
 The New Architecture

 If a person walks fast on a road covering fifty miles in a day, this does not mean he is
capable of running unceasingly from morning till night. Even an unskilled runner
may run all day, but without going very far.

 — Miyamoto Musahi, The Book of Five Rings

 The most recent advances in microprocessor design for desktop computers involve putting
multiple processors on a single computer chip. These multicore designs are completely replacing
the traditional single core designs that have been the foundation of desktop computers. IBM, Sun,
Intel, and AMD have all changed their chip pipelines from single core processor production to
multicore processor production. This has prompted computer vendors such as Dell, HP, and Apple
to change their focus to selling desktop computers with multicores. The race to control market
share in this new area has each computer chip manufacturer pushing the envelope on the number
of cores that can be economically placed on a single chip. All of this competition places more
computing power in the hands of the consumer than ever before. The primary problem is that
regular desktop software has not been designed to take advantage of the new multicore
architectures. In fact, to see any real speedup from the new multicore architectures, desktop
software will have to be redesigned.

 The approaches to designing and implementing application software that will take advantage
of the multicore processors are radically different from techniques used in single core
development. The focus of software design and development will have to change from sequential
programming techniques to parallel and multithreaded programming techniques.

 The standard developer ’ s workstation and the entry - level server are now multiprocessors capable
of hardware - level multithreading, multiprocessing, and parallel processing. Although sequential
programming and single core application development have a place and will remain with us, the
ideas of multicore application design and development are now in the mainstream.

c01.indd 1c01.indd 1 7/31/08 2:43:20 PM7/31/08 2:43:20 PM

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: The New Architecture

2

 This chapter begins your look at multicore programming. We will cover:

 What is a multicore?

 What multicore architectures are there and how do they differ from each other?

 What do you as a designer and developer of software need to know about moving from
sequential programming and single core application development to multicore programming?

 What Is a Multicore?
 A multicore is an architecture design that places multiple processors on a single die (computer chip). Each
processor is called a core. As chip capacity increased, placing multiple processors on a single chip
became practical. These designs are known as Chip Multiprocessors (CMPs) because they allow for single
chip multiprocessing. Multicore is simply a popular name for CMP or single chip multiprocessors. The
concept of single chip multiprocessing is not new, and chip manufacturers have been exploring the idea
of multiple cores on a uniprocessor since the early 1990s. Recently, the CMP has become the preferred
method of improving overall system performance. This is a departure from the approach of increasing
the clock frequency or processor speed to achieve gains in overall system performance. Increasing the
clock frequency has started to hit its limits in terms of cost - effectiveness. Higher frequency requires more
power, making it harder and more expensive to cool the system. This also affects sizing and packaging
considerations. So, instead of trying to make the processor faster to gain performance, the response is
now just to add more processors. The simple realization that this approach is better has prompted the
multicore revolution. Multicore architectures are now center stage in terms of improving overall system
performance.

 For software developers who are familiar with multiprocessing, multicore development will be familiar.
From a logical point of view, there is no real significant difference between programming for multiple
processors in separate packages and programming for multiple processors contained in a single package
on a single chip. There may be performance differences, however, because the new CMPs are using
advances in bus architectures and in connections between processors. In some circumstances, this may
cause an application that was originally written for multiple processors to run faster when executed on a
CMP. Aside from the potential performance gains, the design and implementation are very similar. We
discuss minor differences throughout the book. For developers who are only familiar with sequential
programming and single core development, the multicore approach offers many new software
development paradigms.

 Multicore Architectures
 CMPs come in multiple flavors: two processors (dual core), four processors (quad core), and eight
processors (octa - core) configurations. Some configurations are multithreaded; some are not. There are
several variations in how cache and memory are approached in the new CMPs. The approaches to
processor - to - processor communication vary among different implementations. The CMP implementations
from the major chip manufacturers each handle the I/O bus and the Front Side Bus (FSB) differently.

