
Part I
Introducing Patterns and Principles

ChaPter 1: ⊲ The Pattern for Successful Applications

ChaPter 2: ⊲ Dissecting the Pattern’s Pattern

292785c01.indd 1 8/23/10 12:00:48 PM

CO
PYRIG

HTED
 M

ATERIA
L

292785c01.indd 2 8/23/10 12:00:48 PM

The Pattern for
Successful Applications

What’s In thIs ChaPter?

An introduction to the Gang of Four Design Patterns➤➤

An overview of some common design principles and the SOLID ➤➤

design principles

A description of Fowlers Enterprise Patterns➤➤

John Lennon once wrote, “There are no problems, only solutions.” Now, Mr. Lennon never, to
my mind, did much in the way of ASP.NET programming; however, what he said is extremely
relevant in the realm of software development and probably humanity, but that’s a whole other
book. Our job as software developers involves solving problems — problems that other devel-
opers have had to solve countless times before albeit in various guises. Throughout the lifetime
of object-oriented programming, a number of patterns, principles, and best practices have been
discovered, named, and catalogued. With knowledge of these patterns and a common solu-
tion vocabulary, we can begin to break down complex problems, encapsulate what varies, and
develop applications in a uniformed way with tried and trusted solutions.

This book is all about introducing you to design patterns, principles, and best practices that
you can apply to your ASP.NET applications. By their very nature, patterns and principles are
language agnostic, so the knowledge gained in this book can be applied to win forms, WPF
and Silverlight applications, as well as other first-class object-oriented languages.

This chapter will cover what design patterns are, where they come from, and why it’s important to
study them. Fundamental to design patterns are solid object-oriented design principles, which will
be covered in this chapter in the form of Robert Martin’s S.O.L.I.D. principles. I will also intro-
duce you to some more advanced patterns as laid out in Martin Fowler’s Patterns of Enterprise
Application Architecture book.

1

292785c01.indd 3 8/23/10 12:00:49 PM

4 ❘ ChaPter 1 The PaTTern for SucceSSful aPPlicaTionS

DesIgn Patterns exPlaIneD

Design patterns are high-level abstract solution templates. Think of them as blueprints for solutions
rather than the solutions themselves. You won’t find a framework that you can simply apply to your
application; instead, you will typically arrive at design patterns through refactoring your code and
generalizing your problem.

Design patterns aren’t just applicable to software development; design patterns can be found in all areas
of life from engineering to architecture. In fact, it was the architect Christopher Alexander who intro-
duced the idea of patterns in 1970 to build a common vocabulary for design discussion. He wrote:

The elements of this language are entities called patterns. Each pattern describes a
problem that occurs over and over again in our environment and then describes the
core of the solution to that problem in such a way that you can use this solution a
million times over without ever doing it the same way twice.

Alexander’s comments are just as applicable to software design as they are to buildings and town
planning.

Origins
The origins of the design patterns that are prevalent in software architecture today were born from the
experiences and knowledge of programmers over many years of using object-oriented programming lan-
guages. A set of the most common patterns were catalogued in a book entitled Design Patterns: Elements
of Reusable Object-Oriented Software, more affectionately known as the Design Patterns Bible. This
book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, better known as
the Gang of Four.

They collected 23 design patterns and organized them into 3 groups:

Creational Patterns:➤➤ These deal with object construction and referencing.

Structural Patterns:➤➤ These deal with the relationships between objects and how they interact
with each other to form larger complex objects.

Behavioral Patterns:➤➤ These deal with the communication between objects, especially in terms
of responsibility and algorithms.

Each pattern is presented in a template so readers can learn how to decipher and apply the pattern.
We will be covering the practical knowledge necessary to use a design pattern template in Chapter 2
along with a brief overview of each pattern that we will be looking at in the rest of this book.

necessity
Patterns are essential to software design and development. They enable the expression of intent
through a shared vocabulary when problem solving at the design stage as well as within the source
code. Patterns promote the use of good object-oriented software design, as they are built around
solid object-oriented design principles.

292785c01.indd 4 8/23/10 12:00:49 PM

Design Patterns Explained ❘ 5

Patterns are an effective way to describe solutions to complex problems. With solid knowledge of
design patterns, you can communicate quickly and easily with other members of a team without
having to be concerned with the low-level implementation details.

Patterns are language agnostic; therefore, they are transferable over other object-oriented languages.
The knowledge you gain through learning patterns will serve you in any first-class object-oriented
language you decide to program in.

