CHAPTER 1

BASIC TOOLS

In which we meet the probability sample and the R language.

1.1 GOALS OF INFERENCE

1.1.1 Population or process?

The mathematical development for most of statistics is modei-based, and relies on
specifying a probability model for the random process that generates the data. This
can be a simple parametric model, such as a Normal distribution, or a complicated
model incorporating many variables and allowing for dependence between observa-
tions. To the extent that the model represents the process that generated the data,
it is possible to draw conclusions that can be generalized to other situations where
the same process operates. As the model can ounly ever be an approximation, it is
important (but often difficult) to know what sort of departures from the model will
invalidate the analysis,

Complex Surveys: A Guide to Analysis Using R. By Thomas Lumley
Copyright (©) 2010 John Wiley & Sons, Inc, 1
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The analysis of complex survey samples, in contrast, is usvally design-based. The
researcher specifies a population, whose data values are unknown but are regarded as
fixed, not random. The observed sample is random because it depends on the random
selection of individuals from this fixed population. The random selection procedure
of individuals (the sampie design) is under the control of the researcher, so all the
probabilities involved can, in principle, be known precisely. The geal of the analysis
is to estimate feaiures of the fixed population, and design-based inference does not
support generalizing the findings to other populaticns.

In some situations there is a clear distinction between population and process
inference. The Bureau of Labor Statistics can analyze data from a sample of the
US population to find out the distribution of income in men and women in the US.
The vse of statistical estimation here is precisely to generalize from a sample to the
population from which it was taken.

The University of Washington can analyze data on its faculty salaries to provide
evidence in a court case alleging gender discrimination. As the university’s data are
complete there is no uncertainty about the distribution of salaries in men and women
in this population. Statistical modelling is needed to decide whether the differences
in salaries can be attributed to valid causes, in particular to differences in seniority,
to changes over time in state funding, and to area of study. These are questions about
the process that led to the salaries being the way they are.

In more complex analyses there can be something of a compromise between
these goals of inference. A regression model fitted to blood pressure data measured
on a sample from the US population will provide design-based conclusions about
associations in the US population. Sometimes these design-based conclusions are
exactly what is required, e.g., there is more hypertension in blacks than in whites.
Often the goal is to find out why some people have high blood pressure: is the racial
difference due to diet, or stress, or access to medical care, or might there be a genetic
component?

1.1.2 Probability samples

The fundamental statistical concept in design-based inference is the probabiliry sam-
ple or random sample. In everyday speech, “taking a random sample” of 1000
individuals means a sampling procedure when any subset of 1000 people from the
population is equally likely to be selected. The technical term for this is a “simple
random sample”. The Law of Large Nurnbers implies that the sample of 1000 people
is likely to be representative of the population, according to essentially any criteria
we are interested in. If we compute the mean age, or the median income, or the
proportion of registered Republican voters in the sample, the answer is likely to be
close to the value for the population.

We could alse end up with a sample of 1000 individuals from the US population,
for example, by taking a simple random sample of 20 people from each state. On
many criteria this sample is unlikely to be representative, becanse people from states
with low populations are more likely to be sampled. Residents of these states have a
similar age distribution to the country as a whole but tend to have lower incomes and
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be more politically conservative. As a result the mean age of the sample will be close
to the mean age for the US population, but the median income is likely to be lower,
and the proportion of registered Republican voters higher than for the US population.
As long as we know the population of each state, this stratified random sample is
still a probability sample. Yet another approach would be to choose a simple random
sample of 50 counties from the US and then sample 20 people from each county.
This sample would over-represent counties with low populations, which tend to be
in rural areas. Even so, if we know all the counties in the US, and if we can find the
number of households in the counties we choose, this is also a probability sample.

It is important to remember that what makes a probability sample is the procedure
for taking samples from a population, not just the data we happen to end up with.

The properties we need of a sampling method for design-based inference are as
follows:

1. Every individual in the population must have a non-zero probability of ending
up in the sample (written 7r; for individual i)

2. The probability 7; must be known for every individual who does end vp in the
sample.

3. Every pair of individuals in the sample must have a non-zero probability of
both ending up in the sample (written m;; for the pair of individuals (i, j)).

