtraction coincide in F2!
The set of binary N -tuples are the vectors in an N -dimensional vector space,

denoted FN2 , over the field F2. Vector addition is component-by-component addi-
tion in F2. The scalars are the elements in F2. Scalar multiplication of scalar
a ∈ F2 and vector x0x1 . . . xN−1 ∈ FN2 is carried out according to the rule

a(x0x1 . . . xN−1) = ax0ax1 . . . axN−1 (1.33)

Since a is either 0 or 1, scalar multiplication is trivial in FN2 .
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Hamming weight and distance are clearly related:

dH(x,y) = wH(x− y) = wH(x+ y) (1.34)

where the arithmetic is in the vector space FN2 and where the last equality follows
from the fact that subtraction and addition coincide in F2.

The minimum distance, dmin, of a code B is defined as the minimum value of
dH(v,v′) over all v and v′ in B such that v 6= v′.

EXAMPLE 1.4

The code B in Example 1.1 has dmin = 2. It is a single-error-detecting code (see
Problem 1.3).

Let v be the actual codeword and r the possibly erroneously received version of
it. The error pattern e = e0 e1 . . . eN−1 is the N -tuple that satisfies

r = v + e (1.35)

The number of errors is
wH(e) = dH(r,v) (1.36)

Let Et denote the set of all error patterns with t or fewer errors, that is,

Et = {e | wH(e) ≤ t} (1.37)

We will say that a code B corrects the error pattern e if for all v the decoder maps
r = v+e into v̂ = v. IfB corrects all error patterns in Et and there is at least one error
pattern in Et+1 which the code cannot correct, then t is called the error-correcting
capability of B.

Theorem 1.1 The code B has error-correcting capability t if and only if dmin > 2t.

Proof : Suppose that dmin > 2t. Consider the decoder which chooses v̂ as (one of)
the codeword(s) closest to r in Hamming distance (MD decoding). If r = v + e
and e ∈ Et, then dH(r,v) ≤ t. The decoder output v̂ must also satisfy dH(r, v̂) ≤ t
since v̂ must be at least as close to r as v is. Thus,

dH(v, v̂) ≤ dH(v, r) + dH(r, v̂) ≤ 2t < dmin (1.38)

which implies that v̂ = v and thus the decoding is correct.
Conversely, suppose that dmin ≤ 2t. Let v and v′ be two codewords such that

dH(v,v′) = dmin, and let the components of r be specified as

ri =


vi = v′i, all i such that vi = v′i
v′i, the first t positions with vi 6= v′i (if t ≤ dmin) or

all positions with vi 6= v′i (otherwise)
vi, the remaining dmin − t positions (if any)

(1.39)
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Thus, dH(v, r) = t and dH(v′, r) = dmin − t ≤ t (if t ≤ dmin) and dH(v, r) =
dmin and dH(v′, r) = 0 (otherwise). Next we observe that both error patterns e and
e′ satisfying

r = v + e = v′ + e′ (1.40)

are in Et, but the decoder cannot make the correct decision for both situations, and
the proof is complete.

To make codes easier to analyze and to simplify the implementation of their
encoders and decoders, we impose a linear structure on the codes.

A binary, linear block code B of rate R = K/N is a K-dimensional subspace of
the vector space FN2 ; that is, each codeword can be written as a linear combination
of linearly independent vectors g1, g2, . . . , gK , where gi ∈ FN2 , called the basis for
the linear code B. Then we call the K × N matrix G having g1, g2, . . . , gK as
rows a generator matrix for B. Clearly, since the vectors g1, g2, . . . , gK are linearly
independent, the matrix G has full rank. The row space of G is B itself.

EXAMPLE 1.5

For the code in Example 1.1, which is linear, the codewords 011 and 101 form a
basis. This basis determines the generator matrix

G =

(
0 1 1
1 0 1

)
(1.41)

The generator matrix offers a linear encoding rule for the code B:

v = uG (1.42)

where

G =


g11 g12 . . . g1N

g21 g22 . . . g2N

. . . . . . . . . . . . . . . . . . . . .
gK1 gK2 . . . gKN

 (1.43)

and the information symbols u = u0 u1 . . . uK−1 are encoded into the codeword
v = v0 v1 . . . vN−1.

A generator matrix is often called an encoding matrix and is any matrix whose
rows are a basis for B. It is called systematic whenever the information digits appear
unchanged in the first K components of the codeword; that is, G is systematic if and
only if it can be written as

G = (IK P ) (1.44)

where IK is the K ×K identity matrix.
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EXAMPLE 1.6

The generator matrix

G =

(
1 0 1
0 1 1

)
(1.45)

is a systematic encoding matrix for the code in Example 1.1.

Two codes B and B′ are said to be equivalent if the order of the digits in the
codewords v ∈ B are simply a rearrangement of that in the codewords v′ ∈ B′.

Theorem 1.2 Either a linear code B has a systematic encoding matrix or there exists
an equivalent linear code B′ which has a systematic encoding matrix.

Proof : See Problem 1.5.

Let G be an encoding matrix of the (N,K) code B. Then G is a K ×N matrix
of rank K. By the theory of linear equations, the solutions of the system of linear
homogeneous equations

GxT = 0 (1.46)

where x = x1 x2 . . . xN , form an (N −K)-dimensional subspace of FN2 . Therefore,
there exists an (N −K)×N matrix H of rank N −K such that

GHT = 0 (1.47)

We are now ready to prove a fundamental result.

Theorem 1.3 AnN -tuple v is a codeword in the linear code B with encoding matrix
G if and only if

vHT = 0 (1.48)

where H is an (N −K)×N matrix of full rank which satisfies

GHT = 0 (1.49)

Proof : Assume that the N -tuple v ∈ B, then v = uG for some u ∈ FK2 . Thus,

vHT = uGHT = 0 (1.50)

Conversely, suppose that vHT = 0. Since GHT = 0 and both H and G have full
rank, the rows of G form a basis of the solution space of xHT = 0. Therefore,
v = uG for some u ∈ FK2 , that is, v ∈ B.

From (1.49) it follows that each row vector ofH is orthogonal to every codeword;
the rows of H are parity checks on the codewords and we call H a parity-check
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matrix3 of the linear code B. Equation (1.48) simply says that certain coordinates in
each codeword must sum to zero.

It is easily verified that an (N,K) binary linear code with systematic encoding
matrix G = (IK P ) has

H =
(
P T IN−K

)
(1.51)

as a parity-check matrix.

EXAMPLE 1.7

The code in Example 1.1 with an encoding matrix given in Example 1.6 has

H =
(

1 1 1
)

(1.52)

as a parity-check matrix.

Next, we will consider a member of a much celebrated class of single-error-
correcting codes due to Hamming [Ham50].

EXAMPLE 1.8

The binary (7, 4) Hamming code with encoding matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 (1.53)

has

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 (1.54)

as a parity-check matrix.
Note that vHT = 0 can be written as

v1 + v2 + v3 + v4 = 0
v0 + v2 + v3 + v5 = 0
v0 + v1 + v3 + v6 = 0

(1.55)

so that each row in H determines one of the three parity-check symbols v4, v5,
and v6. The remaining four code symbols, v0, v1, v2, and v3, are the information
symbols.

3When we consider LDPC codes in Section 1.3 and Chapter 8, we omit the full-rank requirement in the
definition of parity-check matrices.
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We notice that if we start with the 7-tuple 1011000, take all cyclic shifts, and form
all linear combinations, we obtain a (7, 4) Hamming code with a parity-check matrix

H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 (1.56)

which is equivalent to the one given in Example 1.8, that is, the two codes differ
only by the ordering of the components in their codewords (permute columns 1–4).
The (7, 4) Hamming codes are members of a large class of important linear code
families called cyclic codes—every cyclic shift of a codeword is a codeword. The
class of cyclic codes includes, besides the Hamming codes, such famous codes as the
Bose-Chaudhuri-Hocquenhem (BCH) and Reed-Solomon (RS) codes.