❑

❑

❑

c01.indd 2c01.indd 2 7/31/08 2:43:21 PM7/31/08 2:43:21 PM

Chapter 1: The New Architecture

3

REGISTERS

FETCH/
DECODE
UNIT

ALU

L1 CACHE

REGISTERS

FETCH/
DECODE
UNIT

ALU

L1 CACHESHARED CPU
COMPONENTS

LOGICAL
PROCESSOR 1

LOGICAL
PROCESSOR 2

FSB

shared logical
processor on
same chip

L2
CACHE

L2
CACHE

multiple
processors on
separate chip

FSB

REGISTERS

ALU

L1 CACHE

REGISTERS

ALU

L1 CACHE

L2
CACHE

L2
CACHE

multiple
processors in
a package (chip)

FSB

PROCESSOR 1 PROCESSOR 2
HYPERTHREADED
PROCESSOR

MULTICORE (CMP)

CONFIGURATION 1 CONFIGURATION 2 CONFIGURATION 3

FETCH/
DECODE
UNIT

FETCH/
DECODE
UNIT

Figure 1-1

 Configuration 1 in Figure 1 - 1 uses hyperthreading. Like CMP, a hyperthreaded processor allows
two or more threads to execute on a single chip. However, in a hyperthreaded package the
multiple processors are logical instead of physical. There is some duplication of hardware but
not enough to qualify a separate physical processor. So hyperthreading allows the processor to
present itself to the operating system as complete multiple processors when in fact there is a
single processor running multiple threads.

 Configuration 2 in Figure 1 - 1 is the classic multiprocessor. In configuration 2, each processor is
on a separate chip with its own hardware.

 Configuration 3 represents the current trend in multiprocessors. It provides complete processors
on a single chip.

 As you shall see in Chapter 2 , some multicore designs support hyperthreading within their cores. For
example, a hyperthreaded dual core processor could present itself logically as a quad core processor to
the operating system.

 Hybrid Multicore Architectures
 Hybrid multicore architectures mix multiple processor types and/or threading schemes on a single
package. This can provide a very effective approach to code optimization and specialization by
combining unique capabilities into a single functional core. One of the most common examples of the
hybrid multicore architecture is IBM ’ s Cell broadband engine (Cell). We explore the architecture of
the Cell in the next chapter.

❑

❑

❑

Again, most of these differences are not visible when looking strictly at the logical view of an application
that is being designed to take advantage of a multicore architecture. Figure 1 - 1 illustrates three common
configurations that support multiprocessing.

c01.indd 3c01.indd 3 7/31/08 2:43:21 PM7/31/08 2:43:21 PM

Chapter 1: The New Architecture

4

 What ’ s important to remember is that each configuration presents itself to the developer as a set of two
or more logical processors capable of executing multiple tasks concurrently. The challenge for system
programmers, kernel programmers, and application developers is to know when and how to take
advantage of this.

 The Software Developer ’ s Viewpoint
 The low cost and wide availability of CMPs bring the full range of parallel processing within the reach
of the average software developer. Parallel processing is no longer the exclusive domain of supercomputers
or clusters. The basic developer workstation and entry - level server now have the capacity for hardware -
and software - level parallel processing. This means that programmers and software developers can
deploy applications that take advantage of multiprocessing and multithreading as needed without
compromising design or performance. However, a word of caution is in order. Not every software
application requires multiprocessing or multithreading. In fact, some software solutions and computer
algorithms are better implemented using sequential programming techniques. In some cases,
introducing the overhead of parallel programming techniques into a piece of software can degrade its
performance. Parallelism and multiprocessing come at a cost. If the amount of work required to solve the
problem sequentially in software is less than the amount of work required to create additional threads
and processes or less than the work required to coordinate communication between concurrently
executing tasks, then the sequential approach is better.

 Sometimes determining when or where to use parallelism is easy because the nature of the software
solution demands parallelism. For example, the parallelism in many client - server configurations is
obvious. You might have one server, say a database, and many clients that can simultaneously make
requests of the database. In most cases, you don ’ t want one client to be required to wait until another
client ’ s request is filled. An acceptable solution allows the software to process the clients ’ requests
concurrently. On the other hand, there is sometimes a temptation to use parallelism when it is not
required. For instance, you might be tempted to believe that a keyword word search through text in
parallel will automatically be faster than a sequential search. But this depends on the size of text to be
searched for and on the time and amount of overhead setup required to start multiple search agents in
parallel. The design decision in favor of a solution that uses concurrency has to consider break - even
points and problem size. In most cases, software design and software implementation are separate
efforts and in many situations are performed by different groups. But in the case where software
speedup or optimal performance is a primary system requirement, the software design effort has to at
least be aware of the software implementation choices, and the software implementation choices have to
be informed by potential target platforms.

