
1

1
 INTRODUCTION

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 In many ways, managing a large computer programming project is like managing any
other large undertaking — in more ways than most programmers believe. But in many
other ways it is different — in more ways than most professional managers expect. 1

 — Fred Brooks

 1.1 INTRODUCTION TO SOFTWARE PROJECT MANAGEMENT

 When you become (or perhaps already are) the manager of a software project you
will fi nd that experience to be one of the most challenging and most rewarding
endeavors of your career. You, as a project manager, will be (or are) responsible for
(1) delivering an acceptable product, (2) on the specifi ed delivery date, and (3)
within the constraints of the specifi ed budget, resources, and technology. In return
you will have, or should have, authority to use the resources available to you in the
ways you think best to achieve the project objectives within the constraints of
acceptable product, delivery date, and budget, resources, and technology.

 Unfortunately, software projects have the (often deserved) reputation of costing
more than estimated, taking longer than planned, and delivering less in quantity and
quality of product than expected or required. Avoiding this stereotypical situation
is the challenge of managing and leading software projects.

 There are four fundamental activities that you must accomplish if you are to be
a successful project manager:

 1 The Mythical Man - Month, Anniversary Edition , Frederick P. Brooks Jr., Addison Wesley, 1995; p. x.

CO
PYRIG

HTED
 M

ATERIA
L

2 INTRODUCTION

 1. planning and estimating,
 2. measuring and controlling,
 3. communicating, coordinating, and leading, and
 4. managing risk.

 These are the major themes of this text.

 1.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises, you should understand:

 • why managing and leading software projects is diffi cult,
 • the nature of project constraints,
 • a workfl ow model for software projects,
 • the work products of software projects,
 • the organizational context of software projects,
 • organizing a software development team,
 • maintaining the project vision and product goals, and
 • the nature of process frameworks, software engineering standards, and process

guidelines.

 Appendix 1A to this chapter provides an introduction to elements of the following
frameworks, standards, and guidelines that are concerned with managing software
projects: the SEI Capability Maturity Model ® Integration CMMI - DEV - v1.2, ISO/
IEC and IEEE/EIA Standards 12207, IEEE/EIA Standard 1058, and the Project
Management Body of Knowledge (PMBOK ®). Terms used in this chapter and
throughout this text are defi ned in a glossary at the end of the text. Presentation
slides for this chapter and other supporting material are available at the URL listed
in the Preface.

 1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS
IS DIFFICULT

 A project is a group of coordinated activities conducted within a specifi c time frame
for the purpose of achieving specifi ed objectives. Some projects are personal in
nature, for example, building a dog house or painting a bedroom. Other projects
are conducted by organizations. The focus of this text is on projects conducted
within software organizations. In a general sense, all organizational projects are
similar:

 • objectives must be specifi ed,
 • a schedule of activities must be planned,
 • resources allocated,
 • responsibilities assigned,

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 3

 • work activities coordinated,
 • progress monitored,
 • communication maintained,
 • risk factors identifi ed and confronted, and
 • corrective actions applied as necessary.

 In a specifi c sense, the methods, tools, and techniques used to manage a project
depend on the nature of the work to be accomplished and the work products to be
produced. Manufacturing projects are different from construction projects, which
are different from agricultural projects, which are different from computer hardware
projects, which are different from software engineering projects, and so on. Each
kind of project, including software projects, adapts and tailors the general proce-
dures of project management to accommodate the unique aspects of the develop-
ment processes and the nature of the product to be developed.

 Fred Brooks has famously observed that four essential properties of software
differentiate it from other kinds of engineering artifacts and make software projects
diffi cult 2 :

 1. complexity,
 2. conformity,
 3. changeability, and
 4. invisibility of software.

 1.3.1 Software Complexity

 Software is more complex, for the effort and the expense required to construct it,
than most artifacts produced by human endeavor. Assuming it costs $ 50 (USD) per
line of code to construct a one - million line program (specify, design, implement,
verify, validate, and deliver it), the resulting cost will be $ 50,000,000. While this is a
large sum of money, it is a small fraction of the cost of constructing a complex
spacecraft, a skyscraper, or a naval aircraft carrier.