The cyclic behavior of these codes makes it possible to exploit a much richer
algebraic structure that has resulted in the development of very efficient decoding
algorithms suitable for hardware implementations.

Since the N −K rows of the parity-check matrix H are linearly independent, we
can use H as an encoding matrix of an (N,N −K) linear code B⊥, which we call
the dual or orthogonal code of B.

Let v⊥ ∈ B⊥ and assume that v⊥ = u⊥H , where u⊥ ∈ FN−K2 . Then from
(1.49) it follows that

v⊥GT = u⊥HGT = u⊥
(
GHT)T

= 0 (1.57)

Conversely, assume that v⊥GT = 0 for v⊥ ∈ FN2 . Since HGT = 0 and both H and
G have full rank, v⊥ is a linear combination of the rows of H , that is, v⊥ ∈ B⊥.
Hence, G is a K ×N parity-check matrix of the dual code B⊥ and we have proved
the following

Theorem 1.4 An (N − K) × N parity-check matrix for the linear code B is an
(N −K)×N encoding matrix for the dual code B⊥, and conversely.

From (1.48) and (1.57) it follows that every codeword of B is orthogonal to that
of B⊥ and conversely.

EXAMPLE 1.9

The code B in Example 1.1 has the dual code B⊥ = {000, 111}.

If B = B⊥, we call B self-dual.

EXAMPLE 1.10

The (2, 1) repetition code {00, 11} is self-dual.

The minimum weight, wmin, of a linear code B is the smallest Hamming weight
of its nonzero codewords.
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Theorem 1.5 For a linear code,

dmin = wmin (1.58)

Proof : The theorem follows from (1.34) and the facts that for a linear code the sum
of two codewords is a codeword.

For the class of linear codes, the study of distance properties reduces to the
study of weight properties that concern only single codewords! A most convenient
consequence of this is the following.

Theorem 1.6 IfH is any parity-check matrix for a linear code B, then dmin = wmin

equals the smallest number of columns of H that form a linearly dependent set.

Proof : Follows immediately from vHT = 0 for v ∈ B.

EXAMPLE 1.11

Consider the (7,4) Hamming code with parity-check matrix (1.54),

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 (1.59)

All pairs of columns are linearly independent. Many sets of three columns are
linearly dependent, for example, columns 1, 6, and 7. It follows from the previous
theorem that dmin = 3. All single errors (that is, all error patterns of weight
1) can be corrected. This is a single-error-correcting code. This code can also
detect double errors but not simultaneously with correcting single errors (see
Problem 1.4).

The following theorem establishes an upper bound for the minimum distance.

Theorem 1.7 (Singleton bound) If B is an (N,K) linear code with minimum dis-
tance dmin, then the number of parity-check digits is lower-bounded by

N −K ≥ dmin − 1 (1.60)

Proof : A codeword with only one nonzero information digit has weight at most
1 +N −K. Then, from Theorem 1.5 follows

wmin = dmin ≤ N −K + 1 (1.61)

An (N,K) linear code that meets the Singleton bound with equality is called a
maximum-distance-separable (MDS) code.

The only binary MDS codes are the trivial ones: the (N,N) code B = FN2 , the
(N, 1) repetition code B = {00 . . . 0, 11 . . . 1}, and the (N,N − 1) code consisting
of all even-weight N -tuples. (For a nontrivial code, 2 ≤ K ≤ N − 1.)
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The most celebrated examples of nonbinary MDS codes are the Reed-Solomon
codes.

To find (nontrivial) lower bounds on the minimum distance is a much harder
problem. It has been proved [Gil52, Var57] that there exists a sequence of binary
(N,K) linear block codes with increasing block lengthN having minimum distances
lower-bounded by the inequality

dmin > ρGVN (1.62)

where ρGV is the so-called Gilbert-Varshamov parameter. For a given rateR = K/N ,
ρGV is equal to the smallest root ρ < 1/2 of the equation

R = 1− h(ρ) (1.63)

where h(·) is the binary entropy function (1.22).
Let B be an (N,K) linear code. For any binary N -tuple a, the set

a+ B def
= {a+ v | v ∈ B} (1.64)

is called a coset of B. Every b ∈ FN2 is in some coset; for example, b + B contains
b. Two binary N -tuples a and b are in the same coset if and only if their difference
(sum in FN2 ) is a codeword, or, equivalently, (a+ b) ∈ B. Every coset of B contains
the same number of elements, 2K , as B does.

Theorem 1.8 Any two cosets are either disjoint or identical.

Proof : Suppose that c belongs to both a+B and b+B. Then c = a+v = b+v′,
where v,v′ ∈ B. Thus, a = b+ v + v′ ∈ b+ B, and so a+ B ⊆ b+ B. Similarly
b+ B ⊆ a+ B. Hence, a+ B = b+ B.

From Theorem 1.8 two corollaries follow immediately:

Corollary 1.9 FN2 is the union of all the cosets of B.

Corollary 1.10 A binary (N,K) code B has 2N−K cosets.

Suppose that the binary N -tuple r is received over the BSC. Then

r = v + e (1.65)

where v ∈ B is a codeword and e is an error pattern. Clearly r is in the coset
r+B. From (1.65) it follows that the coset r+B contains exactly the possible error
patterns! The N -tuple of smallest weight in a coset is called a coset leader. (If there
is more than one N -tuple with smallest weight, any one of them can be chosen as
coset leader.)

An MD decoder will select as its output the error pattern, ê say, which is a coset
leader of the coset containing r, subtract (or, equivalently in FN2 , add) ê from (to) r,
and, finally, obtain its maximum-likelihood decision v̂.
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We illustrate what the decoder does by showing the standard array. The first row
consists of the code B with the allzero codeword on the left. The following rows are
the cosets ei + B arranged in the same order with the coset leader on the left:

0 v1 . . . v2K−1

e1 v1 + e1 . . . v2K−1 + e1

...
...

...
e2N−K−1 v1 + e2N−K−1 . . . v2K−1 + e2N−K−1

The MD decoder decodes r to the codeword v̂ at the top of the column that
contains r.

EXAMPLE 1.12

The (4, 2) code B with encoding matrix

G =

(
1 0 1 1
0 1 1 0

)
(1.66)

has the following standard array:

0000 1011 0110 1101

1000 0011 1110 0101
0100 1111 0010 1001
0001 1010 0111 1100

Suppose that r = 1001 is received. An MD decoder outputs v̂ = 1101.

Theorem 1.11 An (N,K) binary linear code B can correct all error patterns in a set
E if and only if these error patterns all lie in different cosets of FN2 relative to B.

Proof : Suppose that e and e′ are distinct error patterns in the same coset. Then
there is a v ∈ B such that v + e = e′. No decoder can correct both e and e′.

Conversely, suppose that all error patterns in E lie in different cosets. If v is the
actual transmitted codeword and e the actual error pattern, then r = v + e lies in
e + B. Thus, all error patterns in E can be corrected by a decoder that maps r into
the error pattern ê ∈ E (if any) that lies in the same coset e+ B as r does.

The syndrome of the received N -tuple r, relative to the parity-check matrix H , is
defined as

s
def
= rHT (1.67)

Assume that the transmitted codeword is v and that r = v + e, where e is the error
pattern. Both r and H are known to the receiver, which exploits (1.48) and forms

s = rHT = (v + e)HT

= vHT + eHT = 0 + eHT (1.68)
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so that
s = eHT (1.69)

The syndrome depends only on the error pattern and not on the codeword!
In medical terminology, a syndrome is a pattern of symptoms. Here the disease is

the error pattern, and a symptom is a parity-check failure.
Equation (1.69) givesN−K linearly independent equations for theN components

of the error pattern e. Hence, there are exactly 2K error patterns satisfying (1.69).
These are precisely all the error patterns that are differences between the received
N -tuple r and all 2K different codewords v. For a given syndrome, these 2K error
patterns belong to the same coset. Furthermore, if two error patterns lie in the same
coset, then their difference is a codeword and it follows from (1.68) that they have
the same syndrome. Hence, we have the following theorem:

Theorem 1.12 Two error patterns lie in the same coset if and only if they have the
same syndrome.