 In this book, the target platforms are multicore. To take full advantage of a multicore platform, you need
to understand what you can do to access the capabilities of a CMP. You need to understand what
elements of a CMP you have control over. You will see that you have access to the CMP through the
compiler, through operating system calls/libraries, through language features, and through application -
 level libraries. But first, to understand what to do with the CMP access, you need a basic understanding
of the processor architecture.

c01.indd 4c01.indd 4 7/31/08 2:43:22 PM7/31/08 2:43:22 PM

Chapter 1: The New Architecture

5

L1 CACHE

REGISTERS

L2 CACHE

PROCESSOR

FETCH/
DECODE
UNIT

ALU

SYSTEM
MAIN

MEMORY

I/O
SUBSYSTEM
and
DEVICES

Figure 1-2

 The Basic Processor Architecture
 The components you can access and influence include registers, main memory, virtual memory,
instruction set usage, and object code optimizations. It is important to understand what you can
influence in single processor architectures before attempting to tackle multiprocessor architectures.
Figure 1 - 2 shows a simplified logical overview of a processor architecture and memory components.

 There are many variations on processor architecture, and Figure 1 - 2 is only a logical overview. It
illustrates the primary processor components you can work with. While this level of detail and these
components are often transparent to certain types of application development, they play a more central
role in bottom - up multicore programming and in software development efforts where speedup and
optimal performance are primary objectives. Your primary interface to the processor is the compiler. The
operating system is the secondary interface.

 In this book, we will use C++ compilers to generate the object code. Parallel programming can be used
for all types of applications using multiple approaches, from low to high level, from object - oriented to
structured applications. C++ supports multiparadigm approaches to programming, so we use it for its
flexibility.

 Table 1 - 1 shows a list of categories where the compiler interfaces with the CPU and instruction set.
Categories include floating - point, register manipulation, and memory models.

c01.indd 5c01.indd 5 7/31/08 2:43:22 PM7/31/08 2:43:22 PM

Chapter 1: The New Architecture

6

Table 1-1

Compiler Switch
Options Description Examples of Usage

Vectorization This option enables the vectorizer, a
component of the compiler that
automatically uses Single
Instruction Multiple Data (SIMD)
instructions in the MMX registers
and all the SSE instruction sets.

-x -ax

Enables the vectorizer.

Auto parallelization This option identifies loop
structures that contain parallelism
and then (if possible) safely
generates the multithreaded
equivalent executing in parallel.

-parallel

Triggers auto parallelization.

Parallelization
with OpenMP

With this option the compiler
generates multithreaded code based
on OpenMP directives in the source
code added by the programmer.

#pragma omp parallel
{
 #pragma omp for
 // your code
}

Fast This option detects incompatible
processors; error messages are
generated during execution.

-O1

Optimized to favor code size and
code locality and disables loop
unrolling, software pipelining, and
global code scheduling.

-O2

Default; turns pipelining ON.

Floating point Set of switches that allows the
compiler to influence the selection
and use of floating-point
instructions.

-fschedule-insns

Tells the compiler that other
instructions can be issued until the
results of a floating-point
instruction are required.

-float-store

Tells the compiler that when
generating object code do not use
instructions that would store a
floating-point variable in registers.

c01.indd 6c01.indd 6 7/31/08 2:43:22 PM7/31/08 2:43:22 PM

Chapter 1: The New Architecture

7

Compiler Switch
Options Description Examples of Usage

Loop unrolling This option enables loop
unrolling. This applies only to loops
that the compiler determines should
be unrolled. If n is omitted, lets the
compiler decide whether to perform
unrolling or not.

-unroll<n>

Enables loop unrolling; <n> sets the
maximum time to unroll the loop.

n = 0

Disables loop unrolling, only
allowable value for 64-bit
architectures.

Memory bandwidth This option enables or disables
control of memory bandwidth
used by processors; if disabled,
bandwidth will be well shared
among multiple threads. This can be
used with the auto parallelization
option. This option is used for 64-bit
architectures only.

-opt-mem-bandwidth<n>
n = 2

Enables compiler optimizations for
parallel code such as pthreads and
MPI code.

n = 1

Enables compiler optimizations for
multithreaded code generated by
the compiler.

Code generation With this option code is generated
optimized for a particular
architecture or processor; if there is a
performance benefit, the compiler
generates multiple, processor-
specific code paths; used for 32- and
64- bit architectures.

-ax<processor>

Generates optimized code for the
specified processor.

-axS

Generates specialized code paths
using SIMD Extensions 4 (SSE4)
vectorizing compiler and media
accelerators instructions.

Thread checking This option enables thread analysis
of a threaded application of
program; can only be used with
Intel’s Thread Checker tool.

-tcheck

Enables analysis of threaded
application or program.

Thread library This option causes the compiler
to include code from the Thread
Library; The programmer needs to
include API calls in source code.

