
                                                 The New Architecture              

  If a person walks fast on a road covering fifty miles in a day, this does not mean he is 
capable of running unceasingly from morning till night. Even an unskilled runner 
may run all day, but without going very far.   

  — Miyamoto Musahi,  The Book of Five Rings     

 The most recent advances in microprocessor design for desktop computers involve putting 
multiple processors on a single computer chip. These multicore designs are completely replacing 
the traditional single core designs that have been the foundation of desktop computers. IBM, Sun, 
Intel, and AMD have all changed their chip pipelines from single core processor production to 
multicore processor production. This has prompted computer vendors such as Dell, HP, and Apple 
to change their focus to selling desktop computers with multicores. The race to control market 
share in this new area has each computer chip manufacturer pushing the envelope on the number 
of cores that can be economically placed on a single chip. All of this competition places more 
computing power in the hands of the consumer than ever before. The primary problem is that 
regular desktop software has not been designed to take advantage of the new multicore 
architectures. In fact, to see any real speedup from the new multicore architectures, desktop 
software will have to be redesigned. 

 The approaches to designing and implementing application software that will take advantage 
of the multicore processors are radically different from techniques used in single core 
development. The focus of software design and development will have to change from sequential 
programming techniques to parallel and multithreaded programming techniques. 

 The standard developer ’ s workstation and the entry - level server are now multiprocessors capable 
of hardware - level multithreading, multiprocessing, and parallel processing. Although sequential 
programming and single core application development have a place and will remain with us, the 
ideas of multicore application design and development are now in the mainstream. 
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 This chapter begins your look at multicore programming. We will cover: 

  What is a multicore?  

  What multicore architectures are there and how do they differ from each other?  

  What do you as a designer and developer of software need to know about moving from 
sequential programming and single core application development to multicore programming?     

  What Is a Multicore? 
 A  multicore  is an architecture design that places multiple processors on a single die (computer chip). Each 
processor is called a core. As chip capacity increased, placing multiple processors on a single chip 
became practical. These designs are known as  Chip Multiprocessors (CMPs)  because they allow for single 
chip multiprocessing. Multicore is simply a popular name for CMP or single chip multiprocessors. The 
concept of single chip multiprocessing is not new, and chip manufacturers have been exploring the idea 
of multiple cores on a uniprocessor since the early 1990s. Recently, the CMP has become the preferred 
method of improving overall system performance. This is a departure from the approach of increasing 
the clock frequency or processor speed to achieve gains in overall system performance. Increasing the 
clock frequency has started to hit its limits in terms of cost - effectiveness. Higher frequency requires more 
power, making it harder and more expensive to cool the system. This also affects sizing and packaging 
considerations. So, instead of trying to make the processor faster to gain performance, the response is 
now just to add more processors. The simple realization that this approach is better has prompted the 
multicore revolution. Multicore architectures are now center stage in terms of improving overall system 
performance. 

 For software developers who are familiar with multiprocessing, multicore development will be familiar. 
From a logical point of view, there is no real significant difference between programming for multiple 
processors in separate packages and programming for multiple processors contained in a single package 
on a single chip. There may be performance differences, however, because the new CMPs are using 
advances in bus architectures and in connections between processors. In some circumstances, this may 
cause an application that was originally written for multiple processors to run faster when executed on a 
CMP. Aside from the potential performance gains, the design and implementation are very similar. We 
discuss minor differences throughout the book. For developers who are only familiar with sequential 
programming and single core development, the multicore approach offers many new software 
development paradigms.  

  Multicore Architectures 
 CMPs come in multiple flavors: two processors (dual core), four processors (quad core), and eight 
processors (octa - core) configurations. Some configurations are multithreaded; some are not. There are 
several variations in how cache and memory are approached in the new CMPs. The approaches to 
processor - to - processor communication vary among different implementations. The CMP implementations 
from the major chip manufacturers each handle the I/O bus and the Front Side Bus (FSB) differently. 

