
Chapter 1

Getting to Know LINQ
In This Chapter
� Defining LINQ uses, benefits, and design goals

� Considering the real world uses of LINQ

� Defining declarative programming languages

� Understanding the LINQ namespaces

The Language INtegrated Query (LINQ) feature of Visual Studio 2008 pro-

vides you with a new way to interact with data of all types. In fact, this

new feature provides you with tools that make it easier to create queries

using less code. The resulting queries are often easier to understand than

other techniques for deriving information from both standard (think data-

bases) nonstandard (think memory data structures) data sources. In addi-

tion, you gain a measure of flexibility that most developers associate with

using a database, not lists provided internally as part of applications.

 The easiest way to think of LINQ at the outset is as a means of looking for

something — a specialized kind of search. Because most people are inundated

with information today, providing a fast means of locating specific data is

important. LINQ provides the means to perform a search without writing a lot

of code. Everything is built in to the development environment so all you need

to consider is what to find, not how to find it. Unlike other kinds of searches,

however, LINQ provides the means to look inside data structures that you nor-

mally can’t search, such as objects. It can also standardize the methods you

use to perform searches within Web services. In short, LINQ

 � Provides access to a huge range of data

 � Lets you simplify searches to locate just what you need

 � Reduces the code required to perform a search

 � Enables you to focus on the search instead of writing search routines

 � Interacts with all kinds of data sources using a standardized approach

CO
PYRIG

HTED
 M

ATERIA
L

10 Part I: An Overview of LINQ

This chapter serves as an introduction to LINQ. You discover how LINQ will

make your coding experience better, reduce real world complexity, and make

searches more accurate. As part of discovering LINQ, you also need to know

about declarative languages, and this chapter provides the information you

need. Finally, since LINQ is part of the .NET Framework, you need to know

which namespaces support it, so this chapter provides an introduction to

these new namespaces.

Considering LINQ
LINQ is possibly the most exciting new feature Microsoft has added to Visual

Studio 2008. Sure, the other features that Microsoft added are important, but

they don’t have the overwhelming reach of LINQ to change the way develop-

ers write applications. Anyone can use LINQ to create a better application —

one that works more efficiently and uses less code. In addition, you no longer

have to write custom search routines that differ from developer to developer.

By using LINQ to perform searches of all types, you can standardize another

part of your code base and incrementally improve overall developer produc-

tivity. The following sections describe LINQ in greater detail.

Understanding the task
that LINQ performs
LINQ is all about searching efficiently and consistently. Your application

searches efficiently by performing the task using less code and obtaining the

results faster. Consistency comes from using the same code pattern to per-

form a search no matter what source of data you want to work with. From a

pattern perspective, a search of an array looks the same as a search of a Web

service or SQL Server database. Using LINQ, it no longer matters whether the

data resides in SQL Server or MySQL, or even both. LINQ does divide queries

into four common types (using different providers) that augment the basic

patterns described in Chapter 2:

 � LINQ to Object

 � LINQ to DataSet

 � LINQ to SQL

 � LINQ to XML

It’s possible to have other kinds of “LINQ to” scenarios by adding other

libraries. For example, you can find a LINQ to Active Directory library at

http://www.codeplex.com/LINQtoAD. The goal, however, is to perform

11 Chapter 1: Getting to Know LINQ

as many tasks as possible using the four basic LINQ to strategies provided

with .NET Framework 3.5.

 The most important thing to remember about LINQ is that it isn’t technology

specific. This book shows you how to “LINQ to” any number of data sources,

some of which you’ll find unusual because you may not have thought to

search them before. For example, you may have an assortment of data in

an object that you need to search — LINQ is the perfect tool for performing

this task.

In addition to finding data, LINQ can also help organize it so that you present

the user with only the data needed as output. Using special features of LINQ,

you can filter data so that the user sees just the desired elements. You can

also group and sort the data so that the user sees it in an order that makes it

easier to use the data. The essential task that LINQ performs, therefore, is to

make the data accessible. The user sees only the data needed and in the

most productive way.