From the two previous theorems a corollary follows:

Corollary 1.13 An (N,K) binary linear code B can correct all error patterns in a
set E if and only if the syndromes of these error patterns are all different.

No information about the error pattern is lost by calculating the syndrome!
In Fig. 1.9 we show the structure of a general syndrome decoder. The syndrome

former, HT, is linear, but the error pattern estimator is always nonlinear in a useful
decoder. Clearly, a syndrome decoder is an MD or, equivalently, an ML decoder.

HT
Error

pattern

estimator

r v̂

ê
s

Figure 1.9 Syndrome decoder for a linear block code.

EXAMPLE 1.13

Consider the (7, 4) Hamming code whose parity-check matrix is given in Exam-
ple 1.11. Let r = 0010001 be the received 7-tuple. The syndrome is

s = (0010001)



0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1


= 111 (1.70)
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Sinces 6= 0, r contains at least one erroneous component. For the Hamming codes
there is a one-to-one correspondence between the single errors and the nonzero
syndromes. Among all 2K = 16 possible error patterns, the MD decoder chooses
the one with least Hamming weight, that is, the single error pattern corresponding
to the given syndrome s = 111. Since the fourth row in HT is the triple 111, the
MD decoder gives as its output ê = 0001000 (a single 1 in the fourth position). It
immediately follows that

v̂ = r + ê

= 0010001 + 0001000

= 0011001 (1.71)

If v = 0011001 was sent, we have corrected the transmission error. However,
if v = 0000000 was sent and e = 0010001, the Hamming code is not able to
correct the error pattern. The syndrome decoder will in this case give as its output
v̂ = 0011001!

Suppose that the (7, 4) Hamming code is used to communicate over a BSC with
channel error probability ε. The ML decoder can correctly identify the transmitted
codeword if and only if the channel causes at most one error. The block (or word)
error probability PE, that is, the probability that the decision for the codeword differs
from the actual codeword, is

PE =

7∑
i=2

(
7

i

)
εi(1− ε)7−i

= 21ε2 − 70ε3 + · · · (1.72)

For the (7, 4) Hamming code, it can be shown (Problem 1.21) that for all digits

Pb = 9ε2(1− ε)5 + 19ε3(1− ε)4 + 16ε4(1− ε)3

+12ε5(1− ε)2 + 7ε6(1− ε) + ε7

= 9ε2 − 26ε3 + · · · (1.73)

Maximum-likelihood (ML) decoding that we discussed in this section is an im-
portant decoding method in the sense that (assuming equiprobable messages) it
minimizes the block error probability. In Chapter 5 we shall show that if we use ML
decoding there exist codes for which the block and bit error probabilities decrease
exponentially with block length N .

A drawback with ML decoding is that its decoding complexity increases very
fast—exponentially fast—with increasing block length. There is a need for low-
complexity suboptimum decoding algorithms.

1.3 CODES ON GRAPHS

In this section, we introduce an important class of block codes, codes on graphs,
which are very powerful in combination with iterative decoding. A well-known class
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of such codes is the low-density parity-check (LDPC) codes invented by Gallager
[Gal62, Gal63]. When these codes are decoded iteratively, they have better bit error
probability/decoding complexity tradeoff than general block codes.

Tanner [Tan81] used bipartite graphs to describe the structure of linear block
codes. These so-called Tanner graphs consist of two sets of nodes, the set of symbol
(or variable) nodes which correspond to the symbols of the codewords and the set of
constraint (or factor) nodes which correspond to the parity-check equations defining
the code. In a Tanner graph, each symbol node vn is connected by edges only with
constraint nodes cl and, similarly, each constraint node is connected only with symbol
nodes. The number of edges connected to a node is called the degree of that node.

Each column in the parity-check matrix corresponds to a symbol node and each
row corresponds to a constraint node. A 1 in the (l, n)th position of the parity-check
matrix H corresponds to an edge between the symbol node vn and the constraint
node cl.

EXAMPLE 1.14

Consider the following parity-check matrix (1.56) of a (7, 4) Hamming code,

H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 (1.74)

This code has seven code symbols interrelated by three parity-check equations
(constraints),

v0 + v1 + v2 + v4 = 0
v1 + v2 + v3 + v5 = 0
v0 + v1 + v3 + v6 = 0

(1.75)

The Tanner graph of the Hamming (7, 4) code (Fig. 1.10) has seven symbol nodes
and three constraint nodes. All constraint nodes have degree 4, but the degrees of
symbol nodes varies from 1 to 3.

v0 v1 v2 v3 v4 v5 v6

c0 c1 c2

Figure 1.10 Tanner graph of a Hamming (7, 4) code defined by parity-check matrix (1.74).
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Note that the set of four symbols included in each of the linear equations (1.75)
forms a (4, 3) single-error-detecting code. Totally we have three such constituent
codes.

An LDPC code can be defined either by a parity-check matrix or by a Tanner
graph. In the first case it is determined by an L × N sparse parity-check matrix
H , “containing mostly 0s and relatively few 1s” as it was formulated by Gallager
[Gal62, Gal63]. A regular (N, J,K) LDPC code of block length N has a parity-
check matrix with a fixed numberK 1s in each row4 and a fixed number J 1s in each
column, where K/J = N/L.

The Tanner graph of a regular (N, J,K) LDPC code has symbol node degree
equal to J and constraint node degree equal to K. The rows of the parity-check
matrix H of a regular (N, J,K) LDPC code can be linearly dependent, then the
design rate Rd = 1− J/K can be less than the actual code rate R.

Remark: In the sequel we will for simplicity often use short block codes as illustra-
tions and call them LDPC codes even if the requrement “containing mostly 0s and
relatively few 1s” is not fulfilled.

EXAMPLE 1.15

Consider the following parity-check matrix of the rate R = 6/15 = 2/5 regular
(N, J,K) = (15, 3, 5) LDPC block code:

H =



1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 1 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1


(1.76)

This code was found by computer search and has relatively good minimum
distance, dmin = 6, for an LDPC code of this size. Its Tanner graph is shown in
Fig. 1.11.

An irregular LDPC code has in general a Tanner graph whose symbol node degrees
as well as constraint node degrees are different.

For an LDPC code, the rows of the L×N parity-check matrix H can in general
be linearly dependent and, equivalently, this matrix has not full rank. If we delete
linearly dependent rows such that the remaining rows are linearly independent, then
we obtain a parity-check matrix for a rate R > Rd = 1− L/N LDPC code.

4With a slight abuse of notations we useK to denote both the number of 1s in each row of and the number
of information symbols in an (N,K) block code.
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

c0 c1 c2 c3 c4 c5 c6 c7 c8

Figure 1.11 Tanner graph of the code defined by parity-check matrix (1.76).

Gallager introduced a special class of regular (N, J,K) LDPC codes. The L×N
parity-check matrices H of these codes, where N = KM , L = JM , and M > 0 is
an integer, can be represented as a composition of J submatricesHj , j = 1, 2, . . . , J ,

H =


H1

H2

...
HJ

 (1.77)

Here the M ×N submatrices Hj have one 1 in each column and K 1s in each row.
The other entries of the submatrices are 0s. If J ≥ 2, then the rank of the matrix
(1.77) is always strictly less than L (see Problem 1.24).

Using the ensemble of regular (N, J,K) LDPC codes with random parity-check
matrices given by (1.77) Gallager5 proved that, if N → ∞, then the minimum dis-
tance dmin of almost all codes from this ensemble is lower-bounded by the inequality

dmin > ρJ,KN (1.78)

where the parameter ρJ,K is a positive constant (if J > 2). In other words, the
minimum distance of typical (N, J,K) codes from this ensemble, as well as of
typical randomly chosen block codes, is growing linearly with N .