❑

❑

❑
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  Configuration 1 in Figure  1 - 1  uses hyperthreading. Like CMP, a hyperthreaded processor allows 
two or more threads to execute on a single chip. However, in a hyperthreaded package the 
multiple processors are logical instead of physical. There is some duplication of hardware but 
not enough to qualify a separate physical processor. So hyperthreading allows the processor to 
present itself to the operating system as complete multiple processors when in fact there is a 
single processor running multiple threads.  

  Configuration 2 in Figure  1 - 1  is the classic multiprocessor. In configuration 2, each processor is 
on a separate chip with its own hardware.  

  Configuration 3 represents the current trend in multiprocessors. It provides complete processors 
on a single chip.    

 As you shall see in Chapter  2 , some multicore designs support hyperthreading within their cores. For 
example, a hyperthreaded dual core processor could present itself logically as a quad core processor to 
the operating system. 

  Hybrid Multicore Architectures 
  Hybrid multicore architectures  mix multiple processor types and/or threading schemes on a single 
package. This can provide a very effective approach to code optimization and specialization by 
combining unique capabilities into a single functional core. One of the most common examples of the 
hybrid multicore architecture is IBM ’ s Cell broadband engine (Cell). We explore the architecture of 
the Cell in the next chapter. 

❑

❑

❑

Again, most of these differences are not visible when looking strictly at the logical view of an application 
that is being designed to take advantage of a multicore architecture. Figure  1 - 1  illustrates three common 
configurations that support multiprocessing.     
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 What ’ s important to remember is that each configuration presents itself to the developer as a set of two 
or more logical processors capable of executing multiple tasks concurrently. The challenge for system 
programmers, kernel programmers, and application developers is to know when and how to take 
advantage of this.   

  The Software Developer ’ s Viewpoint 
 The low cost and wide availability of CMPs bring the full range of parallel processing within the reach 
of the average software developer. Parallel processing is no longer the exclusive domain of supercomputers 
or clusters. The basic developer workstation and entry - level server now have the capacity for hardware -  
and software - level parallel processing. This means that programmers and software developers can 
deploy applications that take advantage of multiprocessing and multithreading as needed without 
compromising design or performance. However, a word of caution is in order. Not every software 
application requires multiprocessing or multithreading. In fact, some software solutions and computer 
algorithms are better implemented using sequential programming techniques. In some cases, 
introducing the overhead of parallel programming techniques into a piece of software can degrade its 
performance. Parallelism and multiprocessing come at a cost. If the amount of work required to solve the 
problem sequentially in software is less than the amount of work required to create additional threads 
and processes or less than the work required to coordinate communication between concurrently 
executing tasks, then the sequential approach is better. 

 Sometimes determining when or where to use parallelism is easy because the nature of the software 
solution demands parallelism. For example, the parallelism in many client - server configurations is 
obvious. You might have one server, say a database, and many clients that can simultaneously make 
requests of the database. In most cases, you don ’ t want one client to be required to wait until another 
client ’ s request is filled. An acceptable solution allows the software to process the clients ’  requests 
concurrently. On the other hand, there is sometimes a temptation to use parallelism when it is not 
required. For instance, you might be tempted to believe that a keyword word search through text in 
parallel will automatically be faster than a sequential search. But this depends on the size of text to be 
searched for and on the time and amount of overhead setup required to start multiple search agents in 
parallel. The design decision in favor of a solution that uses concurrency has to consider break - even 
points and problem size. In most cases, software design and software implementation are separate 
efforts and in many situations are performed by different groups. But in the case where software 
speedup or optimal performance is a primary system requirement, the software design effort has to at 
least be aware of the software implementation choices, and the software implementation choices have to 
be informed by potential target platforms. 

 In this book, the target platforms are multicore. To take full advantage of a multicore platform, you need 
to understand what you can do to access the capabilities of a CMP. You need to understand what 
elements of a CMP you have control over. You will see that you have access to the CMP through the 
compiler, through operating system calls/libraries, through language features, and through application -
 level libraries. But first, to understand what to do with the CMP access, you need a basic understanding 
of the processor architecture. 
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  The Basic Processor Architecture 
 The components you can access and influence include registers, main memory, virtual memory, 
instruction set usage, and object code optimizations. It is important to understand what you can 
influence in single processor architectures before attempting to tackle multiprocessor architectures. 
Figure  1 - 2  shows a simplified logical overview of a processor architecture and memory components.   

