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INTRODUCTION

Plants synthesize a vast range of secondary metabolites with a significant
portion consisting of phenolic compounds and flavonoid compounds [Crozier
et al., 2006a]. These phytochemicals are structurally diverse, and many are
distributed among a very limited number of species within the plant kingdom.
This character allows them to act as biodiagnostic markers in chemotaxonomic
studies. Phenolic compounds and flavonoids accumulate in relatively high
amounts in plants and appear to have a myriad of supplemental functions in a
plant’s life cycle. These include structural roles in different supporting or
protective tissues, involvement in defense strategies, as attractants for pollina-
tors and seed-dispersing animals, and as allelopathic agents, ultra violet (UV)
protectants and signal molecules in the interactions between plants and their
environment. One of the most versatile classes of flavonoids, the anthocyanins,
protect chloroplasts from photodegradation by absorbing high-energy quanta,
while scavenging free radicals and reactive oxygen species (ROS) [Gould, 2004].
Flavonols, as well as providing protection against the damaging effects of
UV-B light, are also involved in promoting the growth of pollen tubes down
the style to facilitate fertilization. In addition, isoflavonoids play important
defense roles against pathogen and insect attack and are key signal molecules
in the formation of nitrogen-fixing root nodules in legumes. After the death of
plants, phenolic compounds may persist for weeks or months and affect
decomposer organisms and decomposition processes in soils. Therefore, their
effects are not restricted to only the plant itself but may extend to the
functioning of whole ecosystems [Horner et al., 1988].

Secondary metabolites, other than providing plants with unique survival or
adaptive strategies, are of commercial significance to humankind. They have
been used as dyes, fibers, glues, oils, waxes, flavoring agents, drugs, and
perfumes and are viewed as potential sources of new natural drugs, antibiotics,
insecticides, and herbicides [Croteau et al., 2000; Dewick, 2002]. In recent years
the role of phenolic compounds and flavonoids as protective dietary constitu-
ents has become an increasingly important area of human nutrition research.
Unlike the traditional vitamins, they are not essential for short-term well-being,
but there is increasing evidence that modest long-term intakes may exhibit a
potential for modulating human metabolism in a manner favorable for the
prevention or reduction in the risk of degenerative diseases such as cardiovas-
cular diseases, diabetes, obesity, and cancer [Anderson et al., 1999].

HEALTH BENEFITS AND MODE OF ACTION OF FLAVONOIDS

AND PHENOLIC COMPOUNDS

The rapid rise of degenerative diseases worldwide is threatening economic and
social development as well as the lives and health of millions of people. It rep-
resents a major health challenge to global development in the coming century.
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It is estimated that up to 80% of cardiovascular disease, 90% of Type II
diabetes, and one third of cancers can be avoided by changing lifestyle,
including diet [WHO, 2003]. Diet-related high cholesterol, high blood pressure,
obesity, and insufficient consumption of fruits and vegetables have been cited
as significant interlinking risk factors that cause the majority of these diseases.
There is, therefore, increasing interest in the role of nutrition and specific
dietary constituents in the prevention of such diseases. Flavonoids and phenolic
compounds are prominent among dietary constituents that are the focus of
such interest.

Since the 1990s a number of epidemiological studies have been carried out
attempting to correlate high dietary phenolic compounds and flavonoid
intake, through the consumption of fruits and vegetables, with reduced risk
of degenerative diseases. Many, but not all, of these studies have indicated
some degree of inverse associations between high dietary phenolic/flavonoid
intake and reduction of degenerative diseases [Steinmetz and Potter, 1996;
Law and Morris, 1998; Riboli and Norat, 2003]. Since oxidative stress
imposed by ROS is known to play a crucial role in the pathophysiology
associated with neoplasia, atherosclerosis, and neurodegenerative diseases, the
potential mechanism of the protective effects of phenolic compounds and
flavonoids were thought to be due to direct scavenging of free radicals [see
Heim et al., 2002].

Accumulating evidence now indicates the importance of interactions
between various phytochemicals in reducing the risk of various degenerative
diseases [Chan et al., 2000; Mouria et al., 2002; Mertens-Talcott et al., 2003].
The combination of antioxidative agents with different modes of action is
thought to increase efficacy and minimize toxicity. In a recent review by Lee
and Lee [2006], the abilities of phenolic-based antioxidant therapies to
decrease ROS levels was shown to produce the best health benefits through
a diet rich in multiple antioxidants rather than a high dosage of a single
supplement. Evidence of the potential benefits of food synergy was provided
by Liu et al. [2000] when they demonstrated that a combination of fruits,
such as orange, apple, grape, and blueberry, displayed a synergistic effect on
antioxidant activity in vitro. The median effective dose (EC50) of each fruit in
combination was five times lower than the EC50 of each fruit alone,
suggesting synergistic effects due to the combination of the four fruits. In
another study, Sakamoto [2000] emphasized the importance of consuming
black tea together with soybean products as commonly occurs in a typical
Japanese diet. In this study, thearubigen in black tea did not alter the in vitro
growth of human prostate cancer cells. However, a small amount of
thearubigen (0.5 mg mL–1) administered with genistein (20 mg mL–1), the
major isoflavone in soybean, synergistically inhibited cell growth and in-
creased the DNA distribution at the G2 M phase of the cell division cycle by
34% compared with genistein alone [Sakamoto, 2000]. Similar conclusions
were reached by Temple and Gladwin [2003] when they reviewed 200 cohort
and case–control studies that provided risk ratios concerning intake of fruits
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and vegetables and risk of cancer. Their studies showed that the cancer-
preventing action of fruits and vegetables is most probably due to the many
bioactive compounds that act in concert to prevent cancer rather than being
due to one or two potent anticarcinogens.

Nutrients generally have very specific functions such as being an enzyme
cofactor. In contrast, in addition to their additive and synergistic effects,
phenolic compounds and flavonoids, often exhibit pleiotropic effects that in
combination may reduce the risk of chronic disease. For instance, curcumin,
the active constituent of turmeric (Curcuma longa), a root vegetable, has been
shown to be beneficial in all three stages of carcinogenesis [Thangapazham et
al., 2006]. Isoflavones, the bioactive ingredient in leguminous vegetables, not
only cause a small reduction in blood cholesterol but also reduce blood
pressure, arterial dimensions, and oxidative stress [Anderson et al., 1999].
This combined effect may cause a reduction in the risk of coronary heart
disease [Kris-Etherton et al., 2004].

In addition to the complexity mentioned above, the health implications of
dietary phenolic compounds and flavonoids are also dependent on the compo-
sition of the components of the diet and the bioavailability of the individual
compounds under study. Accumulating evidence on the absorption and
bioavailability of phenolic compounds and flavonoids in humans reveals that
most of these phytochemicals are modified during absorption from the small
intestine, through conjugation and metabolism, and by the large intestine,
mainly through the actions of the colonic microflora, and by subsequent
hepatic metabolism [Graefe et al., 2001; Manach et al., 2004; Mullen et al.,
2004, 2006, 2008; Jaganath et al., 2006]. Thus, metabolites that reach the cells
and tissues are chemically, and, in many instances, functionally distinct from
the dietary form, and such features underlie their bioactivity [Kroon et al.,
2004]. This, in addition to the fact that in most instances very low levels of
dietary phenolic compounds and flavonoids are actually absorbed and appear
in the bloodstream (o10 mM), implies that the concept of these compounds
functioning as hydrogen-donating antioxidants in vivo appear to be an over-
simplified view of their mode of action [Williams et al., 2004; Williamson and
Manach, 2005; Fraga, 2007].

