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1.1 INTRODUCTION

The aim of inductive machine learning (ML) is to generate models that can
make predictions from analysis of data sets. These data sets consist of a number
of instances or examples, each example described by a set of attributes. It is
known that the quality or relevance of the attributes of a data set is a key issue
when trying to obtain models with a satisfactory level of generalization. There
are many techniques of feature extraction, construction, and selection [1] that
try to improve the representation of data sets, thus increasing the prediction
capabilities of traditional ML algorithms. These techniques work by filtering
nonrelevant attributes or by recombining the original attributes into higher-quality
ones. Some of these techniques were created in an automatic way by means of
genetic programming (GP).

GP is an evolutionary technique for evolving symbolic programs [2]. Most
research has focused on evolving functional expressions, but the use of loops
and recursion has also been considered [3]. Evolving circuits are also among the
successes of GP [4]. In this work we present a method for attribute generation
based on GP called the GPPE (genetic programming projection engine). Our
aim is to evolve symbolic mathematical expressions that are able to transform
data sets by representing data on a new space, with a new set of attributes
created by GP. The goal of the transformation is to be able to obtain higher
accuracy in the target space than in the original space. The dimensions of the
new data space can be equal to, larger, or smaller than those of the original.
Thus, we also intend that GPPE be used as a dimension reduction technique as
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well as creating highly predictive attributes. Although GPPE can either increase
or reduce dimensionality, the work presented in this chapter focuses on reducing
the number of dimensions dramatically while attempting to improve, or at least
maintain, the accuracy obtained using the original data.

In the case of dimension reduction, the newly created attributes should contain
all the information present in the original attributes, but in a more compact way.
To force the creation of a few attributes with a high information content, we
have established that the data in the projected space must follow a nearly linear
path. To test GPPE for dimensionality reduction, we have applied it to two types
of data mining domains: classification and regression. In classification, linear
behavior will be measured by a fast classification algorithm based on selecting
the nearest class centroid. In regression, linear behavior will be determined by
simple linear regression in the projected space.

GP is very suitable for generating feature extractors, and some work has been
done in this field. In the following section we overview briefly some approaches
proposed in the literature. Then, in Section 1.4 we focus on GPPE, which can
be used in both the classification and regression domains, and we show some
experimental results in Section 1.5. We finish with our conclusions and some
suggestions for future work.

1.2 BACKGROUND

There are many different constructive induction algorithms, using a wide variety
of approaches. Liu et al. [1] provide a good starting point for the exploration of
research into feature extraction, construction, and selection. Their book compiles
contributions from researchers in this field and offers a very interesting general
view. Here we discuss only works that use GP or any other evolutionary strategy,
and we focus on those that are among the most interesting for us because they
bear some resemblance to GPPE.

Otero et al. [5] use typed GP for building feature extractors. The functions
are arithmetic and relational operators, and the terminals are the original (con-
tinuous) attributes of the original data set. Each individual is an attribute, and
the fitness function uses the information gain ratio. Testing results using C4.5
show some improvements in some UCI domains. In Krawiec’s work [6], each
individual contains several subtrees, one per feature. C4.5 is used to classify
in feature space. Their work allows us to cross over subtrees from different
features.

Shafti and Pérez [7] discuss the importance of applying GA as a global search
strategy for constructive induction (CI) methods and the advantages of using these
strategies instead of using classic greedy methods. They also present MFE2/GA,
a CI method that uses GA to search through the space of different combination
of attribute subsets and functions defined over them. MFE2/GA uses a nonalge-
braic form of representation to extract complex interactions between the original
attributes of the problem.
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Kuscu [8] introduced the GCI system. GCI is a CI method based on GP. It
is similar to GPPE in the sense that it uses basic arithmetic operators and the
fitness is computed measuring the performance of an ML algorithm (a quick-prop
net) using the attributes generated. However, each individual represents a new
attribute instead of a new attribute set. In this way, GCI can only generate new
attributes that are added to the original ones, thus increasing the dimensionality of
the problem. The possibility of reducing the number of attributes of the problem
is mentioned only as possible and very interesting future work.