 However, LINQ goes beyond searching for and ordering data. In many cases,

you can also use LINQ to create a query that manipulates data in various

ways, assuming the data source allows such manipulation. For example, you

can use LINQ to change the content of a SQL Server database. Some unusual

data sources such as Active Directory also allow modification. In fact, you can

modify any configuration database that relies on the Lightweight Directory

Access Protocol (LDAP). Consequently, the techniques in this book show you

how to work with mainstream products, but you can easily modify them to

meet any need.

Contemplating why you need LINQ
With feature bloat running rampant and developer time in ever limited quan-

tity, you may wonder whether LINQ is the right choice for you. In most cases,

you’d look for a list of qualifiers describing the technology and use these

qualifiers to decide whether a technology is the right one for you. LINQ is a

well-designed technology that can apply to anyone’s search needs — no qual-

ifiers needed. You won’t have to wait for drivers or additional software to use

it. In short, anyone who searches for data can use LINQ to meet that need.

 Of course, now you’re thinking that this book is offering you the fabled silver

bullet solution. LINQ isn’t a silver bullet. The other tools you have for search-

ing are still useful and you’ll need to employ them. For example, even

Microsoft admits that LINQ can have performance problems when searching

SQL Server databases. You can read the five-part blog series about perfor-

mance issues at http://blogs.msdn.com/ricom/archive/2007/06/
22/dlinq-linq-to-sql-performance-part-1.aspx to obtain a good

12 Part I: An Overview of LINQ

overview of the problems (but not any significant solutions). Chapter 11 pro-

vides you with information about how you can overcome performance issues

(here’s where you find the solutions), so make sure to check it out as well.

It’s important to understand that LINQ works with most data sources but not

all of them. For example, you can easily use LINQ with most public Web ser-

vices and some private Web services. However, even though you can use

LINQ with the Amazon, Google, and AOL Web services, it doesn’t work with

the eBay Web services due to security concerns. In short, specific Web ser-

vice requirements can prevent LINQ from working properly. You can find a

complete list of LINQ providers (LINQ to solutions) at http://blogs.
msdn.com/charlie/archive/2006/10/05/Links-to-LINQ.aspx.

Table 1-1 shows a list of the providers as of this writing.

Table 1-1 LINQ Providers
LINQ to Solution URL

LINQ Extender (toolkit for
building LINQ providers)

http://www.codeplex.com/
LinqExtender

LINQ over C# project http://www.codeplex.com/
LinqOverCSharp

LINQ to Active Directory http://www.codeplex.com/LINQtoAD

LINQ to Amazon http://weblogs.asp.net/fmarguerie/
archive/2006/06/26/Introducing-
Linq-to-Amazon.aspx

LINQ to Bindable
Sources (SyncLINQ)

http://paulstovell.net/blog/index.
php/why-synclinq-should-matter-to-
you/

LINQ to CRM
(Customer Relationship
Management)

http://www.codeplex.com/LinqtoCRM

LINQ to Excel http://www.codeplex.com/xlslinq

LINQ to Expressions
(MetaLinq)

http://www.codeplex.com/metalinq

LINQ to Flickr http://www.codeplex.com/LINQFlickr

LINQ to Geo (geospatial
data)

http://www.codeplex.com/LinqToGeo

LINQ to Google http://www.codeplex.com/glinq

LINQ to Indexes http://www.codeplex.com/i4o/
Release/ProjectReleases.
aspx?ReleaseId=3519

13 Chapter 1: Getting to Know LINQ

LINQ to Solution URL

LINQ to IQueryable http://blogs.msdn.com/mattwar/
archive/2007/08/09/linq-building-
an-iqueryable-provider-part-vi.aspx

LINQ to JavaScript http://www.codeplex.com/JSLINQ

LINQ to JSON
(JavaScript Object
Notation)

http://james.newtonking.com/
archive/2008/02/11/linq-to-json-
beta.aspx

LINQ to LDAP
(Lightweight Directory
Access Protocol)

http://community.bartdesmet.net/
blogs/bart/archive/2007/04/05/
the-iqueryable-tales-linq-to-ldap-
part-0.aspx