4. The probability 7r;; must be known for every pair that does end up in the
sample.

The first two properties are necessary in order to get valid population estimates; the
last two are necessary to work out the accuracy of the estimates. If individuals were
sampled independently of each other the first two properties would guarantee the last
two, since then m;; = m;7;, but a design that sampled one random person from each
US county would have 7; > ( for everyone in the US and =;; = 0 for two people in
the same county. In the survey package, as in most software for analysis of complex
samples, the computer will work out si;; from the design description, they do not
need to be specified explicitly.

The world is imperfect in many ways, and the necessary properties are present
only as approximations in real surveys. A hist of residences for sampling will include
some that are not inhabited and miss some that have been newly constructed. Some
people (me, for example) do not have a landline telephone, others may not be at home
or may refuse to answer some or all of the questions. We will initially ignore these
problems, but aspects of them are addressed in Chapters 7 and 9.

1.1.3 Sampling weights

If we take a simple random sample of 3500 people from California (with total
population 35 millicn) then any person in California has a 1/10000 chance of being
sarpled, so ; = 3500/3500000 = 1/10000 for every i. Each of the people we
sample represents 10000 Californians. If it turns out that 400 of our sample have high
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bleod pressure and 100 are unemployed, we would expect 400 x 10000 = 4 million
people with high blood pressure and 160 x 10000 = 1 million unemployed in the
whole state. I we sample 3500 pecple from Connecticut (population 3, 500, 000),
all the sampling probabilities are equal to 3500/3500000 = 1/1000, so each person
in the sample represents 1000 people in the population. If 400 of the sample had
high blood pressure we would expect 400 x 1000 = 400000 people with high blood
pressure in the state population.

The fundamental statistical idea behind &ll of design-based inference is that an
individual sampled with a sampling probability of 7; represents 1/7; individuals in
the population. The valve 1/7; is called the sampling weight.

This weighting or “grossing up” operation is easy to grasp for a simple random
sample where the probabilities are the same for every one. It is less obvious that
the same rule applies when the sampling probabilities can be different. In particular,
it may not be intuitive that the sampling probabilities for individuals who were not
sampled do not need to be known,

Consider measuring income on a sample of one individual from a population of
N, where m; might be different for each individual. The estimate ( f‘income) of the
total income of the population (Tincome) would be the income for that individual
rultiplied by the sampling weight:

f‘income = i X income;.
Ty
This will not be a very good estimate, since it is based on only one person, but it
will be unbiased: the expected value of the estimate will equal the true population
total. The expected value of the estimate is the value of the estimate when we select
person {, times the probability of selecting person /, added up over all people in the
population

E [f'income]

X income; x m;

income;

e

= Tlncorne-

The same algebra applies with only slightly more work to samples of any size. The
1/7; sampling weights used to construct the estimate cancel out the s; probability
that this particular individual is sampled. The estimator of the population total is
called the Horvitz- Thompson estimator [63] after the authors who proposed the most
general form and a standard error estimate for it, but the principle is much older.

Estimates for any other population quantity are derived in various ways from
estimates for a population total, so the Horvitz—Thompson estimator of the population
total is the foundation for all the analyses described in the rest of the book. Because
of the importance of sampling weights and the inconvenience of writing fractions it
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is useful to have a notation for the weighted observations. If X; is a measurement of
variable X on person i, we write

Xv’g = i‘Xg.

b4

Given a sample of size n the Horvitz-Thompson estimator Ty for the population
total Ty of X is

. | L
Ty = ngf =3"X. (1.1)

i=1 i=1

The variance estimate is

o XX, X X;
@[ fx] =3 (;z_fj - ——f) : (12)
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Knowing the formula for the variance estimator is less important to the applied vser,
but it is useful to note two things. The first is that the formula applies to any design,
however complicated, where x; and 5y are known for the sampled observations. The
second is that the formula depends on the pairwise sampling probabilities m;;, not
just on the sampling weights; this is how correlations in the sampling design enter
the computations. Some other ways of writing the variance estimator are explored in
the exercises at the end of this chapter.

Other meanings of “weights” Statisticians and statistical software use the term
‘weight’ to mean at least three different things.

sampling weights A sampling weight of 1000 means that the observation represents
1000 individuals in the population.

precision weights A precision (or inverse-variance) weight of 1000 means that the
observation has 1000 times Iower variance than an observation with a weight
of 1.

frequency weights A frequency weight of 1000 means that the sample contains
1000 identical observations and space is being saved by using only one record
in the data set to represent them.