 There are many variations on processor architecture, and Figure  1 - 2  is only a logical overview. It 
illustrates the primary processor components you can work with. While this level of detail and these 
components are often transparent to certain types of application development, they play a more central 
role in bottom - up multicore programming and in software development efforts where speedup and 
optimal performance are primary objectives. Your primary interface to the processor is the compiler. The 
operating system is the secondary interface.     

 In this book, we will use C++ compilers to generate the object code. Parallel programming can be used 
for all types of applications using multiple approaches, from low to high level, from object - oriented to 
structured applications. C++ supports multiparadigm approaches to programming, so we use it for its 
flexibility.   

 Table  1 - 1  shows a list of categories where the compiler interfaces with the CPU and instruction set. 
Categories include floating - point, register manipulation, and memory models.    
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Table 1-1

Compiler Switch 
Options Description Examples of Usage

Vectorization This option enables the vectorizer, a 
component of the compiler that 
automatically uses Single 
Instruction Multiple Data (SIMD) 
instructions in the MMX registers 
and all the SSE instruction sets.

-x    -ax

Enables the vectorizer.

Auto parallelization This option identifies loop 
structures that contain parallelism 
and then (if possible) safely 
generates the multithreaded 
equivalent executing in parallel.

-parallel

Triggers auto parallelization.

Parallelization 
with OpenMP

With this option the compiler 
generates multithreaded code based 
on OpenMP directives in the source 
code added by the programmer.

#pragma omp parallel
{
    #pragma omp for
     // your code
}

Fast This option detects incompatible 
processors; error messages are 
generated during execution.

-O1

Optimized to favor code size and 
code locality and disables loop 
unrolling, software pipelining, and 
global code scheduling.

-O2

Default; turns pipelining ON.

Floating point Set of switches that allows the 
compiler to influence the selection 
and use of floating-point 
instructions.

-fschedule-insns

Tells the compiler that other 
instructions can be issued until the 
results of a floating-point 
instruction are required.

-float-store

Tells the compiler that when 
generating object code do not use 
instructions that would store a 
floating-point variable in registers.
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Compiler Switch 
Options Description Examples of Usage

Loop unrolling This option enables loop 
unrolling. This applies only to loops 
that the compiler determines should 
be unrolled. If n is omitted, lets the 
compiler decide whether to perform 
unrolling or not.

-unroll<n>

Enables loop unrolling; <n> sets the 
maximum time to unroll the loop.

n = 0

Disables loop unrolling, only 
allowable value for 64-bit 
architectures.

Memory bandwidth This option enables or disables 
control of memory bandwidth 
used by processors; if disabled, 
bandwidth will be well shared 
among multiple threads. This can be 
used with the auto parallelization 
option. This option is used for 64-bit 
architectures only.

-opt-mem-bandwidth<n>
n = 2

Enables compiler optimizations for 
parallel code such as pthreads and 
MPI code.

n = 1

Enables compiler optimizations for 
multithreaded code generated by 
the compiler.

Code generation With this option code is generated 
optimized for a particular 
architecture or processor; if there is a 
performance benefit, the compiler 
generates multiple, processor-
specific code paths; used for 32- and 
64- bit architectures.

-ax<processor>

Generates optimized code for the 
specified processor.

-axS

Generates specialized code paths 
using SIMD Extensions 4 (SSE4) 
vectorizing compiler and media 
accelerators instructions.

Thread checking This option enables thread analysis 
of a threaded application of 
program; can only be used with 
Intel’s Thread Checker tool.

-tcheck

Enables analysis of threaded 
application or program.

Thread library This option causes the compiler 
to include code from the Thread 
Library; The programmer needs to 
include API calls in source code.

-pthread

Uses the pthread library for 
multithreading support.