It has been hypothesized that cells respond to phytochemicals through direct
interactions with receptors or enzymes involved in signal transduction, or
through modifying gene expressions that may result in alteration of the redox
status of the cell that may trigger a series of redox-dependent reactions [Williams
et al., 2004]. There is now emerging evidence that flavonoids may play an
important role in molecular processes especially as modulators of intracellular
signaling cascades, which are vital to cellular function [Williams et al., 2004]. For
example, in a recent study carried out by Mackenzie and associates (2008), a
naturally occurring phenolic compound, curcumin [1,7-bis(4-hydroxy-3-methox-
yphenyl)-1,6-heptadiene-3,5-dione,1] was found to deregulate signaling cascades,
such as NF-kB, leading to a decreased expression of proteins involved in cell
proliferation and apoptosis. In another study on Caco-2 cells, hexameric
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procyanidins was found to inhibit TNFa-induced NF-kB activation, which is
belived to play a central role in inflammation including human intestinal bowel
disease [Erlejman et al., 2008].

There is growing evidence from human feeding studies that the absorption
and bioavailability and thus bioactivity of phenolic compounds and flavonoids
are very much dependent on the nature of their chemical structure. Their
chemical classification and dietary occurrence is briefly discussed in the
following section.

FLAVONOIDS—STRUCTURE AND THEIR DIETARY OCCURRENCE

To date, more than 6000 different flavonoids have been described and the
number continues to increase [Harborne and Williams, 2000]. Flavonoids are
polyphenolic compounds comprising of 15 carbons, with 2 aromatic rings
connected by a 3-carbon bridge. According to the modifications of the central
C-ring, they can be divided into different structural classes including
flavonols, flavones, flavan-3-ols, flavanones, isoflavones, and anthocyanidins
(Fig. 1.1). In a few cases, the 6-membered heterocyclic ring C occurs in an
isomeric open form or is replaced by a 5-membered ring as in the case of
chalcone. Other flavonoid groups, which quantitatively are relatively minor
dietary components, are dihydroflavones, flavan-3,4-diols, coumarins, and
aurones.

Flavonols

The flavonols are the most widespread of the flavonoids in plant food. They
vary in color from white to yellow and are closely related in structure to the
flavones. They are represented mainly by quercetin, kaempferol, and myricetin
while the methylated derivative isorhamnetin is also quite common (Fig. 1.2).
Of the various flavonols found in the diet, quercetin is the most ubiquitous. It is
present in various fruits and vegetables, with especially high concentrations,
200–1000 mg g–1 fresh weight, occurring in onions (Allium cepa) [Hertog et al.,
1992; Crozier et al. 1997]. In a recent study by Sultana and Anwar [2008],
flavonol levels were determined in 22 plant materials (9 vegetables, 5 fruits, and
8 medicinal plants). The highest concentrations were detected in the medicinal
plant, moringa (Moringa oleifera) (68 mg g�1 fresh weight), followed by
strawberry (Fragaria spp.) (40 mg g�1), peepal (Ficus religious) (12 mg g�1),
spinach (Spinaceae oleraceae) (19 mg g�1), and cauliflower (Brassica oleraceae)
(18 mg g�1).

Flavonols that accumulate in plant tissues are almost always in the form of
glycosylated conjugates. The main flavonols in onions are quercetin- 4u-O-
glucoside and quercetin-3,4u-O-,diglucoside with smaller amounts of isorham-
netin-4u-O-glucoside (Fig. 1.3) [Mullen et al., 2004].
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A whole range of other quercetin conjugates such as quercetin-3-O-galacto-
side, quercetin-3-O-rhamnoside, quercetin-3-O-xyloside, quercetin-3-O-rutino-
side, quercetin-3-O-arabinopyranoside, and quercetin-3-O-arabinofuranoside
are found in apples (Malus x domestica) (Fig. 1.4) [Marks et al., 2008].

Figure 1.1 Structures of the main flavonoid subgroups.

Figure 1.2 Structures of common flavonol aglycones.
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Figure 1.3 Main flavonol glucosides in onion.

Figure 1.4 Principal flavonol glucosides in apples.
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Quercetin-3-O-rutinoside, on the other hand, is the main flavonol in
tomatoes (Lycopersicon esculentum), asparagus (Asparagus officinalis), pea-
ches (Prunus persica), and nectarines (Prunus persica var. nectarina) [Makris
and Rossiter, 2001; Crozier et al., 2006c]. Quercetin-3-O-glycoside, quercetin-3-
galactoside, and aquercetin arabinoside has also been detected in mangos
(Mangifera indica) [Schieber et al., 2000]. Other flavonols in the diet include
kaempferol-3-O-rutinoside in kiwi fruit (Actinidia deliciosa) and conjugates of
myricetin in berries (Fig. 1.5) (Peterson and Dwyer, 1998].

Grapes of Vitis vinifera, grape products, and wines contain a wide range of
flavonols such as quercetin, myricetin, kaempferol, isorhamnetin, quercetin-3-O-
glucoside, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, quercetin-3-O-
galactoside, kaempferol-3-O-glucoside, and kaempferol-3-O-galactoside [Makris
et al., 2006]. Tea (Camellia sinensis) infusions also contain a diverse spectrum of
flavonols linked to mono-, di- and tri-saccharides [Del Rio et al., 2004].

Flavones

Flavones are structurally very similar to flavonols and differ only in the absence
of hydroxylation at the 3-position on the C-ring. Flavones are mainly
represented in the diet by apigenin and luteolin. Unlike flavonols, they are
not widely distributed with significant concentrations being reported in only
celery (Apium graveolens), parsley (Petroselinum crispum), and artichoke
(Cynara scolymus) [Crozier et al., 2006a]. As a consequence their dietary intake

Figure 1.5 Flavonol conjugates found in berries.
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is very low. Flavone conjugates such as the 7-O-(2v-O-apiosyl)glucosides of
apigenin, luteolin, and chrysoeriol (Fig. 1.6) are found in celery [Herrmann,
1976], while artichoke contains luteolin-7-O-glucoside, luteolin-7-O-rutinoside,
and apigenin-7-O-rutinoside (Fig. 1.7) [Wang et al., 2003].

Substantial quantities of luteolin-7-O-glucuronide, luteolin-7-O-glucoside, and
luteolin-7-O-rutinoside occur in Red Oak Leaf and Lollo Rosso, two red-leaved
varieties of lettuce (Lactuca sativa) [Llorach et al., 2008]. Polymethoxylated
flavones such as nobiletin, scutellarein, sinensetin, and tangeretin (Fig. 1.8) are
found exclusively in citrus species [Crozier et al., 2006c], while diosmetin-7-O-
glucuronide has been isolated from the fruits of a Chinese herb, Luffa cylindrical.

Figure 1.6 Flavone conjugates occurring in celery.

Figure 1.7 Flavone conjugates found in artichoke.

FLAVONOIDS—STRUCTURE AND THEIR DIETARY OCCURRENCE 9



Red bush or rooibos tea, made from infusions of young leaves and shoots of
the South African shrub Aspalathus linearis, and popularized by the The No. 1
Ladies’ Detective Agency novels of the Edinburgh University Emeritus Pro-
fessor of Medical Law, Alexander McColl Smith [1999, 2000], contains a
number of compounds including C-flavone glycosides in the form of isoorientin
(luteolin-6-C-glucoside) and orientin (luteolin-8-C-glucoside) [Bramati et al.,
2003]. Orientin and isoorientin also occur in lemongrass (Cymbopogon citrata)
along with two other flavone C-glucosides, chrysoeriol-6-C-glucoside (isosco-
parin) and 7-O-methyl-luteolin-6-C-glucoside (swertiajaponin) (Fig. 1.9) [Cheel
et al., 2005].