 Brooks says, “ Software entities are more complex for their size [emphasis added]
than perhaps any other human construct, because no two parts are alike (at least
above the statement level). ” 3 It is diffi cult to visualize the size of a software program
because software has no physical attributes; however, if one were to print a one -
 million line program the stack of paper would be about 10 feet (roughly 3 meters)
high if the program were printed 50 lines per page. The printout would occupy a
volume of about 6.5 cubic feet. Biological entities such as human beings are of
similar volume and they are far more complex than computer software, but there
are few, if any, human - made artifacts of comparable size that are as complex as
software.

 The complexity of software arises from the large number of unique, interacting
parts in a software system. The parts are unique because, for the most part, they are
encapsulated as functions, subroutines, or objects and invoked as needed rather

 2 Ibid , pp. 182 – 186.
 3 Ibid , p. 182.

4 INTRODUCTION

than being replicated. Software parts have several different kinds of interactions,
including serial and concurrent invocations, state transitions, data couplings,
and interfaces to databases and external systems. Depiction of a software entity
often requires several different representations to portray the numerous static
structures, dynamic couplings, and modes of interaction that exist in computer
software.

 A seemingly “ small ” change in requirements is one of the many ways that com-
plexity of the product may affect management of a project. Complexity within the
parts and in the connections among parts may result in a large amount of evolution-
ary rework for the “ small ” change in requirements, thus upsetting the ability to make
progress according to plan. For this reason many experienced project managers say
there are no small requirements changes. Size and complexity can also hide defects
that may not be discovered immediately and thus require additional, unplanned
corrective rework later.

 1.3.2 Software Conformity

 Conformity is the second issue cited by Brooks. Software must conform to exacting
specifi cations in the representation of each part, in the interfaces to other internal
parts, and in the connections to the environment in which it operates. A missing
semicolon or other syntactic error can be detected by a compiler but a defect in the
program logic, or a timing error caused by failure to conform to the requirements
may be diffi cult to detect until encountered in operation. Unlike software, tolerance
among the interfaces of physical entities is the foundation of manufacturing and
construction; no two physical parts that are joined together have, or are required to
have, exact matches. Eli Whitney (of cotton gin fame) realized in 1798 that if musket
parts were manufactured to specifi ed tolerances, interchangeability of similar (but
not identical) parts could be achieved.

 There are no corresponding tolerances in the interfaces among software entities
or between software entities and their environments. Interfaces among software
parts must agree exactly in numbers and types of parameters and kind of couplings.
There are no interface specifi cations for software stating that a parameter can be
 “ an integer plus or minus 2%. ”

 Lack of conformity can cause problems when an existing software component
cannot be reused as planned because it does not conform to the needs of the product
under development. Lack of conformity might not be discovered until late in a
project, thus necessitating development and integration of an acceptable component
to replace the one that cannot be reused. This requires unplanned allocation of
resources and can delay product completion. Complexity may have made it diffi cult
to determine that the reuse component lacked the necessary conformity until the
components it would interact with were completed.

 1.3.3 Software Changeability

 Changeability is Brooks ’ s third factor that makes software projects diffi cult. Soft-
ware coordinates the operation of physical components and provides the functional-

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 5

ity in software - intensive systems. 4 Because software is the most easily changed
element (i.e., the most malleable) in a software - intensive system, it is the most fre-
quently changed element, particularly in the late stages of a project. Changes may
occur because customers change their minds; competing products change; mission
objectives change; laws, regulations, and business practices change; underlying hard-
ware and software technology changes (processors, operating systems, application
packages); and/or the operating environment of the software changes. If an early
version of the fi nal product is installed in the operating environment, it will change
that environment and result in new requirements that will require changes to the
product. Simply stated, now that the new system enables me to do A and B, I would
like for it to also allow me to do C, or to do C instead of B.

 Each proposed change in product requirements must be accompanied by an
analysis of the impact of the change on project work activities:

 • what work products will have to be changed?
 • how much time and effort will be required?
 • who is available to make the changes?
 • how will the change affect your plans for schedule, budget, resources, technol-

ogy, other product features, and the quality attributes of the product?

 The goal of impact analysis is to determine whether a proposed change is “ in scope ”
or “ out of scope. ” In - scope changes to a software product are changes that can be
accomplished with little or no disruption to planned work activities. Acceptance of
an out - of - scope change to the product requirements must be accompanied by cor-
responding adjustments to the budget, resources, and/or schedule; and/or modifi ca-
tion or elimination of other product requirements. These actions can bring a proposed
out - of - scope requirement change into revised scope.