Usefulness
The useful and ultimate value of design patterns lies in the fact that they are tried and tested solu-
tions, which gives confidence in their effectiveness. If you are an experienced developer and have
been programming in .NET or another object-oriented language for a number of years, you might
find that you are already using some of the design patterns mentioned in the Gang of Four book.
However, by being able to identify the patterns you are using, you can communicate far more effec-
tively with other developers who, with an understanding of the patterns, will understand the structure
of your solution.

Design patterns are all about the reuse of solutions. All problems are not equal, of course, but if you can
break down a problem and find the similarities with problems that have been solved before, you can then
apply those solutions. After decades of object-oriented programming, most of the problems you’ll encoun-
ter will have been solved countless times before, and there will be a pattern available to assist in your
solution implementation. Even if you believe your problem to be unique, by breaking it down to its root
elements, you should be able to generalize it enough to find an appropriate solution.

The name of the design pattern is useful because it reflects its behavior and purpose and provides a
common vocabulary in solution brainstorming. It is far easier to talk in terms of a pattern name than
in detail about how an implementation of it would work.

What they are not
Design patterns are no silver bullet. You have to fully understand your problem, generalize it, and
then apply a pattern applicable to it. However, not all problems require a design pattern. It’s true
that design patterns can help make complex problems simple, but they can also make simple prob-
lems complex.

After reading a patterns book, many developers fall into the trap of trying to apply patterns to every-
thing they do, thus achieving quite the opposite of what patterns are all about — making things simple.
The better way to apply patterns, as stated before, is by identifying the fundamental problem you are
trying to solve and looking for a solution that fits it. This book will help with the identification of when
and how to use patterns and goes on to cover the implementation from an ASP.NET point of view.

You don’t always have to use design patterns. If you have arrived at a solution to a problem that is
simple but not simplistic and is clear and maintainable, don’t beat yourself up if it doesn’t fit into
one of the 23 Gang of Four design patterns. Otherwise, you will overcomplicate your design.

This talk of patterns might seem rather vague at the moment, but as you progress through the book,
you will learn about the types of problems each pattern was designed to solve and work through imple-
mentations of these patterns in ASP.NET. With this knowledge, you can then apply the patterns to your
applications.

292785c01.indd 5 8/23/10 12:00:49 PM

6 ❘ ChaPter 1 The PaTTern for SucceSSful aPPlicaTionS

DesIgn PrInCIPles

Design principles form the foundations that design patterns are built upon. They are more funda-
mental than design patterns. When you follow proven design principles, your code base becomes
infinitely more flexible and adaptable to change, as well as more maintainable. I will briefly intro-
duce you to some of the more widely known design principles and a series of principles known as the
S.O.L.I.D. principles. Later in the book we will look at these principles more deeply and implement
them and best practices in ASP.NET.

Common Design Principles
There are a number of common design principles that, like design patterns, have become best practice
over the years and helped to form a foundation onto which enterprise-level and maintainable software
can be built. The following sections preview some of the more widely known principles.

Keep It Simple Stupid (KISS)
An all-too-common issue in software programming is the need to overcomplicate a solution. The goal
of the KISS principle is concerned with the need to keep code simple but not simplistic, thus avoiding
any unnecessary complexities.

Don’t Repeat Yourself (DRY)
The DRY principle aims to avoiding repetition of any part of a system by abstracting out things that
are common and placing those things in a single location. This principle is not only concerned with
code but any logic that is duplicated in a system; ultimately there should only be one representation
for every piece of knowledge in a system.

Tell, Don’t Ask
The Tell, Don’t Ask principle is closely aligned with encapsulation and the assigning of responsi-
bilities to their correct classes. The principle states that you should to tell objects what actions you
want them to perform rather than asking questions about the state of the object and then making
a decision yourself on what action you want to perform. This helps to align the responsibilities and
avoid tight coupling between classes.

You Ain’t Gonna Need It (YAGNI)
The YAGNI principle refers to the need to only include functionality that is necessary for the applica-
tion and put off any temptation to add other features that you may think you need. A design meth-
odology that adheres to YAGNI is test-driven development (TDD). TDD is all about writing tests
that prove the functionality of a system and then writing only the code to get the test to pass. TDD is
discussed a little later in this chapter.

Separation of Concerns (SoC)
SoC is the process of dissecting a piece of software into distinct features that encapsulate unique behav-
ior and data that can be used by other classes. Generally, a concern represents a feature or behavior of

292785c01.indd 6 8/23/10 12:00:49 PM

Design Principles ❘ 7

a class. The act of separating a program into discrete responsibilities significantly increases code reuse,
maintenance, and testability.