Recent observations reveal that when flavones are methoxylated, metabolic
stability and membrane transport in the intestine/liver dramatically increases,

Figure 1.8 Polymethoxylated flavones found in citrus species.

Figure 1.9 Flavones found in rooibos tea.
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thus improving oral bioavailability. In addition, methoxyflavones also show
increased cancer chemopreventive properties when compared to the more
common unmethylated flavones [Walle, 2007].

Flavan-3-ols

Flavan-3-ols represent the most common flavonoid consumed in the American
and, most probably, the Western diet and are regarded as functional ingre-
dients in various beverages, whole and processed foods, herbal remedies, and
supplements. Their presence in food affects quality parameters such as
astringency, bitterness, sourness, sweetness, salivary viscosity, aroma, and
color formation [Aron and Kennedy, 2007]. Flavan-3-ols are structurally the
most complex subclass of flavonoids ranging from the simple monomers (+ )-
catechin and its isomer (�)-epicatechin to the oligomeric and polymeric
proanthocyanidins (Fig. 1.10), which are also known as condensed tannins
[Crozier et al., 2006b].

The most abundant type of proanthocyanidins in plants are the procyani-
dins, which consist exclusively of (epi)catechin units. The less common
proanthocyanidins containing (epi)afzelechin (Fig. 1.11) and (epi)gallocatechin
(Fig. 1.10) subunits are called propelargonidins and prodelphinidins, respec-
tively [Balentine et al., 1997].

Flavan-3-ols are found abundantly in fruits such as apricots (Prunus
armeniaca), sour cherries (Prunus cerasus), grapes and blackberries (Rubus
spp.) [Porter, 1988]. The seeds of grapes contain substantial quantities of (+ )-
catechin, (�)-epicatechin, procyanidin oligomers, and polymers [Gu et al.,
2004]. Apples, on the other hand, are a good source of (�)-epicatechin and
procyanidin dimers B1 and B2 (Fig. 1.12), while peaches and nectarines contain
(+ )-catechin, (�)-epicatechin, and proanthocyanidins including procyanidin
B1 [Hong et al., 2004]. Barley, seemingly, is the only common cereal with a
significant proanthocyanidin content (0.6–1.3 g kg–1) [Santos-Buelga and
Scalbert, 2000].

(+ )-Catechin and the proanthocyanidin prodelphinidin B3 are, respec-
tively, the major monomeric and dimeric flavan-3-ols found in barley and malt
where prodelphinidin B3 is the main contributor for the radical scavenging
activity [Dvoráková et al., 2007]. Proanthocyanidins have also been detected in
nuts. Hazelnuts (Corylus avellana) and pecans (Carya illinoensis) are particu-
larly rich in proanthocyanidins containing ca. 5 g kg–1, whereas almonds
(Prunus dulcis) and pistachios (Pistachio vera) contain 1.8–2.4 mg kg–1,
walnuts (Juglans spp.) ca. 0.67 g kg–1, roasted peanuts (Arachis hypgaea)
0.16 g kg–1, and cashews (Anarcardium occidentale) 0.09 g kg–1 [Crozier et al.,
2006c]. Dark chocolate derived from the roasted seeds of cocoa (Theobroma
cacao) is also a rich source of procyanidins [Gu et al., 2004]. Monomeric flavan-
3-ols and the proanthocyanidin B2, B5 dimers, and C1 trimer are found in
fresh cocoa beans (Fig. 1.13). Flavan-3-ols have also been detected in mint
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Figure 1.10 Flavan-3-ol structures.
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(Mentha rotundifolia), basil (Ocimum basilicum), rosemary (Rosemarinus
officinalis), sage (Salvia officinalis), and dill (Anethum graveolens) [Shan
et al., 2005].

Flavan-3-ols can undergo esterification with gallic acid to form catechin
gallates, and hydroxylation reactions to form gallocatechins (Fig. 1.10).
Gallocatechins such as (�)-epigallocatechin, (�)-epigallocatechin gallate, and
(�)-epicatechin gallate are abundant in green tea infusions [Stewart et al.,
2005]. During fermentation to produce black tea, these compounds polymerize,
giving rise to theaflavins and high-molecular-weight thearubigins (Fig. 1.14)
[Crozier et al., 2006c]. Other beverages such as red wine and beer are also rich in
flavan-3-ols. Red wines contain oligomeric procyanidins and prodelphinidins,
originating mainly from the seeds of red grapes [Auger et al., 2004]. Flavan-3-
ols such as (+ )-catechin and (�)-epicatechin, and the dimers prodelphinidin
B3 and procyanidin B3 have been detected in beer [Crozier et al., 2006c].

Flavanones and Chalcones

Flavanones are mainly represented by naringenin, hesperetin, and eriodictyol,
while a number of minor compounds, including sakuranetin and isosakurane-
tin, also occur (Fig. 1.15). Two structural features—the absence of a D2,3 double

Figure 1.11 Less common flavan-3-ol monomers: (�)-epiafzelechin and (+)-afzelechin.

Figure 1.12 Procyanidin dimers occurring in apples.
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bond and the presence of a chiral center at the carbon-2—characterize
flavanones [lwashina, 2000]. In the majority of naturally occurring flavanones,
the C-ring is attached to the B-ring at C2 in the a configuration.

The flavanone structure is highly reactive and has been reported to undergo
hydroxylation, glycosylation, and O-methylation reactions. Flavanones are

Figure 1.13 Monomeric flavan-3-ols and proanthocyanidin B2, B5 dimers, and C1

trimer found in fresh cocoa beans.

Figure 1.14 Theaflavins and thearubigins present in black tea.
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exclusively found in citrus fruits in their glycosidic forms. Grapefruit (Citrus
paradisi) juice contains up to 377 mg L–1 of naringin (naringenin-7-O-
neohesperidoside) and orange juice, 16–84 mg L–1 of narirutin (naringenin-7-
O-rutinoside) [Manach et al., 2004; Tomás-Barberán and Clifford, 2000]. The
peel is by far the richest part of citrus fruit in terms of its flavanone content.
Substantial quantities of eriodictyol-7-O-rutinoside have been reported in
lemon (Citrus limon) and lime (Citrus aurantifolia) [Peterson et al., 2006].
Flavanone rutinosides are tasteless, while neohesperidoside conjugates such as
hesperetin-7-O-neohesperidoside (neohesperidin) from bitter orange (Citrus
aurantium) and naringenin-7-O-neohesperidoside (naringin) from grapefruit
peel (Citrus paradisi) have an intensely bitter taste (Fig. 1.16). Naringenin is
also found in tomatoes and tomato-based products. Fresh tomatoes, especially
the skin, also contain naringenin chalcone, which is converted to naringenin
during the manufacture of tomato ketchup [Krause and Galensa, 1992].
Hesperetin-7-O-rutinoside has also been detected in kiwi fruit, while

Figure 1.15 Structures of common flavanone aglycones.

Figure 1.16 Flavanone conjugates in citrus fruit.
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hesperetin-7-O-neohesperidoside was reported in bananas (Musa cavendishii)
[Dégenéve 2004; Kanazawa and Sakakibara, 2000].

As mention earlier, rooibos tea, which is claimed to have a number
of medicinal properties [Joubert and Ferreira, 1996; McKay and Blum-
berg, 2007], contains the flavone C-glucosides orientin and isoorientin. It also
contains a number of rare dihydrochalcone C-glycosides, the main components
being 2u,3u,4,4u,6u-pentahydroxy-dihydrochalcone-3-C-glucoside (aspalathin)
and 2u,4,4u,6u-tetrahydroxy-dihydrochalcone-3-C-glucoside (nothofagin). Dur-
ing fermentation aspalathin is oxidized to the flavanone C-glycosides eriodic-
tyol-6-C-glucoside eriodictyol-8-C-glucoside (Fig. 1.17) [Krafczyk and Glomb
2008].

