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  CHAPTER ONE 

Basics of Fourier Analysis     

    1.1    FORWARD AND INVERSE FOURIER TRANSFORM 

  Fourier transform  ( FT ) is a common and useful mathematical tool that is 
utilized in numerous applications in science and technology. FT is quite practi-
cal, especially for characterizing nonlinear functions in nonlinear systems, 
analyzing random signals, and solving linear problems. FT is also a very impor-
tant tool in radar imaging applications as we shall investigate in the forthcom-
ing chapters of this book. Before starting to deal with the FT and inverse 
Fourier transform (IFT), a brief history of this useful linear operator and its 
founders is presented. 

   1.1.1    Brief History of  FT  

 Jean Baptiste Joseph Fourier, a great mathematician, was born in 1768 in 
Auxerre, France. His special interest in heat conduction led him to describe a 
mathematical series of sine and cosine terms that can be used to analyze 
propagation and diffusion of heat in solid bodies. In 1807, he tried to share his 
innovative ideas with researchers by preparing an essay entitled  “ On the 
Propagation of Heat in Solid Bodies. ”  The work was examined by Lagrange, 
Laplace, Monge, and Lacroix. Lagrange ’ s oppositions caused the rejection of 
Fourier ’ s paper. This unfortunate decision caused colleagues to wait for 15 
more years to read his remarkable contributions on mathematics, physics, and, 
especially, signal analysis. Finally, his ideas were published in the book  The 
Analytic Theory of Heat  in 1822  [1] . 

  Discrete Fourier transform  ( DFT ) was developed as an effective tool in 
calculating this transformation. However, computing FT with this tool in the 
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2  BASICS OF FOURIER ANALYSIS

19th century was taking a long time. In 1903, Carl Runge studied the minimiza-
tion of the computational time of the transformation operation  [2] . In 1942, 
Danielson and Lanczos utilized the symmetry properties of FT to reduce the 
number of operations in DFT  [3] . Before the advent of digital computing 
technologies, James W. Cooley and John W. Tukey developed a fast method 
to reduce the computation time in DFT. In 1965, they published their technique 
that later on became famous as the  fast Fourier transform  ( FFT )  [4] .  

   1.1.2    Forward  FT  Operation 

 The FT can be simply defi ned as a certain linear operator that maps functions 
or signals defi ned in one domain to other functions or signals in another 
domain. The common use of FT in electrical engineering is to transform signals 
from time domain to frequency domain or vice versa. More precisely, forward 
FT decomposes a signal into a continuous spectrum of its frequency compo-
nents such that the time signal is transformed to a frequency - domain signal. 
In radar applications, these two opposing domains are usually represented as 
 “ spatial frequency ”  (or wave number) and  “ range ”  (distance). Such use of FT 
will be examined and applied throughout this book. 

 The forward FT of a continuous signal  g ( t ) where  −  ∞     <     t     <     ∞  is described 
as

    
G f g t

g t e dtj ft

( ) = ( ){ }

= ( )⋅ −

−∞

∞

∫
F

2π .
    (1.1)   

 To appreciate the meaning of FT, the multiplying function  e   −    j   2    π ft   and operators 
(multiplication and integration) on the right side of Equation  1.1  should be 
investigated carefully: The term   e j f ti− 2π  is a complex phasor representation for 
a sinusoidal function with the single frequency of  f i  . This signal oscillates only 
at the frequency of  f i   and does not contain any other frequency component. 
Multiplying the signal in interest,  g ( t ), with the term   e j f ti− 2π  provides the simi-
larity between each signal, that is, how much of  g ( t ) has the frequency content 
of  f i  . Integrating this multiplication over all time instances from  −  ∞  to  ∞  will 
sum the  f i   contents of  g ( t ) over all time instants to give  G (  f i  ); that is, the 
amplitude of the signal at the particular frequency of  f i  . Repeating this process 
for all the frequencies from  −  ∞  to  ∞  will provide the frequency spectrum of 
the signal; that is,  G (  f  ) . Therefore, the transformed signal represents the 
continuous spectrum of frequency components; that is, representation of the 
signal in  “ frequency domain. ”   

   1.1.3     IFT  

 This transformation is the inverse operation of the FT. IFT, therefore, synthe-
sizes a frequency - domain signal from its spectrum of frequency components 
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to its time - domain form. The IFT of a continuous signal  G (  f  )  where  −  ∞     <     f     <     ∞  
is described as

    
g t G f

G f e dfj ft

( ) = ( ){ }

= ( )⋅

−

−∞

∞

∫
F 1

2π .
    (1.2)     

   1.2     FT  RULES AND PAIRS 

 There are many useful Fourier transform rules and pairs that can be very 
helpful when applying the FT or IFT to different real - world applications. We 
will briefl y revisit them to remind the reader of the properties of FT. Provided 
that FT and IFT are defi ned as in Equations  1.1  and  1.2 , respectively, FT pair 
is denoted as

    g t G f( )↔ ( )
F

,     (1.3)   

 where  F  represents the forward FT operation from time domain to frequency 
domain. The IFT operation is represented by  F    −  1  and the corresponding 
alternative pair is given by

    G f g t( ) ↔ ( )
−F 1

.     (1.4)   

 Here, the transformation is from frequency domain to time domain. Based on 
these notations, the properties of FT are listed briefl y below. 

   1.2.1    Linearity 

 If  G ( f ) and  H ( f ) are the FTs of the time signals  g ( t ) and  h ( t ), respectively, the 
following equation is valid for the scalars  a  and  b :

    a g t b h t a G f b H f⋅ ( ) + ⋅ ( )↔ ⋅ ( ) + ⋅ ( )
F

.     (1.5)   

 Therefore, the FT is a linear operator.  