-pthread

Uses the pthread library for
multithreading support.

 The CPU (Instruction Set)
 A CPU has a native instruction set that it recognizes and executes. It ’ s the C++ compiler ’ s job to translate
C++ program code to the native instruction set of the target platform. The compiler converts the C++
and produces an object file that consists of only instructions that are native to the target processor.
Figure 1 - 3 shows an outline of the basic compilation process.

c01.indd 7c01.indd 7 7/31/08 2:43:22 PM7/31/08 2:43:22 PM

Chapter 1: The New Architecture

8

compiler switches,
directives & parameters

-funroll=Value
-xcache = Value

NATIVE
LANGUAGE
OF
PROCESSOR

assembler arguments,
switches & directives

COMPILER

C/C++
PROGRAM

ASSEMBLERASSEMBLY
CODE

loop unrolling,
multithread options,
etc.

register usage,
pipeline hints,
etc.

Figure 1-3

 During the process of converting C++ code into the native language of the target CPU, the compiler has
options for how to produce the object code. The compiler can be used to help determine how registers
are used, or whether to perform loop unrolling. The compiler has options that can be set to determine
whether to generate 16 - bit, 32 - bit, or 64 - bit object code. The compiler can be used to select the memory
model. The compiler can provide code hints that declare how much level 1 (L1) or level 2 (L2) cache is
present. Notice in Table 1 - 1 in the floating - point operations category that switches from this category
allow the compiler to influence the selection of floating - point instructions. For example, the GNU gcc
compiler has the - - float - store switch. This switch tells the compiler that when generating object code
it should not use instructions that would store floating - point variable in registers. The Sun C++ compiler
has a - fma switch. This switch enables automatic generation of floating - point and multi - add
instructions. The - fma=none disables generation of these instructions. The - fma=fused switch allows
the compiler to attempt to improve the performance of the code by using floating - point, fused, and
 multiply=add instructions. In both cases, the switches are provided as options to the compiler:

gcc -ffloat-store my_program.cc

 or

CC -fma=used my_program.cc

 Other switches influence cache usage. For instance the Sun C++ compiler has a - xcache=c that defines
the cache properties for use by the optimizer. The GNU gcc compiler has the - Funroll - loops that
specifies how loops are to be unrolled. The GNU gcc compiler has a - pthread switch that turns on
support for multithreading with pthreads. The compilers even have options for setting the typical

c01.indd 8c01.indd 8 7/31/08 2:43:23 PM7/31/08 2:43:23 PM

Chapter 1: The New Architecture

9

memory reference interval using the - mmemory - latency=time switch. In fact, there are compiler
options and switches that can influence the use of any of the components in Figure 1 - 2 .

 The fact that the compiler provides access to the processor has implications for the developer who is
writing multicore applications for a particular target processor or a family of processors. For example,
The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors are commonly used multicore
configurations. These processors each support high - speed vector operations and calculations. They have
support for the Single Instruction Multiple Data (SIMD) model of parallel computation. This support can
be accessed and influenced by the compiler.

 Chapter 4 contains a closer look at the part compilers play in multicore development.

 It is important to note that using many of these types of compiler options cause the compiler to optimize
code for a particular processor. If cross - platform compatibility is a design goal, then compiler options
have to be used very carefully. For system programmers, library producers, compiler writers, kernel
developers, and database and server engine developers, a fundamental understanding of the basic
processor architecture, instruction set and compiler interface is a prerequisite for developing effective
software that takes advantage of CMP.

 Memory Is the Key
 Virtually anything that happens in a computer system passes through some kind of memory. Most things
pass through many levels of memory. Software and its associated data are typically stored on some kind
of external medium (usually hard disks, CD - ROMs, DVDs, etc.) prior to its execution. For example, say
you have an important and very long list of numbers stored on an optical disc, and you need to add
those numbers together. Also say that the fancy program required to add the very long list of numbers is
also stored on the optical disc. Figure 1 - 4 illustrates the flow of programs and data to the processor.