Anthocyanidins/Anthocyanins

Anthocyanins are water-soluble plant pigments and are particularly evident in
fruit and flower tissue where they are responsible for a diverse range of red,
blue, and purple colors. They occur primarily as glycosides of their respective
aglycone anthocyanidin-chromophores (Fig. 1.18), with the sugar moiety
typically attached at the 3-position on the C-ring or the 5-position on the
A-ring [Prior and Wu, 2006]. They are involved in the protection of plants
against excessive light by shading leaf mesophyll cells and also have an
important role to play in attracting pollinating insects.

There are about 17 anthocyanidins found in nature, but only 6 — cyanidin,
delphinidin, petunidin, peonidin, pelargonidin, and malvidin—are ubiquitously
distributed and of dietary importance. The variation of anthocyanins are due
to: (i) the number and position of hydroxyl and methoxy groups on the basic
anthocyanidin skeleton; (ii) the identity, number, and positions at which sugars
are attached; and (iii) the extent of sugar acylation and the identity of the

Figure 1.17 Hydroxychalcones occurring in unfermented rooibos tea and flavanone

C-glycosides that accumulate during fermentation.
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acylating agent [Prior and Wu, 2006]. Unlike other subgroups of flavonoids
with the same C6–C3–C6 skeleton, anthocyanins have a positive charge in their
structure at acidic pH.

The most widespread anthocyanin in fruits is cyanidin-3-glucoside [Kong et
al., 2003]. However, malvidin glycosides are the characteristic anthocyanins in
red grapes and their derived products [Mazza and Miniati, 1993]. Other
anthocyanins that occur in grapes include petunidin-3-O-glucoside, malvidin-
3-O-(6v-O-p-coumaroyl)glucoside, malvidin-3-O-(6v-O-acetyl)glucoside, del-
phinidin-3-O-glucoside, and malvidin-3,5-O-diglucoside (Fig. 1.19) [Burns et
al., 2001, 2002a].

Purple grape juice, from Concord grapes, a native American cultivar Vitis
labrusca, which have a thicker skin and larger seeds than grapes of Vitis
vinifera, is a rich source of more than 20 anthocyanins. The main components
being 3-O-glucosides and 3,5-O-diglucosides of cyanidin, peonidin, delphinidin,
and malvidin, delphinidin-3-O-(6v-O-acetyl)glucoside, delphinidin-3-O-(6v-O-
p-coumaroyl)-5-O-diglucoside, and delphinidin-3-O-(6v-O-p-coumaroyl)gluco-
side (Fig. 1.20) [Wang et al., 2003; Mullen et al., 2007]

Anthocyanins occur in abundance in berries where they provide the fruits
with their distinctive and vibrant palate of colors. Cranberry (Vaccinium
macrocarpon), blackberry, and elderberry (Sambucus nigra) contain derivatives
of only one type of anthocyanin (i.e., cyanidin), while a wide array of
anthocyanins is found in blueberry (Vaccinium corymbosum) and blackcurrant
(Ribes nigrum) (Fig. 1.21).

Anthocyanins such as cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, and
peonidin-3-O-rutinoside (Fig. 1.22) have also been reported in sweet cherries
(Prunus avium) and sour cherries (Prunus cerasus) [Wu et al., 2004].

Figure 1.18 Structures of major anthocyanins.
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Plums (Prunus domestica) and peaches are also a rich source of cyanidin-3-O-
glucoside and cyanidin-3-O-rutinoside [Crozier et al., 2006c].

Red onions contain up to 250 mg kg–1 anthocyanins [Clifford, 2000]; among
the major components are cyanidin-3-O-(6v-malonyl)glucoside and cyanidin-3-
O-(6v-malonyl)laminaribioside (Fig. 1.23) [Donner et al., 1997]. Cyanidin-3-O-
(6v-malonyl)glucoside is also a component of the red-leaved Lollo Rosso
lettuce [Ferreres et al., 1997], while 3-O-glucosides and 3,5-O-diglucosides of
cyanidin and delphinidin have also been detected in pomegranate (Punica
granatum) juice [Gil et al., 2000].

Isoflavones

In contrast to most other flavonoids, isoflavones are characterized by
having the B-ring attached at C3 rather than the C2 position. They have a

Figure 1.19 Anthocyanins found in red grapes.
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very limited distribution in the plant kingdom with substantial quantities
being found only in leguminous species [Graham, 1991; Dixon and Steele,
1999]. Isoflavones are known for their estrogenic activity due to their ability
to bind to estrogen receptor and have received much attention due to
their putative role in the prevention of breast cancer and osteoporosis [Barnes,
2003].

Worldwide, soybeans (Glycine max) are almost the sole dietary source of
isoflavones. Common isoflavones such as genistein, daidzein, and glycitein (Fig.
1.24), also occur, albeit in low levels, in black beans (Phaseolus vulgaris) and
green peas (Pisum sativum). In plants isoflavones occur predominantly as b-
glucosides (genistin, daidzin, glycitin), or as acetyl-b-glucosides and malonyl-b-
glucosides, and are therefore polar, water-soluble compounds [Coward et al.,
1998]. Isoflavones also undergo various modifications, such as methylation,
hydroxylation, or polymerization, and these modifications lead to simple
isoflavonoids, such as isoflavanones, isoflavans, and isoflavanols, as well as
more complex structures including rotenoids, pterocarpans, and coumestans
[Dewick, 1993].

Isoflavones such as diadzein-7-O-(6v-O-malonyl)glucoside and diadzein-7-
O-(6v-O-acetyl) glucoside (Fig. 1.25) occur in high concentrations in soybean
[Barnes et al., 1994]. Formononetin and biochanin A (Fig. 1.24), present as
6v-O-malonyl-7-O-glucosides, 7-O-glucosides, and aglycones, are the most
abundant isoflavones in red clover (Trifolium pretense), which is one of the
ingredients used to extract isoflavones for dietary supplements [Delmonte

Figure 1.20 Purple grape juice anthocyanins.
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et al., 2006]. Other than soya, Pueraria lobata (common name kudzu), a
perennial vine native to Japan and China that also grows in the southeastern
United States, is another commercial source of isoflavones for dietary supple-
ments. Puerarin (daidzein-7-C-glucoside), daidzin (daidzein-7-O-glucoside),
and daidzein are the main isoflavones in kudzu [Delmonte et al., 2006].

Figure 1.21 Major anthocyanins in berries.
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NONFLAVONOID PHENOLIC COMPOUNDS—STRUCTURE AND

THEIR DIETARY OCCURRENCE

Phenolics are defined as compounds possessing one or more aromatic rings to
which is attached at least one hydroxyl group. Phenolic compounds can be
categorized as flavonoids and nonflavonoid phenolic compounds. The main
nonflavonoid phenolic compounds of dietary significance are the C6–C1

Figure 1.24 Structure of common isoflavone aglycones.

Figure 1.23 Main anthocyanins in red onions.

Figure 1.22 Anthocyanins present in cherries.
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phenolic acids, the C6–C3 hydroxycinammates and their conjugated derivatives,
and the polyphenolic C6–C2–C6 stilbenes.

Phenolic Acids

Phenolic acids are also known as hydroxybenzoates, and they are commonly
represented by gallic, p-hydroxybenzoic, protocatechuic, vanillic, and syringic
acids. Phenolic acids are usually present in the bound form and are typically
components of complex structures such as lignins and hydrolyzable tannins.
They can also be found as derivatives of sugars and organic acids in plant
foods. Gallic acid is the base unit of gallotannins, whereas gallic acid and
hexahydroxydiphenoyl moieties are both subunits of the ellagitannins, which
are classified as hydrolsable tannins.