In this book, weights are always sampling weights, 1 /7r;. Most statistical software
that is not specifically designed for survey analysis will assume that weights are
precision weights or frequency weights. Giving sampling weights to software that
is expecting precision weights or frequency weights will often (but not always) give
correct point estimates, but will usually give seriously incorrect standard errors,
confidence intervals, and p-values.
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1.1.4 Design effects

A complex survey will not have the same standard errors for estimates as a simple
random sample of the same size, but many sample size calculations are only conve-
niently available for simple random samptes. The design effect was defined by Kish
(1965) as the ratio of a variance of an estimate in a complex sample to the variance
of the same estimate in a simple random sample [75].

If the necessary sample size for a given level of precision is known for a simple
random sample, the sample size for a complex design can be obtained by multiplying
by the design effect. While the design effect will not be known in advance, some
useful guidance can be obtained by looking at design effects reported for other similar
surveys.

Design effects for large studies are usually greater than 1.0, implying that larger
sample sizes are needed for complex designs than for a simple randem sample. For
example, the California Health Interview Survey reports typical design effects in the
range 1.4-2.0. It may be surprising that complex designs are used if they require
both larger samples sizes and special statistical methods, but as Chapter 3 discusses,
the increased sample size can often still resuit in a lower cost.

The other ratio of variances that is of interest is the ratio of the variance of a
cotrect estimate to the incorrect variance that would be obtained by pretending that
the data are a simple random sample. This ratio allows the results of an analysis to
be (approximately) corrected if software is not available to account for the complex
design. This second ratio is sometimes called the design effect and sometimes the
misspecification effect.

That is, the design effect compares the vanance from correct estimates in two
different designs, while the misspecification effect compares correct and incorrect
analyses of the same design. Although these two ratios of variances are not the same,
they are often similar for practical designs. The misspecification effect is of relatively
little interest now that software for complex designs is widely available, and it will
rot appear further in this book.

1.2 AN INTRODUCTION TO THE DATA

Most of the examples used in this book will be based either on real surveys or on
simnulated surveys drawn from real populations. Some of the data sets will be quite
large by textbook standards, but the computer used to write this book is a laptop
dating from 2006, so it seems safe to assuime that most readers will have access to
at least this level of computer power. Links to the source and documentation for all
these data sets can be found on the web site for the beok.

Nearly all the data are available to you in electronic form to reproduce these
analyses, but some effort may be required to get them. Surveys in the United States
tend to provide (non-identifying, anonymized) data for download by anyone, and
the datasets from these surveys vsed in this book are available on the book’s web
site in directly usable formats. Access to survey data from Britain tends to require
much filling in of forms, so the book’s web site provides instructions on where
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to find the data and how to convert it to usable form. These national differences
partly reflect the differences in copyright policy in the two countries. In the US, the
federal government places materials created at public expense in the public domain;
in Britain, the copyright is retained by the government.

You may be unfamiliar with some of the terminology in the descriptions of data
sets, which will be described in subsequent chapters.

1.2.1 Real surveys

NHANES. The National Health and Nutrition Examination Surveys have been
conducted by the US National Center for Health Statistics (NCHS) since 1970. They
are designed to provide nationwide data on health and disease, and on dietary and
clinical risk factors. Each four-year cycle of NHANES recmits about 28000 people
in a multistage sample. These participants receive an interview and a clinical exam,
and have blood samples taken. Several hundred data variables are available in the
public use data sets.

FAS. The Family Resources Survey collects information on the incomes and cir-
cumstances of private households in the United Kingdom. It was designed to collect
information needed by the Department for Work and Pensions. The survey first sam-
ples 1848 postcode sectors from Great Britain, stratified by geographic region and
by some employment and income variables. The postcode sectors are sampled with
prebability proportional to the number of mailing addresses with fewer than 50 mail
items per day, an estimate of the number of households. Within each postcode sector
a simple random sample of households is taken. A few variables from the Scottish
subset of FRS have been made available by the PEAS project at Napier University
{after some modification o protect anonymity).

NHIS. The National Health Interview Survey, conducted by the National Center
for Health Statistics is the oldest of the major health-related surveys in the United
States. The National Health Survey Act (1956) provided “for a continuing swrvey and
special studies to secure accurate and current statistical information on the amount,
distribution, and effects of illness and disability in the United States and the services
rendered for or because of such conditions.” NHIS plans to sample about 35000
households, containing about 87500 people, each year, but the survey is designed so
that the results will still be useful if the sampling has to be curtailed because of budget
shortfalls, as happened in 2006 and 2007. NHIS, unlike NHANES, is restricted to
self-reported information and does not make clinical or biological measurements on
participants. NHIS was the first major survey to include instructions for analysis
using R.