LINQ to Lucene http://www.codeplex.com/
linqtolucene

LINQ to Metaweb (free-
base)

http://www.codeplex.com/
metawebToLinQ

LINQ to MySQL, Oracle,
and PostgreSql

http://code2code.net/DB_Linq/

LINQ to NHibernate http://www.ayende.com/Blog/
archive/2007/03/17/Implementing-
Linq-for-NHibernate-A-How-To-Guide-
-Part.aspx

LINQ to RDF (Resource
Description Framework)
Files

http://blogs.msdn.com/hartmutm/
archive/2006/07/24/677200.aspx

LINQ to SharePoint http://www.codeplex.com/
LINQtoSharePoint

LINQ to SimpleDB http://www.codeplex.com/
LinqToSimpleDB

LINQ to Streams http://www.codeplex.com/Slinq/

LINQ to WebQueries http://blogs.msdn.com/hartmutm/
archive/2006/06/12/628382.aspx

LINQ to WMI (Windows
Management
Instrumentation)

http://bloggingabout.net/blogs/
emile/archive/2005/12/12/10514.
aspx, http://tomasp.net/blog/linq-
expand.aspx, and http://tomasp.net/
blog/linq-expand-update.aspx

LINQ to XtraGrid http://cs.rthand.com/blogs/blog_
with_righthand/archive/2008/02/23/
LINQ-to-XtraGrid.aspx

14 Part I: An Overview of LINQ

 Don’t get the idea that LINQ always requires a provider. The provider does

make it easier to perform tasks, but you can also create your own interface

using the generic providers. For example, you can interact with Office 2007

files without using a specific provider. Chapter 10 shows you how to perform

this task.

Even with these few warts, however, LINQ is a good solution for many search

needs and you should at least try it. You need LINQ because it has so much

to offer and doesn’t require a lot of time to master or use. LINQ provides the

experimental platform that most developers crave. In those few situations

where LINQ can’t do a good job for you, experimentation can at least help

you understand the data source better.

Defining the LINQ design goals
Microsoft had a number of design goals in mind when it created LINQ. These

design goals affect how you view LINQ today and how you can use it to solve

specific application development problems. The following list describes the

design goals.

 � Data source access simplification: One of the major issues of working

with any data source is that the developer must know several disciplines

to perform the task of accessing the data. For example, when working with

SQL Server, the developer must understand the nuances of the base pro-

gramming language, a database provider, and a language such as SQL to

obtain access to the data. If the developer decides to access XML data, it’s

necessary to master an entirely different set of disciplines. LINQ over-

comes this problem by providing a single method of accessing data.

 � Data manipulation simplification: When you make a query using C# or

Visual Basic .NET, you have to worry about the structure of the data

source. For example, when you query SQL Server, you must consider the

tables, indexes, views, and other structural elements of the database.

The use of these structural elements is necessary but not helpful. You

end up thinking about the data structure and not the data. Consequently,

many developers create convoluted and difficult to understand data-

manipulation code when what they really wanted was the data (the

underlying structure isn’t important).

 � Data translation: In most cases, you must write special routines to

move data from one data source to another. For example, if you want

to move data from an XML file to SQL Server, you must perform some

special tasks to do it. In addition, moving the data doesn’t always pro-

vide the results you expected. Differences in data source capabilities

make the translation less than perfect. LINQ reduces the complexity of

data translation significantly. It doesn’t always provide a perfect transla-

tion either, but you’ll find that the translation is usually better because

each provider performs the required translation for you.

15 Chapter 1: Getting to Know LINQ

 � Object mapping: Most programming languages today rely on some form

of object orientation. Objects have special characteristics that you won’t

find in many data sources. For example, an object doesn’t respect the

tables, indexes, and other data structures found in SQL Server.

Consequently, you need a means of mapping the object to the data

source and vice versa. In the past, the developer had to rely on complex

objects that Visual Studio generated for them. Using LINQ provides

object mapping without the complexity.