   1.2.2    Time Shifting 

 If the signal is shifted in time with a value of  t o  , then its frequency domain 
signal is multiplied with a phase term as listed below: 

    g t t e G fo
j fto−( )↔ ⋅ ( )−

F
2π     (1.6)    
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   1.2.3    Frequency Shifting 

 If the time signal is multiplied by a phase term of   e j f to2π , then the FT of this 
time signal is shifted in frequency by  f o  :

    e g t G f fj f t
o

o2π ⋅ ( )↔ −( )
F

    (1.7)    

   1.2.4    Scaling 

 If the time signal is scaled by a constant  a , then the spectrum is also scaled 
with the following rule:

    g at
a

G
f
a

a a( )↔ ⎛
⎝⎜

⎞
⎠⎟ ∈ ≠

F 1
0, , .R       (1.8)    

   1.2.5    Duality 

 If the spectrum signal  G (  f  )  is taken as a time signal  G ( t ), then the correspond-
ing frequency - domain signal will be the time reversal equivalent of the original 
time - domain signal,  g ( t ):

    G t g f( )↔ −( )
F

.     (1.9)    

   1.2.6    Time Reversal 

 If the time is reversed for the time - domain signal, then the frequency is also 
reversed in the frequency - domain signal:

    g t G f−( )↔ −( )
F

.     (1.10)    

   1.2.7    Conjugation 

 If the conjugate of the time - domain signal is taken, then the frequency - domain 
signal is conjugated and frequency - reversed:

    g t G f* * .( )↔ −( )
F

    (1.11)    

   1.2.8    Multiplication 

 If the time - domain signals  g ( t ) and  h ( t ) are multiplied in time, then their spec-
trum signals  G (  f  )  and  H (  f  )  are convolved in frequency:

    g t h t G f H f( )⋅ ( )↔ ( ) ( )
F

* .     (1.12)    
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   1.2.9    Convolution 

 If the time - domain signals  g ( t ) and  h ( t ) are convolved in time, then their spec-
trum signals  G (  f  )  and  H (  f  )  are multiplied in the frequency domain:

    g t h t G f H f( )∗ ( )↔ ( )⋅ ( )
F

.     (1.13)    

   1.2.10    Modulation 

 If the time - domain signal is modulated with sinusoidal functions, then the 
frequency - domain signal is shifted by the amount of the frequency at that 
particular sinusoidal function:

    
g t cos f t G f f G f f

g t sin f t
j

G f

o o o

o

( )∗ ( )↔ +( ) + −( )( )

( )∗ ( )↔ +

2
1
2

2
2

π

π

F

F

ff G f fo o( ) − −( )( ).
    (1.14)    

   1.2.11    Derivation and Integration 

 If the derivative or integration of a time - domain signal is taken, then the cor-
responding frequency - domain signal is given as below:

    

d
dt

g t f G f

g d
j f

G f G f
t

( )↔ ⋅ ( )

( ) ↔ ( ) + ( )⋅
−∞∫

F

F

2

1
2

0

π

τ τ
π

π δ( ).
    (1.15)    

   1.2.12    Parseval ’ s Relationship 

 A useful property that was claimed by Parseval is that since the FT (or IFT) 
operation maps a signal in one domain to another domain, the signals ’  energies 
should be exactly the same as given by the following relationship:

    g t dt G f df( ) ↔ ( )
−∞

∞

−∞

∞

∫ ∫2 2
F

.     (1.16)     

   1.3    TIME - FREQUENCY REPRESENTATION OF A SIGNAL 

 While the FT concept can be successfully utilized for the stationary signals, 
there are many real - world signals whose frequency contents vary over time. 
To be able to display these frequency variations over time, joint time - frequency 
(JTF) transforms/representations are used. 
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   1.3.1    Signal in the Time Domain 

 The term  “ time domain ”  is used while describing functions or physical signals 
with respect to time either continuous or discrete. The time - domain signals are 
usually more comprehensible than the frequency - domain signals since most 
of the real - world signals are recorded and displayed versus time. A common 
equipment to analyze time - domain signals is the  oscilloscope . In Figure  1.1 , a 
time - domain sound signal is shown. This signal is obtained by recording an 
utterance of the word  “ prince ”  by a lady  [5] . By looking at the occurrence 
instants in the  x  - axis and the signal magnitude in the  y  - axis, one can analyze 
the stress of the letters in the word  “ prince. ”     

   1.3.2    Signal in the Frequency Domain 

 The term  “ frequency domain ”  is used while describing functions or physical 
signals with respect to frequency either continuous or discrete. Frequency -
 domain representation has been proven to be very useful in numerous engi-
neering applications while characterizing, interpreting, and identifying signals. 
Solving differential equations and analyzing circuits and signals in communica-
tion systems are a few applications among many others where frequency -
 domain representation is much more advantageous than time - domain 
representation. The frequency - domain signal is traditionally obtained by 
taking the FT of the time - domain signal. As briefl y explained in Section  1.1 , 
FT is generated by expressing the signal onto a set of basis functions, each of 
which is a sinusoid with the unique frequency. Displaying the measure of the 
similarities of the original time - domain signal to those particular unique 

     FIGURE 1.1     The time - domain signal of  “ prince ”  spoken by a lady.  
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frequency bases generates the Fourier transformed signal, or the frequency -
 domain signal. Spectrum analyzers and network analyzers are the common 
equipment which analyze frequency - domain signals. These signals are not as 
quite perceivable when compared to time - domain signals. In Figure  1.2 , the 
frequency - domain version of the sound signal in Figure  1.1  is obtained by 
using the FT operation. The signal intensity value at each frequency compo-
nent can be read from the  y  - axis. The frequency content of a signal is also 
called the spectrum of that signal.    