Hu [9] introduced another CI method based on GP: GPCI. As in GCI, in
GPCI each individual represents a newly generated attribute. The fitness of an
individual is evaluated by combining two functions: an absolute measure and a
relative measure. The absolute measure evaluates the quality of a new attribute
using a gain ratio. The relative measure evaluates the improvement of the attribute
over its parents. A function set is formed by two Boolean operators: AND and
NOT. GPCI is applied to 12 UCI domains and compared with two other CI
methods, achieving some competitive results.

Howley and Madden [10] used GP to evolve kernels for support vector
machines. Both scalar and vector operations are used in the function set. Fitness
is computed from SVM performance using a GP-evolved kernel. The hyperplane
margin is used as a tiebreaker to avoid overfitting. Although evolved kernels are
not forced by the fitness function to satisfy standard properties (such as Mercer’s
property) and therefore the evolved individuals are not proper kernels, results
in the testing data sets are very good compared to those of standard kernels.
We believe that evolving proper distance functions or kernels is difficult because
some properties (such as transitivity or Mercer’s property) are not easy to impose
on the fitness computation.

Eads et al. [11] used GP to construct features to classify time series. Indi-
viduals were made of several subtrees returning scalars (one per feature). The
function set contained typical signal-processing primitives (e.g., convolution),
together with statistical and arithmetic operations. SVM was then used for clas-
sification in feature space. Cross-validation on training data was used as a fitness
function. The system did not outperform the SVM, but managed to reduce dimen-
sionality. This means that it constructed good features to classify time series.
However, only some specific time series domains have been tested. Similarly,
Harvey et al. [12] and Szymanski et al. [13] assemble image-processing prim-
itives (e.g., edge detectors) to extract multiple features from the same scene to
classify terrains containing objects of interest (i.e., golf courses, forests, etc.).
Linear fixed-length representations are used for the GP trees. A Fisher linear
discriminant is used for fitness computation. Results are quite encouraging but
are restricted to image-processing domains.

Results from the literature show that, in general, the GP projection approach
has merit and obtains reasonable results, but that more research is needed. New
variations of the idea and more domains should be tested. Regression problems
are not considered in any of the works reviewed, and we believe that a lot more
research on this topic is also needed.
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1.3 DOMAINS

In this chapter we are interested in applying GPPE to two classical prediction
tasks: classification and regression. We have used bankruptcy prediction as the
classification domain and IPO underpricing prediction as the regression domain.

1.3.1 Bankruptcy Prediction

In general terms, the bankruptcy prediction problem attempts to determine the
financial health of a company, and whether or not it will soon collapse. In this
chapter we use a data set provided and described by Vieira et al. [14]. This data
set studies the influence of several financial and economical variables on the
financial health of a company. It includes data on 1158 companies, half of which
are in a bankruptcy situation (class 0) and the rest of which have good financial
health (class 1). Companies are characterized by 40 numerical attributes [14].
For validation purposes we have divided the data set into a training set and a test
set, containing 766 (64%) and 400 (36%) instances, respectively.

1.3.2 IPO Underpricing Prediction

IPO underpricing is an interesting and important phenomenon in the stock market.
The academic literature has long documented the existence of important price
gains in the first trading day of initial public offerings (IPOs). That is, there is
usually a big difference between the offering price and the closing price at the
end of the first trading day. In this chapter we have used a data set composed
of 1000 companies entering the U.S. stock market for the first time, between
April 1996 and November 1999 [15]. Each company is characterized by seven
explicative variables: underwriter prestige, price range width, price adjustment,
offer price, retained stock, offer size, and relation to the tech sector. The target
variable is a real number which measures the profits that could be obtained by
purchasing the shares at the offering price and selling them soon after dealing
begins. For validation purposes we have divided the data set into a training set
and a test set, containing 800 (80%) and 200 (20%) instances, respectively.

1.4 ALGORITHMIC PROPOSAL

In this section we describe the genetic programming projection engine (GPPE).
GPPE is based on GP. Only a brief summary of GP is provided here. The reader
is encouraged to consult Koza’s book [2] for more information.

