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LEARNING METHODS FOR
EVOLVING INTELLIGENT

SYSTEMS
Ronald R. Yager

Abstract: In this work we describe two instruments for introducing evolutionary

behavior into intelligent systems. The first is the hierarchical prioritized structure (HPS)

and the second is the participatory learning paradigm (PLP).

1.1 INTRODUCTION

The capacity to evolve and adapt to a changing environment is fundamental to human

and other living systems. Our understanding of the importance of this goes back to at

least Darwin [1]. As we begin building computational agents that try to emulate human

capacities we must also begin considering the issue of systems that evolve autono-

mously. Our focus here is on knowledge-based/intelligent systems. In these types of

systems, implementing evolution requires an ability to balance learning and changing

while still respecting the past accumulated knowledge. In this work we describe two

instruments for introducing evolutionary behavior into our intelligent systems. The first

is the hierarchical prioritized structure (HPS) and the second is the participatory

learning paradigm (PLP). The HPS provides a hierarchical framework for organizing

knowledge. Its hierarchical nature allows for an implicit prioritization of knowledge so

that evolution can be implemented by locating new knowledge in a higher place in the
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hierarchy. Two important aspects of the structure are considered in this work. The first

is the process of aggregating information provided at the different levels of the

hierarchy. This task is accomplished by the hierarchical updation operator. The other

aspect is the process of evolving the model as information indicating a change in the

environment is occurring.

The participatory learning paradigm provides a general learning paradigm that

emphasizes the role of what we already know in the learning process. Here, an attribute

about which we are learning is not viewed simply as a target being blindly pushed and

shoved by new observations but one that participates in determining the validity of the

new information.

Underlying both these instruments is a type of nonlinear aggregation operation that

is adjudicating between knowledge held at different levels. Central to this type of

aggregation is a process in which the privileged knowledge is deciding on the allowable

influence of the less-favored knowledge.

1.2 OVERVIEW OF THE HIERARCHICAL PRIORITIZED MODEL

In [2–5] we described an extension of fuzzy modeling technology called the hierar-

chical prioritized structure (HPS), which is based on a hierarchical representation of

the rules. As we shall subsequently see, this provides a rich framework for the

construction of evolving systems. The HPS provides a framework using a hierarchical

representation of knowledge in terms of fuzzy rules is equipped with machinery for

generating a system output given an input. In order to use this hierarchical framework

to make inferences, we needed to provide a new aggregation operator, called the

hierarchical updation (HEU) operator, to allow the passing of information between

different levels of the hierarchy. An important feature of the inference machinery of

the HPS is related to the implicit prioritization of the rules; the higher the rule is in the

HPS, the higher its priority. The effect of this is that we look for solutions in an ordered

way, starting at the top. Once an appropriate solution is found, we have no need to look

at the lower levels. This type of structure very naturally allows for the inclusion of

default rules, which can reside at the lowest levels of the structure. It also has an

inherent mechanism for evolving by adding levels above the information we want to

discard.

An important issue related to the use of theHPS structure is the learning of themodel

itself. This involves determination of the content of the rules as well the determination of

the level at which a rule shall appear. As in all knowledge-based systems, learning can

occur in many different ways. One extreme is that of being told the knowledge by some

(usually human) expert. At the other extreme is the situation in which we are provided

only with input–output observations and we must use these to generate the rules. Many

cases lie between these extremes.

Here we shall discuss one type of learning mechanism associated with the HPS

structure that lies between these two extremes, called the DELTA method. In this

we initialize the HPS with expert-provided default rules and then use input–output
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observations to modify and adapt this initialization. Taking advantage of the HPS we are

able to introduce exceptions to more general rules by giving them a higher priority,

introducing them at a higher level in the hierarchy. These exceptions can be themselves

rules or specific points. This can be seen as a type of forgettingmechanism that can allow

the implementation of dynamic adaptive learning techniques that continuously evolve

the model.

1.3 THE HPS MODEL

In the following,wedescribe thebasic structure and the associated reasoningmechanismof

the fuzzy systemsmodeling framework called the hierarchical prioritized structure (HPS).

Assume we have a system we are modeling with inputs V and W and output U. At

each level of theHPS,we have a collection of fuzzy if-then rules. Thus for level j, we have

a collection of nj rules:

If V is Aji andW is Bji; thenU isDji i ¼ 1; . . . ; nj

We shall denote the collection of rules at the jth level asRj. Givenvalues for the input

variables, V¼ x� and W¼ y�, and applying the standard fuzzy inference to the rules at

level j, we can obtain a fuzzy subset Fj over the universe of U, where

FjðzÞ ¼ 1
T

Xnj
i¼1

ljiDjiðzÞ with lji ¼ Ajiðx*Þ^Bjiðy*Þ and T ¼
Xnj
i¼1

lji. Alternatively, we

can also calculateFjðzÞ ¼ Maxi½lji^DjiðzÞ�.We denote the application of the basic fuzzy

inference process with a given input, V¼ x� andW¼ y�, to this sub-rule base as Fj¼Rj .