SIPP  The Survey of Income and Program Participation is a series of panel surveys
conducted by the US Census Bureau, with panels of US households recruited in
a multistage sampling design. The sample size has varied from about 14000 to
about 37000 households. SIPP asks questions about income and about partictpation
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in government support programs such as food stamps. The same households are
repeatedly surveyed over time o allow economic changes to be measured more
accurately.

CHIS. The California Health Interview Survey samples households from California
by random-digit dialing within geographic regions. The survey is conducted every
two years and samples 40000-50000 households. Unlike the surveys above, which
are conducted by government agencies, CHIS is conducted by the Center for Health
Policy Research at the University of California, Los Angeles. CHIS asks questions
about health, risk factors for disease, health insurance, and access to health care.

8HS. The Scoitish Household Survey interviews about 31000 households every
two years. Individual households are sampled in densely populated areas of Scottand;
in the rest of the country a two-stage sample is used. The first stage samples census
enumeration districts, which contain an average of 150 households, then the second
stage samples houscholds within these districts. The survey covers a wide range of
topics such as housing, income, transport, and social services. Data from a subset
of variables has been made generally available {after some forther modification to
protect anonymity) by the PEAS project at Napier University.

BRFSS. The Behavioral Risk Factor Surveillance System is a telephone survey
of behavioral risk factors for disease. The survey is conducted by most US states
using materials supplied by the National Center for Health Statistics. The number of
states involved has increased from 15 in 1984 to all 50 in 2007 (plus the District of
Columbia, Guam, Puerto Rico, and the US Virgin Islands) and the sample size from
12000 to 430000. It is now the world’s largest telephone survey.

1.2.2 Populations

Evaluating and comparing analysis methods requires realistic data where the true
answer is known. We will use some complete population data to create artificial
probability samples, and compare the resulis of our analyses to the population values.
Population data are also useful for illustrating design and preprocessing calculations
that are done before the survey data reach the public use files.

Election dafa. Voting data for the US presidential elections is available for each
county. We will try to predict the result from samples of the data and use the voting
data frem previous elections to improve predictions,

NWTS. Wilms’ tumor is a rare childhood cancer of the kidney, curable in about
90% of cases. Most children in the United States with Wilms” tumor participate tn
randomized ¢linical trials conducted by the National Wilms® Tumor Study Group.
Data from these studies [54, 38] has been used extensively in research ou two-phase
epidemiological studies by Norman Breslow and co-workers, and some of this data
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is now publically available. In our analyses the focus is on estimating the risk of
relapse after initially successful treatment.

Crime in Washington. The Washington Association of Sheriffs and Police Chiefs
collects data on crimes reported to police in Washington {the state, not the city). The
data are reported broken down by police district and by type of crime.

APl The California Academic Performance Index is computed from standardized
tests administered to students in California schools. In addition to academic per-
formance data for the schools there are a wide range of socio-economic variables
available. These data have been used extensively to illustrate the use of survey soft-
ware by Academic Computing Services at the University of California, Los Angeles.

PBC. Primary biliary cirrhosis is a very rare liver disease that is treatable only by
transplantation. Before transplantation was available, the Mayo Clinic conducted a
randomized trial of what tumed out to be a completely ineffective treatment. The
data from 312 participants in the trial and 106 patients who did not participate was
used to create a model for predicting survival that is still vsed in scheduling liver
transplants. As the Mayo Clinic was a major center for treatment of primary biliary
cirrhosis these 418 patients represent essentially the entire population in the nearby
states. The de-identified public version of the dataset was created by Terry Thernean
in conjunction with his development of software for survival analysis. It has become
a standard teaching and research example.

1.3 OBTAINING THE SOFTWARE

R is probably the most widely used software for statistical research and for distributing
new statistical methods. The design of R is based closely on Bell Labs’ S, one of the
first systems for interactive statistical computing. John Chambers, the main designer
of 8, received the Software Systems Award from the Association for Computing
Machinery

For the S system, which has forever altered how people analyze, visualize,
and manipulate data.