L1 CACHE

REGISTERS

L2 CACHE

PROCESSOR

FETCH/
DECODE
UNIT

ALU

SYSTEM
MAIN
MEMORY

file of
important
numbers
and
fancy
programs

Figure 1-4

c01.indd 9c01.indd 9 7/31/08 2:43:23 PM7/31/08 2:43:23 PM

Chapter 1: The New Architecture

10

 In the maze of different types of memory, you have to remember that the typical CPU operates only on
data stored in its registers. It does not have the capacity to directly access data or programs stored
elsewhere. Figure 1 - 4 shows the ALU reading and writing the registers. This is the normal state of affairs.
The instruction set commands (native language of the processor) are designed to primarily work with
data or instructions in the CPU ’ s registers. To get your long list of important numbers and your fancy
program to the processor, the software and data must be retrieved from the optical disc and loaded into
primary memory. From primary memory, bits and pieces of your software and data are passed on to L2
cache, then to L1 cache, and then into instruction and data registers so that the CPU can perform its
work. It is important to note that at each stage the memory performs at a different speed. Secondary
storage such as CD - ROMs, DVDs, and hard disks are slower than the main random access memory
(RAM). RAM is slower than L2 cache memory. L2 cache memory is slower than L1 cache memory, and so
on. The registers on the processor are the fastest memory that you can directly deal with.

 Besides the speed of the various types of memory, size is also a factor. Figure 1 - 5 shows an overview of
the memory hierarchy.

L2 CACHE

CPU 0

REG 0 REG 1 REG 2 REG 3

L1 CACHE

SYSTEM MAIN MEMORY

VIRTUAL MEMORY
(EXTERNAL DISK) I/O DEVICES

FASTER

SLOWER

ACCESS SPEED

Figure 1-5

 The register is the fastest but has the least capacity. For instance, a 64 - bit computer will typically have a
set of registers that can each hold up to 64 bits. In some instances, the registers can be used in pairs
allowing for 128 bits. Following the registers in capacity is L1 cache and if present L2 cache. L2 cache is

c01.indd 10c01.indd 10 7/31/08 2:43:23 PM7/31/08 2:43:23 PM

Chapter 1: The New Architecture

11

currently measured in megabytes. Then there is a big jump in maximum capacity from L2 to the system
main memory, which is currently measured in gigabytes. In addition to the speeds of the various types
of memory and the capacities of the various types of memory, there are the connections between the
memory types. These connections turn out to have a major impact on overall system performance. Data
and instructions stored in secondary storage typically have to travel over an I/O channel or bus to get to
RAM. Once in RAM, the data or instruction normally travels over a system bus to get to L1 cache. The
speed and capacity of the I/O buses and system buses can become bottlenecks in a multiprocessor
environment. As the number of cores on a chip increases, the performance of bus architectures and
datapaths become more of an issue.

 We discuss the bus connection later in this chapter, but first it ’ s time to examine the memory hierarchy
and the part it plays in your view of multicore application development. Keep in mind that just as you
can use the influence that the compiler has over instruction set choices, you can use it to manipulate
register usage and RAM object layouts, give cache sizing hints, and so on. You can use further C++
language elements to specify register usage, RAM, and I/O. So, before you can get a clear picture of
multiprocessing or multithreading, you have to have a fundamental grasp of the memory hierarchy that
a processor deals with.

 Registers
 The registers are special - purpose, small but fast memory that are directly accessed by the core. The
registers are volatile. When the program exits, any data or instructions that it had in its registers are gone
for all intents and purposes. Also unlike swap memory, or virtual memory, which is permanent because
it is stored in some kind of secondary storage, the registers are temporary. Register data lasts only as
long as the system is powered or the program is running. In general - purpose computers, the registers are
located inside the processor and, therefore, have almost zero latency. Table 1 - 2 contains the general types
of registers found in most general - purpose processors.

Table 1-2

Registers Description

Index Used in general computations and special uses when dealing with addresses.

Segment Used to hold segment parts of addresses.

IP Used to hold the offset part of the address of the next instruction to be executed.

Counter Used with looping constructs, but can also be used for general computational
use.

Base Used in the calculation and placement of addresses.

Data Used as general-purpose registers and can be used for temp storage and
calculation.

Flag Shows the state of the machine or state of the processor.

Floating point Used in calculation and movement of floating-point numbers.

c01.indd 11c01.indd 11 7/31/08 2:43:24 PM7/31/08 2:43:24 PM

Chapter 1: The New Architecture

12

 Most C/C++ compilers have switches that can influence register use. In addition to compiler options
that can be used to influence register use, C++ has the asm{ } directive, which allows assembly
language to written within a C++ procedure or function, for example:

void my_fast_calculation(void)
{
 ...
 asm{
 ...
 mov 2 , %r3
 inc(%r3)
 ...
 }
 ...
}

 my_fast_calculation() loads a 2 into the %r3 general - purpose register on an UltraSparc processor.
While cache is not easily visible for C++, registers and RAM are visible. Depending on the type of
multiprocessor software being developed, register manipulation, either through the compiler or the C++
 asm{} facility, can be necessary.