   1.3.3    Signal in the ( JTF ) Plane 

 Although FT is very effective for demonstrating the frequency content of a 
signal, it does not give the knowledge of frequency variation over time. 
However, most of the real - world signals have time - varying frequency content 
such as speech and music signals. In these cases, the single - frequency sinusoidal 
bases are not suitable for the detailed analysis of those signals. Therefore, JTF 
analysis methods were developed to represent these signals both in time and 
frequency to observe the variation of frequency content as the time 
progresses. 

 There are many tools to map a time - domain or frequency - domain signal 
onto the JTF plane. Some of the most well - known JTF tools are the  short - time 
Fourier transform  ( STFT )  [6] , the Wigner – Ville distribution  [7] , the Choi -
 Willams distribution  [8] , the Cohen ’ s class  [9] , and the  time - frequency dis-
tribution series  ( TFDS )  [10] . Among these, the most appreciated and commonly 
used is the STFT or the spectrogram. The STFT can easily display the 

     FIGURE 1.2     The frequency - domain signal (or the spectrum) of  “ prince. ”   
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variations in the sinusoidal frequency and phase content of local moments of 
a signal over time with suffi cient resolution in most cases. 

 The spectrogram transforms the signal onto  two - dimensional  ( 2D ) time -
 frequency plane via the following famous equation:

    
STFT g t G t f

g w t e dj f

( ){ } ( )

= ( )⋅ −( ) −

−∞

∞

∫
� ,

.τ τ τπ τ2
    (1.17)   

 This transformation formula is nothing but the short - time (or short - term) 
version of the famous FT operation defi ned in Equation  1.1 . The main signal, 
 g ( t ), is multiplied with a shorter duration window signal,  w ( t ). By sliding this 
window signal over  g ( t ) and taking the FT of the product, only the frequency 
content for the windowed version of the original signal is acquired. Therefore, 
after completing the sliding process over the whole duration of the time -
 domain signal  g ( t ) and putting corresponding FTs side by side, the fi nal 2D 
STFT of  g ( t ) is obtained. 

 It is obvious that STFT will produce different output signals for different 
duration windows. The duration of the window affects the resolutions in both 
domains. While a very short - duration time window provides a good resolution 
in the time domain, the resolution in the frequency domain becomes poor. This 
is because of the fact that the time duration and the frequency bandwidth of 
a signal are inversely proportional to each other. Similarly, a long duration 
time signal will give a good resolution in the frequency domain while the reso-
lution in the time domain will be bad. Therefore, a reasonable compromise 
has to be attained about the duration of the window in time to be able to view 
both domains with fairly good enough resolutions. 

 The shape of the window function has an effect on the resolutions as well. 
If a window function with sharp ends is chosen, there will be strong sidelobes 
in the other domain. Therefore, smooth waveform type windows are usually 
utilized to obtain well - resolved images with less sidelobes with the price 
of increased main lobe beamwidth; that is, less resolution. Commonly used 
window types are Hanning, Hamming, Kaiser, Blackman, and Gaussian. 

 An example of the use of spectrograms is demonstrated in Figure  1.3 . The 
spectrogram of the sound signal in Figure  1.1  is obtained by applying the STFT 
operation with a Hanning window. This JTF representation obviously demon-
strates the frequency content of different syllables when the word  “ prince ”  is 
spoken. Figure  1.3  illustrates that while the frequency content of the part 
 “ prin    . . .  ”  takes place at low frequencies, that of the part  “  . . .    ce ”  occurs at 
much higher frequencies.   

 JTF transformation tools have been found to be very useful in interpreting 
the physical mechanisms such as scattering and resonance for radar applica-
tions  [11 – 14] . In particular, when JTF transforms are used to form the 2D 
image of electromagnetic scattering from various structures, many useful phys-
ical features can be displayed. Distinct time events (such as scattering from 
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point targets or specular points) show up as vertical line in the JTF plane as 
depicted in Figure  1.4 a. Therefore, these scattering centers appear at only one 
time instant but for all frequencies. A resonance behavior such as scattering 
from an open cavity structure shows up as horizontal line on the JTF plane. 
Such mechanisms occur only at discrete frequencies but over all time instants 
(see Fig.  1.4 b). Dispersive mechanisms, on the other hand, are represented on 
the JTF plane as slanted curves. If the dispersion is due to the material, then 
the slope of the image is positive as shown in Figure  1.4 c,d. The dielectric 
coated structures are the good examples of this type of dispersion. The reason 

     FIGURE 1.3     The time - frequency representation of the word  “ prince. ”   
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     FIGURE 1.4     Images of scattering mechanisms in the joint time - frequency plane: 
(a) scattering center, (b) resonance, (c and d) dispersion due to material, (e and f) 
dispersion due to geometry of the structure.  
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for having a slanted line is because of the modes excited inside such materials. 
As frequency increases, the wave velocity changes for different modes inside 
these materials. Consequently, these modes show up as slanted curves in the 
JTF plane. Finally, if the dispersion is due to the geometry of the structure, 
this type of mechanism appears as a slanted line with a negative slope. This 
style of behavior occurs for such structures such as waveguides where there 
exist different modes with different wave velocities as the frequency changes 
as seen in Figure  1.4 e,f.   