The drawback is, of course, that users of 8 and R have to alter how they analyze,
visunalize, and manipulate data; the learning curve may sometimes be steep. R does
not have a point-and-click GUI interface, and the programming is more flexible but
also more complex than the macro languages of most statistical packages.

Although all the code needed to do analyses will be presented in this book, it is
not all explained in detail and readers who are not familiar with R would benefit from
reading an introductory book on the language. A comprehensive list of books on R is
given on the R Project web page. Fox [47] is written for social scientists and Dalgaard
[37] for health scientists. Chambers [32] covers more advanced programming and
design philosophy for R code.
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1.3.1 Obtaining R

Windows or Macintosh users can download R from the Comprehensive R Archive
Network (CRAN) at the central site, http://cran.r-project.org, or at one of
many mirror sites around the world (http://cran.r-project.org/mirrors,
html. Most Linux distributions provide precompiled versions of R through their
package systems, and users on other Unix and Unix-like systems can easily compile
R from the source code available from CRAN. New versions of R comne out frequently,
and you should update your installation at least once a year.

System adminstrators installing R for multiple wsers, or people wishing to compile
R from the source code, should read the R Installation and Administration manual
available on CRAN.

1.3.2 Obtalning the survey package

An important feature of R is the huge collection of add-on packages written by users,
with the number of available packages doubling about every 18 months. In particular,
R itself has no features for design-based inference and survey analysis; all the analysis
features in this book come from the survey package (Lumley [99, 101]).

These packages can most easily be installed from inside R, using the Packages
menu on the Windows version of R, or the Packages & Data menu on the Macintosh
version. Some chapters in this book also make use of other add-on packages for
graphics, imputation, and database access. These will be installed in the same way.
When you use a contributed R package for published research, please cite the package
(as journal policies permit). The citation() function shows the preferred citation
for a package or generates a default one if the author has not specified.

The examples in this book used version 3.10-1 of the survey package and were
run in R version 2.7.2. The home page for the survey package (http://faculty.
washington.edu/tlumley/survey) will have information about any changes for
newer versions of the package as they are released. Nearly all code should continue
to run without modification, but there are likely to be small changes in the formatting
of output.

1.4 USINGR

This section provides a brief overview of getting data into R and doing some simple
computations. Further introductory material on R can be found in Appendix B.

1.4.1 Reading plain text data

The simplest format for plain text data has one record per line with variable names in
the first line of the file, with variables separated by commas, Files with this structure
often have names ending . csv, Most statistical packages and databases can easily
export data as comma-separated text.
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> nwte <- read.csv("C:/svybook/nuwts/nwts-share.csv")
> summary(nwts)
trel tsur relaps
Min. : 0.01095 Min., : 0.01095 Min. :0.0000
1st Qu.: 4.94182 1st Qu.: 6.24093 1st Qu.:0.0000
Median : 9.77139 Median :10.38003 Median :0.0000
Mean : 9.64874 Mean :10.32634 Mean :0.1709
3rd Qu.:14.01085 3rd Qu.:14.42847 3rd Qu.:0.0000
Max. :22.50240 Max. :22.50240 Max. :1.0000
[... output truncated ...]
> head(nwts)
trel tsur relaps dead study stage unfav.pat unfav0

1 21.88090 21.88090 G 0 3 1 1 1
2 11.28268 11.28268 ¢ G 3 2 0 0
3 22.11362 22.11362 0 c 3 1 1 1
4 8.02464 8.02464 0 0 3 2 0 0
5 20.49829 20.49829 0 0 3 2 0 0
6 14.39562 14.,39562 1 1 3 2 0 1
[... output truncated...]
> names(owts)
[1] "trel" ‘tsur" "relaps" "dead" "study"
[6] "stage™ “unfav.pat" "unfav(" "age" "yr.regist
[11] "specwgt" "tumdiam"
> nrow(nwts)
[1] 3915
> ncol{nwts)
[1] 12

Figure 1.1 Reading in a comma-separated text file

The National Wilms’ Tumor Study data are in this format. The files can be read in
with the function read. csv(). Unlike many statistical packages, R can work with
multiple data sets at the same time. This means that when a data set is read in it must
be given a name so that it can be identified in the future. Naming a data set is done
with the operator <-.