Ellagic acid has been reported to be present in berries, particularly
raspberries (Rubus idaeus), strawberries, and blackberries [Amakura et al.,
2000]. However, free ellagic acid is normally present in low levels in berries that
more commonly contain ellagitannins, such as sanguiin H-6 and lambertianin
C, which release ellagic and gallic acid when treated with acid (Fig. 1.26)
[Mullen et al., 2002].

Pomegranate juice is increasing in popularity and some, but far from all,
commercial juices/drinks have a high ellagitannin and antioxidant content
[Mullen et al., 2008]. Pomegranate juice contains gallagic acid, an analog of
ellagic acid containing four gallic acid residues, and punicalagin, the principal
monomeric, hydrolysable tannin, in which gallagic acid is bound to glucose
(Fig. 1.27) [Gil et al., 2000]. Dates (Phoenix dactylifera), one of the oldest
cultivated fruit, contain protocatechuic acid, vanillic acid, and syringic acid
(Fig. 1.28) [Al-Farsi et al., 2005].

Free and bounded phenolic acids are also found in cereals. Different grains
such as sorghum (Sorghum bicolor), millet (Pennisetum americanum), barley
(Hordeum vulgare), wheat (Triticum vulgare), rice (Oryza sativa), oat (Avena
sativa), and rye (Secale cereale) contain diverse phenolic acids such as gallic,
protocatechuic, p-hydroxybenzoic, gentisic, salicylic, vanillic, and syringic acids
[see Dykes and Rooney, 2007]. Hydroxybenzoic acid glycosides are also
characteristic of some herbs and spices [Tomás-Barberán and Clifford, 2000].
After hydrolysis, protocatechuic acid is the dominant hydroxybenzoate in

Figure 1.25 Legume isoflavone conjugates.
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Figure 1.26 Ellagitannins and trace amounts of gallic acid and ellagic acid occur

in raspberries.

Figure 1.27 Ellagitannins detected in pomegranate juice.
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cinnamon bark accompanied by salicylic and syringic acid. Gallic acid occurs in
clove buds (Eugenia caryophyllata Thunb.) along with protocatechuic and
syringic acid (Fig. 1.29). Benzoic acid-4-O-glucoside is the common phenolic
acid in many herbs such as in anise (Pimpinella anisum), star anise (Illicium
verum), dill (Anethum graveolens), fennel (Foeniculum vulgare), caraway (Carum
carvi), and parsley (Petroselinum crispum) (Fig. 1.25) [Crozier et al., 2006c].

Hydroxycinammates

The most common hydroxycinnamates, p-coumaric, caffeic, and ferulic acids,
frequently accumulate as their respective tartrate esters, coutaric, caftaric, and
fertaric acids. Quinic acid conjugates of caffeic acid, namely 3-, 4-, and 5-O-
caffeoylquinic acid, which belong to a family of hydroxycinnmate-quinic acid
conjugates known as chlorogenic acids, are commonly found in fruits and vege-
tables. Fruits such as apples and dates (Phoenix dactylifera) are a good source
of diverse phenolic compounds. 5-O-Caffeoylquinic acid, 4-O-p-coumaroylqui-
nic acid, and caffeic acid have been detected in apples [Clifford et al., 2003;
Kahle et al., 2005], while dates contain ferulic acid [Crozier et al., 2006c].

Figure 1.28 Phenolic acids in dates.

Figure 1.29 Some hydroxybenzoates derivative compounds found in herbs.
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Carrots (Duacus carota) contain a range of chlorogenic acids including 3-O-
and 5-O-caffeoylquinic acids, 3-O-p-coumaroylquinic acid, 5-O-feruloylquinic
acid, and 3,5-O-dicaffeoylquinic acids (Fig. 1.30). These chlorogenic acids are
found in almost all varieties of carrot with a 10-fold higher level of 5-O-
caffeoylquinic acid in purple carrots [Alasalvar et al., 2001].

The red-leaved lettuce Lollo Rosso contains the hydroxycinammates caf-
feoyltartaric acid, dicaffeoyltartaric acid, 5-O-caffeoylquinic acid, and 3,5-O-
dicaffeoylquinic acid (Fig. 1.31) [Ferreres et al., 1997]. 5-O-Caffeoylquinic acid
has also been detected in tomatoes [Paganga et al., 1999].

Green coffee beans (Coffea arabica) are one of the richest dietary sources of
chlorogenic acids. 5-O-Caffeoylquinic acid is the dominant chlorogenic acid
accounting for 50% of the total. This is followed by 3-O- and 4-O-caffeoyl-
quinic acid, the three analogous feruloylquinic acids and 3,4-O-, 3,5-O- and 4,5-
O-dicaffeoylquinic acids (Fig. 1.32) [Clifford, 1999]. Levels decline ca. 80%
during the roasting of coffee beans, but sizable amounts with substantial
antioxidant activity are still found in the typical cup of coffee.

There is also dietary interest in the curcuminoids, which are cinnamoyl-
methanes (diaryl-heptenoids), are characteristic of ginger (Zingiber officinale),
cardamon (Elettara cardamonum), and turmeric (Curcuma longa). Curcumin is
a diferuloylmethane. Three curcuminoids, curcumin, demethoxycurcumin, and
bisdemethoxycurcumin (Fig. 1.33), are the principal components in tumeric,
and all three impart the yellow pigmentation that is a hallmark of the spice
[Jayaprakasha et al., 2005].

Figure 1.30 Chlorogenic acids in carrots.

NONFLAVONOID PHENOLIC COMPOUNDS—STRUCTURE 25



Figure 1.31 Hydroxycinammates in Lollo Rosso lettuce.

Figure 1.32 Main chlorogenic acids in green coffee beans.
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Stilbenes

Members of the stilbene family have the C6–C2–C6 structure and are phytoal-
lexins produced by plants in response to disease, injury, and stress (Fig. 1.34)
[Langcake and Pryce, 1977]. The main dietary source of stilbenes is resveratrol
(3,5,4u-trihdroxystilbene) from red wine and peanuts (Arachis hypogaea) [Burns
et al., 2002b] with lesser amounts found in berries, red cabbage (Brassica
oleraceae), spinach, and certain herbs. Resveratrol occurs as cis and trans
isomers and trans-resveratrol and trans-resveratrol-3-O-glucoside (trans-piceid)
have recently been detected in pistachio nuts (Pistacia vera L.) [Grippi et al.,
2008].

The woody root of the noxious weed Polygonum cuspidatum (Japanese
knotweed or Mexican bamboo) has been shown to contain very high levels of
trans-resveratrol and its glucosides with concentrations of up to 377 mg 100 g�1

dry weight [Vastano et al., 2000]. As well as resveratrol, Brazilian red wines
have been shown to contain trans-piceatannol (3,3u,4,5u-tetrahydroxystilbene)
and trans-astringin, its 3-O-glucoside [Vitrac et al., 2005] trans-resveratrol is
transformed by Botrytis cinerea, a fungal grapevine pathogen, to pallidol and
resveratrol trans-dehydrodimer, and both these compounds have been detected
in grape cell cultures along with the 11-O- and 11u-O-glucosides of resveratrol
trans-dehydrodimer [Waffo-Téguo et al., 2001]. Viniferins are another family of
oxidized resveratrol dimers [Langcake and Pryce, 1977], and d-viniferin and
smaller amounts of its isomer d-viniferin have been detected in Vitis vinifera
leaves infected with Plasmopara viticola (downy mildew) [Pezet et al., 2003].

trans-Resveratrol that has gained significant worldwide attention because
of its ability to inhibit or retard a wide variety of animal diseases [Baur
and Sinclair, 2006] that include cardiovascular disease [Bradamante et al., 2004]
and cancer [Jang et al., 1997]. It has also been reported to increase stress
resistance and enhance longevity [Baur et al., 2006; Valenzano et al., 2006]. The
protective effects of red wine consumption are regularly attributed to resver-
atrol [Kaeberlein and Rabinovitch, 2006]. However, this is highly unlikely as
the levels of resveratrol in red wines are low, and for humans to ingest the
quantity of resveratrol that affords protective effects in animals they would
have to drink in excess of 100 L of red wine per day [Corder et al., 2003].