Input.

In the HPS model, the output of level j is a combination of Fj and output of the

preceding level. We denote the output of the jth level of the HPS asGj. Gj is obtained by

combining the output the previous level, Gj�1, with Fj using the hierarchical updation

(HEU) aggregation operator subsequently to be defined. The output of the last level,Gn,

is the overall model output E. We initialize the process by assigning G0¼˘.

The key to inference mechanism in the HPS is the HEU aggregation operator

Gj¼ g(Gj�1, Fj), where

GjðzÞ ¼ Gj�1ðzÞþ ð1�aj�1ÞFjðzÞ

Here, aj�1¼Maxz[Gj�1(z)], the largest membership grade in Gj�1. See Figure 1.1.

Let us look at the functioning of this operator. First we see that it is not pointwise in

that the value of Gj(z) depends, through the function aj�1, on the membership grade of

elements other than z. We also note that if aj�1¼ 1, no change occurs. More generally,

the largeraj�1 the less the effect of the current level. Thus, we see thataj�1 acts as a kind

of choking function. In particular, if for some level j we obtain a situation in which Gj is

normal, and has an elementwithmembership grade one, the process of aggregation stops.
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It is also clear thatGj�1 andFj are not treated symmetrically.We see that, as we get closer

to having some elements in Gj�1 with membership grade one, the process of adding

information slows. The form of the HEU essentially implements a prioritization of the

rules. The rules at the highest level of the hierarchy are explored first; if they find a good

solution, we look no further at the rules.

Figure 1.2 provides an alternative view of the HPS structure.

Input (V, W)

Output U

Level-1

Level-2

Level-n

Figure 1.1. Hierarchical prioritized structure.

HEU
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HEU
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R2

HEU
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G1 G2
Gn–1

Gn
G0

Input

Figure 1.2. Alternative view of HPS.
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1.4 AN EXAMPLE OF HPS MODELING

We shall illustrate the application of this structure with the following example

Example : Consider a functionW¼F(U, V) defined onU¼ [0,10] and V¼ [0,10].

Refer to Figure 1.3 for the following discussion. We shall assume that in the white areas

the value of the function is small and in the black areas the value of the function is large.

The figure could, for example, be representative of a geospatial mapping in which W is

the altitude and the black areas correspond to a mountain range.

We can describe this functional relationship by the following three-level HPS

structure:

Level-1: If U is close to five, then W is small. (Rule 1)

Level-2: If ððU�5Þ2þðV�5Þ2Þ0:5 is about two, thenW is large. (Rule 2)

Level-3: IfU and V are anything, thenW is small. (Rule 3)

For our purposes, we define the underlined fuzzy subsets as follows:

Small ¼ 0:3

5
;
0:6

6
;
1

7
;
0:6

8
;
0:3

9

� �
and Large ¼ 0:3

21
;
0:6

22
;
1

23
;
0:6

24
;
0:3

25

� �

close to fiveðUÞ ¼ e
�ðU�5Þ2

0:25
and about fiveðrÞ ¼ e�ðr�2Þ2

Let us look at three special cases.

1. U¼ 5 andV¼ 6. Here rule one fires to degree 1. Hence the output of the first level

is G1 ¼ 0:3
5
; 0:6

6
; 1
7
; 0:6

8
; 0:3

9

� �
. Since this has maximal membership grade equal to

one, the output of the system is G1.

0
0

5

5

10

10

U

V

Figure 1.3. Structure of F(U, V).
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2. U¼ 6 and V¼ 6. Here the firing level of Rule 1 is 0.02 and the output of the first

level isG1 ¼ 0:2
5
; 0:2

6
; 0:2

7
; 0:2

8
; 0:2

9

� �
and has maximal firing level 0.2. Applying the

input to Rule 2, we get a firing level of 1. Thus F2 ¼ 0:3
21
; 0:6
22
; 1
23
; 0:6
24
; 0:3
25

� �
. Thus

G2ðzÞ ¼ 0:2
5
; 0:2

6
; 0:2

7
; 0:2

8
; 0:2

9
; 0:24

21
; 0:46

22
; 0:8
23
; 0:46

24
; 0:24

25

� �
and therefore a2¼ 0.8. Ap-

plying the input to Rule 3 three we get firing level 1. Thus

F2 ¼ 0:3
21
; 0:6
22
; 1
23
; 0:6
24
; 0:3
25

� �
. Since G3(z)¼G2(z) þ (1� 0.8) F3(z) we get

G3 ¼ 0:26
5
; 0:312

6
; 0:4

7
; 0:312

8
;

�
0:26
9
; 0:24

21
; 0:46

22
; 0:8
23
; 0:46

24
; 0:24

25
g.

Defuzzifying this value we get W¼ 16.3.

3. U¼ 9 and V¼ 8. In this case, the firing level of Rule 1 is 0; thus G1¼˘.

Similarly, the firing level of Rule 2 is also 0, and henceG1¼˘. The firing level of

Rule 3 is one, and hence the overall output is small.