It is a good idea to check that the data have been read in correctly, One check is
to compute summaries of all the variables in the data set with the summary function,
although this is not such a good idea for survey data sets with hundreds of variables.
Another check is to list the first few lines of the data set with the head {} function.
Code and R output from reading the data and performing these two checks are shown
in Figure 1.1, If the file is not actually in the correct format the number of variables
or their names are likely to be obviously wrong, Other simple checks are to find out
the number of rows and number of columns of the data set, also shown in Figure 1.1.



12 BASIC TOOLS

The > notation at the beginning of each line is the R prompt, not part of the code to
be entered. If this prompt changes to a + sign, it means that R is waiting for the line
of input to be finished, which may indicate that parentheses or quotation marks have
been left open on the previous line. The “Escape” key will cancel the incomplete line
of input. In the examples in this book the prompt will only be shown in transeripts
that include R output; examples of R code without output will omit the prompt,

1.42 Reading data from other packages

R can read data saved in binary formats from SPSS and Stata, and the format produced
by PROC XPORT in SAS. NHANES data are now distributed in the PROC XPORT
format, as are data from BRFSS. The Inter-University Consortium for Political and
Social Research (ICPSR) and the SodaPop archive at Pennsylvania State University
often provide data sets in Stata and SPSS formats, saving the effort needed to construct
variable names and value labels for data read in as plain text.

The R functions for reading data in these formats are in the foreign package. This
package is part of the R distribution, but is not autematically loaded into memory
when R starts. To load the package from the package library, type

library(fereign)

When the package is loaded all its functions and help pages become available. The
functions read.xport (), read.dta(), and read. spss () will read SAS XPORT,
Stata, and SPSS files, respectively. These functions take a file name as the first
argument, and read.dta() and read.spss ()} have other options that control the
handling of dates and factors.

As an example, consider reading in the demographics file from NHANES 2003-
2004, demo_c . xpt, which is in SAS XPORT format

> demo<~read.xport ("~ /nhanes/demo_c.xpt")}
> names (demo)

[1] "SEQN" "SDDSRVYR" "RIDSTATR" "RIAGENDR" "RIDAGEYR"
[6] "RIDAGEMN" “RIDAGEEX" "RIDRETH1" "RIDRETH2" "DMQMILIT"
(11] "DMDBORN" “DMDEDUC" “INDHHINC" "INDFMINC" “INDFMPIR"
[16] "DMDMARTL" "RIDEXPRG" "SIALANG" "SIAPROXY" "SIAINTRP"
[21] "FIALANG" “FIAPROXY" "FIAINTRP" "MIALANG" "MIAPROXY"®
[26] "MIAINTRP" "AIALANG" "WTINT2YR" "WTMEC2YR" "SDMVPSU"
[31] "SDMVSTRA"

The ~ in the file name passed to read . xport means the user’s home directory, so the
file is in the nhanes subdirectory of the user’s home directory. An example of using
read.dta() to read Stata-format data from the California Health Interview Survey
is in section 2.3.1.

R can also read data directly from relational databases, but for survey analysis it
is easier to leave the data in the database as described in Appendix D.
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1.4.3 Simple computations

Since more than one data set can be loaded at a time, referring to a variable requires

saying which data set it is in. The demo_c.xpt data set from NHANES that was

loaded above is called demo, so the age variable RIDAGEYR is called demo$RIDAGEYR.

The $ is like the possessive "'s"; demo$RIDAGEYR is deme’s RIDAGEYR variable.
Subsets of a variable can be indicated by

o Positive numbers: demo$RIDAGEYR[100:150] is observations 100 to 150 of
the variable.

¢ Negative numbers: demo$RIDAGEYR[-c(1:10, 100:1000)] is all the ob-
servations except 1 to 10 and 100 to 1000. The function c{) collects its
arguments into a single vector.

o Logical (TRUE/FALSE) vectors: demo$RIDAGEYR [demo$RIAGENDR==1] are
the ages of the men (RIAGENDR is gender). Note the use of == rather than just
= for testing equality.

The repeated use of $ in the same expression can become tedious, and the example
for logical subsets can be written more compactly as

with(demo, RIDAGEYR[RIAGENDR==1])

where with{)} specifies a particular data set as the default place to look up variables.