Figure 1.33 Curcuminoids accumulate in the rhizomes of turmeric.
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OVERVIEW OF FLAVONOID AND PHENOLIC

BIOSYNTHETIC PATHWAYS

The biosynthesis of flavonoids, stilbenes, hydroxycinnamates, and phenolic acids
involves a complex network of routes based principally on the shikimate, phenyl-
propanoid, and flavonoid pathways (Figs. 1.35 and 1.36). These biosynthetic
pathways constitute a complex biological regulatory network that has evolved in
vascular plants during their successful transition on land and that ultimately is
essential for their growth, development, and survival [Costa et al., 2003].

From the 1970s to the 1990s, there was a rapid and substantial progress in
the research on the phenylpropanoid pathway, focusing mainly on a broad
understanding of the metabolic pathway [Hahlbrock and Grisebach, 1975; Ebel
and Hahlbrock, 1982; Heller and Forkmann, 1988]. However, in more recent

Figure 1.34 Structures of the trans- and cis-resveratrol and other stilbenes.
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years, much effort has been directed at elucidating the phenylpropanoid
biosynthetic pathway from a biochemical and a molecular point of view by
using approaches such as transposon tagging, positional cloning, co-immuno-
precipitation, affinity chromatography, and two-hybrid experiments mainly
utilizing Arabidopsis thaliana as a test system [Winkel-Shirley, 2001]. New
information is also emerging regarding the regulation of the phenylpropanoid
pathway. In the last few years, a great deal has been learned from studies in a
variety of plant species, primarily about transcriptional regulation. A number
of these studies were carried out using flavonoid mutants generated by

Figure 1.35 Schematic diagram of the phenolic biosynthetic pathway accompanied by

the key enzymes involved. Enzyme abbreviations: PAL, phenylalanine ammonia-lyase;

BA2H, benzoic acid 2-hydroxylase; C4H, cinnamate 4-hydroxylase; COMT-1, caffeic/5-

hydroxyferulic acid O-methyltransferase; 4CL, p-coumarate:CoA ligase; F5H, ferulate

5-hydroxylase; GT, galloyltransferase; ACoAC, acetylCoA carboxylase.
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Figure 1.36 Schematic diagram of the stilbene and flavonoid biosynthetic pathway.

Enzyme abbreviations: SS, stilbene synthase; CHS, chalcone synthase; CHR, chalcone

reductase; CHI, chalcone isomerase; IFS, isoflavone synthase; FNS, flavone synthase; F3H,

flavanone 3-hydroxylase; FLS, flavonol synthase; F3uH, flavonoid 3u-hydroxylase; DFR,

dihydroflavonol 4-reductase; LAR, leucoanthocyanidin 4-reductase; LDOX, leucocyanidin

deoxygenase; ANR, anthocyanidin reductase; EU, extension units; TU, terminal unit.



activation tagging [Borevitz et al., 2000; Mathews et al., 2003]. Characterization
of flavonoid mutants in a variety of plant species has led to the identification of
a number of novel regulatory proteins that are beginning to fill in the void
between signals that induce the pathway and well-known flavonoid regulators
such as the myb domain and basic helix–loop–helix transcription factors
[Winkel-Shirley, 2001]. In addition, increasing evidence is being generated
demonstrating that as well as inducing the phenylpropanoid pathway, these
transcriptional regulators also influence the modification, transport, and
deposition of metabolites in the vacuole [Broun, 2004].

In addition to the molecular techniques, technical advances both in
chromatographic techniques and in identification tools, particularly the diverse
forms of mass spectrometry, has allowed successful challenges to the separation
and characterization of compounds of increasing complexity, poor stability,
and low abundance [Whiting, 2001]. Information generated utilizing these
techniques has resulted in characterization of a plethora of complex secondary
metabolites that, in conjunction with the characterization of the enzymatic
steps, has permitted the complete or partial elucidation of the flavonoid and the
phenolic pathways present in many plants (Figs. 1.35 and 1.36).

Comprehensive information on the network of pathways responsible for the
synthesis of numerous secondary metabolites can be found in Chapter 21. In
addition, information on this aspect is also available in articles by Shimada et
al. [2003], Toshiaki [2003], Tanner et al. [2003], Boatright et al. [2004],
Hoffmann et al. [2004], Dixon et al. [2005], Niemetz and Gross [2005], Xie
and Dixon [2005], and Ferrer et al. [2008]. Nonetheless, the complete dissection
of phenolic metabolic pathway is far from being complete. For example, recent
reports underline that important questions still remain to be answered in the
field of protoanthocyanidins and tannins [Xie and Dixon, 2005], and that the
exact nature of the biosynthetic pathway(s) leading to lignin monomers has not
been fully elucidated [Boudet, 2007].

An example of the phenolic pathway, which produces secondary metabolites
that have health benefiting effects, is the biosynthesis of curcuminoids. The
initial investigations into the biosynthesis of curcuminoids were carried over 25
years ago [Denniff and Whiting, 1976; Macleod and Whiting, 1979; Denniff et
al., 1980], although little has been done subsequently to elucidate fully the
routes involved. The proposed biosynthetic pathway is presented in Figure
1.37. The curcuminoids are thought to be formed from condensation of two
molecules of p-coumaroyl-CoA with one molecule of malonyl-CoA via the
action of possibly a polyketide synthase. The resulting bisdemethoxycurcumin
would then be transformed through demethoxycurcumin into curcumin via two
sequential rounds of hydroxylation followed by O-methylation. Alternatively,
it is possible that the curcuminoid synthase enzyme may utilize the CoA esters
of both p-coumaric acid and ferulic acid as substrates [Ramirez-Ahumada
et al., 2006].
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OPTIMIZATION OF THE FLAVONOID AND PHENOLIC

PROFILES IN CROP PLANTS

The recent increase in consumer awareness on the health benefits of dietary
phytochemicals accompanied by the rapid progress in the field of molecular
biology have provided the means and incentive to enhance the functional value
of plant material. This enhancement of health-promoting compounds is being
tackled using a variety of approaches, which are discussed in the ensuing
sections.

Agronomical and Physiological Modifications

Abiotic and biotic stresses are known to induce the accumulation of phenolic
and flavonoid compounds in many higher plants. As sessile organisms, plants
rely on the accumulation of such chemicals for defense, protection, cell-to-cell
signaling, and other stress adaptations. As such, wild-type berries from harsh
environmental growing regimes were found to be among the most biologically
potent in terms of antioxidant content compared to their commercially grown
counterparts [Deighton et al., 2000; Reyes-Carmona et al., 2005]. Hence
agronomic manipulation by the application of mild stress at defined points
during the growing season may have generic effects on phenolic and flavonoid
accumulation. This is why deliberate stress on the target plants that are
specifically cultivated for their health-benefiting compounds is now becoming
a popular research strategy. Environmental deprivation, such as exposure of
plants to low temperatures, as well as heavy metals, wounding, desiccation, and
high irradiance are typical triggers that switch on a biochemical pathway
cascade leading to increased secondary product accumulation [Lila, 2006].