  The  CPU  (Instruction Set) 
 A CPU has a native instruction set that it recognizes and executes. It ’ s the C++ compiler ’ s job to translate 
C++ program code to the native instruction set of the target platform. The compiler converts the C++ 
and produces an object file that consists of only instructions that are native to the target processor. 
Figure  1 - 3  shows an outline of the basic compilation process.   
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 During the process of converting C++ code into the native language of the target CPU, the compiler has 
options for how to produce the object code. The compiler can be used to help determine how registers 
are used, or whether to perform loop unrolling. The compiler has options that can be set to determine 
whether to generate 16 - bit, 32 - bit, or 64 - bit object code. The compiler can be used to select the memory 
model. The compiler can provide code hints that declare how much level 1 (L1) or level 2 (L2) cache is 
present. Notice in Table  1 - 1  in the floating - point operations category that switches from this category 
allow the compiler to influence the selection of floating - point instructions. For example, the GNU gcc 
compiler has the   -  - float - store  switch. This switch tells the compiler that when generating object code 
it should not use instructions that would store floating - point variable in registers. The Sun C++ compiler 
has a   - fma  switch. This switch enables automatic generation of floating - point and multi - add 
instructions. The   - fma=none  disables generation of these instructions. The   - fma=fused  switch allows 
the compiler to attempt to improve the performance of the code by using floating - point, fused, and 
 multiply=add  instructions. In both cases, the switches are provided as options to the compiler: 

gcc  -ffloat-store my_program.cc  

 or 

CC -fma=used  my_program.cc  

 Other switches influence cache usage. For instance the Sun C++ compiler has a   - xcache=c  that defines 
the cache properties for use by the optimizer. The GNU gcc compiler has the   - Funroll  - loops  that 
specifies how loops are to be unrolled. The GNU gcc compiler has a   - pthread  switch that turns on 
support for multithreading with pthreads. The compilers even have options for setting the typical 
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memory reference interval using the   - mmemory - latency=time  switch. In fact, there are compiler 
options and switches that can influence the use of any of the components in Figure  1 - 2 . 

 The fact that the compiler provides access to the processor has implications for the developer who is 
writing multicore applications for a particular target processor or a family of processors. For example, 
The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors are commonly used multicore 
configurations. These processors each support high - speed vector operations and calculations. They have 
support for the Single Instruction Multiple Data (SIMD) model of parallel computation. This support can 
be accessed and influenced by the compiler.     

 Chapter  4  contains a closer look at the part compilers play in multicore development.   

 It is important to note that using many of these types of compiler options cause the compiler to optimize 
code for a particular processor. If cross - platform compatibility is a design goal, then compiler options 
have to be used very carefully. For system programmers, library producers, compiler writers, kernel 
developers, and database and server engine developers, a fundamental understanding of the basic 
processor architecture, instruction set and compiler interface is a prerequisite for developing effective 
software that takes advantage of CMP.  

  Memory Is the Key 
 Virtually anything that happens in a computer system passes through some kind of memory. Most things 
pass through many levels of memory. Software and its associated data are typically stored on some kind 
of external medium (usually hard disks, CD - ROMs, DVDs, etc.) prior to its execution. For example, say 
you have an important and very long list of numbers stored on an optical disc, and you need to add 
those numbers together. Also say that the fancy program required to add the very long list of numbers is 
also stored on the optical disc. Figure  1 - 4  illustrates the flow of programs and data to the processor.   
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Figure 1-4
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 In the maze of different types of memory, you have to remember that the typical CPU operates only on 
data stored in its registers. It does not have the capacity to directly access data or programs stored 
elsewhere. Figure  1 - 4  shows the ALU reading and writing the registers. This is the normal state of affairs. 
The instruction set commands (native language of the processor) are designed to primarily work with 
data or instructions in the CPU ’ s registers. To get your long list of important numbers and your fancy 
program to the processor, the software and data must be retrieved from the optical disc and loaded into 
primary memory. From primary memory, bits and pieces of your software and data are passed on to L2 
cache, then to L1 cache, and then into instruction and data registers so that the CPU can perform its 
work. It is important to note that at each stage the memory performs at a different speed. Secondary 
storage such as CD - ROMs, DVDs, and hard disks are slower than the main random access memory 
(RAM). RAM is slower than L2 cache memory. L2 cache memory is slower than L1 cache memory, and so 
on. The registers on the processor are the fastest memory that you can directly deal with. 