The $ notation allows single variables to be specified, but itis also necessary to refer
to groups of variables, In the example in section 2.3.1, chis_adult [,420:499]
refers to columns 420 to 499 of the California Health Interview Survey adult data
set. A data set can be subscripted in both rows and columns: the numbers before the
comma indicate rows and the numbers after the comma indicate columns, following
the usual matrix notation in mathematics. Omitting the number before the comma
means that all rows are used, and all columns when the number after the comma is
omitted. Subsets of a data set can also be constructed with the subset () function,
for example, kids <- subset(demc, RIDAGEYR < 18). Variables in the subset
expression will first be searched for in the data set, the $ notation is not needed.

New variables can be created in a data set with the same $ notation. For example,
to create a variable indicating age less than 18

demo$under18 <- demo$RIDAGEYR < 18

Missing data. Missing data are indicated by NA. It is useful to think of this as
“Don’t Know™, so that 1+NA is NA, NA==2 is NA, and even NA==N4A is NA (to test for
NA use ig.na()). Simple statistical functions such as mean (), sd(), and median()
give NA as the result if any of their input data are missing: if you don’t know the
numbers, you don’t know the average. These functions have an option na. rm=TRUE
to ask for the missing values to be omitted.

It will often be necessary to recode values such as —9 to NA before analysis, e.g.,

pbcipbcgtrt == -8] <~ NA
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EXERCISES

1.1 Download an up-to-date copy of R and the survey package. Visit the book’s
web site to see if there are any important errata or updates.

1.2« Work through the introductory session in the R manual An Introduction to R.

1.3 Each visit to the front page of a newpaper’s web site has (independently) a
1/1000 chance of resulting in a questionnaire on voting intentions in a forthcoming
election. Assuming that everyone who is given the questionnaire responds, why are
the results not a probability sample of

a) voters?

b) readers of the newspaper?

¢) readers of the newspaper’s online version?

1.4 You are conducting a survey that will estimate the proportion of women who
used anti-malarial insecticide-treated bed nets every night during their last pregnancy.
With a simple random sample you would need to recruit 50 women in any subpop-
ulation where you wanted a standard error of less than 5 percentage points in the
estimate. You are using a sampling design that has given design effects of 2-3 for
proportions in previous studies in similar areas.

a) Will you need a larger or smaller sample size than 50 for a subpopulation

to get the desired precision?
b) Approximately what sample size will you need to get the desired precision?

1.5 Systematic sampling invelves taking a list of the population and choosing, for
example, every 100th entry in the list.

a) Which of the necessary properties of a probability sample does this proce-

dure have?
b) For systematic sampling with a random start, the procedure would be to
choose a random starting point from 1, 2, ..., 100 and then take every

100th entry starting at the random point. Which of the necessary properties
of a probability sample does this procedure have?

¢} For systematic sampling with multiple random starts we might choose 5
random starting points in 1, 2, ..., 500 and then take every 500th entry
starting from each of the 5 random points. Which of the necessary properties
of a probability sample does this procedure have?

d) If the list were shuffled into random order before a systematic sample was
taken, which of the properties would the procedure have?

e) Treating a systematic sample as if it were a simple random sample often
gives good results. Why would this be true?

1.6 Why must all the sampling probabilities be non-zero to get a valid population
estimate?

1.7 + Why must all the pairwise probabilities be non-zero to get a valid uncertainty
estimate?
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1.8 A probability design assumes that people who are sampled will actually be
included in the same, rather than refusing. Look up the response rates for the most
recent year of BRFSS and NHANES.

1.9 In a telephone study using random-digit dialing, telephone numbers are sam-
pled with equal probability from a list. When a househeld is recruited, why is it
necessary to ask how many telephones are in the household, and what should be done
with this infermation in computing the sampling weights?

110 « Derive the Horvitz-Thompson variance estimator for the total, as follows
a) Write R; == 1 ifindividual { is in the sample, R; = 0 otherwise. Show that
var[R;| = m;(1 — n;) and that cov[R;, R;] = mi; — mim;.
b) Show that the variance of the Horvitz-Thompson estimator is

N N
Var [THT] = szfjj(nfj - JT;JT}').
i=l j=1

¢} Show that an unbiased estimator of the variance is

@[tar] =33

i=1 j=1

RiR;
L%y —mm;),

d) Show that the previous expression simplifies to equation 1.2,
1.11  * Another popular way to write the Horvitz—Thompson variance estimator is

n
~ 1—}:- n.. _JT,JT.
— 2 H [ [
var[THT] = E X; 7 + E XX j——————.
] i#j

J
ot 7 T i

Show that this is equivalent to equation 1.2.