In Table 1.1 we show the numerical values of ρJ,K for some J and K. For
comparison also the value of the Gilbert-Varshamov parameter ρGV is given for the
corresponding design ratesRd = 1−J/K. In Chapter 8 we will prove the interesting
fact that if J = 2 then dmin grows only logarithmically with N .

The main advantage of LDPC codes is that these codes can be decoded iteratively
and that the complexity of iterative decoding grows slower than exponentially with
the block length N . We shall conclude this introductory section by describing a
simple iterative decoding algorithm for LDPC codes.

5Gallager used the slightly different ensemble with the first matrix H(1) fixed. This has, however, no
effect on the technique of his proof.
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Table 1.1 Gallager’s parameter ρJ,K compared with the Gilbert-Varshamov
parameter ρGV.

J K Rc ρJ,K ρGV ρGV/ρJ,K
3 4 0.25 0.112 0.215 1.920

5 0.4 0.045 0.146 3.244
6 0.5 0.023 0.11 4.783

4 5 0.2 0.211 0.243 1.152
6 0.333 0.129 0.174 1.349

5 6 0.167 0.255 0.264 1.035

Gallager introduced a simple hard-decision iterative decoding algorithm for LDPC
codes called the bit-flipping (BF) algorithm [Gal62, Gal63]. It was later modified by
Zyablov and Pinsker [ZyP75]. We will describe a version of Gallager’s algorithm for
regular (N, J,K) LDPC codes which uses an adaptive threshold.

Suppose that the binary N -tuple (codeword) v is sent over a BSC and that the
binary N -tuple r is received. On the receiver side, a bit-flipping decoder calculates
the tentative syndrome

s′ = (s′0 s
′
1 . . . s

′
L−1) = r′HT (1.79)

for the tentative sequence r′ = r′0 r
′
1 . . . r

′
N−1 which initially is equal to the received

sequence r.
Since the code is regular, each tentative symbol r′n, n = 0, 1, . . . , N − 1, is

included in J parity-check equations. Let δn, n = 0, 1, . . . , N−1, denote the number
of unsatisfied parity-check equations for the tentative symbol r′n. We introduce a
threshold T which is initially set to J . The decoder searches for any r′n such that
δn = T . If such an r′n does not exist, we decrease the threshold by 1, that is,
T ← T − 1, and repeat the “search/decrease threshold” procedure until we have one
of the following three situations:

(i) We find a tentative symbol r′n with δn = T > bJ/2c.

(ii) All δn = 0, n = 0, 1, . . . , N − 1, that is, s′ = 0.

(iii) s′ 6= 0 and for all symbols r′n we have δn ≤ bJ/2c.

If we find a tentative symbol r′n such that δn = T > bJ/2c, then we flip (change)
r′n and obtain a new tentative sequence r′ which yields a new tentative syndrome s′

with reduced Hamming weight. Whenever such a reduction of this Hamming weight
occurs, we reset the threshold to T = J . (This is necessary since the flipping of
r′n could result in a δn′ for n′ 6= n being as large as J .) Then we repeat the search
procedure.

If the tentative syndrome s′ = 0, then the corresponding tentative sequence r′ is
a codeword and v̂ = r′ is the decision for v. The decoding is considered successful.

If s′ 6= 0 and δn ≤ bJ/2c for n = 0, 1, . . . , N − 1, then the decoding is declared
as a failure. The corresponding tentative sequence r′ is called a trapping set.
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Gallager’s bit-flipping algorithm is characterized by its error-correcting capability
and its decoding complexity. Its error-correcting capability t(BF) is the largest integer
such that all error patterns of Hamming weight t(BF) or less are correctly decoded by
the algorithm. For Gallager’s bit-flipping algorithm, we can show that asymptotically,
that is, when N → ∞, the error-correcting capability is lower-bounded by a linear
function ofN . For maximum-likelihood decoding we have, as shown in the previous
section, the error-correcting capability t(ML) = bdmin−1

2 c, where dmin is the minimum
distance of the code.

Since the bit-flipping algorithm is essentially less powerful than an ML algorithm,
we have in general t(BF) ≤ t(ML).

What can we say about the decoding complexity of the bit-flipping algorithm? We
will show that the total number of operations for Gallager’s bit-flipping algorithm is
upper-bounded by6 O(N2). During each iteration the decoder checks the symbols
r′n, n = 0, 1, . . . , N − 1, of the tentative sequence r′ up to the moment when it finds
a symbol which is included in δ unsatisfied parity-check equations. Then it flips
this symbol which decreases the tentative syndrome weight by at least one. Since
the initial syndrome weight does not exceed N , the total number of iterations is
upper-bounded by O(N). In each iteration, the decoder checks at most N symbols.
Assuming that checking one symbol requires one computational operation, the total
number of operations for one iteration is upper-bounded byO(N). Then the decoding
complexity of Gallager’s bit-flipping algorithm is upper-bounded by O(N2).

We can also describe the bit-flipping algorithm using the Tanner graph. In this
case the decoder checks how many constraint nodes connected to a given tentative
symbol node correspond to unsatisfied parity-check equations. If this number equals
the threshold T , then the decoder flips the corresponding tentative symbol and goes
to the next phase of the decoding.

Remark: We gave one possible description of Gallager’s bit-flipping algorithm, with
an adaptive threshold. In principle, the decoder can flip a tentative symbol whenever
the number of unsatisfied parity-check equations for this symbol δ > bJ/2c. We
can say in this case that the decoder uses the lowest possible threshold bJ/2c + 1.
The error-correcting capability when N →∞ of the algorithm with lowest possible
threshold is still O(N), but for finite N it is less than that for the algorithm with an
adaptive threshold. In Problem 1.25 we study an example when the algorithm with
an adaptive threshold has error-correcting capability t(BF) = 1 but the algorithm with
lowest possible threshold has zero error-correcting capability.

EXAMPLE 1.16

Consider the regular (15, 3, 5) LDPC code given in Example 1.15. Suppose that
we use the bit-flipping algorithm with an adaptive threshold for decoding. We will

6Here and hereafter we write f(x) = O(g(x)) if |f(x)| ≤ Ag(x) for x sufficiently near a given limit,
A is a positive constant independent of x and g(x) > 0. We have, e.g., f(x) = log x, x > 0, can be
written as f(x) = O(x) when x→∞.
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show that this algorithm corrects all single errors and that there are double errors
which the algorithm does not correct.

Let the transmitted sequence be the allzero code sequence v = 0 = 00 . . . 0
sent over the BSC and assume that all symbols of the received sequence r except
r7 are correctly received, that is, r = 000000010000000. The decoder calculates
the syndrome (cf. Fig. 1.11)

s = rHT = 010010100 (1.80)

It has Hamming weight 3. The initial value of the threshold is T = J = 3. Note
that flipping, for example, the symbol r4 decreases the syndrome weight by 1,
but the only symbol included in δ = 3 unsatisfied parity-check equations is the
symbol r7. Flipping this symbol decreases the syndrome weight by 3 and results
in successful decoding.

It is easily shown that the decoder corrects all single errors. It does not, however,
correct all double errors. Suppose that all symbols of the received sequence r
except r4 and r7 are correctly received, that is, r = 000010010000000. The
syndrome

s = rHT = 100000100 (1.81)

has Hamming weight 2 and there are no symbols such that flipping causes a
decrease of the syndrome weight. The decoding has failed and the sequence
r = 000010010000000 is a trapping set.

Next we consider another pattern of double errors, namely, all symbols of
the received sequence r except r0 and r14 are correctly received, that is, r =
100000000000001. The syndrome

s = rHT = 111000111 (1.82)

has Hamming weight 6. Flipping the symbol r0 yields the tentative syndrome

s′ = r′HT = 000000111 (1.83)

with Hamming weight 3. Then, flipping r14 yields the tentative syndrome s′ = 0
and results in successful decoding of this particular double-error pattern.

Since the minimum distance dmin = 6, we would correct all double errors if
we were using a maximum-likelihood decoder.