High temperature is known to reduce and low temperature to enhance
anthocyanin synthesis [Saure, 1990; Leng et al., 2000]. This was observed in
Starkrimson and Golden Delicious apples where there was rapid anthocyanin
accumulation in the skin in cooler habitats compared to warmer climates [Li
et al., 2004]. Similarly, when grapes were grown under low night temperatures,
anthocyanin synthesis, L-phenylalanine ammonia-lyase activity and chalcone
synthase 3 transcript levels were all markedly higher [Mori et al., 2005]. Apart
from temperature, it has long been known that UV radiation, specifically the
UV-B, can up-regulate key genes such as the phenylalaline ammonia-lyase
[Kuhn et al., 1984] and chalcone synthase [Christie and Jenkins, 1996]. This
up-regulation of the genes in the phenylpropanoid pathway is part of the
plant’s ability to offset the absorption of excessive UV radiation by accumulat-
ing UV-filtering secondary metabolites such as flavonols [Cuadra et al., 1997]
and anthocyanins [Oelmüller and Mohr, 1985]. Similarly, investigations with
apples have shown that covering the orchard floor with metallic foil in an effort
to reflect increased light into the canopy resulted in an increase in anthocyanin
concentration in the skin of the fruit [Ju et al., 1999].
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Agronomical manipulation has also been employed to improve the phyto-
chemical content in plants. In a number of investigations, anthocyanins were
observed to accumulate in plants deficient in nutrients such as phosphorus and
nitrogen [Cobbina and Miller, 1987; Hodges and Nozzolillo, 1996; Close et al.,
2000]. In another study, it was found that production of the isoflavones,
daidzein and genistein, could be modulated by changing the ammonia/nitrate
ratio. In bean plants cultured on phosphorus-deficient media, higher concen-
trations of anthocyanins were found in the leaves, and this may play a role in
protecting the plant against oxidative stress [Juszczuk et al., 2004]. Substantial
variability in the levels of caffeoylquinic, sinapic, and ferulic acid derivates in
eight broccoli (Brassica oleracea) cultivars grown under different agronomic
conditions has also been reported by Vallejo et al. [2003]. In tomato, in addition
to increasing flavonoid content, nitrogen stress also produces differential effects
on expression of genes encoding anthocyanin biosynthetic enzymes [Bongue-
Bartelsman and Phillips, 1995].

Another popular way to enhance the production of bioactive compounds is
through elicitation. In this process, target plants are deliberately challenged with
chemicals that trigger physiological responses that mimic the parallel environ-
mental challenges. This in turn results in the accumulation of specific phyto-
chemicals. This may include abiotic elicitors, such as metal ions and inorganic
compounds, and biotic elicitors including fungi, bacteria, viruses or herbivores,
plant cell wall components, as well as chemicals that are released by plants when
they are subjected to pathogen or herbivore attack [Zhao et al., 2005]. Two well-
known elicitors are salicylic acid and jasmonic acid, and these compounds have
frequently been added to cell cultures to induce the accumulation of compounds
with potential health benefits including flavonoids and phenylpropanoids [Zhao
et al., 2005]. Other natural elicitors such as fish protein hydrolysates and
lactoferrin have also been used. These elicitors stimulate the phenylpropanoid
pathway in mung bean sprouts, probably through the pentose phosphate and
shikimate pathways. This resulted in significant improvement of the phenolic
content and antioxidant and antimicrobial properties of mung bean sprouts
[Randhir et al., 2004]. In another study, preharvest treatment with benzothia-
diazole increased trans-resveratol and anthocyanin levels in grapevine [Iriti et al.,
2004]. Further investigations revealed that five monoglucosides of delphinidin,
cyanidin, petunidin, peonidin, and malvidin, accompanied by the corresponding
acetylated and p-coumaroyl derivatives, were enhanced by benzothiadiazole
treatment [Fumagalli et al., 2006]. Plant hormones can also affect the phenolic
and flavonoid content of plants as revealed in a number studies [Jeong et al.,
2004; Peppi et al., 2007; Kondo and Inoue, 1997].

Genetic Manipulation—Conventional Breeding and Genetic Engineering

The roles that dietary flavonoids and phenolic compounds play in promoting
human health have stimulated intense interest in genetically manipulating their
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accumulation in plants, through either conventional or molecular means.
Genetic variability is one of the key factors in determining the amount of
functional metabolites that accumulate in plants. Conventional breeding and
cross-varietal screening tests have repeatedly revealed that genotypes within a
plant species can have widely divergent levels of phytochemicals. For example,
a number of different cultivars and species of blueberries exhibited varying
levels of anthocyanins and proanthocyanidins, which were tightly correlated
with the antioxidant capacity of fruit extracts [Kalt et al., 2001]. Enhanced
lycopene and flavonoid levels have also been reported in some varieties of
tomato and these lines are currently the preferred hosts for further genetic
manipulation through conventional and molecular breeding [Long et al., 2006].
However, it is important to note that even though these genotypes are known to
be capable of accumulating enhanced levels of specific phytochemicals, the final
content is dependent on the selective pressure imposed by the environment.
Genes are not always expressed, but instead can be triggered by environmental
signals that may ultimately become the principal determinant for the accumu-
lation of key secondary products. It is, therefore, important to note that gene–
environment interactions are inherent as plants grow, which makes it difficult
to predict phytochemical responses based on heritable traits and distinguish
them from environmental influences [Lila, 2007]. The influences of the genome
and the environment can be resolved through rigorous comparative tests of the
identical plant genotypes in multiple environments followed by gene sequencing
and phytochemical profiling of selected candidate plants [Taylor et al., 2002,
Lim et al., 2005; Mpofu et al., 2006].

Due to the rapid speed at which knowledge of the genetic control of plant
secondary metabolism has grown, it is hypothesized that over the next 25 years
the most significant changes in the productivity and quality of crops will come
about by applying genetic engineering tools. Normally, genetic engineering of a
secondary metabolic pathway aims to increase the quantity of an individual or
a group of specific compounds in the normal producing plant species or to
transfer a pathway, or part of a pathway, to other plant species [Verpoorte and
Memelink, 2002]. To increase the production of the compound(s) of interest,
two general approaches have been followed. First, the structural genes encod-
ing enzymes that participate directly in the formation of the compound of
interest can be overexpressed. This is to enable the genetically modified plant to
overcome specific rate-limiting steps in the pathway, to shut down competitive
pathways, and to decrease catabolism of the product of interest. Secondly,
attempts have been made to change the expression of regulatory genes that
control the expression of the structural genes [Verpoorte and Memelink, 2002].
Regulatory genes control the expression of structural genes though the
production of proteins called transcriptional factors. Transcriptional factors
are believed to play an important role in regulating secondary metabolism
pathways. Since transcriptional factors are able to control multiple steps within
a pathway, they are potentially more powerful than structural genes that
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control only a single step, when attempting to manipulate metabolic pathways
in plants [Broun, 2004].