GP has three main elements:

1. A population of individuals, in this case, computer programs

2. A fitness function, used to measure the goodness of the computer program
represented by the individual
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3. A set of genetic operators, the basic operators being reproduction, mutation,
and crossover

The GP algorithm enters into a cycle of fitness evaluation and genetic oper-
ator application, producing consecutive generations of populations of computer
programs, until a stopping criterion is satisfied. Usually, GP is stopped when
an optimal individual is found or when a time limit is reached. Every genetic
operator has the probability of being applied each time we need to generate an
offspring individual for the next generation. Also, GP has many other parameters,
the most important ones being the size of the population (M ) and the maximum
number of generations (G).

GPPE is a GP-based system for computing data projections with the aim of
improving prediction accuracy in prediction tasks (classification and regression).
The training data E belong to an N -dimensional space U , which will be projected
into a new P -dimensional space V . In classification problems the goal of the
projection is that classification becomes easier in the new space V . By “easier”
we mean that data in the new space V are as close to linear separability as
possible. Similarly, in regression problems the aim is to project data so that they
can be approximated by a linear regression. To include both cases, we will talk
about linear behavior. P can be larger, equal to, or smaller than N . In the latter
case, in addition to improving prediction, we would also reduce the number of
dimensions.

GPPE uses standard GP to evolve individuals made of P subtrees (as many
as the number of dimensions of the projected space V ). Fitness of individuals
is computed by measuring the degree of linear behavior of data in the space
projected by using the individual as a projection function from U to V . The
system stops if 100% linear behavior has been achieved (i.e., a 100% classifi-
cation rate or 0.0 error in regression) or if the maximum number of generations
is reached. Otherwise, the system outputs the highest-fitness individual (i.e., the
most accurate individual on the training data). Algorithm 1.1 displays pseudocode
for GPPE operation. For the implementation of our application, we have used
Lilgp 1.1, a software package for GP developed at Michigan State University by
Douglas Zongker and Bill Punch.

Next, we describe the main GPPE elements found in all GP-based systems:
the terminal and function set for the GP individuals, the structure of the GP
individuals themselves, and the fitness function.

1.4.1 Terminal and Function Set

The terminal and function set is composed of the variables, constants, and
functions required to represent mathematical projections of data. For instance,
(v0, v1) = (3 ∗ u0 + u1, u

2
2) is a projection from three to two dimensions com-

prising the following functions and terminals:

functions = {+, ∗,2 }
terminals = {3, u0, u1, u2, 2}
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Algorithm 1.1 Pseudocode for GPPE Operation

P = Initial population made of random projections;
generation = 0; stopCondition = FALSE;
while (generation<maxGenerations) AND (NOT stopCondition) do
for each projection p∈P do
fp = fitness(p);
if (fp = perfectFitness) then stopCondition = TRUE;

end for
P′ = geneticOperatorsApplication(P, f);
P = P′;
generation = generation+1;

end while

The set of functions and terminals is not easy to determine: It must be sufficient
to express the problem solution. But if the set is too large, it will increase the
search space unnecessarily. In practice, different domains will require different
function and terminal sets, which have to be chosen by the programmer. We
consider this to be an advantage of GP over other methods with fixed primitives
because it allows us to insert some domain knowledge into the learning process.
At this point in our research, we have tested some generic sets appropriate for
numerical attributes. In the future we will analyze the domains to determine
which terminals and functions are more suitable.

This generic terminal set contains the attributes of the problem expressed in
coordinates of U (u0, u1, . . . , uN ), and the ephemeral random constants (ERCs).
An ERC is equivalent to an infinite terminal set of real numbers. The generic
functions we have used in GPPE so far are the basic arithmetical functions
+, −, *, and /, and the square and square root. We have judged them to be
sufficient to represent numerical projections, and experimental data have shown
good results.

1.4.2 Individuals

Projections can be expressed as

(v0 · · · vP ) = (f1(u0 · · · uN), . . . , fP (u0 · · · uN))

To represent them, individuals are made of P subtrees. Every subtree number i
represents function f i , which corresponds to coordinate vi in the target space.
All subtrees use the same set of functions and terminals.