We have described a variant of Gallager’s original bit-flipping algorithm. The
Zyablov-Pinsker iterative decoding algorithm finds in each step all bits of the received
sequence which are included in more than bJ/2c unsatisfied parity-check equations
and then flips simultaneously all these bits. A theoretical analysis of the Zyablov-
Pinsker algorithm [ZPZ08] gives the following asymptotical lower bound for the
error-correcting capability when N →∞:

t(ZP) > ρ(ZP)
J,KN (1.84)
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where the coefficient ρ(ZP)
J,K is much smaller than both the corresponding Gilbert-

Varshamov parameter ρGV and the Gallager parameter ρJ,K . For example, for J = 9

and K = 10 we have ρ(ZP)
J,K = 1.29× 10−3.

It can be shown that the decoding complexity of the Zyablov-Pinsker algorithm is
upper-bounded by O(N logN).

In Chapter 8 we will consider a more powerful iterative decoding algorithm for
LDPC codes called the belief propagation (BP) algorithm. This algorithm was also
invented by Gallager [Gal62, Gal63] and provides, at the cost of higher decoding
complexity, better error correction than the bit-flipping algorithm.

1.4 A FIRST ENCOUNTER WITH CONVOLUTIONAL
CODES

Convolutional codes are often thought of as nonblock linear codes over a finite field,
but it can be an advantage to treat them as block codes over certain infinite fields. We
will postpone the precise definitions until Chapter 2 and instead begin by studying a
simple example of a binary convolutional encoder (Fig. 1.12).
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Figure 1.12 An encoder for a binary rate R = 1/2 convolutional code.

The information digits u = u0u1 . . . are not as in the previous section separated
into blocks. Instead they form an infinite sequence that is shifted into a register,
in our example, of length or memory m = 2. The encoder has two linear output
functions. The two output sequences v(1) = v

(1)
0 v

(1)
1 . . . and v(2) = v

(2)
0 v

(2)
1 . . . are

interleaved by a serializer to form a single-output sequence v(1)
0 v

(2)
0 v

(1)
1 v

(2)
1 . . . that

is transmitted over the channel. For each information digit that enters the encoder,
two channel digits are emitted. Thus, the code rate of this encoder is R = 1/2
bits/channel use.

Assuming that the content of the register is zero at time t = 0, we notice that
the two output sequences can be viewed as a convolution of the input sequence u
and the two sequences 11100 . . . and 10100 . . ., respectively. These latter sequences
specify the linear output functions; that is, they specify the encoder. The fact that
the output sequences can be described by convolutions is why such codes are called
convolutional codes.
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In a general rate R = b/c, where b ≤ c, binary convolutional encoder (without
feedback) the causal, that is, zero for time t < 0, information sequence

u = u0u1 . . . = u
(1)
0 u

(2)
0 . . . u

(b)
0 u

(1)
1 u

(2)
1 . . . u

(b)
1 . . . (1.85)

is encoded as the causal code sequence

v = v0v1 . . . = v
(1)
0 v

(2)
0 . . . v

(c)
0 v

(1)
1 v

(2)
1 . . . v

(c)
1 . . . (1.86)

where
vt = f ((ut,ut−1, . . . ,ut−m) (1.87)

The parameter m is called the encoder memory. The function f is required to be a
linear function from F(m+1)b

2 to Fc2. It is often convenient to write such a function in
matrix form:

vt = utG0 + ut−1G1 + · · ·+ ut−mGm (1.88)

where Gi, 0 ≤ i ≤ m, is a binary b× c matrix.
Using (1.88), we can rewrite the expression for the code sequence as

v0v1 . . . = (u0u1 . . .)G (1.89)

or, in shorter notation, as
v = uG (1.90)

where

G =

 G0 G1 . . . Gm
G0 G1 . . . Gm

. . . . . . . . .

 (1.91)

and where here and hereafter the parts of matrices left blank are assumed to be filled
in with zeros. We call G the generator matrix and Gi, 0 ≤ i ≤ m, the generator
submatrices.

In Fig. 1.13, we illustrate a general convolutional encoder (without feedack).

· · ·

G0 G1 Gm

ut

vt

· · ·ut−1 ut−2 ut−m

Figure 1.13 A general convolutional encoder (without feedback).
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EXAMPLE 1.17

The rate R = 1/2 convolutional encoder shown in Fig. 1.12 has the following
generator submatrices:

G0 = (11) (1.92)
G1 = (10) (1.93)
G2 = (11) (1.94)

The generator matrix is

G =

 11 10 11
11 10 11

. . . . . . . . .

 (1.95)

EXAMPLE 1.18

The rateR = 2/3 convolutional encoder shown in Fig. 1.14 has generator subma-
trices

G0 =

(
1 0 1
0 1 1

)
G1 =

(
1 1 0
0 0 1

)
(1.96)

G2 =

(
0 0 0
1 0 1

)
The generator matrix is

G =


101 110 000
011 001 101

101 110 000
011 001 101

. . . . . . . . .

 (1.97)

It is often convenient to represent the codewords of a convolutional code as paths
through a code tree. A convolutional code is sometimes called a (linear) tree code.
The code tree for the convolutional code generated by the encoder in Fig. 1.12 is
shown in Fig. 1.15. The leftmost node is called the root. Since the encoder has
one binary input, there are, starting at the root, two branches stemming from each
node. The upper branch leaving each node corresponds to the input digit 0, and the
lower branch corresponds to the input digit 1. On each branch we have two binary
code digits, the two outputs from the encoder. The information sequence 1011 . . . is
clearly seen from the tree to be encoded as the code sequence 11 10 00 01 . . ..
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u(1)

v(3)

v(2)

v(1)

u(2)

Figure 1.14 A rate R = 2/3 convolutional encoder.

The state of a system is a description of its past history which, together with a
specification of the present and future inputs, suffices to determine the present and
future outputs. For the encoder in Fig. 1.12, we can choose the encoder state σ to be
the contents of its memory elements; that is, at time t we have

σt = ut−1ut−2 (1.98)

Thus, our encoder has only four different encoder states, and two consecutive input
digits are enough to drive the encoder to any specified encoder state.

For convolutional encoders, it is sometimes useful to draw the state-transition
diagram. If we ignore the labeling, the state-transition diagram is a de Bruijn graph
[Gol67]. In Fig. 1.16, we show the state-transition diagram for our convolutional
encoder.

Let us return to the tree code in Fig. 1.15. As an example, the two input sequences
010 (node A) and 110 (node B) both drive the encoder to the same encoder state,
σ = 01. Thus, the two subtrees stemming from these two nodes are identical! Why
treat them separately? We can replace them with one node corresponding to state 01
at time 3. For each time or depth in the tree, we can similarly replace all equivalent
nodes with only one—we obtain the trellis-like structure shown in Fig. 1.17, where
the upper and lower branches leaving the encoder states correspond to information
symbols 0 and 1, respectively.

The information sequence 1011 . . . corresponds in the trellis to the same code
sequence as in the tree, 11 10 00 01 . . .. The trellis is just a more convenient repre-
sentation of the same set of encoded sequences as is specified by the tree, and it is
easily constructed from the state-transition diagram. A convolutional code is often
called a (linear) trellis code.
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Figure 1.15 A binary rate R = 1/2 tree code.

We will often consider sequences of finite length; therefore, it is convenient to
introduce the notations

x[0,n) = x0x1 . . .xn−1 (1.99)

and
x[0,n] = x0x1 . . .xn (1.100)

Suppose that our trellis code in Fig. 1.17 is used to communicate over a BSC
with crossover probability ε, where 0 < ε < 1/2. We start the encoder in encoder
state σ = 00, and feed it with the finite information sequence u[0,n) followed by
m = 2 dummy zeros in order to drive the encoder back to encoder state σ = 00.
The convolutional code is terminated and, thus, converted into a block code. The
corresponding encoded sequence is the codeword v[0,n+m). The received sequence
is denoted r[0,n+m).