 Cache
 Cache is memory placed between the processor and main system memory (RAM). While cache is not as
fast as registers, it is faster than RAM. It holds more than the registers but does not have the capacity of
main memory. Cache increases the effective memory transfer rates and, therefore, overall processor
performance. Cache is used to contain copies of recently used data or instruction by the processor. Small
chunks of memory are fetched from main memory and stored in cache in anticipation that they will be
needed by the processor. Programs tend to exhibit both temporal locality and spatial locality.

 Temporal locality is the tendency to reuse recently accessed instructions or data.

 Spatial locality is the tendency to access instructions or data that are physically close to items
that were most recently accessed.

 One of the primary functions of cache is to take advantage of this temporal and spatial locality
characteristic of a program. Cache is often divided into two levels, level 1 and level 2.

 A complete discussion of cache is beyond the scope of this book. For a thorough discussion of cache, see
[Hennessy, Patterson, 2007].

 Level 1 Cache
 Level 1 cache is small in size sometimes as small as 16K. L1 cache is usually located inside the processor
and is used to capture the most recently used bytes of instruction or data.

 Level 2 Cache
 Level 2 cache is bigger and slower than L1 cache. Currently, it is stored on the motherboard (outside the
processor), but this is slowly changing. L2 cache is currently measured in megabytes. L2 cache can hold
an even bigger chunk of the most recently used instruction, data, and items that are in the near vicinity

❑

❑

c01.indd 12c01.indd 12 7/31/08 2:43:24 PM7/31/08 2:43:24 PM

Chapter 1: The New Architecture

13

than L1 holds. Because L1 and L2 are faster than general - purpose RAM, the more correct the guesses of
what the program is going to do next are, the better the overall system performance because the right
chunks of data will be located in either L1 or L2 cache. This saves a trip out to either RAM or virtual
memory or, even worse, external storage.

 Compiler Switches for Cache?
 Most developers doing multicore application development will not be concerned with manually
managing cache unless, of course, they are doing kernel development, compiler development, or other
types of low - level system programming. However, compiler options that give the compiler a hint as to
how much L1 or L2 cache is available or a hint about the properties of the L1 or L2 cache can be found in
most of the mainstream compilers in use. For example, the Sun C++ compiler has an xcache switch. The
man page for that switch shows the syntax and its use.

 - xcache=c defines the cache properties that the optimizer can use. It does not guarantee that any
particular cache property is used. Although this option can be used alone, it is part of the expansion of
the - xtarget option; its primary use is to override a value supplied by the - xtarget option.

 - xcache=16/32/4:1024/32/1 specifies the following:

 Level 1 cache has: Level 2 cache has:

 16K bytes 1024K bytes

 32 - byte line size 32 - byte line size

 4 - way associativity Direct mapping

 Developing software to truly take advantage of CMP requires careful thought about the instruction set of
the target processor or family of processors and about memory usage. This includes being aware of
opportunities for optimizations, such as loop unrolling, high - speed vector manipulations, SIMD processing,
and MP compiler directives, and giving compilers hints for values such as the size of L1 or L2 cache.

 Main Memory
 Figure 1 - 2 shows the relative relationship between registers, cache, the ALU, and main memory. Outside
of external storage (for example, hard disks, CD - ROMs, DVDs, and so on), RAM is the slowest memory
the developer works with. Also RAM is located physically outside the processor, and data transfers
across a bus to the processor slow things down a little more. On the other hand, RAM is the most visible
to you as a software developer of multithreaded or multiprocessing applications. The data shared
between processors and tasks in most cases is stored in RAM. The instructions that each processor has to
execute are kept in RAM during runtime. The critical sections that must be synchronized among
multiple processors are primarily stored in RAM. When there is task or processor lockup, it is normally
due to some memory management violation. In almost every case, the communication between
processors and tasks, or multiple agents, will take place through variables, message queues, containers,
and mutexes that will reside in RAM during runtime. A major element in the software developer ’ s view
of multicore application programming is memory access and management. Just as was the case with the

c01.indd 13c01.indd 13 7/31/08 2:43:24 PM7/31/08 2:43:24 PM

Chapter 1: The New Architecture

14

other logical components shown in Figure 1 - 2 that have been discussed so far, you have access to
compiler switches that influence how memory is handled by an application. The memory model selected
is important. Objects created by the new() operator in C++ end up in either the free store (heap) or in
virtual memory (if the data object is large enough). The free store is logically in RAM. Virtual memory is
mapped from external storage.