1.4.3 Fitness Function

The fitness function evaluates an individual by projecting the original data and
determining the degree of linear behavior in the target space. For this task we
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designed two different fitness functions: one for classification problems and one
for regression problems.

Classification The classification fitness function uses a centroid-based classi-
fier. This classifier takes the projected data and calculates a centroid for each class.
Centroids are the centers of mass (baricenters) of the examples belonging to each
class. Therefore, there will be as many centroids as classes. The centroid-based
classifier assigns to every instance the class of the nearest centroid.

This function tries to exert a selective pressure on the projections that forces
every instance belonging to the same class to get close. The great advantage of
this function is that it is fast and simple. We call this function CENTROIDS.

To avoid overfitting, fitness is actually computed using cross-validation on the
training data. That is, in every cross-validation cycle the centroids-based classifier
is trained on some of the training data and tested on the remaining training data.
Training the centroids means computing the baricenters, and testing them means
using them to classify the part of the training data reserved for testing. The final
fitness is the average of all the cross-validation testing results.

Regression In this case, linear behavior is defined as data fitting a hyperplane,
so in this case, the goal is to adjust projected data to a hyperplane as closely
as possible. For the regression tasks, a simple linear regression algorithm is
used to compute fitness. More precisely, the fitness is the error produced by the
linear regression on the projected data. This error is measured by the normalized
mean-square error (NMSE).

1.5 EXPERIMENTAL ANALYSIS

In this section we test GPPE in the classification and regression domains,
described in Section 1.3. We want to show that GPPE can help in both tasks.
We have executed 100 GP runs in both the classification domain (bankruptcy
prediction) and the regression domain (IPO underpricing prediction), each with
the parameters displayed in Table 1.1. They were found empirically by running
GPPE five times on each domain. The fitness function CENTROIDS was used in
the classification domain, and REGRESSION in the regression domain. Tenfold
cross-validation was used to compute the training fitness, to avoid overfitting
the training data.

Every GP run involves running GPPE on the same problem but with a different
random seed. However, typical use of GP involves running the GP engine several
times and selecting the best individual according to its training fitness. We have
simulated this procedure by using bootstrapping [16] on these 100 samples, as
follows:

• Repeat B times:

• Select R samples from the 100 elements data set.
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TABLE 1.1 Common GPPE Parameters for Both
Experimentation Domains

Parameter Value

Max. generations (G) 100
Population size (M ) 500 (bankruptcy)/5000 (IPO)
Max. nodes per tree 75
Initialization method Half and half
Initialization depth 2–6
Number of genetic operators 3

Genetic operator 1 Reproduction rate = 15%
Selection = fitness proportion

Genetic operator 2 Crossover rate = 80%
Selection = tournament
Tournament size = 4

Genetic operator 3 Mutation selection = tournament
Tournament size = 2

• From the set of R samples, select the best sample i , according to its
training fitness.

• Return the accuracy of i , according to the test set.

In this case, B = 100 and R = 5. This means that we have simulated 100
times the procedure of running GPPE five times and selecting the best individual
according to its training fitness. In both the classification and regression domains,
the resulting bootstrapping distributions follow a normal distribution, according
to a Kolmogorov–Smirnov test, with p < 0.01. Table 1.2 displays the average,
standard deviation, and median values for the bootstrapping distribution on the
test set.

To determine whether GPPE projections generate descriptive attributes and
improve results over those of the original data set, we have used several
well-known machine learning algorithms (MLAs) for both domains before and
after projecting the data. We have chosen the best-performing GPPE individuals
according to their training fitness (individuals e95 from the classification domain
and e22 from the regression domain). e95 obtained a training fitness of 81.33%
and a test fitness of 80.00%; e22 obtained a training NMSE of 0.59868 and a

TABLE 1.2 Average and Median Values of the
Bootstrapping Distribution for B = 100 and R = 5

Average Median

Classification domain 79.05 ± 1.01 78.88
Regression domain 0.864084 ± 0.02 0.861467
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TABLE 1.3 Comparison of MLA Performance Using Original and Projected Data

Classification Domain

MLP SMO Simple Logistics RBF Network

Original 78.50 79.25 61.75 72.75
Proj. by e95 80.75 80.25 80.25 72.75
PCA var. = 0.95 76.25 80.25 79.75 73.25

Regression Domain

Linear Reg. Simp. Lin. Reg. Least Med. Sq. Additive Reg.