1.5 HIERARCHICAL UPDATION OPERATOR

Let us look at some of the properties of this hierarchical updation operator g. IfA andB are

two fuzzy sets of Z, then we have g(A, B)¼D, where D(z)¼A(z) þ (1�a) B(z) with
a¼Maxz2Z(A(z)). This operator is not pointwise as a depends on A(z) for all z2 Z. This

operator is a kind of disjunctive operator; we see that g(A,˘)¼A and g(˘, B)¼B. This

operator is not commutative g(A, B) 6¼ g(B, A). An important illustration of this is that

while g(Z, B)¼B, we have g(A, Z)¼D, where D(z)¼A(z) þ (1�a). The operator is
also nonmonotonic. Consider D¼ g(A, B) and D0 ¼ g(A0, B), where A�A0. Since

A(z)�A0(z) for all z, then a�a0. We have D0(z)¼A0(z) þ (1�a0) B(z) and D(z)¼
A(z) þ (1�a) B(z). Since A�A0, monotonicity requires that D0(z)�D(z) for all z. To

investigate themonotonicity of g we look atD0(z)�D(z)¼A0(z)�A(z) þ B(z) (a�a0).
Thus, while A0(z)�A(z)¼ 0, we have (a�a0)� 0, and therefore there is no

guarantee that D0(z)�D(z).

We can suggest a general class of operators that can serve as hierarchical aggregation

operators. Let T be any t-norm and S be any t-conorm [6]. A general class of hierarchical

updation operators can be defined as D¼HEU(A, B), where D(z)¼ S(A(z), T(1�a,
B(z)) with a�Maxz(A(z)).

First, let us show that our original operator is a member of this class. Assume S is the

bounded sum, S(a, b)¼Min[1, a þ b] and T is the product, S(a, b)¼ ab. In this case,

D(z)¼Min[1, A(z) þ �aB(z)]. Consider the term A(z) þ �aB(z). Since a¼Maxz[A(z)],

then a¼A(z) and therefore A(z) þ �aB(z)�a þ (1�a) B(z)� 1. Thus D(z)¼
A(z) þ (1�a) B(z), which was our original suggestion.

We can now obtain other forms for this HEU operator by selecting different S and T.

If S¼Max(_) and T¼Min(^), we get
DðzÞ ¼ AðzÞ_ð�a^BðzÞÞ

If S is the algebraic sum, S(a, b)¼ a þ b� ab and T is the product, then

DðzÞ ¼ AðzÞþ �aBðzÞ��aAðzÞBðzÞ ¼ AðzÞþ �a�AðzÞBðzÞ
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If we use S as the bounded sum and T as the Min, we get

DðzÞ ¼ Min½1;AðzÞþ �a^BðzÞ�

Since a�A(z), then A(z) þ �a ^ B(z)�a þ (1�a) ^ B(z)�a þ (1�a)� 1;

hence we get

DðzÞ ¼ AðzÞþ �a^BðzÞ

More generally, if S is the bounded sum and T is any t-norm, then

DðzÞ ¼ Min½1;AðzÞþ Tð�a^BðzÞÞ�

Since T(�a ^ B(z))� �a ¼ 1�A(z), then

DðzÞ ¼ AðzÞþ Tð�a;BðzÞÞ

1.6 THE DELTA METHOD OF HPS LEARNING

In the preceding, we have described the inference mechanism associated with

the hierarchical prioritized structure. We have said nothing about how we obtained the

rules in the model. The issue of the construction of the HPS model is an important

one. The format of the HPS model allows many different methods for obtaining the

model.

In this section we shall outline a dynamic learning approach for the construction

of an HPS that allows the system to continuously learn and evolve. We call this the

default-exception-learning-that’s-adaptive (DELTA) method for HPS. In this ap-

proach we initialize the HPS by providing a default representation of the relationship

we are trying to model. With this default relationship we allow the system builder to

provide an initial model of the system that will be augmented as we get more data about

the performance of the actual system. This default model can be as simple or as

complex as the designer’s knowledge of the system can support. In this approach the

augmentation of the model will be one in which we add specific observations and rules

to the HPS. The addition of knowledge to the structure will be driven by observations

that are exceptions to what we already believe the situation to be. The exceptions

will be captured and stored at the top level of the hierarchy. Groups of exceptions

shall be aggregated to form new rules, which will stored at the next level of the

hierarchy.

We shall use a three-levelHPSmodel as shown in Figure 1.4. For ease of explanation

we shall assume a model having a single input. The extension to multiple inputs is

straightforward.

The construction of the structure is initialized with the first and second levels being

empty. The third level is initializedwith our default information about the structure of the

relationship between the input and output variables V andU. In particular, the third level
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contains default rules of the form

If V is A thenU is f ðVÞ

In the above, f(V) is some prescribed functional relationship and A is a fuzzy

subset indicating the range of that default rule. The knowledge in the default can be any

manifestation of the prior expectation of the systemmodeler. It could be a simple rule that

saysU¼ b for all values ofV, a linear relationship that saysU¼ k1 þ k2V for all values of

V, or a collection of more complex rules based on some partitioning of the input space.