 We take a closer look at how a process or thread uses RAM in Chapter 5 .

 The Bus Connection
 Typically the subsystems in a computer communicate using buses. The bus serves as a shared
communication link between the subsystems [Hennessy, Patterson, 1996]. The bus is a channel or path
between components in a computer. Traditionally, buses are classified as CPU - memory buses or I/O
buses. A basic system configuration consists of two main buses, a system bus also referred to as the Front
Side Bus (FSB), and an I/O bus. If the system has cache, there is also usually a Back Side Bus (BSB)
connected to the processor and the cache. Figure 1 - 6 shows a simplified processor - to - bus configuration.

FSB

I/O
CONTROLLER

MEMORY
CONTROLLER

CPU

CACHEAGP

PCI

BSB

Figure 1-6

 In Figure 1 - 6 the FSB is used to transport data to or from the CPU and memory. The FSB is a
CPU - memory bus. The I/O bus generally sends information to and from other peripherals. Notice in
Figure 1 - 6 that the BSB is used to move data between the CPU, cache, and main memory. The Peripheral
Component Interconnect (PCI) is an example of an I/O bus. The PCI provides a direct connection to the
devices that it is connected to. However, the PCI is usually connected to the FSB through some type of
bridge technology. Since the buses provide communication paths between the CPU, the memory
controller, the I/O controller, cache, and peripherals, there is the potential for throughput bottlenecks.
Configurations with multiple processors can put a strain on the FSB. The trend is to add more processors

c01.indd 14c01.indd 14 7/31/08 2:43:24 PM7/31/08 2:43:24 PM

Chapter 1: The New Architecture

15

to a chip. This puts more communication demands on bus - based architectures. The performance of the
system is constrained by the maximum throughput of the buses used between the CPU, memory, and
other system peripherals. If the bus is slower than the CPU or memory or the buses do not have the
proper capacity, timing, or synchronization, then the bus will be a bottleneck, impeding overall system
performance.

 From Single Core to Multicore
 In single core configurations you are concerned only with one (general - purpose) processor, although it ’ s
important to keep in mind that many of today ’ s single core configurations contain special graphic
processing units, multimedia processing units, and sometimes special math coprocessors. But even with
single core or single processor computers multithreading, parallel programming, pipelining, and
multiprogramming are all possible. So this section can help clear the air on some of the basic ideas that
move you from single core to multicore programming.

 Multiprogramming and Multiprocessing
 Multiprogramming is usually talked about in the context of operating systems as opposed to
applications. Multiprogramming is a scheduling technique that allows more than one job to be in an
executable state at any one time. In a multiprogrammed system, the jobs (or processes) share system
resources such as the main system memory and the processor. There is an illusion in a single core system
that the processes are executing simultaneously because the operating system uses the technique of time
slices. In the time slice scheme, each process is given a small interval to execute. After that interval, the
operating system switches contexts and lets another process execute for an interval. These intervals are
called time slices, and they are so small that the operating system switches the context fast enough to
give the illusion that more than one process or job is executing at the same time. So in a scenario where
you have single core architecture and two major tasks are being performed concurrently (for example,
burning a DVD and rendering a computer graphic), you say that the system is multiprogramming.

 Multiprogramming is a scheduling technique. In contrast, a multiprocessor is a computer that has more
than one processor. In this case, you are specifically referring to the idea of having two or more general -
 purpose processors. Technically speaking, a computer with a CPU and a GPU is a multiprocessor. But for
the purposes of this discussion, we focus instead on multiple general - purpose processors. Consequently,
 multiprocessing is a technique of programming that uses more than one processor to perform work
concurrently. In this book we are interested in techniques that fall under the category of parallel
programming.

 Parallel Programming
 Parallel programming is the art and science of implementing an algorithm, a computer program, or a
computer application, using sets of instructions or tasks designed to be executed concurrently. Figure 1 - 7
illustrates the parts of each type and what is executed in parallel.

c01.indd 15c01.indd 15 7/31/08 2:43:25 PM7/31/08 2:43:25 PM

Chapter 1: The New Architecture

16

TASK A

TASK D

SUBSYSTEM 1

TASK B

TASK C

SUBSYSTEM 2

PROCEDURE B

function3()
function4()

PROCEDURE A

function1()
function2()

PROCEDURE C

thread 1
thread 3

PROCEDURE D

thread 2
thread 4

PARALLEL COMPUTER PROGRAM

GROUP 1

instruction 1
instruction 3
instruction 5

GROUP 2

instruction 2
instruction 4
instruction 6

PARALLEL ALGORITHM

Components can execute concurrently.
The concepts are logically the same in the parallel
algorithm, program, and application. But the size of the unit
of work is different. This unit of work is the granularity.