Original 0.878816 0.932780 1.056546 0.884140
Proj. by e22 0.838715 0.837349 1.012531 0.851886
PCA var. = 0.95 0.904745 0.932780 1.061460 0.899076

test NMSE of 0.844891. Multilayer perceptron [17], support vector machine
(SMO) [18], simple logistics [19], and a radial basis function network [20] were
applied to the projected and unprojected data in the classification domain. The
same process was carried out for the regression data, with linear regression,
simple linear regression [19], least median square [21], and additive regression
[19]. Table 1.3 displays these results, which were computed using the training
and test sets described in Section 1.3 (they are the same sets on which GPPE
was run). To compare with a commonly used projection algorithm, Table 1.3
also shows the accuracy of the same algorithms with data preprocessed by
principal component analysis (PCA) with a variance of 0.95.

Table 1.3 highlights those values where projecting the data yields better results
than for the same algorithm working on unprojected data. In both domains,
classification and regression accuracy improve by projecting the data, even when
PCA is applied. Unfortunately, the differences in Table 1.3 are not statistically
significant (according to a t-test with 0.05 confidence). Even so, it must be
noted that GPPE reduced the number of attributes of the problem from 40 to
only 3 in the classification domain, and from 8 to 3 in the regression domain.
PCA generated 26 and 6 attributes on the classification and regression domains,
respectively.

1.6 CONCLUSIONS

Inductive ML algorithms are able to learn from a data set of past cases of a
problem. They try to extract the patterns that identify similar instances and use
this experience to forecast unseen cases. It is clear that the prediction rate is
affected enormously by the quality of the attributes of the data set. To obtain
higher-quality attributes, researchers and practitioners often use feature extraction
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methods, which can filter, wrap, or transform the original attributes, facilitating
the learning process and improving the prediction rate.

Some work has been dedicated to implementing a GP system that can produce
ad hoc feature extractors for each problem, as explained in Section 1.2. In this
chapter we present our own contribution: GPPE, a genetic programming–based
method to project a data set into a new data space, with the aim of performing
better in data mining tasks. More specifically, in this work we focus on reducing
dimensionality while trying to maintain or increase prediction accuracy. GPPE
has been tested in the classification and regression domains. Results show that:

• GPPE is able to reduce dimensionality dramatically (from 40 to 3 in one of
the domains).

• Attributes created by GPPE enforce nearly linear behavior on the trans-
formed space and therefore facilitate classification and regression in the
new space.

• Different learning algorithms can also benefit from the new attributes gen-
erated by GPPE.

In the future we would like to test GPPE on more complex domains with a
large number of low-level attributes. For instance, image recognition tasks where
attributes are individual pixels would be very appropriate. Classifying biologi-
cal data involving multiple time series, including, for example, heart rate, EEG,
and galvanic skin response, may also be a candidate domain. Such specialized
domains might require specialized primitives (e.g., averages, summations, deriva-
tives, filters). GP has the advantage that any primitive whatsoever can be utilized
by adding it into the function set. We believe that in these domains, our projection
strategy will be able to improve accuracy in addition to reducing dimensionality.

We have also compared the results obtained by PCA with those obtained by
GPPE, but these two techniques are in no way in competition. On the contrary,
in the future we want to use PCA to filter irrelevant attributes, thus reducing the
GPPE search space and possibly improving its results.

Automatically defined functions (ADFs) are considered as a good way to
improve the performance and optimization capabilities of GP. They are indepen-
dent subtrees that can be called from the main subtree of a GP individual, just
like any other function. The main subtree plays the same part in a GP individ-
ual as in the main function of a C program. ADFs evolve separately and work
as subroutines that main subtrees can call during execution of the individual. It
could be very interesting in the future to study the impact of ADFs in GPPE
performance. We think that this could improve the generalization power of our
method.
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