The remainder of this book refers back to these principles so you can see how they are implemented
and help form clean and maintainable object-oriented systems. The next group of design principles
you will look at were collected together under the grouping of the S.O.L.I.D. design principles.

the s.O.l.I.D. Design Principles
The S.O.L.I.D. design principles are a collection of best practices for object-oriented design. All
of the Gang of Four design patterns adhere to these principles in one form or another. The term
S.O.L.I.D. comes from the initial letter of each of the five principles that were collected in the book
Agile Principles, Patterns, and Practices in C# by Robert C. Martin, or Uncle Bob to his friends.
The following sections look at each one in turn.

Single Responsibility Principle (SRP)
The principle of SRP is closely aligned with SoC. It states that every object should only have one
reason to change and a single focus of responsibility. By adhering to this principle, you avoid the
problem of monolithic class design that is the software equivalent of a Swiss army knife. By having
concise objects, you again increase the readability and maintenance of a system.

Open-Closed Principle (OCP)
The OCP states that classes should be open for extension and closed for modification, in that you
should be able to add new features and extend a class without changing its internal behavior. The
principle strives to avoid breaking the existing class and other classes that depend on it, which
would create a ripple effect of bugs and errors throughout your application.

Liskov Substitution Principle (LSP)
The LSP dictates that you should be able to use any derived class in place of a parent class and have it
behave in the same manner without modification. This principle is in line with OCP in that it ensures
that a derived class does not affect the behavior of a parent class, or, put another way, derived classes
must be substitutable for their base classes.

Interface Segregation Principle (ISP)
The ISP is all about splitting the methods of a contract into groups of responsibility and assigning
interfaces to these groups to prevent a client from needing to implement one large interface and a
host of methods that they do not use. The purpose behind this is so that classes wanting to use the
same interfaces only need to implement a specific set of methods as opposed to a monolithic inter-
face of methods.

Dependency Inversion Principle (DIP)
The DIP is all about isolating your classes from concrete implementations and having them depend on
abstract classes or interfaces. It promotes the mantra of coding to an interface rather than an imple-
mentation, which increases flexibility within a system by ensuring you are not tightly coupled to one
implementation.

292785c01.indd 7 8/23/10 12:00:49 PM

8 ❘ ChaPter 1 The PaTTern for SucceSSful aPPlicaTionS

Dependency Injection (DI) and Inversion of Control (IoC)
Closely linked to the DIP are the DI principle and the IOC principle. DI is the act of supplying a low
level or dependent class via a constructor, method, or property. Used in conjunction with DI, these
dependent classes can be inverted to interfaces or abstract classes that will lead to loosely coupled
systems that are highly testable and easy to change.

In IoC, a system’s flow of control is inverted compared to procedural programming. An example of
this is an IoC container, whose purpose is to inject services into client code without having the client
code specifying the concrete implementation. The control in this instance that is being inverted is the
act of the client obtaining the service.

Throughout this book, you will examine each of the S.O.L.I.D. principles in more detail. Next, how-
ever, you will investigate some enterprise-level patterns designed to deal with specific scenarios that
are built upon common design principles and design patterns.

FOWler’s enterPrIse DesIgn Patterns

Martin Fowler’s Patterns of Enterprise Application Architecture book is a best practice and pat-
terns reference for building enterprise-level applications. As with the GoF patterns book, experienced
developers will no doubt already be following many of the catalogued patterns. The value in Fowler’s
work, however, is the categorization of these patterns along with a common language for describing
them. The book is split into two sections. The first half deals with n-tier applications and the organiz-
ing of data access, middleware, and presentation layers. The second half is a patterns reference rather
like the GoF patterns book but more implementation specific.

Throughout this book, you will be looking at the ASP.NET implementations of Fowler’s patterns.
The following sections examine what the rest of the book will tackle.

layering
Chapter 3 covers the options at your disposal to layer an enterprise ASP.NET application. You will
look at the problems with the traditional code behind the model of web forms, and how to separate
the concerns of presentation, business logic, and data access with a traditional layered approach.

Domain logic Patterns
Chapter 4 examines three popular methods for organizing your business logic: Transaction Script,
Active Record, and Domain Model.

Transaction Script
Transaction Script is the organization of business logic in a linear, procedural fashion. It maps fine-
grained business use cases to fine-grained methods.

Active Record
Active Record organizes business logic in a way that closely matches the underlying data structure,
namely an object that represents a row in a table.