 An example of the use of JTF processing in radar application is shown in 
Figure  1.5  where spectrogram of the simulated backscattered data from a 
dielectric - coated wire antenna is shown  [14] . The backscattered fi eld is col-
lected from the Tefl on - coated wire ( ε   r      =    2.1) such that the tip of the electric 
fi eld makes an angle of 60 °  with the wire axis as illustrated in Figure  1.5 . After  
the incident fi eld hits the wire, infi nitely successive scattering mechanisms 
occur. The fi rst four of them are illustrated on top of Figure  1.5 . The fi rst return 
comes from the near tip of the wire. This event occurs at a discrete time that 

     FIGURE 1.5     JTF image of a backscattered measured data from a dielectric - coated 
wire antenna using spectrogram.  
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exists at all frequencies. Therefore, this return demonstrates a scattering 
center - type mechanism. On the other hand, all other returns experience at 
least one trip along the dielectric - coated wire. Therefore, they confront a dis-
persive behavior. As the wave travels along the dielectric - coated wire, it is 
infl uenced by the dominant dispersive surface mode called Goubau  [15] . 
Therefore, the wave velocity decreases as the frequency increases such that 
the dispersive returns are tilted to later times on the JTF plane. The dominant 
dispersive scattering mechanisms numbered 2, 3, and 4 are illustrated in Figure 
 1.5  where the spectrogram of the backscattered fi eld is presented. The other 
dispersive returns with decreasing energy levels can also be easily observed 
from the spectrogram plot. As the wave travels on the dielectric - coated wire 
more and more, it is slanted more on the JTF plane, as expected.     

   1.4    CONVOLUTION AND MULTIPLICATION USING  FT  

 Convolution and multiplication of signals are often used in radar signal pro-
cessing. As listed in Equations  1.12  and  1.13 , convolution is the inverse opera-
tion of multiplication as the FT is concerned, and vice versa. This useful feature 
of the FT is widely used in signal and image processing applications. It is 
obvious that the multiplication operation is signifi cantly faster and easier to 
deal with when compared to the convolution operation, especially for long 
signals. Instead of directly convolving two signals in the time domain, there-
fore, it is much easier and faster to take the IFT of the multiplication of the 
spectrums of those signals as shown below:

    
g t h t g t h t

G f H f

( )∗ ( ) = ( ){ }⋅ ( ){ }{ }
= ( )⋅ ( ){ }

−

−

F F F

F

1

1 .
    (1.18)   

 In a dual manner, convolution between the frequency - domain signals can be 
calculated in a much faster and easier way by taking the FT of the product of 
their time - domain versions as formulated below:

    
G f H f G f H f

g t h t

( )∗ ( ) = ( ){ }⋅ ( ){ }{ }
= ( )⋅ ( ){ }

− −F F F

F

1 1

.
    (1.19)    

   1.5    FILTERING/WINDOWING 

 Filtering is the common procedure that is used to remove undesired parts of 
signals such as noise. It is also used to extract some useful features of the 
signals. The fi ltering function is usually in the form of a window in the frequency 
domain. Depending on the frequency inclusion of the window in the frequency 
axis, the fi lters are named  low - pass  ( LP ),  high - pass  ( HP ), or  band - pass  ( BP ). 
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 The frequency characteristics of an ideal LP fi lter are depicted as the dotted  
line in Figure  1.6 . Ideally, this fi lter should pass frequencies from DC to the 
cutoff frequency of  f c   and should stop higher frequencies beyond. In real 
practice, however, ideal LP fi lter characteristics cannot be realized. According 
to the Fourier theory,  a signal cannot be both time limited and band limited . 
That is to say, to be able to achieve an ideal band - limited characteristic as in 
Figure  1.6 , then the corresponding time - domain signal should theoretically 
extend from minus infi nity to plus infi nity which is of course impossible for 
realistic applications. Since all practical human - made signals are time limited, 
that is, they should start and stop at specifi c time instances, the frequency 
contents of these signals normally extend to infi nity. Therefore, an ideal fi lter 
characteristic as the one in Figure  1.6  cannot be realizable, but only the 
approximate versions of it can be implemented in real applications. The best 
implementation of practical LP fi lter characteristic was achieved by Butterworth 
 [16]  and Chebyshev  [17] . The solid line in Figure  1.6  demonstrates a real LP 
fi lter characteristic of Butterworth type.   

 Windowing procedure is usually applied to smooth a time - domain signal, 
therefore fi ltering out higher frequency components. Some of the popular 
windows that are widely used in signal and image processing are Kaiser, 
Hanning, Hamming, Blackman, and Gaussian. A comparative plot of some of 
these windows is given in Figure  1.7 .   

 The effect of a windowing operation is illustrated in Figure  1.8 . A time -
 domain signal of a rectangular window is shown in Figure  1.8 a, and its FT is 
provided in Figure  1.8 b. This function is in fact a  sinc  ( sinus cardinalis ) function 
and has major sidelobes. For the  sinc  function, the highest sidelobe is approxi-
mately 13   dB lower than the apex of the main lobe. This much of contrast, of 
course, may not be suffi cient in some imaging applications. As shown in Figure 
 1.8 c, the original rectangular time - domain signal is Hanning windowed. Its 
corresponding spectrum is depicted in Figure  1.8 d where the sidelobes are 
highly suppressed, thanks to the windowing operation. For this example, the 

     FIGURE 1.6     An ideal and real LP fi lter characteristics.  
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     FIGURE 1.7     Some common window characteristics.  
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     FIGURE 1.8     Effect of windowing: (a) rectangular time signal, (b) its Fourier spectrum: 
a  sinc  signal, (c) Hanning windowed time signal, (d) corresponding frequency - domain 
signal.  
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highest sidelobe level is now 32   dB below the maximum value of the main 
lobe, which provides better contrast when compared to the original, nonwin-
dowed signal.   

 A main drawback of windowing is the resolution decline in the frequency 
signal. The FT of the windowed signal has worse resolution than the FT of the 
original time domain signal. This feature can also be noticed from the example 
in Figure  1.8 . By comparing the main lobes of the fi gures on the right, the 
resolution after windowing is almost twice as bad when compared to the origi-
nal frequency domain signal. A comprehensive examination of windowing 
procedure will be presented later on, in Chapter  5 .  