 Besides the speed of the various types of memory, size is also a factor. Figure  1 - 5  shows an overview of 
the memory hierarchy.   
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REG 0 REG 1 REG 2 REG 3
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SYSTEM MAIN MEMORY

VIRTUAL MEMORY 
(EXTERNAL DISK)            I/O DEVICES

FASTER

SLOWER
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Figure 1-5

 The register is the fastest but has the least capacity. For instance, a 64 - bit computer will typically have a 
set of registers that can each hold up to 64 bits. In some instances, the registers can be used in pairs 
allowing for 128 bits. Following the registers in capacity is L1 cache and if present L2 cache. L2 cache is 
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currently measured in megabytes. Then there is a big jump in maximum capacity from L2 to the system 
main memory, which is currently measured in gigabytes. In addition to the speeds of the various types 
of memory and the capacities of the various types of memory, there are the connections between the 
memory types. These connections turn out to have a major impact on overall system performance. Data 
and instructions stored in secondary storage typically have to travel over an I/O channel or bus to get to 
RAM. Once in RAM, the data or instruction normally travels over a system bus to get to L1 cache. The 
speed and capacity of the I/O buses and system buses can become bottlenecks in a multiprocessor 
environment. As the number of cores on a chip increases, the performance of bus architectures and 
datapaths become more of an issue. 

 We discuss the bus connection later in this chapter, but first it ’ s time to examine the memory hierarchy 
and the part it plays in your view of multicore application development. Keep in mind that just as you 
can use the influence that the compiler has over instruction set choices, you can use it to manipulate 
register usage and RAM object layouts, give cache sizing hints, and so on. You can use further C++ 
language elements to specify register usage, RAM, and I/O. So, before you can get a clear picture of 
multiprocessing or multithreading, you have to have a fundamental grasp of the memory hierarchy that 
a processor deals with.  

  Registers 
 The  registers  are special - purpose, small but fast memory that are directly accessed by the core. The 
registers are volatile. When the program exits, any data or instructions that it had in its registers are gone 
for all intents and purposes. Also unlike swap memory, or virtual memory, which is permanent because 
it is stored in some kind of secondary storage, the registers are temporary. Register data lasts only as 
long as the system is powered or the program is running. In general - purpose computers, the registers are 
located inside the processor and, therefore, have almost zero latency. Table  1 - 2  contains the general types 
of registers found in most general - purpose processors.   

Table 1-2

Registers Description

Index Used in general computations and special uses when dealing with addresses.

Segment Used to hold segment parts of addresses.

IP Used to hold the offset part of the address of the next instruction to be executed.

Counter Used with looping constructs, but can also be used for general computational 
use.

Base Used in the calculation and placement of addresses.

Data Used as general-purpose registers and can be used for temp storage and 
calculation.

Flag Shows the state of the machine or state of the processor.

Floating point Used in calculation and movement of floating-point numbers.
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 Most C/C++ compilers have switches that can influence register use. In addition to compiler options 
that can be used to influence register use, C++ has the  asm{ }  directive, which allows assembly 
language to written within a C++ procedure or function, for example: 

void my_fast_calculation(void)
{
   ...
     asm{
            ...
            mov 2 , %r3
            inc(%r3)
            ...
      }
       ...
}  

  my_fast_calculation()  loads a  2  into the  %r3  general - purpose register on an UltraSparc processor. 
While cache is not easily visible for C++, registers and RAM are visible. Depending on the type of 
multiprocessor software being developed, register manipulation, either through the compiler or the C++ 
 asm{}  facility, can be necessary.  