292785c01.indd 8 8/23/10 12:00:49 PM

Fowler’s Enterprise Design Patterns ❘ 9

Domain Model
The Domain Model pattern is an abstraction of real domain objects. Both data and behavior are
modeled. Complex relationships between objects can exist that match the real domain.

You will look at how to use each of these patterns in ASP.NET and when it is appropriate to choose
one pattern over another.

Object relational Mapping
In Chapter 7 your attention will turn to how you can persist the state of our business entities as well
as how you can retrieve them from a data store. You will look at the enterprise patterns required for
the infrastructure code to support persistence, including the patterns introduced in the following
sections.

Unit of Work
The Unit of Work pattern is designed to maintain a list of business objects that have been changed
by a business transaction, whether that be adding, removing, or updating. The Unit of Work then
coordinates the persistence of the changes as one atomic action. If there are problems, the entire
transaction rolls back.

Repository
The Repository pattern, by and large, is used with logical collections of objects, or aggregates as they
are better known. It acts as an in-memory collection or repository for business entities, completely
abstracting away the underlying data infrastructure.

Data Mapper
The Data Mapper pattern is used to hydrate an object from raw data and transfer information from
a business object to a database. Neither the business object nor the database is aware of the other.

Identity Map
An Identity Map keeps tabs on every object loaded from a database, ensuring everything is loaded
only once. When objects are subsequently requested, the Identity Map is checked before retrieving
from the database.

Lazy Loading
Lazy or deferred loading is the act of deferring the process of obtaining a resource until it’s needed.
If you imagine a Customer object with an address book, you could hydrate the customer from the
database but hold the population of the address book until the address book is needed. This enables
the on-demand loading of the address book, thus avoiding the hit to the database if the address data
is never needed.

Query Object
The Query Object pattern is an implementation of a Gang of Four interpreter design pattern. The query
object acts as an object-oriented query that is abstracted from the underlying database, referring to

292785c01.indd 9 8/23/10 12:00:49 PM

10 ❘ ChaPter 1 The PaTTern for SucceSSful aPPlicaTionS

properties and classes rather than real tables and columns. Typically, you will also have a translator
object to generate the native SQL to query the database.

Web Presentation Patterns
In Chapter 8, you will turn your attention to the presentation needs of enterprise-level ASP.NET appli-
cations. The chapter focuses on patterns designed to keep business logic separate from presentation
logic. First you will look at the problems with the code behind model that was prominent in early web
forms development; then you will investigate patterns that can be used to keep domain and presenta-
tion logic separate, as well as allowing the presentation layer to be effectively tested.

Each of these patterns is tasked with separating the concerns of presentation logic with that of busi-
ness logic. The patterns covered for ASP.NET presentation needs are:

Model-View-Presenter➤➤

Model-View-Controller➤➤

Front Controller➤➤

Page Controller➤➤

Base, Behavioral, and structural Patterns
Throughout the book, you will be seeing how to leverage other enterprise patterns found in Fowler’s
book in enterprise ASP.NET applications. These patterns will include Null Object, Separated
Interface, Registry, and Gateway.

Null Object Pattern
Also known as the Special Case pattern, this acts as a return value rather than returning null to
the calling code. The null object will share the same interface or inherit from the same base class
as the expected result, which alleviates the need to check for null cases throughout the code base.

Separated Interface
The Separated Interface pattern is the act of keeping the interfaces in a separate assembly or namespace
to the implementations. This ensures that the client is completely unaware of the concrete implementa-
tions and can promote programming to abstractions rather than implementations and the Dependency
Inversion principle.

Gateway
The Gateway pattern allows clients to access complex resources via a simplified interface. The Gateway
object basically wraps the resource API into a single method call that can be used anywhere in the
application. It also hides any API complexities.

All of the enterprise patterns introduced here will be covered in more detail throughout the book
with exercises to see how they are implemented in an ASP.NET scenario. The next section wraps up
the chapter with a brief look at design methodologies and practices that use the patterns and prin-
ciples you have been introduced to in this chapter.