   1.6    DATA SAMPLING 

 Sampling can be regarded as the preprocess of transforming a continuous or 
analog signal to a discrete or digital signal. When the signal analysis has to be 
done using digital computers via numerical evaluations, continuous signals 
need to be converted to the digital versions. This is achieved by applying the 
common procedure of sampling.  Analog - to - digital  ( A/D ) converters are 
common electronic devices to accomplish this process. The implementation of 
a typical sampling process is shown in Figure  1.9 . A time signal  s ( t ) is sampled 
at every  T s   seconds such that the discrete signal,  s [ n ], is generated via the fol-
lowing equation:

    s n s nT ns[ ] = ( ) = …, , , , ,0 1 2 3     (1.20)     

 Therefore, the  sampling frequency ,  f s  , is equal to 1/ T s   where  T s   is called the 
 sampling interval . 

 A sampled signal can also be regarded as the digitized version of the mul-
tiplication of the continuous signal,  s ( t ), with the  impulse comb  waveform,  c ( t ), 
as depicted in Figure  1.10 .   

 According to the Nyquist – Shannon sampling theorem, the perfect recon-
struction of the signal is only possible provided that the sampling frequency, 
 f s  , is equal to or larger than twice the maximum frequency content of the 
sampled signal  [18] . Otherwise, signal aliasing is unavoidable, and only a dis-
torted version of the original signal can be reconstructed.  

   1.7     DFT  AND  FFT  

   1.7.1     DFT  

 As explained in Section  1.1 , the FT is used to transform continuous signals 
from one domain to another. It is usually used to describe the continuous 
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spectrum of an aperiodic time signal. To be able to utilize the FT while working 
with digital signals, the digital or DFT has to be used. 

 Let  s ( t ) be a continuous periodic time signal with a period of  T o      =    1/ f o  .  
Then, its sampled (or discrete) version is   s n s nTs[ ] ( )�  with a period of 
 NT s      =     T o   where  N  is the number of samples in one period. Then, the Fourier 
integral in Equation  1.1  will turn to a summation as shown below:

     FIGURE 1.9     Sampling: (a) continuous time signal, (b) discrete time signal after the 
sampling.  

t

s(t)

(a)

s[n]

0Ts Ts 2Ts 3Ts 4Ts · · · · · t
0 1 2 3 4 · · · · · n

sampling
instants

sampling
numbers

(b)

     FIGURE 1.10     Impulse comb waveform composed of ideal impulses.  
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    (1.21)   

 Dropping the  f o   and  T s   inside the parenthesis for the simplicity of nomencla-
ture and therefore switching to discrete notation, DFT of the discrete signal 
 s [ n ] can be written as

    S k s n e
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n
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n

N
[ ] = [ ]⋅

−

=

−∑ 2

0

1 π     (1.22)   

 In a dual manner, let  S (  f  )  represent a continuous periodic frequency signal 
with a period of  Nf o      =     N / T o   and let   s k s kfo[ ] ( )�  be the sampled signal with 
the period of  Nf o      =     f s  . Then, the  inverse discrete Fourier transform  ( IDFT ) of 
the frequency signal  S [ k ] is given by
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    (1.23)   

 Using the discrete notation by dropping the  f o   and  T s   inside the parenthesis, 
the IDFT of a discrete frequency signal  S [ k ] is given as

    s n S k e
j

k
N

n

k

N
[ ] = [ ]⋅

=

−∑ 2

0

1 π     (1.24)    

   1.7.2     FFT  

 FFT is the effi cient and fast way of evaluating the DFT of a signal. Normally, 
computing the DFT is in the order of  N  2  arithmetic operations. On the other 
hand, fast algorithms like Cooley – Tukey ’ s FFT technique produce arithmetic 
operations in the order of  N log ( N )  [4, 19, 20] . An example of DFT is given 
in Figure  1.11  where a discrete time - domain ramp signal is plotted in Figure 
 1.11 a, and its frequency - domain signal obtained by an FFT algorithm is given 
in Figure  1.11 b.    
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     FIGURE 1.11     An example 
of DFT operation: (a) dis-
crete time - domain signal, (b) 
discrete frequency - domain 
signal without FFT shifting, 
(c) discrete frequency -
 domain signal with FFT 
shifting.  
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   1.7.3    Bandwidth and Resolutions 

 The duration, the bandwidth, and the resolution are important parameters 
while transforming signals from time domain to frequency domain or vice 
versa. Considering a discrete time - domain signal with a duration of  T o      =    1/ f o   
sampled  N  times with a sampling interval of  T s      =     T o  / N , the frequency resolu-
tion (or the sampling interval in frequency) after applying the DFT can be 
found as

    Δf
To

=
1

.     (1.25)   

 The spectral extend (or the frequency bandwidth) of the discrete frequency 
signal is

    

B N f

N
T

T

o

s

= ⋅

=

=

Δ

1
.

    (1.26)   

 For the example in Figure  1.11 , the signal duration is 1   ms with  N     =    10 samples. 
Therefore, the sampling interval is 0.1   ms. After applying the expressions in 
Equations  1.25  and  1.26 , the frequency resolution is 100   Hz, and the frequency 
bandwidth is 1000   Hz. After taking the DFT of the discrete time - domain 
signal, the fi rst entry of the discrete frequency signal corresponds to zero fre-
quency, and negative frequencies are located in the second half of the discrete 
frequency signal as seen in Figure  1.11 b. After the DFT operation, therefore, 
the entries of the discrete frequency signal should be swapped from the middle 
to be able to form the frequency axis correctly as shown in Figure  1.11 c. This 
property of DFT will be thoroughly explored in Chapter  5  to demonstrate its 
use in inverse synthetic aperture radar (ISAR) imaging. 