COMPUTER APPLICATION
WITH PARALLEL COMPONENTS

Figure 1-7

 The parallel algorithm in Figure 1 - 7 can execute a set of instructions in parallel. Instruction 1 and
Instruction 2 can both be executed concurrently. Instruction 5 and 6 can both be executed concurrently.
In the algorithm, the parallelism happens between two instructions. This is in contrast to the computer
program in Figure 1 - 7 , where the unit of work is a procedure or function, or thread. Procedure A and
Procedure B can execute simultaneously. In addition to the concurrency between Procedure A and B, they
may both have concurrency within themselves. Procedure A ’ s functions may be able to execute in parallel.
So for the computer program that contains parallelism, the unit of work is larger than the algorithm.

 The application in Figure 1 - 7 has the largest unit of work. Task A and Task B may consist of many
procedures, functions, objects, and so on. When you look at the parallel programming at the application
level, you are talking about larger units of work. Besides tasks, the application might contain
subsystems, for example, background network components or multimedia components that are
executing simultaneously in background to the set of tasks that the user can perform. The key idea here
is that each structure in Figure 1 - 7 uses parallel programming; the difference is the unit of work,
sometimes called granularity .

 We talk more about levels of parallelism in Chapter 4 .

 Multicore Application Design and Implementation
 Multicore application design and implementation uses parallel programming techniques to design
software that can take advantage of CMP. The design process specifies the work of some task as either
two or more threads, two or more processes, or some combination of threads and processes. That design
can then be implemented using template libraries, class libraries, thread libraries, operating system calls,
or low - level programming techniques (for example, pipelining, vectorization, and so on). This book
introduces the basics of multithreading, multiprocessing, Interprocess Communication, Interthread
Communication, synchronization, thread libraries, and multithreading class libraries or template
libraries. The low cost of CMP implementations has brought parallel programming and its very close
cousin multithreading within the reach of the average developer. The focus on this book is on

c01.indd 16c01.indd 16 7/31/08 2:43:25 PM7/31/08 2:43:25 PM

Chapter 1: The New Architecture

17

developing multicore applications using multiprocessing and multithreading techniques that are
portable across operating system environments. We use only libraries and language features that are part
of the POSIX standard for operating systems and only C++ features that are part of the ISO standard.

 Summary
 This chapter has covered key concepts that you need to understand as you consider developing
multicore application. Some of the important considerations this chapter introduced are:

 A multicore chip is a chip that has two or more processors. This processor configuration is
referred to as CMP. CMPs currently range from dual core to octa - core.

 Hybrid multicore processors can contain different types of processors. The Cell broadband
engine is a good example of a hybrid multicore.

 Multicore development can be approached from the bottom up or top down, depending on
whether the developers in question are system programmers, kernel programmers, library
developers, server developers, or application developers. Each group is faced with similar
problems but looks at the cores from a different vantage point.

 All developers that plan to write software that takes advantage of multiprocessor configurations
should be familiar with the basic processor architecture of the target platform. The primary
interface to the specific features of a multicore processor is the C/C++ compiler. To get the most
from the target processor or family of target processors, the developer should be familiar with
the options of the compiler, the assembler subcomponent of the compiler, and the linker. The
secondary interface comprises the operating system calls and operating system synchronization
and communication components.

 Parallel programming is the art and science of implementing an algorithm, a computer program,
or a computer application using sets of instructions or tasks designed to be executed
concurrently. Multicore application development and design is all about using parallel
programming techniques and tools to develop software that can take advantage of CMP
architectures.

 Now that you have in mind some of the basic ideas and issues surrounding multicore programming,
Chapter 2 will take a look at four multicore designs from some of the computer industry ’ s leading chip
manufacturers: AMD, Intel, IBM, and Sun. We look at each approach to CMP for the Dual Core Opteron,
Core 2 Duo, Cell Broadband Engine architecture, and UltraSparc T1 multiprocessor cores.

❑

❑

❑

❑

❑

c01.indd 17c01.indd 17 7/31/08 2:43:25 PM7/31/08 2:43:25 PM

c01.indd 18c01.indd 18 7/31/08 2:43:25 PM7/31/08 2:43:25 PM