  Cache 
  Cache  is memory placed between the processor and main system memory (RAM). While cache is not as 
fast as registers, it is faster than RAM. It holds more than the registers but does not have the capacity of 
main memory. Cache increases the effective memory transfer rates and, therefore, overall processor 
performance. Cache is used to contain copies of recently used data or instruction by the processor. Small 
chunks of memory are fetched from main memory and stored in cache in anticipation that they will be 
needed by the processor. Programs tend to exhibit both temporal locality and spatial locality.   

   Temporal locality  is the tendency to reuse recently accessed instructions or data.  

   Spatial locality  is the tendency to access instructions or data that are physically close to items 
that were most recently accessed.    

 One of the primary functions of cache is to take advantage of this temporal and spatial locality 
characteristic of a program. Cache is often divided into two levels, level 1 and level 2.     

 A complete discussion of cache is beyond the scope of this book. For a thorough discussion of cache, see 
[Hennessy, Patterson, 2007].   

  Level 1 Cache 
 Level 1 cache is small in size sometimes as small as 16K. L1 cache is usually located inside the processor 
and is used to capture the most recently used bytes of instruction or data.  

  Level 2 Cache 
 Level 2 cache is bigger and slower than L1 cache. Currently, it is stored on the motherboard (outside the 
processor), but this is slowly changing. L2 cache is currently measured in megabytes. L2 cache can hold 
an even bigger chunk of the most recently used instruction, data, and items that are in the near vicinity 

❑

❑
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than L1 holds. Because L1 and L2 are faster than general - purpose RAM, the more correct the guesses of 
what the program is going to do next are, the better the overall system performance because the right 
chunks of data will be located in either L1 or L2 cache. This saves a trip out to either RAM or virtual 
memory or, even worse, external storage.  

  Compiler Switches for Cache? 
 Most developers doing multicore application development will not be concerned with manually 
managing cache unless, of course, they are doing kernel development, compiler development, or other 
types of low - level system programming. However, compiler options that give the compiler a hint as to 
how much L1 or L2 cache is available or a hint about the properties of the L1 or L2 cache can be found in 
most of the mainstream compilers in use. For example, the Sun C++ compiler has an  xcache  switch. The 
man page for that switch shows the syntax and its use. 

   - xcache=c  defines the cache properties that the optimizer can use. It does not guarantee that any 
particular cache property is used. Although this option can be used alone, it is part of the expansion of 
the   - xtarget  option; its primary use is to override a value supplied by the   - xtarget  option. 

   - xcache=16/32/4:1024/32/1  specifies the following:

    Level 1 cache has:    Level 2 cache has:  

    16K bytes    1024K bytes  

    32 - byte line size    32 - byte line size  

    4 - way associativity    Direct mapping  

 Developing software to truly take advantage of CMP requires careful thought about the instruction set of 
the target processor or family of processors and about memory usage. This includes being aware of 
opportunities for optimizations, such as loop unrolling, high - speed vector manipulations, SIMD processing, 
and MP compiler directives, and giving compilers hints for values such as the size of L1 or L2 cache.   

  Main Memory 
 Figure  1 - 2  shows the relative relationship between registers, cache, the ALU, and main memory. Outside 
of external storage (for example, hard disks, CD - ROMs, DVDs, and so on), RAM is the slowest memory 
the developer works with. Also RAM is located physically outside the processor, and data transfers 
across a bus to the processor slow things down a little more. On the other hand, RAM is the most visible 
to you as a software developer of multithreaded or multiprocessing applications. The data shared 
between processors and tasks in most cases is stored in RAM. The instructions that each processor has to 
execute are kept in RAM during runtime. The critical sections that must be synchronized among 
multiple processors are primarily stored in RAM. When there is task or processor lockup, it is normally 
due to some memory management violation. In almost every case, the communication between 
processors and tasks, or multiple agents, will take place through variables, message queues, containers, 
and mutexes that will reside in RAM during runtime. A major element in the software developer ’ s view 
of multicore application programming is memory access and management. Just as was the case with the 
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other logical components shown in Figure  1 - 2  that have been discussed so far, you have access to 
compiler switches that influence how memory is handled by an application. The memory model selected 
is important. Objects created by the  new()  operator in C++ end up in either the free store (heap) or in 
virtual memory (if the data object is large enough). The free store is logically in RAM. Virtual memory is 
mapped from external storage.     