To simplify the notations in the following discussion, we simply write u, v, and
r instead of u[0,n), v[0,n+m), and r[0,n+m).
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Figure 1.16 A rate R = 1/2 convolutional encoder and its state-transition diagram.
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Figure 1.17 A binary rate R = 1/2 trellis code.

We shall now, by an example, show how the structure of the trellis can be exploited
to perform maximum-likelihood (ML) decoding in a very efficient way. The memory
m = 2 encoder in Fig. 1.12 is used to encode three information digits together with
m = 2 dummy zeros; the trellis is terminated and our convolutional code has become
a block code. A codeword consisting of 10 code digits is transmitted over a BSC.
Suppose that r = 11 00 11 00 10 is received. The corresponding trellis is shown in
Fig. 1.18. (In practice, typically a few thousand information bits are encoded before
the encoder is forced back to the allzero state by encoding m dummy zeros.)

As shown by the discussion following (1.31), the ML decoder (and the MD
decoder) chooses as its decision v̂ for the codeword v that minimizes the Hamming
distance dH(r,v) between r and v. That is, it minimizes the number of positions in
which the codeword and the received sequence differ. In order to find the codeword
that is closest to the received sequence, we move through the trellis from left to



34 INTRODUCTION

r = 11 00 11 00 10

00 00

10

00

01

10

11

00

01

10

11

00

01

00
00 00 00 00 00

11 11 11

11 11 11

00

10 10 10

01 01

01 01
10

2 2 1 1 2

1 2 3

0 4 2

1 2

Figure 1.18 An example of Viterbi decoding for the received sequence r = 11 00 11 00 10.

right, discarding all subpaths that could not turn out to be the prefix of the best path
through the trellis. When we reach depth m = 2, we have four subpaths—one for
each encoder state. At the next depth, however, there are eight subpaths—two per
encoder state. For each encoder state at this depth, we keep only one subpath—the
one that is closest to the corresponding prefix of the received sequence. We simply
discard the poorer subpath into each encoder state since this poorer subpath could not
possibly be the prefix of the best path through the trellis. We proceed in this manner
until we reach encoder state 00 at depth 5. Because only one path through the trellis
has survived, we have then found the best path through the trellis. In Fig. 1.18, the
Hamming distance between the prefix of the received sequence and the best subpath
leading to each encoder state is shown above the encoder state. The discarded poorer
subpath is marked with the symbol × on the branch that enters the encoder state.

Two subpaths leading to an encoder state may both have the same Hamming
distance to the prefix of the received sequence. In fact, this happened at state 01,
depth 4. Both subpaths have distance 3 to the prefix of the received sequence! Both
are equally likely to be the prefix of the best path—we can discard either subpath
without eliminating all “best paths” through the trellis, in case there are more than
one best path. We arbitrarily chose to discard the upper of the two subpaths entering
encoder state 01 at depth 4.

The best codeword through the trellis was found to be v̂ = 11 10 11 00 00, which
corresponds to the information sequence û = 100. If the decision v̂ = 11 10 11 00 00
happened to be the transmitted codeword, we have corrected two transmission errors.

How many errors can we correct?
The most likely error event is that the transmitted codeword is changed by the

BSC so that it is decoded as its closest (in Hamming distance) neighbor. It is
readily seen from Fig. 1.18 that the smallest Hamming distance between any two
different codewords is 5, for example, dH (00 00 00 00 00, 11 10 11 00 00) = 5. This
minimum distance is called the free distance of the convolutional code and is denoted
dfree. It is the single most important parameter for determining the error-correcting
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capability of the code. (The free distance and several other distance measures will
be discussed in detail in Chapter 3.) Since dfree = 5, we can correct all patterns of
two errors.

The ML decoding algorithm described above is usually called the Viterbi algorithm
in honor of its inventor [Vit67]. It is as simple as it is ingenious, and it is easily
implementable. Viterbi decoders for memory m = 6 (64 states) and longer are often
used in practice.

In Chapter 4, we will study Viterbi decoding in more detail and obtain tight upper
bounds on the decoded bit error probability.

1.5 BLOCK CODES VERSUS CONVOLUTIONAL CODES

The system designer’s choice between block and convolutional codes should depend
on the application. The diehard block code supporters always advocate in favor
of block codes, while their counterparts on the other side claim that in almost all
situations convolutional codes outperform block codes. As always, the “truth” is not
only somewhere in between, but it also depends on the application.

The theory of block codes is much richer than the theory of convolutional codes.
Many sophisticated finite field concepts have been used to design block codes with
a beautiful mathematical structure that has simplified the development of efficient
error-correcting decoding algorithms. From a practical point of view, the Reed-
Solomon (RS) codes constitute the most important family of block codes. They are
extremely well suited for digital implementation. Berlekamp’s bit-serial RS encoders
[Ber82] have been adopted as a NASA standard for deep-space communication. The
RS codes are particularly powerful when the channel errors occur in clusters—burst
errors—which is the case in secondary memories such as magnetic tapes and disks.
All compact disc players use RS codes with table-look-up decoding.

Assuming that a decoded bit error rate of 10−5 is satisfactory, which is the case,
for example, for digitized voice, convolutional codes in combination with Viterbi
decoding appear to be an extremely good combination for communication when the
noise is white and Gaussian. For example, Qualcomm Inc. has on a single chip
implemented a memory m = 6 Viterbi decoder for rates R = 1/3, 1/2, 3/4, 7/8.
The rate R = 1/2 coding gain is 5.2 dB at Pb = 10−5. This very powerful error-
correcting system operates either with hard decisions or with eight-level quantized
soft decisions.

The major drawback of RS codes is the difficulty of making full use of soft-
decision information. As we will see in Chapter 4, the Viterbi algorithm can easily
exploit the full soft-decision information provided at the decoder input and thus easily
pick up the 2 dB gain over hard-decision. Furthermore, code synchronization is in
general much simpler for convolutional codes than for block codes.

If a combination of a high level of data integrity, Pb = 10−10 say, and a larger
coding gain than a Viterbi decoder can provide is required, then we could use either
an RS code or a large memory, m = 25 say, convolutional encoder. The complexity
of the Viterbi decoder, which is essentially 2m, will be prohibitively large in the latter
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case. Instead we could use sequential decoding (Chapter 7) of the convolutional code
whose complexity is essentially independent of the memory of the encoder.

In many applications where the noise is predominantly Gaussian, the best solution
is obtained when block and convolutional codes join forces and are used in series.
In Fig. 1.19 we show a concatenated coding system, where we use a convolutional
code as the inner code to clean up the channel. The Viterbi decoder will correct
most channel errors but will occasionally output a burst of errors. This output then
becomes the input to the outer decoder. Since an RS code is very well suited to cope
with bursts of errors, we use an RS code as the outer code. Such a concatenated
coding system combines a very high level of data integrity with large coding gain and
low complexity. Often a permutor is used between the outer and inner encoders and
a corresponding inverse permutor between the inner and outer decoders. Then the
output error burst from the inner decoder will be smeared out by the inverse permutor
before the outer decoder has to cope with it.

An alternative method of decreasing the decoding complexity without decreasing
the code reliability is using low-density parity-check (LDPC) codes, a class of codes
on graphs, or so-called turbo codes. In Chapter 8 we discuss LDPC convolutional
codes and in Chapter 9 we introduce turbo codes.

Outer
RS encoder

Inner
Conv. encoder

Channel

Inner
Viterbi decoder

Outer
RS decoder

Output

Input

Noise

Figure 1.19 Concatenated coding system.

1.6 CAPACITY LIMITS AND POTENTIAL CODING GAIN REVISITED

We will now return to the problem of determining the regions of potential coding
gain which we first encountered in Section 1.1.

Consider Shannon’s formula for the capacity of the bandlimited Gaussian channel
(1.15),

CWt = W log

(
1 +

S

N0W

)
bits/s

where W as before denotes the bandwidth. Assume that we are transmitting at the
so-called Nyquist rate, (that is, at a rate of 2W samples per second) and that we use
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a rate R = K/N block code. If we transmit K information bits during T seconds,
we have

N = 2WT samples per codeword (1.101)

Hence,
Rt = K/T = 2WK/N = 2WR bits/s (1.102)

(Assuming a constant transmission rate Rt, the required bandwidth W is inversely
proportional to the code rate R.)