 � Language extensibility: Microsoft provides a limited number of “LINQ

to” providers as part of the .NET Framework. These providers are capa-

ble, but they don’t address every need. Consequently, one of the design

goals for LINQ is to provide language extensibility so that third parties

can create other providers. Table 1-1 shows an example of just how

many providers have already been created by third parties, and you can

expect more in the future.

 � Multiple data source extensibility: Because one of the goals for LINQ is

data translation, it’s important to have providers that can work with

multiple data sources. The goal is to make it possible to move data from

any data source to any other data source. In addition, Microsoft wants

LINQ to be able to use data from any data source and combine it with

data from any other data source to create a composite output.

 � Type safety: A major problem with many data source usage scenarios

today is that data problems are discovered only at run time, often with-

out any help from the language product or the application. A developer

may not discover a problem until someone complains about mangled

data. The type safety features of LINQ help you discover potential data

problems during compile time, when they’re easy to fix, rather than get-

ting your bad news later.

 � IntelliSense support: Creating a query using standard development

tools can be hit or miss. LINQ provides IntelliSense support so that you

can see how to create the query as you create it.

 � Debugger support: Due to strong typing and other features of LINQ, you

get full debugger support, which makes finding a particular problem

considerably easier. No longer do you have to look for that errant bit of

code in a loop or the missed type issue in a custom class. LINQ helps

you diagnose problems quickly and easily.

 � Older product support: Even though most of this book uses new tech-

nology that Microsoft provides, you can use LINQ with older products as

well. Obviously, the support isn’t built in to these older products, so

LINQ doesn’t work as seamlessly. (You must use at least the .NET

Framework 2.0.)

 � Backward compatibility: One of Microsoft’s major goals was to ensure

that you could continue using all the data structures you used in the

past. LINQ simply provides a different way to interact with those data

structures.

16 Part I: An Overview of LINQ

Understanding the LINQ requirements
LINQ is part of .NET Framework 3.5. Consequently, you need Visual Studio

2008 to work with LINQ effectively. This book assumes that you have a copy

of Visual Studio 2008 installed on your system. The examples rely on Visual

Studio 2008 Professional Edition and you may not get precisely the same

results when you use a different edition of the product. Theoretically, you

could use LINQ with Visual Studio 2005 (Chapter 5 discusses this technique),

but the bulk of this book relies on Visual Studio 2008.

Microsoft has also decided to focus attention on C# as the programming lan-

guage of choice when using LINQ. C# provides a few extensions and features

that make working with LINQ easier. However, you can use Visual Basic .NET

quite well with LINQ, too. Although most of the techniques in this book work

with any language you want to use, the example code appears in C#. The

exception is Chapter 4, which shows how to work with LINQ with Visual

Basic .NET. These examples will help you to apply any of the examples to the

Visual Basic .NET environment.

The use of C# begs the question of what makes it so special. Chapter 3

describes the .NET Framework extensions that make working with LINQ con-

siderably easier. Some of these language extensions are found only in C# and

others are easier to work with in C#. You find a complete description of the

features and how to use them in the chapter. For now, all you need to know is

that this book will help you use LINQ no matter which language you choose

and what platform you have. It’s also important to know that the majority of

the book is focused on Visual Studio 2008 C# developers because this is the

group that Microsoft has chosen as its target group for LINQ.

Using LINQ with other languages
Don’t get the idea that LINQ is going to remain a
solution for C# and Visual Basic .NET develop-
ers alone. Using LINQ does require the use of
a different compiler, but that won’t stop other
languages from employing it. You can already
find support for LINQ in Microsoft’s new F# lan-
guage and you’ll probably find it in use with C++
as well.