 We take a closer look at how a process or thread uses RAM in Chapter  5 .     

  The Bus Connection 
 Typically the subsystems in a computer communicate using buses. The  bus  serves as a shared 
communication link between the subsystems [Hennessy, Patterson, 1996]. The bus is a channel or path 
between components in a computer. Traditionally, buses are classified as CPU - memory buses or I/O 
buses. A basic system configuration consists of two main buses, a system bus also referred to as the Front 
Side Bus (FSB), and an I/O bus. If the system has cache, there is also usually a Back Side Bus (BSB) 
connected to the processor and the cache. Figure  1 - 6  shows a simplified processor - to - bus configuration.   

FSB

I/O
CONTROLLER

MEMORY
CONTROLLER

CPU

CACHEAGP

PCI

BSB

Figure 1-6

 In Figure  1 - 6  the FSB is used to transport data to or from the CPU and memory. The FSB is a 
CPU - memory bus. The I/O bus generally sends information to and from other peripherals. Notice in 
Figure  1 - 6  that the BSB is used to move data between the CPU, cache, and main memory. The Peripheral 
Component Interconnect (PCI) is an example of an I/O bus. The PCI provides a direct connection to the 
devices that it is connected to. However, the PCI is usually connected to the FSB through some type of 
bridge technology. Since the buses provide communication paths between the CPU, the memory 
controller, the I/O controller, cache, and peripherals, there is the potential for throughput bottlenecks. 
Configurations with multiple processors can put a strain on the FSB. The trend is to add more processors 
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to a chip. This puts more communication demands on bus - based architectures. The performance of the 
system is constrained by the maximum throughput of the buses used between the CPU, memory, and 
other system peripherals. If the bus is slower than the CPU or memory or the buses do not have the 
proper capacity, timing, or synchronization, then the bus will be a bottleneck, impeding overall system 
performance.  

  From Single Core to Multicore 
 In single core configurations you are concerned only with one (general - purpose) processor, although it ’ s 
important to keep in mind that many of today ’ s single core configurations contain special graphic 
processing units, multimedia processing units, and sometimes special math coprocessors. But even with 
single core or single processor computers multithreading, parallel programming, pipelining, and 
multiprogramming are all possible. So this section can help clear the air on some of the basic ideas that 
move you from single core to multicore programming. 

  Multiprogramming and Multiprocessing 
 Multiprogramming is usually talked about in the context of operating systems as opposed to 
applications.  Multiprogramming  is a scheduling technique that allows more than one job to be in an 
executable state at any one time. In a multiprogrammed system, the jobs (or processes) share system 
resources such as the main system memory and the processor. There is an illusion in a single core system 
that the processes are executing simultaneously because the operating system uses the technique of time 
slices. In the time slice scheme, each process is given a small interval to execute. After that interval, the 
operating system switches contexts and lets another process execute for an interval. These intervals are 
called time slices, and they are so small that the operating system switches the context fast enough to 
give the illusion that more than one process or job is executing at the same time. So in a scenario where 
you have single core architecture and two major tasks are being performed concurrently (for example, 
burning a DVD and rendering a computer graphic), you say that the system is multiprogramming. 

 Multiprogramming is a scheduling technique. In contrast, a  multiprocessor  is a computer that has more 
than one processor. In this case, you are specifically referring to the idea of having two or more general -
 purpose processors. Technically speaking, a computer with a CPU and a GPU is a multiprocessor. But for 
the purposes of this discussion, we focus instead on multiple general - purpose processors. Consequently, 
 multiprocessing  is a technique of programming that uses more than one processor to perform work 
concurrently. In this book we are interested in techniques that fall under the category of parallel 
programming.  

  Parallel Programming 
  Parallel programming  is the art and science of implementing an algorithm, a computer program, or a 
computer application, using sets of instructions or tasks designed to be executed concurrently. Figure  1 - 7  
illustrates the parts of each type and what is executed in parallel.   
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algorithm, program, and application. But the size of the unit
of work is different. This unit of work is the granularity. 