 Similar arguments can be made for the case of IDFT. Considering a discrete 
frequency - domain signal with a bandwidth of  B  sampled  N  times with a sam-
pling interval of  Δ  f , the time resolution (or the sampling interval in time) after 
applying IDFT can be found as

    

Δ

Δ

t T

B

N f

s=

=

=

1

1
.

    (1.27)   

 The time duration of the discrete time signal is
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    T
f

o =
1

Δ
.     (1.28)   

 For the frequency - domain signal in Figure  1.11 b or c, the frequency bandwidth 
is 1000   Hz with  N     =    10 samples. Therefore, the sampling interval in frequency 
is 100   Hz. After applying IDFT to get the time - domain signal as in Figure 
 1.11 a, the formulas in Equations  1.27  and  1.28  calculate the resolution in time 
as 0.1   ms and the duration of the signal as 1   ms.   

   1.8    ALIASING 

 Aliasing is a type of signal distortion due to undersampling the signal of inter-
est. According to Nyquist – Shannon sampling theorem  [18] , the sampling fre-
quency,  f s  , should be equal to or larger than twice the maximum frequency 
content,  f max  , of the signal to be able to perfectly reconstruct the signal:

    f fs max≥ 2 .     (1.29)   

 Since processing the analog radar signal requires sampling of the received 
data, the concept of aliasing should be taken into account when dealing with 
radar signals.  

   1.9    IMPORTANCE OF  FT  IN RADAR IMAGING 

 The imaging of a target using electromagnetic waves emitted from radars is 
mainly based on the phase information of the scattered waves from the target. 
This is because of the fact that the phase is directly related to the range dis-
tance of the target. In the case of monostatic radar confi guration as shown in 
Figure  1.12 a, let the scattering center on the target be at  R  distance away from 
the radar.   

 The scattered fi eld  E s   from this scattering center on the target has a complex 
scattering amplitude,  A , and a phase factor that contains the distance informa-
tion of the target as follows:

    E A eks j kR( ) ≅ ⋅ − 2 .     (1.30)   

 As is obvious from Equation  1.30 , there exists a Fourier relationship between 
the wave number,  k , and the distance,  R . Provided that the scattered fi eld is 
collected over a bandwidth of frequencies (Fig.  1.12 b), it is possible to pinpoint 
the distance  R  by Fourier transforming the scattered fi eld data as depicted in 
Figure  1.12 c. The plot of scattered fi eld versus range is called the  range profi le , 
which is an important phenomenon in radar imaging. Range profi le is in 
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fact nothing but the one - dimensional range image of the target. An example 
is illustrated in Figure  1.13  where the range profi le of an airplane is shown. 
The concept of range profi ling will be thoroughly investigated in Chapter  4 , 
Section  4.3 .   

 Another main usage of FT in radar imaging is the ISAR imaging. In fact, 
ISAR can be regarded as the 2D range and cross - range profi le image of a 
target. While the range resolution is achieved by utilizing the frequency diver-
sity of the backscattered signal, the cross - range resolution is gathered by col-
lecting the backscattered signal over different look angles of the target. An 
example of ISAR imaging for the same airplane is demonstrated in Figure 

     FIGURE 1.12     (a) Monostatic radar confi guration, (b) scattered fi eld versus frequency, 
(c) range profi le of the target.  
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     FIGURE 1.13     Simulated range profi le of an airplane.  
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 1.14  where both the CAD view and the constructed ISAR image for the air-
plane is shown. The concept of ISAR imaging will be examined in great detail 
in Chapter  4 .   

 The FT operations are also extensively used in  synthetic aperture radar  
( SAR ) imaging as well. Since the SAR data are usually huge and processing 
this amount of data is an extensive and time - consuming task, the FTs are 
usually utilized to achieve both range and azimuth compression procedures. 

 An example of SAR imagery is given in Figure  1.15  where the image was 
acquired by  spaceborne imaging radar - C/X - band synthetic aperture radar  
( SIR - C/X - SAR ) onboard the space shuttle Endeavour in 1994  [21] . This SAR 
image covers an area of Cape Cod, Massachusetts. The details of SAR imagery 
will be explored in Chapter  3 .    

   1.10    EFFECT OF ALIASING IN RADAR IMAGING 

 In radar applications, the data are collected within a fi nite bandwidth of fre-
quencies. According to the sampling theory, if the radar signal is  g ( t ) and its 
spectrum is  G (  f  ) , and the frequency components beyond a specifi c frequency 
 B  are zero, that is,

    G f
f B

f B
( ) =

≠ <
≥

⎧
⎨
⎩

0

0

;

; ,
    (1.31)   

     FIGURE 1.14     Simulated two - dimensional ISAR image of an airplane.  