By combining (1.18) and (1.102), we obtain

S

WN0
=

2REb

N0
(1.103)

For reliable communication, we must have Rt ≤ CWt , that is,

Rt = 2WR ≤W log

(
1 +

2REb

N0

)
(1.104)

or, equivalently,
Eb

N0
≥ 22R − 1

2R
(1.105)

Letting R → 0, we obtain (1.20). Since the right hand side of inequality (1.105)
is increasing with R, we notice that in order to communicate close to the Shannon
limit, −1.6 dB, we have to use both an information rate Rt and a code rate R close
to zero. Furthermore, if we use a rate R = 1/2 code, it follows from (1.105) that the
required signal-to-noise ratio is

Eb/N0 ≥ 1 = 0 dB (1.106)

In Fig. 1.20 we show the coding limits according to (1.105) and the regions of
potential coding gain for various rates R.

When we derived the coding limits determined by inequality (1.105), we assumed
a required error probability Pb arbitrarily close to zero. If we are willing to tolerate
a certain given value of the error probability Pb, we can of course obtain a larger
coding gain. It follows from Shannon’s rate distortion theory [McE77] that if we
are transmitting the output of a binary symmetric source and can tolerate an average
distortion of KPb for a block of K information symbols, then we can represent Rt
bits of information per second with only Rt(1− h(Pb)) bits per second, where h(·)
is the binary entropy function (1.22).

These Rt(1− h(Pb)) bits per second should now be transmitted over the channel
with an error probability arbitrarily close to zero. Hence, instead of (1.104) we have
now the inequality

Rt(1− h(Pb)) = 2WR(1− h(Pb)) ≤W log

(
1 +

2REb

N0

)
(1.107)
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Figure 1.20 Coding limits and regions of potential coding gains for various rates R.

or, equivalently,

Eb

N0
≥ 22R(1−h(Pb)) − 1

2R
(1.108)

In Fig. 1.21 we show the coding limits according to (1.108) and the regions of potential
coding gains for various rates R when we can tolerate the bit error probability Pb.
We also show a comparison between these coding limits and Qualcomm’s Viterbi
decoder performance and that of a rate R = 3/4 (256, 192) RS decoder.

In order to achieve the rate distortion bound we need a nonlinear source encoder.
Hence, we have not shown that the coding limit (1.108) can be reached with linear
codes.

Remark: In order to achieve the capacity CWt promised by (1.15), we have to
use nonquantized inputs to the channel. If we restrict ourselves to the binary input
Gaussian channel, then the formula for CWt , (1.15), must be replaced by a more
complicated expression and the coding limits shown in Fig. 1.21 should be shifted to
the right by a small fraction of a dB [BMc74].
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Figure 1.21 Regions of potential coding gains for various rates R when we can tolerate bit
error probability Pb and a comparison with the performance of two convolutional codes and a
block code.

1.7 COMMENTS

Back in 1947 when Hamming had access to a computer only on weekends, he was
very frustrated over its behavior: “Damn it, if the machine can detect an error, why
can’t it locate the position of the error and correct it?” [Tho83]. That question
inspired the development of error-correcting codes. Hamming’s famous single-error-
correcting (7, 4) block code is mentioned by Shannon in “A Mathematical Theory of
Communication” [Sha48], but Hamming’s paper was not published until two years
later [Ham50]. The first paper published in coding theory was that of Golay [Gol49],
which in less than one page gave the generalization of Hamming codes to nonbinary
fields, gave the only two multi-error-correcting perfect codes aside from the trivial
binary repetition codes of odd length, and introduced the parity-check matrix (see
also Problem 1.19).

Elias introduced convolutional codes in 1955 [Eli55]. The first decoding method
for these codes was sequential decoding suggested by Wozencraft in 1957 [Woz57]
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and further developed by Fano, who in 1963 presented a most ingenious decoding
algorithm [Fan63]. The conceptually simplest algorithm for sequential decoding is
the stack algorithm introduced by Zigangirov in 1966 [Zig66] and Jelinek in 1969
[Jel69]. In the meantime, Massey had suggested threshold decoding of convolutional
codes [Mas63]. In Viterbi’s famous paper from 1967 [Vit67], the Viterbi algorithm
was invented as a proof technique and presented as “a new probabilistic nonsequential
decoding algorithm”. Forney [For67] was the first to draw a trellis and it was he
who coined the name “trellis,” which made understanding of the Viterbi algorithm
easy and its maximum-likelihood nature obvious. Forney realized that the Viterbi
algorithm was optimum, but it was Heller who realized that it was practical [For94].
Later, Omura [Omu69] observed that the Viterbi algorithm can be viewed as the
application of dynamic programming to the problem of decoding a convolutional
code.

The most important contributions promoting the use of convolutional codes were
made by Jacobs and Viterbi when they founded Linkabit Corporation in 1968 and
Qualcomm Inc. in 1985, completing the path “from a proof to a product” [Vit90].

LDPC block codes were invented by Gallager [Gal62, Gal63] in the early 1960s.
Unfortunately, Gallager’s remarkable discovery was to a large extent ignored by the
coding community during almost 20 years. Two important papers by Zyablov and
Pinsker [ZyP74, ZyP75] published in the middle of the 1970s were overlooked by
many coding theoretists. In the beginning of the 1980s Tanner [Tan81] and Margulis
[Mar82] published two important papers concerning LDPC codes. Tanner’s work
provided a new interpretation of LDPC codes from a graph theoretical point of
view. Margulis gave explicit graph constructions of the codes. These works were
also essentially ignored by the coding specialists for more than 10 years, until the
beginning 1990s when Berrou, Glavieux, and Thitimajshima [BGT93] introduced
the so-called turbo codes which inspired many coding researchers to investigate
codes on graphs and iterative decoding. It has been shown that long LDPC codes
with iterative decoding based on belief propagation almost achieve the Shannon limit.
This rediscovery makes the LDPC codes strong competitors with other codes for error
control in many communication and digital storage systems when high reliability is
required.
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PROBLEMS

1.1 The channel capacity for the ideal bandlimited AWGN channel of bandwidth
W with two-sided noise power spectral density N0/2 is given by (1.15). The signal
power can be written S = EbRt.

Define the spectral bit rate r by

r = Rt/W (bits/s)/Hz

and show that
Eb

N0
≥ 2r − 1

r

for rates Rt less than capacity. Sketch r as a function of Eb/N0 expressed in dB.

1.2 Consider an ideal bandlimited AWGN channel with BPSK and with hard
decisions. Based on transmitting Rt = 2WR bits/s, where R is the code rate, the
capacity is

Ct = 2W (1 + ε log ε+ (1− ε) log(1− ε)) bits/s

where ε = Q
(√

rEb/N0

)
and r is the spectral bit rate r = Rt/W .

Show that
Eb

N0
≥ π

2
ln 2

for reliable communication.
Hint: The Taylor series expansion of Ct is

Ct = 2W

(
22

1 · 2
( 1

2 − ε)
2 +

24

3 · 4
( 1

2 − ε)
4 +

26

5 · 6
( 1

2 − ε)
6 + · · ·

)
log e

and
ε = Q

(√
rEb/N0

)
≥ 1

2
− 1√

2π

√
rEb/N0

1.3 Show that a block code B can detect all patterns of s or fewer errors if and only
if dmin > s.

1.4 Show that a block code B can correct all patterns of t or fewer errors and
simultaneously detect all patterns of t + 1, t + 2, . . . , t + s errors if and only if
dmin > 2t+ s.

1.5 Prove Theorem 1.2.

1.6 Consider a block code B with encoding matrix

G =

(
1 1 0 0 1
0 1 1 1 0

)
a) List all codewords.
b) Find a systematic encoding matrix and its parity-check matrix.
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c) Determine dmin.