The HPS model will evolve based on observations presented to it, especially

observations that are exceptions towhatwe already believe. In particular, the information

in levels 1 and 2 will be obtained from the observations presented to the model. As we

shall see, level 1 will contain facts about individual observations that are exceptions to

what we already believe. Level 2 shall contain rules that aggregate these exceptions. The

aggregation process used here is very much in the spirit of the mountain clustering

method [7–10] introduced by Yager and Filev.

In Figure 1.5, we provide a flow diagram of the basic learning mechanism used in

this approach. In the following, we describe the basic mechanism for the construction of

this type of HPS. An observation (x, y) is presented to the HPS model. We calculate the

output for the input x, and denote this y�.We then compare this calculated outputwith the

desired output. If y and y� are close to each other, we can disregard this data and assume it

doesn’t provide any learning. If y and y� are not close, we use this data tomodify theHPS.

More specifically for the pair (y, y�) we calculate the valueClose(y, y�)2 [0,1] indicating

the degree of closeness of the observed value and the calculated value. IfClose(y, y�)�a,
a threshold level, we disregard the data. IfClose(y, y�) <a, we use this data to update the
model. We denote for this observation P ¼ 1�Close(y, y�) as a measure of this

Input U

Output V

Level 1: Exceptions

Level 2: Exception-Based Rules

Level 3: Default Rules

Figure 1.4. Exception-based hierarchy.
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observation’s ability to count as an exception, its strength of exception.We add to the top

level of the current HPS model this observation in the form of a point rule,

If V is x; thenU is y

For simplicity, we shall denote this rule as the point(x, y). We further associate with

this rule a valueM, which we initialize as P, its strength of exception. As we shall see,

thisM valuewill be used in the sameway as themountain function is used in themountain

method to help in the aggregation of point exceptions to form exception rules. We next

update the M value for all the other exception rules in the top level of the HPS. For any

point rule, if V is xi, then U is yi, in the top level we update Mi as

M0
i ¼ Mi þPe�Distanceððx;yÞ�ðxi ;yiÞÞ

Thus we see that as a result of experiencing an observation that is considered an

exception we add this observation to a current model and modify theM value of all other

exceptions by adding to them a value proportional to the strength of the current exception

modulated by its distance to the current exception.

We next check to see whether the addition of this new exception has caused a

accumulation of the exceptions that can be gathered to form an exception rule; here we

use the M values.

Specifically, we find the data point in the top level that now has the highestM value.

Let us denote this value as M̂ and assume it occurs for the point ðx̂; ŷÞ. If M̂ � b; b being a
threshold value for exception rule formation, we create a new rule of the form

If V is about x̂; thenU is about ŷ

where, as we have noted above, x̂ and ŷ are the coordinates of the data point with the

largest M value. This new rule is added to the second level of HPS. Thus we see that a

collection of exceptions close to each other focused at ðx̂; ŷÞ form an exception rule at the

second level. We emphasize that it is with the aid of the M function that we measure

the power of a exception point in the first level to be the nucleus of an exception rule in the

second level.

Data

Add to 
level 1

Can we aggregate 
exceptions ?

Add rule to 
level 2

End

 Disregard

Is it an 
exception

Yes

No

End

Yes

No

Figure 1.5. Schematic of learning process.
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The final step is the cleansing and reduction of the top level by eliminating the

individual exception rules that are now accounted for by the formulation of this new rule

at the second level. We first modify our functionM at each point (x, y) in the top level to

form M0, where

M0ðx; yÞ ¼ Mðx; yÞ�M̂e�Distanceððx;yÞ�ðx̂;ŷÞÞ

We next eliminate all point rules for which M0(x, y)� 1�a.
Further,we let Â and B̂ be the fuzzy subsets about x̂ and ŷ. For each exception point in

the top level, we calculate ÂðxiÞ and B̂ðyiÞ and let ti¼Min (A(xi), B(yi)). We then

eliminate all exceptions for which ti� l, a threshold for exception cleansing.

It should be noted that the above procedure has a number of parameters affecting our

actions. In particular we introduced a, b, and l. It is with the aid of these parameters that

we are able to control the uniqueness of the learning process. For example, the smallerwe

make a, the more rigorous our requirements are for indicating an observation as an

exception; it is related to our sensitivity to exceptions. The parameter b determines

openness to the formulation of new rules. The choice of these parameters is verymuch in

the same spirit as choice of the learning rate used in the classical gradient learning

techniques such as back propagation. Experience with the use of this exception-based

machinerywill of course sharpen our knowledge of the effect of parameter selection. At a

deeper level the selection of these parameters should be based on how we desire the

learning to perform and gives us a degree of freedom in the design of our learning

mechanism, resulting, just as in the case of human learning, in highly individualized

learning.