The best studied route at the genetic level is the flavonoid biosynthesis
pathway leading to the formation of anthocyanins. Most of the structural and
several regulatory genes involved in this pathway have now been cloned. The
use of structural genes in metabolic engineering was used by Jung et al. [2000]
who introduced the isofavone synthase gene into the nonlegume arabidopsis
(Arabidopsis thaliana) in order to convert naringenin, which is ubiquitous in
higher plants, to the isoflavone genistein. In another study, chalcone isomerase
(CHI), the key enzyme to increased flavonol production, was overexpressed in
tomato. Results revealed a 78-fold increase of flavonol levels in the skin of
tomatoes [Muir et al., 2001]. To date, several leucoanthocyanidin reductase
(LAR) and/or anthocyanidin reductase (ANR) genes have been cloned and
characterized from different plant species [Tanner et al., 2003; Xie et al., 2003;
Bogs et al., 2005; Pang et al., 2007; Paolocci et al., 2007]. When the ANR gene
was overexpressed in barrel clover (Medicago truncatula) and tobacco (Ni-
cotiana tabacum), accumulation of proanthocyanidins was observed with a
corresponding reduction of anthocyanin levels [Bogs et al., 2005; Xie et al.,
2006]. Beyond the modified expression of one gene, more sophisticated
strategies have been adopted such as the simultaneous introduction by
cotransformation of a sense and an antisense construct to simultaneously up-
regulate one enzyme and down-regulate another. For example, aspen trees
(Populus tremuloides), expressing both antisense 4-coumarate-CoA ligase and
sense coniferaldehyde 5-hydroxylase, had 52% reduced lignin content and a
64% higher syringyl/guaiacyl ratio [Li et al., 2003].

To control expression of structural genes, regulatory genes such as LC, C1,
MYB, HLH, and the like are used. In an investigation where LC and C1 genes
were overexpressed in tomatoes, an increase in flavonols in the flesh of the fruit
was observed. The total flavonol content of these overexpressed ripe transgenic
tomatoes were ca. 20-fold higher than that of the controls where flavonol
production occurred only in the skin [Bovy et al., 2002; Le Gall et al., 2003].
Similarly, when the LC gene was introduced into apple, both anthocyanin and
proanthocyanidin accumulation was observed, and this was accompanied by
induction of both the anthocyanin pathway genes and proanthocyanidin-
specific pathway genes such as LAR and ANR [Li et al., 2007]. MYB and
bHLH transcription factor is envisaged to be central to the control of
proanthocyanidin biosynthesis. When two MYB transcription factors, AtTT2
and PAP1, together with one bHLH transcription factor, were introduced into
Arabidopsis, the ANR gene was induced, which resulted in anthocyanin and
proanthocyanidin accumulation [Sharma and Dixon, 2006].

Engineering of novel natural products by enzymatic modifications of core
skeletons is another method where molecular tools are used to produce a range
of novel products with enhanced/modified bioactivity. This is mainly carried
out because the distribution of many of these compounds are either restricted
or they accumulate at low levels, which is insufficient for large-scale extraction
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[Tian et al., 2008]. Modifications to the ring structure and/or acyclic side
structure of aglycones through the use of specific modification enzymes can be
carried out to cause oxidation, C- orO-methylation, C- orO-glycosylation, and
C- or O-prenylation to produce a range of phytochemical derivatives. Genes
encoding some of the modification enzymes have been cloned and characterized
in recent years using genetic, genomic, and biochemical approaches. The use of
this method to produce a range of novel isoflavonoids has been reviewed in
detail by Tian et al. [2008].

One of the major drawbacks of targeted induced modifications of key
enzymes of phenolic and flavonoid metabolism, aiming to increase or decrease
a specific phytochemical, is the observation of unexpected effects. This may be
due partly to the effect of combined outcomes of a complex interplay of various
metabolic pathways and variation between plant species. Other than the
internetworking and regulation of endogenous pathways, the final result of
metabolic engineering is also dependent on a number of factors such as the
approach used, the encoded function of the introduced gene, and the type of
promoter [Lessard et al., 2001; Broun, 2004]. Besseau et al. [2007] recently
exhibited how network complexity and pathway interactions observed between
different branches of phenolic biosynthesis resulted in an unexpected array of
events. In arabidopsis plants silenced for hydroxycinnamoyl-CoA shikimate/
quinate hydroxycinnamoyl transferase (HCT) expression lignin repression lead
to an increase in chalcone synthase activity, which resulted in a metabolic flux
into flavonoid pathway. Correlated with this was a prominant reduction in
plant growth. When this process was reversed through the repression of
chalcone synthase expression in HCT-silenced plants, the wild-type plant
growth was restored. The results suggest that the dwarf phenotype may be
due to an indirect effect of ectopic flavonoid accumulation altering auxin
transport [Boudet, 2007].

In several cases, studies on overexpression of genes have resulted in the
production of unexpected products, as revealed by Bovy et al. [2002] when C1
and R transcriptional factors were cloned into tomato. Although several
flavonoid genes were induced, they were not sufficient to induce flavonoid-
3u,5u-hydroxylase activity to enhance anthocyanin production by the fruit.
Alternatively, the introduction of a new branch point into an existing pathway
may interfere with endogenous flavonoid or phenolic biosynthesis and/or the
transgenic enzyme may fail to compete with the native enzymes for the common
substrate. This could, in part, be due to compartmentalization and metabolic
channeling of substrates that may further complicate metabolic engineering
strategies by limiting the access of substrates to introduced enzymes. This
occurred when soybean-derived isoflavone synthase (IFS) was introduced into
arabidopsis and tomato [Jaganath, 2005]. The nonleguminous species did not
synthesize genistein despite expression of the IFS protein.

Based on these studies on biosynthetic pathways and metabolic engineering,
it can be envisaged that once the plant cell factory has been assembled, the
important determinants controlling the fluxes through the pathways are the
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posttranslational regulation of enzyme activity, enzyme, and metabolite com-
partmentation and transport [Verpoorte and Memelink, 2002].

FUTURE TRENDS AND PROSPECTS

Phenolic compounds and flavonoids are a unique category of plant phyto-
chemicals especially in terms of their vast po ential health-benefiting properties.
They represent the most abundant and the most widely represented class of
plant natural products. A substantial amount of research has been carried out
over the past two decades yet large information gaps still exist. For example,
the inventory of these compounds is still incomplete, although there is
continuous effort to provide new structures. In addition the dissection of the
metabolic pathways for certain phenolic compounds remains to be resolved.
Recent reports underline that important questions that still need to be
answered in the field of proanthocyanidin and tannin biosynthesis [Xie and
Dixon, 2005], and even the exact nature of the biosynthetic pathway(s) leading
to lignin monomers is not fully elucidated.

Phenolic compounds and flavonoids are widely present in plant foods, and
research in the last decade has increased dramatically. Two major objectives
have been targeted: (i) to rationalize the potential health benefits of these
phytochemicals and (ii) to redesign plants to enhance their production. The
existing literature on biological activities suggests that polyphenol-rich pro-
ducts such as soya, teas, berries, red wine, and cocoa products may have
positive effects on human health, especially by reducing the incidence of
cardiovascular diseases and some types of cancer. Additional research is needed
to substantiate whether it is a specific class of phenolic compounds and
flavonoids present in plant foods that contributes to the observed bioactivities
in man, or whether it is the consumption of a broad spectrum of phytochem-
icals that is more important. The exact mode of action of these phytochemicals
still remains to be answered. Many earlier studies suggested that phenolic
compounds and flavonoids protect cell constituents through direct scavenging
of free radicals due to their antioxidant properties. However, recent data
indicate that the protective effect of flavonoids and phenolic compounds may
extend beyond their antioxidant activity. However, research in this field is still
at its infancy as it has been carried out only on specific phytochemicals. Future
research needs to focus on methods to better evaluate and optimize the in vivo
effects of health-promoting compounds in biological system. Many promising
results have been obtained to engineer or breed plants with enhanced levels of
phenolic compounds and flavonoids. However, metabolomics and microarray
analysis of global gene expression patterns have revealed that playing with a
piece of the jigsaw may induce unfavorable changes in the fragile equilibrium of
the interconnected pathways. Accurate controls should be envisaged in future
studies to check for potential pitfalls. Once these setbacks are overcome there
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remains the possibility to develop super crop varieties containing enhanced
health-promoting flavonoid and phenolic compounds.
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