COMPUTER APPLICATION
WITH PARALLEL COMPONENTS 

Figure 1-7

 The parallel algorithm in Figure  1 - 7  can execute a set of instructions in parallel. Instruction 1 and 
Instruction 2 can both be executed concurrently. Instruction 5 and 6 can both be executed concurrently. 
In the algorithm, the parallelism happens between two instructions. This is in contrast to the computer 
program in Figure  1 - 7 , where the unit of work is a procedure or function, or thread. Procedure A and 
Procedure B can execute simultaneously. In addition to the concurrency between Procedure A and B, they 
may both have concurrency within themselves. Procedure A ’ s functions may be able to execute in parallel. 
So for the computer program that contains parallelism, the unit of work is larger than the algorithm. 

 The application in Figure  1 - 7  has the largest unit of work. Task A and Task B may consist of many 
procedures, functions, objects, and so on. When you look at the parallel programming at the application 
level, you are talking about larger units of work. Besides tasks, the application might contain 
subsystems, for example, background network components or multimedia components that are 
executing simultaneously in background to the set of tasks that the user can perform. The key idea here 
is that each structure in Figure  1 - 7  uses parallel programming; the difference is the unit of work, 
sometimes called  granularity .     

 We talk more about levels of parallelism in Chapter  4 .    

  Multicore Application Design and Implementation 
 Multicore application design and implementation uses parallel programming techniques to design 
software that can take advantage of CMP. The design process specifies the work of some task as either 
two or more threads, two or more processes, or some combination of threads and processes. That design 
can then be implemented using template libraries, class libraries, thread libraries, operating system calls, 
or low - level programming techniques (for example, pipelining, vectorization, and so on). This book 
introduces the basics of multithreading, multiprocessing, Interprocess Communication, Interthread 
Communication, synchronization, thread libraries, and multithreading class libraries or template 
libraries. The low cost of CMP implementations has brought parallel programming and its very close 
cousin multithreading within the reach of the average developer. The focus on this book is on 
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developing multicore applications using multiprocessing and multithreading techniques that are 
portable across operating system environments. We use only libraries and language features that are part 
of the POSIX standard for operating systems and only C++ features that are part of the ISO standard.   

  Summary 
 This chapter has covered key concepts that you need to understand as you consider developing 
multicore application. Some of the important considerations this chapter introduced are: 

  A multicore chip is a chip that has two or more processors. This processor configuration is 
referred to as CMP. CMPs currently range from dual core to octa - core.  

  Hybrid multicore processors can contain different types of processors. The Cell broadband 
engine is a good example of a hybrid multicore.  

  Multicore development can be approached from the bottom up or top down, depending on 
whether the developers in question are system programmers, kernel programmers, library 
developers, server developers, or application developers. Each group is faced with similar 
problems but looks at the cores from a different vantage point.  

  All developers that plan to write software that takes advantage of multiprocessor configurations 
should be familiar with the basic processor architecture of the target platform. The primary 
interface to the specific features of a multicore processor is the C/C++ compiler. To get the most 
from the target processor or family of target processors, the developer should be familiar with 
the options of the compiler, the assembler subcomponent of the compiler, and the linker. The 
secondary interface comprises the operating system calls and operating system synchronization 
and communication components.  

  Parallel programming is the art and science of implementing an algorithm, a computer program, 
or a computer application using sets of instructions or tasks designed to be executed 
concurrently. Multicore application development and design is all about using parallel 
programming techniques and tools to develop software that can take advantage of CMP 
architectures.    

 Now that you have in mind some of the basic ideas and issues surrounding multicore programming, 
Chapter  2  will take a look at four multicore designs from some of the computer industry ’ s leading chip 
manufacturers: AMD, Intel, IBM, and Sun. We look at each approach to CMP for the Dual Core Opteron, 
Core 2 Duo, Cell Broadband Engine architecture, and UltraSparc T1 multiprocessor cores.                 

❑

❑

❑

❑

❑
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