It is important to emphasize some salient features of the DELTA mechanism for

constructing HPS models. We see this has an adaptive-type learning mechanism. We

initialize the system with current user knowledge and then modify this initializing

knowledge based on our observations. In particular, as with a human being, this has the

capability for continuously evolving. That is, even while it is being used to provide

outputs it can learn from its mistakes. Also we see that information enters the systems as

observations and moves its way down the system in rules very much in the way that

humans process information in the face of experience.

1.7 INTRODUCTION TO THE PARTICIPATORY LEARNING
PARADIGM

Participatory learning is a paradigm for computational learning systems whose basic

premise is that learning takes place in the framework of what is already learned and

believed. The implication of this is that every aspect of the learning process is effected

and guided by the learner’s current belief system. Participatory learning highlights

the fact that in learning we are in a situation in which the current knowledge of what we

are trying to learn participates in the process of learning about itself. This idea is

closely related to Quine’s idea of web of belief [11, 12]. The now-classic work by

Kuhn [13] describes related ideas in the framework of a scientific advancement.With the
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participatory learning paradigm we are trying to bring to the field of computational

intelligence some important aspects of human learning. What is clear about human

learning is that it manifests a noncommutative aggregation of information; the order of

experiences and observations matters. Typically, the earlier information is more valued.

Participatory learning has the characteristic of protecting our belief structures fromwide

swings due to erroneous and anomalous observations while still allowing the learning of

new knowledge. Central to the participatory learning paradigm is the idea that observa-

tions conflicting with our current beliefs are generally discounted.

In Figure 1.6, we provide a partial systemic view of a prototypical participatory

learning process that highlights the enhanced role played by the current belief system.An

experience presented to the system is first sent to the acceptance or censor component.

This component, which is under the control of the current belief state, decides whether

the experience is compatible with the current state of belief; if it is deemed as

being compatible, the experience is passed along to the learning components, which

use this experience to update the current belief. If the experience is deemed as being too

incompatible, it is rejected and not used for learning. Thus we see that the acceptance

component acts as a kind of filler with respect to deciding which experiences are to

be used for learning. We emphasize here that the state of the current beliefs participates

in this filtering operation. We note that many learning paradigms do not include this

filtering mechanism; such systems let all data pass through to modify the current

belief state.

Because of the above structure, a central characteristic of the PLP (participatory

learning paradigm) is that an experience has the greatest impact in causing learning or

belief revision when it is compatible with our current belief system. In particular,

observations that conflict toomuchwith our current beliefs are discounted. The structure

of the participatory learning system (PLS) is such that it is most receptive to learning

when confronted with experiences that convey the message “What you know is correct

except for this little part.” The rate of learning using the PLP is optimized for situations in

which we are just trying to change a small part of our current belief system. On the other

hand, a PLS when confronted with an experience that says “You are all wrong; this is the

truth” responds by discounting what is being told to it. In its nature, it is a conservative

learning system and hence very stable. We can see that the participatory learning

environment uses sympathetic experiences tomodify itself. Unsympathetic observations

are discounted as being erroneous. Generally, a system based on the PLP uses the whole

context of an observation (experience) to judge something about the credibility of

the observation with respect to the learning agent’s beliefs; if it finds the whole

Acceptance
Function

Updation
Learning
Process

Current Belief 
System

Learning
Experience

Figure 1.6. Partial view of a prototypical participatory learning process.
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experience credible, it can modify its belief to accommodate any portion of the

experience in conflict with its belief. That is, if most of an experience or observation

is compatiblewith the learning agent’s current belief, the agent can use the portion of the

observation that deviates from its current belief to learn.

While the acceptance function in PLP acts to protect an agent from responding to

“bad” data, it has an associated downside. If the agent using a PLP has an incorrect belief

system about theworld, it allows this agent to remain in this state of blissful ignorance by

blocking out correct observations that may conflict with this erroneous belief model. In

Figure 1.7, we provide a more fully developed version of the participatory learning

paradigm that addresses this issue by introducing an arousal mechanism in the guise

of a critic.

The arousal mechanism is an autonomous component not under the control of the

current belief state. Its role is to observe theperformanceof the acceptance function. If too

many observations are rejected as being incompatible with the learning agent’s belief

model, this component arouses the agent to the fact that somethingmay bewrongwith its

currentstateofbelief;a lossofconfidenceis incurred.Theeffectof this lossofconfidenceis

to weaken the filtering aspect of the acceptance component and allow incoming experi-

ences that are not necessarily compatiblewith the current state of belief to be used to help

update thecurrentbelief.Thissituationcanresult inrapid learning in thecaseofachanging

environment once the agent has been aroused. Essentially, the role of the arousal

mechanism is to help the agent get out of a state of belief that is deemed as false.