Range (m)

C
ro

ss
-R

an
ge

 (m
)

ISAR image 

0 2 4 6 8 10 12

−8

−6

−4

−2

0

2

4

6

8



EFFECT OF ALIASING IN RADAR IMAGING  23

 then the time - domain signal  g ( t ) should be sampled at least twice the band-
width in frequency as

    f Bs = 2 ,     (1.32)   

 where  f s   stands for the sampling frequency. 
 When the radar imaging is concerned, the scattered electric fi eld has the 

form as given in Equation  1.30 . The sampling theorem can be applied in the 
following manner: 

 Suppose that target to be imaged lies in the range direction within the range 
width or range extend of  R max   such that

    − ≤ ≤
R

r
Rmax max

2 2
    (1.33)   

 as depicted in Figure  1.16 b. In the case of imaging radar, this fi gure represents 
the range profi le of the target. The FT of  g ( r ) represents its spectrum that 
theoretically extends to infi nity in the frequency axis (see Fig.  1.16 a). The main 
problem is to get the digitized (or sampled) versions of  g ( r ) from digitized (or 
sampled) versions of  G ( k ) or  G (  f  )  with adequate samples so that no aliasing 
occurs. Here,  k  stands for the wave number and is related to the operating 
frequency as

    k f c= 2π     (1.34)   

     FIGURE 1.15     SAR image of the famous  “ hook ”  of Cape Cod, Massachusetts, USA 
 [21] .  
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 where  c  is the speed of light. Utilizing the relationship between the wave 
number,  k , and the distance,  R , in Equation  1.30 , the sampling in the wave-
number domain should satisfy the following inequality:

    

dk
R

R

max

max

≤

=

2
2

π

π
.

    (1.35)     

 This inequality is forced by the famous Nyquist sampling condition. The 
minimum sampling frequency, then, should be equal to

     FIGURE 1.16     The Nyquist sampling procedure for getting unaliased range image: 
(a) frequency - domain radar signal for a range windowed data, (b) range domain signal, 
(c) sampling comb signal in frequency domain, (d) its range domain equivalent, 
(e) critically sampled version of the frequency - domain signal, and (f) its range domain 
equivalent.  
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    (1.36)   

 Then, the sampled version of frequency - domain signal  G (  f  )  is obtained by 
the multiplication of the  G (  f  )  with the following impulse comb function:

    comb f f n df
n

( ) = − ⋅( )∑ δ .     (1.37)   

 The plot of this comb function is shown in Figure  1.16 c. By taking the IFT of 
this comb function, we can get another comb function in the range domain as
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 as depicted in Figure  1.16 d. The sampled version of frequency - domain signal, 
 G s  (  f  ) , can be obtained by multiplying the original frequency - domain signal, 
 G (  f  ) , with the impulse comb function in Figure  1.16 c as

    
G f G f comb f

G f f n df

s

n

( ) = ( )⋅ ( )
= ( )⋅ − ⋅( )∑ δ ,

    (1.39)   

 which is shown in Figure  1.16 e. The range domain equivalent of the frequency -
 domain sampled signal can be found via inverse Fourier transformation as
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    (1.40)   

 where  “  *  ”  is the convolution operation. Therefore, the resultant range domain 
signal is periodic with ( c /2 df  )  intervals. If  df  is chosen to be equal to 
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( df  )   min      =     c /2 R max  , the period of  g s  ( r ) becomes  R max   as illustrated in Figure 
 1.16 f. If  G (  f  )  is sampled and found to be fi ner than ( df  )   min  , that is, over -
 sampled, no aliasing occurs, and the resultant  g s  ( r ) signal will be similar to the 
one in Figure  1.17 a. Therefore, when the DFT is used, the original range 
domain signal falls within one period of  g s  ( r ) and can be recovered without 
any distortion. When a sampling rate of  df     ≥    ( df  )   min   is used,  g s  ( r ) signal is 
aliased as demonstrated in Figure  1.17 b, and the original range domain signal 
 g ( r ) is distorted within one period of ( c /2 df  ) . Therefore, the recovery of  g ( r ) 
is not possible due to undersampling of  G (  f  ) . The effect of aliasing in ISAR 
imaging will be covered in Chapter  5 , Section  5.2 .  

   1.11    MATLAB CODES 

 Below are the Matlab source codes that were used to generate all of the 
Matlab - produced Figures in Chapter  1 . The codes are also provided in the CD 
that accompanies this book.   

   Matlab code 1.1: Matlab fi le  “ Figure1 - 1.m ”  
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This code can be used to generate Figure 1_1 

     FIGURE 1.17     The effect of sampling rate: (a) no aliasing due to oversampling and 
(b) aliased or distorted range domain waveform due to undersampling.  
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 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This fi le requires the following fi les to be present in the 
same 
 % directory: 
 % 
 %prince.wav 
     
 clear all 
 close all 
     
 % Read the sound signal “prince.wav” 
 [y,Fs,bits]  =  wavread( ’ prince.wav ’ ); 
 sound(y,Fs); 
 N  =  length(y); 
     
 % TIME DOMAIN SIGNAL 
 t  =  0:.8/(N - 1):.8; 
 plot(t,y, ’ k ’ ); %downsample for plotting 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold ’ ); 
 axis tight;  
 xlabel( ’ Time [s] ’ ); 
 ylabel( ’ Amplitude ’ ); 
 title( ’ time domain signal ’ );  

  Matlab code 1.2: Matlab fi le  “ Figure1 - 2.m ”  
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This code can be used to generate Figure 1.2 
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This fi le requires the following fi les to be present in the 
same 
 % directory: 
 % 
 %prince.wav 
     
 clear all 
 close all 
     
 % Read the sound signal “prince.wav” 
 [y,Fs,bits]  =  wavread( ’ prince.wav ’ ); 
 sound(y,Fs); %play the sound 
 N  =  length(y); 
     
 t  =  0:.8/(N - 1):.8; %form time vector 
     
 % FREQUENCY DOMAIN SIGNAL 
 Y  =  fft(y)/N; 
 % Calculate the spectrum of the signal 
 df  =  1/(max(t) - min(t)); % Find the resolution in frequency  
 f  =  0:df:df * (length(t) - 1); % Form the frequency vector 
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 plot(f(1:2:N),abs(Y(1:(N + 1)/2)), ’ k ’ ) %downsample for plotting 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold ’ ); 
 axis tight;  
 xlabel( ’ Frequency [Hz] ’ ); 
 ylabel( ’ Amplitude ’ ); 
 title( ’ frequency domain signal ’ );  