292785c01.indd 10 8/23/10 12:00:49 PM

Other Design Practices of Note ❘ 11

Other DesIgn PraCtICes OF nOte

In addition to the design patterns, principles, and enterprise patterns that have been covered so far, I
would like to introduce you to a few design methodologies: test-driven development, behavior-driven
development, and domain-driven development. This section won’t cover these topics deeply because
they are out of the scope of this book. However, the sample code featured in each of the chapters to
demonstrate patterns and principles that you can download from www.wrox.com has been designed
using these methodologies.

test-driven Development (tDD)
Contrary to the name, TDD is more of a design methodology than a testing strategy; the name simply
just doesn’t do it justice. The main concept behind it is to allow your tests to shape the design of a sys-
tem. When creating a software solution you start by writing a failing test to assert some business logic.
Then you write the code to get that test to pass; last, you clean up any code via refactoring. This series
of steps has been coined the red-green-refactor. The red and green refer to the colors that testing frame-
works use to show tests passing and failing.

By going through the process of TDD, you end up with a loosely coupled system with a suite of tests
that confirm all behavior. A byproduct of TDD is that your tests provide a sort of living documenta-
tion that describes what your system can and can’t do. Because it is part of the system, the tests will
never go out of date, unlike written documentation and code comments.

For more information on TDD, take a look at these books:

Test Driven Development: By Example ➤➤ by Kent Beck

The Art of Unit Testing: With Examples in .NET➤➤ by Roy Osherove

Professional Enterprise .NET ➤➤ by Jon Arking and Scott Millett (published by Wrox)

Domain-driven Design (DDD)
In a nutshell, DDD is a collection of patterns and principles that aid in your efforts to build applica-
tions that reflect an understanding of and meet the requirements of your business. Outside of that, it’s
a whole new way of thinking about your development methodology. DDD is about modeling the real
domain by fully understanding it first and then placing all the terminology, rules, and logic into an
abstract representation within your code, typically in the form of a domain model. DDD is not a frame-
work, but it does have a set of building blocks or concepts that you can incorporate into your solution.

You’ll use this methodology when you build the case study application in Chapters 10 and 11. Some
of the deeper aspects of DDD are examined in Chapter 4.

For more information on DDD, take a look at these books:

Domain-Driven Design: Tackling Complexity in the Heart of Software➤➤ by Eric Evans

Applying Domain-Driven Design and Patterns: With Examples in C# and .NET➤➤ by Jimmy
Nilsson

.NET Domain-Driven Design with C#: Problem - Design - Solution➤➤ by Tim McCarthy

292785c01.indd 11 8/23/10 12:00:49 PM

12 ❘ ChaPter 1 The PaTTern for SucceSSful aPPlicaTionS

Behavior-driven Design (BDD)
You can think of BDD as an evolution of TDD merged with DDD. BDD focuses on the behavior of a
system rather than just testing it. The specifications created when using BDD use the same ubiquitous
language as seen in the real domain, which can be beneficial for both technical and business users.

The documentation that is produced when writing specifications in BDD gives readers an idea of how
a system will behave in various scenarios instead of simply verifying that methods are doing what they
are supposed to. BDD is intended to meet the needs of both business and technical users by mixing in
aspects of DDD with core TDD concepts. BDD can be performed using standard unit testing frame-
works, but specific BDD frameworks have emerged, and BDD looks to be the next big thing.

Again, if you download from www.wrox.com the code for the case study you will build in Chapters 10 and
11, you will find BDD specifications written to demonstrate the behavior of the system. Unfortunately, at
the time of writing, there were no books on the subject of BDD. Therefore, my advice is to search for as
much information on the Internet as possible on this great methodology.

sUMMary

In this chapter, you were introduced to a series of design patterns, principles, and enterprise patterns
that can be leveraged in ASP.NET applications.

The Gang of Four patterns are 23 patterns catalogued into a book known as the ➤➤ Design Patterns
Bible. These design patterns are solution templates to common recurring problems. They can also
be used as a shared vocabulary in teams when discussing complex problems.

Robert Martin’s S.O.L.I.D. design principles form the foundations to which many design ➤➤

patterns adhere. These principles are intended to promote object-oriented systems that are
loosely coupled, highly maintainable, and adaptable to change.

Fowler’s enterprise patterns are designed to be leveraged in enterprise-level applications. They ➤➤

include patterns to organize business logic, patterns to organize presentation logic, patterns to
organize data access, as well as a host of base patterns that you can use throughout a system.

The introduction to these patterns and principles has been fairly high level, but as you progress
through the book, you will find a deeper explanation of all of the concepts discussed in this chapter,
and ASP.NET implementations from real-world scenarios that you can hopefully relate to and apply
in your systems to solve problems.

The next chapter takes a closer look at the Gang of Four patterns that will be covered in this book.
You will be introduced to the practical knowledge necessary to use a design pattern template and
how to read a pattern.

292785c01.indd 12 8/23/10 12:00:50 PM