Fundamentally, we see two collaborating mechanisms at play in this participatory

learning paradigm. The primary mechanism manifested by the acceptance function and

controlled by the current state of belief is a conservative one; it assumes the current state

of belief is substantially correct and requires only slight tuning. It rejects strongly

incompatible experiences and doesn’t allow them to modify its current belief. This

mechanism manifests its effect on each individual learning experience. The secondary

mechanism, controlled by the arousal mechanism, being less conservative, allows for the

possibility that the agent’s current state of belief may be wrong. This secondary

mechanism is generally kept dormant unless activated by being aroused by an accu-

mulation of input observations in conflict with the current belief. What must be

Acceptance
Function

Updation
Learning
Process

Current Belief 
System

Learning
Experience

Arousal
Mechanism

Figure 1.7. Fully developed prototypical participatory learning process.
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emphasized is that the arousal mechanism contains no knowledge of the current beliefs;

all knowledge resides in the belief system. It is basically a scoring system calculating

how the current belief system is performing. It essentially does this by noting how often

the system has encountered incompatible observations. Its effect is not manifested by an

individual incompatible experience but by an accumulation of these.

1.8 A MODEL OF PARTICIPATORY LEARNING

As noted in the preceding, participatory learning provides a paradigm for constructing

computational learning systems; as such, it can used in many different learning

environments. In the following, we provide one example of a learning agent based on

the PLP to illustrate some instantiation of the ideas described above [14].While this is an

important example of learning in a quantitative environment, we note that the PLP can be

equally useful in the kind of symbolic learning environments found in the artificial

intelligence and machine learning community.

In the illustration of PL that follows, we have a context consisting of a collection of

variables, x(i), i¼ 1 to n. Here we are interested in learning the value of this collection of

variables. It is important to emphasize the multidimensionality of the environment in

which the agent is doing the learning.Multidimensionality, which is present inmost real-

world learning experiences, is crucial to the functioning of the participatory learning

paradigm since the acceptability of an experience is based on the compatibility of the

collection of observed values as awholewith the agent’s current belief. For simplicitywe

assume that the values of the x(i)2 [0,1]. The current state of the system’s belief consists

of a vector Vk�1, whose components Vk�1(i), i¼ 1 to n, consist of the agent’s current

belief about the values ofx(i). It is what the agent has learned after k� 1 observation. The

current observation consists of a vector Dk, whose components dk(i), i¼ 1 to n, are

observations about the variable x(i). Using a participatory learning type of mechanism,

the updation of our current belief is the vector Vk whose components are

VkðiÞ ¼ Vk�1ðiÞþark
ð1�akÞðdkðiÞ�Vk�1ðiÞÞ ðIÞ

Using vector notation, we can express this as

Vk ¼ Vk�1 þark
ð1�akÞðDk�Vk�1Þ ðIbÞ

In the above,a2 [0,1] is a basic learning rate. The term rk is the compatibility of the

observation Dk with the current belief Vk�1. This is obtained as

rk ¼ 1� 1

n

Xn
i¼1

jdkðiÞ�Vk�1ðiÞj
 !

It is noted that rk2 [0,1]. The larger rk, the more compatible the observation is with the

current belief. One important feature that needs to be pointed out is the role that the
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multidimensionality plays in the determination of the compatibility rk. The system is

essentially looking at the individual compatibilities as expressed by jdkðiÞ�Vk�1ðiÞj to
determine the overall compatibility rk. A particularly notable case is where for most of

the individual variables we have good compatibility between the observation and the

belief but a few are not in agreement. In this case, since there is a preponderance of

agreement we shall get a high value for rk and the system is open to learning. Here, then,

the system has received a piece of data that it feels is a reliable observation based on its

current belief and is therefore open to accept it and learn from the smaller part of the

observation, which is not what it believes. We shall call such observations kindred

observations. The agent’s openness to kindred observations plays an important part in

allowing PL-based systems to rapidly learn in an incremental fashion [15].

The term ak, also lying in the unit interval, is called the arousal rate. This is obtained

by processing the compatibility using the formula

ak ¼ ð1�bÞak�1 þ bð1�rkÞ ðIIÞ

Here b2 [0,1] is a learning rate. As pointed out in [14], b is generally less than a. We see

that ak is essentially an estimate of the negation, one minus, the compatibility. Here we

note that a low arousal rate, small values for ak, is an indication of a good correspondence

between the agent’s belief and the external environment. In this case, the agent has

confidence in the correctness of its belief system. On the other hand, a value for ak closer

to one arouses the agent to the fact that there appears to be some inconsistency between

what it believes and the external environment.

We see from equation (Ib) that when ak� 0, the learning from the current

observation Dk is strongly modulated by rk, the compatibility of Dk with the current

belief Vk�1. If the compatibility rk is high, we learn at a rate close to a; if the

compatibility rk is low, we do not learn from the current observation. On the other

hand, when ak� 1, and therefore the agent is concerned about the correctness of its

belief, the term rk
ð1�akÞ�1 is independent of the value rk and hence the agent is not

restrained by its current belief from looking at all observations.

We note that the updation algorithm (I) is closely related to the classicWidrow-Hoff

learning rule [16].