1.7 Consider the following two block codes.
B1 = {110011 , 101010, 010101, 011001, 100110, 111111, 001100, 000000}
B2 = {010101 , 101010, 001100, 110110, 111111, 011001, 110011, 100110}

a) Are the two codes linear?
b) Determine wmin for each of the codes.
c) Determine dmin for each of the codes.
d) Determine the rate R = K/N .

1.8 Consider the block code B = {000000, 110110, 011011, 101101}.
a) Is B linear?
b) Find the rate R = K/N .
c) Find, if it exists, a linear encoder.
d) Find, if it exists, a nonlinear encoder.
e) Determine dmin.

1.9 Show that if B is a linear code and a 6∈ B, then B ∪ (a + B) is also a linear
code.

1.10 Consider the binary (6,K) even-weight code. (All codewords have even
weight.)

a) Find K.
b) Give the encoding and parity-check matrices.

1.11 Consider the binary (4,3) even-weight code.
a) Construct a standard array.
b) For each coset give its syndrome.
c) How many errors can it correct?
d) Determine dmin.

1.12 Show that a binary code can correct all single errors if and only if any parity-
check matrix has distinct nonzero columns.

1.13 Consider a binary code with encoding matrix

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


a) Find a parity-check matrix.
b) Construct a standard array.
c) List all codewords.
d) Determine from the standard array how many errors it can correct.
e) Determine dmin.
f) For each coset give its syndrome.
g) Suppose that r = 110000 is received over a BSC with 0 < ε < 1/2. Find

the maximum-likelihood decision û for the information sequence.
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1.14 Consider a block code B with encoding matrix

G =

(
1 1 0 0 1 1
1 1 1 1 0 0

)
a) Find a parity-check matrix.
b) List all codewords.
c) Determine dmin.
d) Suppose that r = 000111 is received over a BSC with 0 < ε < 1/2. Find

the maximum-likelihood decision û for the information sequence.

1.15 Consider a binary (N,K) code B with parity-check matrix H and minimum
distance d. Assume that some of its codewords have odd weight. Form a code B̂ by
concatenating a 0 at the end of every codeword of even weight and a 1 at the end of
every codeword of odd weight. This technique is called extending a code.

a) Determine dmin for B̂.
b) Give a parity-check matrix for the extended code B̂.

1.16 Consider the (8,4) extended Hamming code.
a) Give a parity-check matrix.
b) Determine dmin.
c) Find an encoding matrix.
d) Show how a decoder can detect that an odd number of errors has occurred.

1.17 The Hamming sphere of radius t with center at the N -tuple x is the set of all
y in FN2 such that dH(x,y) ≤ t. Thus, this Hamming sphere contains exactly

Vt =

t∑
i=0

(
N

i

)
distinct N -tuples. Prove the Hamming bound for binary codes, that is,

V⌊ dmin−1

2

⌋ ≤ 2N(1−R)

which is an implicit upper bound on dmin in terms of the block length N and rate R.

1.18 The systematic parity-check matrices for the binary Hamming codes can be
written recursively as

H2 =

(
1 1 0
1 0 1

)
and

Hm =

(
Hm−1 Hm−1 0
1 . . . 1 0 . . . 0 1

)
, m ≥ 3

Find the parameters N,K, and dmin for the mth Hamming code.

1.19 A code for which the Hamming bound (see Problem 1.17) holds with equality
is called a perfect code.
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a) Show that the repetition code, that is, the rate R = 1/N binary linear code
with generator matrix G = (1 1 . . . 1), is a perfect code if and only if N is
odd.

b) Show that the Hamming codes of Problem 1.18 are perfect codes.
c) Show that the Hamming bound admits the possibility that an N = 23

perfect binary code with ddim = 7 might exist. What must K be?

Remark: The perfect code suggested in Problem 1.19(c) was found by Golay in
1949 [Gol49]. There exist no perfect binary codes other than those mentioned in this
problem.

1.20 Suppose that the block code B with parity-check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


is used for communication over a BSC with 0 < ε < 1/2.

a) Find dmin.
b) How many errors can the code correct?
c) How many errors can the code detect?
d) For each syndrome give the error pattern ê that corresponds to the error-

correcting capability of the code.
e) For r = 0111011 find v̂, the maximum-likelihood decision.
f) For r = 0110111 find v̂, the maximum-likelihood decision.

1.21 Verify formula (1.73).
Hint: The (7, 4) Hamming code has one codeword of weight 0, seven codewords of
weight 3, seven codewords of weight 4, and one codeword of weight 7. The error
probability is the same for all bits.

1.22 Given a Hamming code B with parity-check matrix H .
a) Construct an extended code Bext with parity-check matrix

Hext =


0
... H
0
1 1 · · · 1


b) Determine dmin for Bext.
c) Construct an expurgated code Bexp with parity-check matrix

Hexp =

 H

1 · · · 1


d) Determine dmin for Bexp.
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e) What is characteristic for the weights of the codewords of Bexp?

1.23 Draw the Tanner graph for the extended (8, 4) Hamming code defined by the
parity-check matrix

H =


0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1


1.24 Show that the parity-check matrix (1.77) has rank less than L.

1.25 Consider the code given in Example 1.15. Show that the bit-flipping algorithm
with lowest possible threshold does not correct all single errors.

1.26 Consider the extended (8, 4) Hamming code defined in Problem 1.23 and
suppose that it is used to communicate over the BSC. Show that the bit-flipping
algorithm with adaptive threshold corrects all single errors and that there exists a
double error which the algorithm does not correct.

1.27 Consider the binary input, ternary output binary erasure channel (BEC) given
in Fig. 1.22, where ∆ denotes an erasure and δ is the probability of an erasure. Assume
that we use this channel for communication together with maximum-likelihood (ML)
decoding. Show that the ML decoding algorithm corrects all erasure patterns whose
Hamming weights are less than the minimum distance dmin.

0 0

1 1

∆

1− δ

δ

δ

1− δ

Figure 1.22 BEC used in Problem 1.27.

1.28 Consider the trellis given in Fig. 1.18.
a) List all codewords.
b) Find the ML estimate of the information sequence for the received sequence
r = 01 10 01 10 11 on a BSC with 0 < ε < 1/2.

1.29 Consider the convolutional encoder shown in Fig. 1.23.
a) Draw the trellis corresponding to four information digits and m = 1

dummy zero.
b) Find the number of codewords M represented by the trellis in Prob-

lem 1.29(a).
c) Use the Viterbi algorithm to decode when the sequence r = 11 01 10 10 01

is received over a BSC with 0 < ε < 1/2.
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u

v(2)

v(1)

Figure 1.23 Convolutional encoder used in Problem 1.29.

1.30 Consider the convolutional encoder with generator matrix

G =

 11 10 01 11
11 10 01 11

. . . . . . . . . . . .



a) Find the rate and the memory.
b) Draw the encoder.
c) Find the codeword v that corresponds to the information sequence u =

1100100 . . ..

1.31 Consider the code C with the encoding rule

v = uG+ (11 01 11 10 11 . . .)

where

G =

 11 10 01 11
11 10 01 11

. . . . . . . . . . . .


a) Is the code C linear?
b) Is the encoding rule linear?

1.32 Consider the rate R = 2/3, memory m = 2 convolutional encoder illustrated
in Fig. 1.14.

a) Draw the trellis diagram.
b) Find the encoder matrixG.
c) Let u = 10 11 01 10 00 00 . . . be the information sequence. Find the corre-

sponding codeword v.

1.33 Plot in Fig. 1.21 the bit error probability for the (7, 4) Hamming code when
used to communicate over the Gaussian channel with hard decisions.
Hint: From formula (1.12), that is, ε = Q

(√
2Es/N0

)
, whereEs = REb, we obtain

the following table:
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Es/N0 [dB] ε

0 0.79 · 10−1

2 0.38 · 10−1

4 0.12 · 10−1

6 0.24 · 10−2

8 0.19 · 10−3

10 0.39 · 10−5

12 0.90 · 10−8