LINQ will appear as part of other language pack-
ages in the future. There are rumors that Borland
Delphi will also have LINQ support at some time

(read more at http://www.eweek.com/
c/a/Application-Development/
Borland-Plans-to-Support-MS-
LINQ-in-Delphi-Platform/), and
you can expect that other languages such as
PHP will have it as well. If you want to find out
more about languages that will support LINQ,
check out Charlie Calvert’s Community Blog at
http://blogs.msdn.com/charlie/
archive/2006/10/05/Links-to-
LINQ.aspx.

17 Chapter 1: Getting to Know LINQ

Using LINQ in the Real World
Realistically, using LINQ is possibly overkill if your goal is to search through

a short list of items found in a control. Most developers will use LINQ for

something a little more complex than simple lists (then again, nothing stops

you from using LINQ even for simple tasks — it’s that fast and easy). You

know from previous sections of the chapter that LINQ isn’t a silver bullet

solution. The technology has problems with security and you may not always

find the performance stellar, so it’s important to weigh the cost of using LINQ

against the benefits it provides, which are substantial.

Many developers will likely begin using LINQ in places where they don’t

currently have a good solution, such as with Web services, or in situations

where they already know how to perform a search, such as with SQL Server.

The starting goal is to discover how well LINQ works to perform a basic

query and then move on to something more complicated. Developers will

want to kick the tires for a while and then discover that LINQ really does do

powerful things with only a little code.

LINQ query testing is required
LINQ is a new technology. As such, it’s tempting
to look at the benefits and say that it’s the new
perfect tool or to look at the deficiencies and
proclaim another Microsoft failure. However,
after you begin working with LINQ, you begin
to understand that LINQ is neither of these
viewpoints — it’s simply a new tool to put in
your arsenal. Many developers will find that
LINQ is one very good answer to specific needs,
but as with any tool, it has limitations.

The problem now is that because LINQ is a new
tool, you don’t know anything about its limita-
tions. This book presents a considerable number
of examples, and it’s a good idea to try them all.
However, at some point, you’re going to have to
test LINQ against the tools you currently use or
should use. For example, you should probably
test LINQ against your current .NET code and
the SQL Server stored procedures that you use.
In some cases, LINQ is most definitely a winner,

but in other cases, you’ll want to stick with
existing technologies.

A rule of thumb for LINQ is that it simplifies que-
ries. If your goal is to simplify the task of query-
ing a data source, LINQ is normally going to
come out ahead. Because LINQ uses a stan-
dardized method to create a query, it’s simple to
learn, and that can also make it considerably
much more reliable than existing technologies.
Developers are less likely to make errors when
they have a tool that makes writing code easy.
The fact that LINQ queries are generally shorter
than any code you can write also tends to
reduce errors and make code more reliable.
However, because you’re depending on LINQ to
determine how to perform a particular task,
LINQ doesn’t always provide the required per-
formance, which is why you must test any solu-
tion you create against the existing model
(when one exists).

18 Part I: An Overview of LINQ

The most exciting use of LINQ is to perform data translation. Currently, a

query of Amazon’s Web service, interpretation, and translation into a form

that SQL Server will use can require several hundred lines of code. I know

this from experience because I’ve written such code in the past. It’s nice to

make two queries with LINQ that require perhaps twenty lines of code to per-

form the same task. As development environments become more complex

and the number of data sources increase, developers will need the special

talents of LINQ to perform their data translation for them.

It doesn’t take long to realize that LINQ in the real world is all about getting

the job done fast, reliably, and with fewer lines of code. In addition, the sim-

plification that LINQ provides makes it possible to use data sources even

when you aren’t completely familiar with them. For example, a developer

who normally works with SQL Server would need training to work with

MySQL because the two products have differences. Because LINQ hides the

differences between these two products, a SQL Server developer could possi-

bly work with MySQL with little, if any, training. All that the developer would

need to do is to ensure that the query is formed correctly — and IntelliSense

even helps with that issue. In short, the real world view of LINQ is that it

makes developers incredibly productive.

Understanding Declarative Programming
Most Visual Studio developers already understand imperative languages

because C# and Visual Basic .NET are imperative languages. An imperative

language describes how to solve a particular problem. You use an imperative

language to write a procedure to answer a specific need. A user clicks a

button and the button click event handler provides a procedure to respond.