  Matlab code 1.3: Matlab fi le  “ Figure1 - 3.m ”  
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This code can be used to generate Figure 1.3 
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This fi le requires the following fi les to be present in the 
same 
 % directory: 
 % 
 %prince.wav 
     
 clear all 
 close all 
     
 % Read the sound signal “prince.wav” 
 [y,Fs,bits]  =  wavread( ’ prince.wav ’ ); 
 sound(y,Fs); 
 N  =  length(y); 
     
 t  =  0:.8/(N - 1):.8; %form time vector 
     
 % TIME FREQUENCY PLANE SIGNAL  
 A  =  spectrogram(y,256,250,400,1e4); % Calculate the 
spectrogram 
 matplot(t,f, (abs(A)),30); % Display the signal in T - F 
domain 
 colormap(1 - gray); % Change the colormap to grayscale 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold ’ ); 
 xlabel( ’ Time [s] ’ ); 
 ylabel( ’ Frequency [Hz] ’ ); 
 title( ’ signal in time - frequency plane ’ );  

  Matlab code 1.4: Matlab fi le  “ Figure1 - 5.m ”  
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This code can be used to generate Figure 1.5 
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This fi le requires the following fi les to be present in the 
same 
 % directory: 
 % 
 % tot30.mat 
 clear all 
 close all 
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 load tot30; % load the measured back - scattered E - fi eld 
     
 % DEFINITION OF PARAMETERS 
 f  =  linspace(6,18,251) * 1e9; %Form frequency vector  
 BW  =  6e9; % Select the frequency window size 
 d  =  2e - 9; %Select the time delay  
     
 % DISPLAY THE FIELD IN JTF PLANE 
 [B,T,F]  =  stft(tot30,f,BW,50,d); 
 xlabel( ’  - -->Time (nsec) ’ );  
 ylabel( ’ --> Freq. (GHz) ’ ); 
 colorbar; 
 colormap(1 - gray) 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 axis tight;  
 xlabel( ’ Time [ns] ’ ); 
 ylabel( ’ Frequency [GHz] ’ );  

  Matlab code 1.5: Matlab fi le  “ Figure1 - 8.m ”  
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This code can be used to generate Figure 1.8 
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
     
 clear all 
 close all 
     
 %% DEFINE PARAMETERS 
 t  =  linspace( - 50,50,1001); % Form time vector 
 df  =  1/(t(2) - t(1)); %Find frequency resolution 
 f  =  df * linspace( - 50,50,1001);% Form frequency vector 
     
 %% FORM AND PLOT RECTANGULAR WINDOW 
 b(350:650)  =  ones(1,301); 
 b(1001)  =  0; 
 subplot(221); 
 h  =  area(t,b);  
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 xlabel( ’ Time [s] ’ );  
 axis([ - 50 50 0 1.25]) 
 set(h, ’ FaceColor ’ ,[.5 .5 .5]) 
     
 subplot(222);  
 h  =  area(f,fftshift(abs(ifft(b)))); 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 xlabel( ’ Frequency [Hz] ’ ) 
 axis([ - 40 40 0 .4]) 
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 set(h, ’ FaceColor ’ ,[.5 .5 .5]) 
     
 %% FORM AND PLOT HANNING WINDOW 
 bb  =  b; 
 bb(350:650)  =  hanning(301) ’ ; 
     
 subplot(223);  
 h  =  area(t,bb); 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 xlabel( ’ Time [s] ’ );  
 axis([ - 50 50 0 1.25]) 
 set(h, ’ FaceColor ’ ,[.5 .5 .5]) 
     
 subplot(224);  
 h  =  area(f,fftshift(abs(ifft(bb)))); 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 xlabel( ’ Frequency [Hz] ’ ) 
 axis([ - 40 40 0 .2]) 
 set(h, ’ FaceColor ’ ,[.5 .5 .5])  

  Matlab code 1.6: Matlab fi le  “ Figure1 - 11.m ”  
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % This code can be used to generate Figure 1.11 
 % -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 clear all 
 close all 
     
 % -  -  -  Figure 1.11(a) -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 % TIME DOMAIN SIGNAL 
 a  =  0:.1:1; 
 t  =  (0:10) * 1e - 3; 
 stem(t * 1e3,a, ’ k ’ , ’ Linewidth ’ ,2);  
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 xlabel( ’ time [ms] ’ ); ylabel( ’ s[n] ’ );axis([ - 0.2 10.2 0 1.2]); 
     
 % FREQUENCY DOMAIN SIGNAL 
 b  =  fft(a); 
 df  =  1./(t(11) - t(1));  
 f  =  (0:10) * df;  
 ff  =  ( - 5:5) * df;  
 % -  -  -  Figure 1.11(b) -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 Figure; 
 stem(f,abs(b), ’ k ’ , ’ Linewidth ’ ,2);  
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
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 xlabel( ’ frequency [Hz] ’ ); ylabel( ’ S[k] ’ );axis([ - 20 1020 0 
6.5]); 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,12, ’ FontWeight ’ , 
 ’ Bold ’ ); 
     
 % -  -  -  Figure 1.11(c) -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
 Figure; 
 stem(ff,fftshift(abs(b)), ’ k ’ , ’ Linewidth ’ ,2);  
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,14, ’ FontWeight ’ , ’ Bold 
’ ); 
 xlabel( ’ frequency [Hz] ’ ); ylabel( ’ S[k] ’ );axis([ - 520 520 0 
6.5]); 
 set(gca, ’ FontName ’ ,  ’ Arial ’ ,  ’ FontSize ’ ,12, ’ FontWeight ’ , 
 ’ Bold ’ );    
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