VkðiÞ ¼ Vk�1ðiÞþaðdkðiÞ�Vk�1ðiÞÞ ðW-HÞ

The basic difference between (I) and (W-H) is the inclusion of the term arkð1�akÞ

instead of simple a. This results in a fundamental distinction between the classic leaning

model (W-H) and the PL version. In the classic case, the learning ratea is generallymade

small in order to keep the system from radically responding to erroneous or outlier

observations. In the PL version, the basic learning rate a can be made large because the

effect of any observation incompatible with the current belief is repressed by the term

rk
ð1�akÞ when ak is small. This effectively means that in these PL systems, if a relatively

good model of the external environment is obtained, the system can very rapidly tune

itself and converge. On the other hand, the classic model has a much slower rate of

convergence.
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An often-used strategy when using the classic learning algorithm (I) is to let a be a

function of the number of observations k. In particular, one lets a be large for low values

of k and then lets it be smaller as k increases. In the PLP, it would seem that here we

should treat the learning parameter b in a similar manner.

Whatwe emphasize here is thatwe determined the acceptability of an observation by

using the pointwise compatibilities of the features of the observation with the agent’s

current belief about the values of the features. More complex formulations for the

determination of acceptability can be used within the PLP. For example, in many real

learning situations the internal consistency of the features associatedwith an observation

(experience) plays a crucial role in determining the credibility of an observation. The

knowledge of what constitutes internal consistency, of course, resides in the current

belief systems of the learning agent.When a person tells us a story about some experience

he had, a crucial role in our determining whether to believe him is played by our

determination of the internal consistency of the story.At amore formal level, in situations

in which we are trying to learn functional forms from data, it would appear that the

internal consistency of the data in the observation could help in judging whether an

observation should be used for learning.

1.9 INCLUDING CREDIBILITY OF THE LEARNING SOURCE

Letusconsider thenatureofa learningexperience.Generally, a learningexperiencecanbe

seen to consist of two components.Thefirst is the content of the experience;wehave been

dealing with this in the preceding. The second is the source of the content. Information

about both these components is contained in the agent’s current belief system.

In order to decide on the degree of acceptability of a learning experience and its

subsequent role in updating the current belief, a participating learning-based systemmust

determine two quantities. The first is the compatibility of the content of the experience

with the system’s current belief system. The second is the credibility of the source. The

information needed to perform these calculations is contained in the agent’s current

belief system. A point we want to emphasize is that information about the source

credibility is also part of the belief structure of a PL agent in a similar way as information

about the content. That is, the concept of credibility of source is essentially a measure of

the congruency of the current observation’s source with the agent’s belief of what are

good sources.

Generally, compatible content is allowed into the system and is more valued if it is

from a credible source rather than a noncredible source. Incompatible content is

generally blocked, and more strongly blocked from a noncredible source than from a

credible source.

As we have pointed out, a learning experience consists of content as well as an

indication of its source.Wenoted that the credibility of the source should play a role in the

learning process. In the model previously presented we paid no attention to the source.

We were implicitly assuming that the source had complete credibility. Let us now

consider including information about the source credibility in our learning model based

on the participatory learning paradigm.
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Here we shall begin to look at ways of including source credibility in the learning

process.Weassumewehaveacollectionofpossiblesourcesofcontent,S¼ {S1,. . .,Sn}. In
this situation, we associate with each source a value C(j)2 [0,1] indicating the agent’s

current belief about the credibility of content provided by source Sj. This information is

stored in thebelief systemof theagent doing the learning.Wecandenote this as avectorC.

Consider that now we are in a situation in which the kth observation is provided by

source Sj. We now provide a form for our updation algorithm (I) that takes into account

the learner’s perceived credibility of this source, C(j). Here

Vk ¼ Vk�1 þa CðjÞrkð1�akÞðdkðiÞ�Vk�1ðiÞÞ ðIcÞ

We see that a source with zero credibility has no effect, Vk ¼ Vk�1. On the other hand, in

the case when C(j)¼ 1, we get our original model.

The process of updating the arousal, aK, associatedwith themodel is also affected by

the credibility of the source. In these cases, we must modify (II) to take into account

the credibility of the source. We first note that the original arousal-level updation

algorithm was

ak ¼ ð1�bÞak�1 þ bð1�rkÞ

or equivalently

ak ¼ ak�1 þ bð�rk�ak�1Þ

where

�rk ¼ 1�rk

Modifying this to take into account the credibility of the source, we get

ak ¼ ak�1 þCðjÞbð�rk�ak�1Þ ðIIcÞ

Again we see that sources with zero credibility do not affect our degree of arousal; on the

other hand, for those with credibility one, we get the original model.

We note that formula (IIc) can be expressed as

ak ¼ ð1�CðjÞbÞak�1 þCðjÞb�rk
Implicit in our inclusion of the credibility of the sources has been an assumption that

a source’s credibility,C(j), is fixed.More generally, the agent using the PLPwill learn and

update its belief about the credibility of the sources as a result of its learning experiences

in a manner similar to theway it learns content. Before providing this generalization, we

shall more usefully denote the credibility of source Sj as Ck(j), indicating the credibility

of Sj after the kth learning experience.