 Imperative languages assume that you know how to solve a problem, and in

most cases, you do. However, sometimes you don’t know how to solve a prob-

lem or the language itself has gaps that make a solution difficult. Obtaining

data from a data source is one of those problems. In this case, you need a

declarative language such as LINQ. When using a declarative language, you

state the problem and let the language decide how to solve the problem.

Other kinds of declarative languages include the Structured Query Language

(SQL) used in SQL Server. In fact, you’ll find that LINQ has similarities to SQL,

even though the two languages aren’t directly compatible.

Declarative languages can be divided into several groups, including logic,

functional, and query languages. LINQ is in the query language group.

Microsoft’s new F# language is in the functional group (see my article at

http://www.devsource.com/cp/bio/John-Paul-Mueller/). No

matter which group a declarative language is in, the basic assumption is the

same: A developer provides a problem and the language provides the method

for solving that problem. In short, a declarative language defines a relation-

ship between a problem and its solution.

19 Chapter 1: Getting to Know LINQ

Part of the strength of LINQ is that you can combine it with an imperative lan-

guage such as C# or Visual Basic .NET to create a stronger whole. Using LINQ

lets you rely on the language itself to solve certain problems, such as how to

obtain the data you specify from a particular data source.

 Despite Microsoft’s declarations to the opposite, LINQ, like SQL, isn’t a pure

declarative language. For example, you can include functions as part of a LINQ

query, so the language doesn’t necessarily define a pure relationship between

a problem and its solution — you can tweak the solution using the function. In

addition, the order in which you define the problem affects the solution.

These deviations from a pure declarative language are necessary to ensure

that you receive the proper outcome of a query. For the purposes of this book,

LINQ is a declarative language in the query language group that interacts with

the C# or Visual Basic .NET imperative languages.

An Overview of the LINQ Namespaces
Microsoft chose not to provide a single LINQ namespace. The .NET

Framework has a number of LINQ namespaces, each of which creates a differ-

ent kind of data connection. The following sections describe the higher level

LINQ namespaces in .NET Framework 3.5. You could find other LINQ libraries

on the Internet for use with other connection types. Chapter 12 discusses

one such library that you can use for accessing Active Directory.

System.Linq namespace
The System.Linq namespace contains all basic classes and interfaces that

you use to work with LINQ. Every LINQ to solution relies on this namespace

for basic support. As you’ll see in later chapters, this is the one namespace

that you always include when you want to use LINQ. The samples in Chapter

2 show initial usage of this namespace and you’ll also see it in Chapters 3

through 5. Chapter 6 begins the full examination of this namespace as part of

working with LINQ to objects. You can find out more about this namespace at

http://msdn2.microsoft.com/en-us/library/system.linq.aspx.

System.Linq.Expressions namespace
The System.Linq.Expressions namespace contains the classes, inter-

faces, and enumerations used to create expressions. An expression is essen-

tially a tree of nodes that define how a query works. For example, you can

create a binary expression that defines how to subtract one number from

another. A constant expression can define a constant value, and a named

20 Part I: An Overview of LINQ

parameter expression can define a value that receives data of a particular

type. The essential expression types are

 � BinaryExpression

 � ConditionalExpression

 � ConstantExpression

 � InvocationExpression

 � LambdaExpression

 � ListInitExpression

 � MemberExpression

 � MemberInitExpression

 � MethodCallExpression

 � NewArrayExpression

 � NewExpression

 � ParameterExpression

 � TypeBinaryExpression

 � UnaryExpression

Chapter 3 begins the discussion of several expression types, but you’ll find

expressions used throughout this book. You can find out more about this

namespace at http://msdn2.microsoft.com/en-us/library/system.
linq.expressions.aspx.