In the following, we shall provide a formula to allow the updation of the source

credibility. In expressing this formulation we shall find it convenient to use the termMjk
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defined such thatMjk¼ 1 if Sj is the source of the kth observation, andMjk¼ 0 if Sj is not

the source of the kth experience. Using this notation we express our algorithm for

modifying the source credibility as

CkðjÞ ¼ Ck�1ðjÞþMjkl�ak�1ðrk�Ck�1Þ ðIIIÞ

where �ak�1 ¼ 1�ak�1 and l2 [0,1] is a base learning rate. We note that if Sj is not the

source of the kth learning experience, thenMjk¼ 0 andCk(j)¼Ck�1(j). Thus, in this case

we do not make any changes in our credibility. If Mjk¼ 1, then

CkðjÞ ¼ Ck�1ðjÞþ l�ak�1ðrk�Ck�1ðjÞÞ ¼ ð1�l�ak�1ÞCk�1ðjÞþ l�ak�1Þrk

Here we see l�ak�1 is an effective learning rate; it is the product of our base learning rate

and the negation of the arousal level. Essentially �ak�1 is the confidence in the current

model. Thus, if �ak�1 ¼ 1, thenCkðjÞ ¼ Ck�1ðjÞþ l�ak�1ðrk�Ck�1ðjÞÞ. Here rK is being
used to calculate the current degree of performance of the source.

We make some observations about the learning-updation model for the Ck(j), First,

we note that if there exists only one source S¼ {S1}, thenwewill getCk(1)¼ 1� ak. That

is, the credibility of the agent is the negation of the arousal level. Since 1� aK is

essentially the credibility of themodel, we see that the credibility of a sole source and the

credibility of the resulting model are equivalent.

We note that in the source credibility updation algorithm (III) we can have different

base learning rates for each source. Thus we can have l(j) instead of l, where l(j) is the
base rate of learning the credibility of the jth agent. Further, if l(j)¼ 0, then Ck(j)¼
Ck�1(j) for all k. This implies a fixed assigned credibility for the jth source.

1.10 TYPES OF LEARNING SOURCES

In the following, we shall try to identify and classify some types of sources of content

that are involved in learning experiences. The first type of source is direct sensory

experiences. These are related to observations we make with our own sensory organs.

Examples of this are seeing an auto accident, being at a baseball game and watching

the Yankees win, smelling alcohol on somebody’s breath, or hearing John tell Mary

“I love you.”

The second type we shall denote as an authority. Examples of learning experiences

from an authority are being told something by another person, reading something in a

book or obtaining it from the Internet, and hearing news on the radio or seeing it on TV.

The basic idea is that the contents have been processed by some other cognitive agent. For

these types of sources the content can be subject to “interpretation” by the processing

agent.

A third source of content is electromechanical sensor data. This is data obtained

through some electromechanical device such as the speedometer on your car, a ther-

mometer,or the typesofscreensair trafficcontrollersuse.Numerousother typesofdevices

can be listed. Here the contents have been processed by a neutral physical device.
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Another source of content is what we shall call reflection. Here we mean the

conscious rational manipulation of information already in an agent’s belief system that

brings to the agent’s awareness knowledge that is implicit in the current belief system.

Deduction, induction, and reasoning are examples of this source. It can be seen as a

kind of reorganization of knowledge in the agent’s belief system. An interesting

example occurs when the agent becomes aware of a conflict in his system. This source

of content here is clearly distinct from the preceding three in that in the first three the

source of the new content comes from outside the agent. In the case of reflection, the

source of the content is internal to the agent. An additional aspect of what we have in

mind with this reflective source of information that we want to emphasize without

getting too deep into philosophical issues is the conscious rational aspect of this

process.

Another source of content for our learning experiences is what we shall denote as

mystic. Examples of this would be information coming from the subconscious, dreams,

hallucinations, being told by God, and what some people call gut feeling. What we want

to point out here is that for the most part this can be considered as internally sourced

information; however, for some of these, such as being told byGod, it is not clearwhether

it is from external or internal sources. Further, for some people, this type of content can

be considered as “empty.” However, for others, this is a valid type of learning experience.

This category of learning is becoming an increasingly important one in our time since one

objective of many security systems is to try to understand, predict, and manipulate the

actions of terrorists, many of whom are religious fundamentalists who construct their

belief system using this type of source.

We feel that various types of agents can be modeled by formalizing the credibility

that they attach to these different categories of sources of learning experiences.

1.11 CONCLUSION

In this work we described two instruments for introducing evolutionary behavior into

intelligent systems. The first was the hierarchical prioritized structure (HPS) and the

second was the participatory learning paradigm (PLP). We saw that underlying both

these instruments is a type of nonlinear aggregation operation that is adjudicating

between knowledge held at different levels. Central to this type of aggregation is a

process in which the privileged knowledge is deciding on the allowable influence of the

less-favored knowledge.
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