System.Data.Linq namespace
The System.Data.Linq namespace contains the classes, structures, inter-

faces, and enumerations used for SQL database interactions. This is the

basic namespace used for LINQ to SQL scenarios. It’s important to remember

that this is LINQ to SQL and not LINQ to SQL Server. The classes in this

namespace help you perform a number of data manipulation tasks, including:

 � SELECT data from the database

 � UPDATE data found in the database

 � DELETE records as needed in the database

 � Interact with binary data

 � Use and implement referential integrity rules

 � Work with a particular table or other database objects (such as indexes)

 � Translate the data from one data source to another

21 Chapter 1: Getting to Know LINQ

You’ll find that you use this namespace for a number of LINQ to SQL scenar-

ios. Chapter 8 begins the discussion of working with LINQ to SQL Server.

Chapter 11 discusses a number of advanced LINQ to SQL Server topics.

This namespace comes into play also when you work with DataSet objects.

A DataSet needs to work exclusively with an external data source; you can

also use it to work with internal data sources, so this is an extremely flexible

namespace. Discussions in Chapter 7 show how you can use LINQ to DataSet

to work with DataSet objects in your application. Look at Chapter 13 if you

want to see how this namespace can affect other LINQ to scenarios, such as

LINQ to MySQL. You can find out more about this namespace at http://
msdn2.microsoft.com/en-us/library/system.data.linq.aspx.

System.Data.Linq.Mapping namespace
The System.Data.Linq.Mapping namespace contains the classes and

enumerations to map data between an imperative language such as C# or

Visual Basic .NET and a declarative language such as SQL. It also comes into

play when working with technologies such as XML. In short, you’ll use this

class when working with any external data source that has a different repre-

sentation from the standard object-oriented view of data found in the .NET

Framework. Coverage of this namespace begins in Chapter 7, but you’ll find it

used throughout the book. You can find out more about this namespace at

http://msdn2.microsoft.com/en-us/library/system.data.linq.
mapping.aspx.

System.Data.SqlClient namespace
The System.Data.SqlClient namespace contains the classes used to create

a basic connection with SQL Server. Although you might use this namespace in a

number of scenarios, you’ll generally use it exclusively with SQL Server. The

classes in this namespace help you perform the following tasks:

 � Interact with SQL Server 2000

 � Interact with SQL Server 2005

 � Perform string pattern matching

 � Perform data manipulation, especially with dates

 � Create a basic SQL Server connection

The coverage of this namespace begins in Chapter 8, but you’ll also find

advanced features described in Chapter 11. You can find out more about this

namespace at http://msdn2.microsoft.com/en-us/library/system.
data.linq.sqlclient.aspx.

22 Part I: An Overview of LINQ

System.Data.SqlClient.Implementation
namespace
The System.Data.SqlClient.Implementation namespace contains the

class used to implement the SQL Server client functionality found in the

System.Data.SqlClient namespace. You generally won’t use the classes

found in this namespace directly. The coverage of this namespace begins in

Chapter 8, but you’ll also find advanced features described in Chapter 11. You

can find out more about this namespace at http://msdn2.microsoft.com/
en-us/library/system.data.linq.sqlclient.implementation.aspx.

System.Xml.Linq namespace
The System.Xml.Linq namespace contains classes and enumerations used

to interact with XML data of all type. When you think about the number of

ways in which modern computer systems use XML data, this namespace

covers a significant amount of ground. As with SQL Server, you can use the

classes of this namespace to interact with XML files in a number of ways. The

following list provides an overview of the kinds of interaction you can perform:

 � Load XML from files or streams (basic input functionality)

 � Serialize XML to files or streams (basic output functionality)

 � Create XML trees from scratch using functional construction (data

translation)

 � Query XML trees using LINQ queries (basic data viewing and

manipulation)

 � Manipulate in-memory XML trees (advanced data manipulation)

 � Validate XML trees using XSD (data verification)

 � Combine all of these features to perform advanced data translation tasks

and even move data to other data sources

Chapter 9 begins the discussion of this particular namespace. However, you’ll

also see it in other parts of the book, such as when working with Office 2007

files in Chapter 10. You can find out more about this namespace at http://
msdn2.microsoft.com/en-us/library/system.xml.linq.aspx.