 A commonly occurring source of problems in managing software projects is an
out - of - scope product change that is not accompanied by corresponding changes to
the schedule, resources, budget, and/or technology. The problems thus created
include burn - out of personnel from excessive overtime, and reduction in quality
because tired people make more mistakes. In addition reviews, testing, and other
quality control techniques are often reduced or eliminated because of inadequate
time and resources to accomplish the change and maintain these other activities.

 1.3.4 Software Invisibility

 The fourth of Brooks ’ s factors is invisibility. Software is said to be invisible because
it has no physical properties. While the effects of executing software on a digital
computer are observable, software itself cannot be seen, tasted, smelled, touched,
or heard. Our fi ve human senses are incapable of directly sensing software; software
is thus an intangible entity. Work products such as requirements specifi cations,
design documents, source code, and object code are representations of software, but

 4 Software - intensive systems contain one or more digital devices and may include other kinds of hardware
plus trained operators who perform manual functions. Nuclear reactors, modern aircraft, automobiles,
network servers, and laptop computers are examples of software - intensive systems.

6 INTRODUCTION

they are not the software. At the most elemental level, software resides in the mag-
netization and current fl ow in an enormous number of electronic elements within
a digital device. Because software has no physical presence we use different repre-
sentations, at different levels of abstraction, in an attempt to visualize the inherently
invisible entity.

 Because software cannot be directly observed as can, for example, a building
under construction or an agricultural plot being prepared for planting, the tech-
niques presented in this text can be used to determine the true state of progress of
a software project. An unfortunate result of failing to use these techniques is that
software products under development are often reported to be “ almost complete ”
for long periods of time with no objective evidence to support or refute the claim;
this is the well - known “ 90% complete syndrome ” of software projects. Many soft-
ware projects have been canceled after large investments of effort, time, and money
because no one could objectively determine the status of the work products or
provide a credible estimate of a completion date or the cost to complete the project.
Sad but true, this will occur again. You do not want to be the manager of one of
those projects.

 1.3.5 Team - Oriented, Intellect - Intensive Work

 In addition to the essential properties of software (complexity, conformity, change-
ability, and invisibility), one additional factor distinguishes software projects from
other kinds of projects: software projects are team - oriented, intellect - intensive endeav-
ors . In contrast, assembly - line manufacturing, construction of buildings and roads,
planting of rice, and harvesting of fruit are labor - intensive activities; the work is
arranged so that each person can perform a task with a high degree of autonomy
and a small amount of interaction with others. Productivity increases linearly with
the number of workers added; the work will proceed roughly twice as fast if the
number of workers is doubled. Although labor - saving machines have increased
productivity in some of these areas, the roles played by humans in these kinds of
projects are predominantly labor - intensive.

 Software is developed by teams of individuals who engage in creative problem
solving. Teams are necessary because it would take too much time for one person
to develop a modern software system and because it is unlikely that one individual
would possess the necessary range of skills. Suppose, for example, that the total
effort to develop a software product or system 5 results in a productivity level of
1000 lines of code per staff - month (more on this later). A one million line program
would require 1000 staff - months. Because effort (staff - months) is the product of
people and time, it would require 1 person 1000 months (about 83 years) to com-
plete the project.

 A feasible combination of people and time for a 1000 staff - month project might
be a team of 50 people working for 20 months but not 1000 people working for 1
month or even 200 people working for 5 months. The later proposals (1000 × 1 and

 5 Software products are built by vendors for sale to numerous customers; software systems are built by
 contractors for specifi c customers on a contractual basis. The terms “ system ” and “ product ” are used
interchangeably in this text unless the distinction is important; the distinction will be clarifi ed in these
cases.

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 7

200 × 5) are not feasible because scheduling constraints among work activities
dictate that some activities cannot begin before other work activities are completed:
you can ’ t design (some part of a system) without some corresponding requirements,
you should not write code without a design specifi cation for (that part of) the
system, you cannot review or test code until some code has been written, you cannot
integrate software modules until they are available for integration, and so on.

 Adding people to a software development team does not, as a rule, increase
overall productivity in a linear manner because the increased overhead of commu-
nicating with and coordinating work activities among the added people decreases
the productivity of the existing team. To cite Fred Brooks once again, the number
of communication paths among n workers is n (n − 1)/2, which is the number of links
in a fully connected graph. Five workers have 20 communication paths, 10 have 45
paths, and 20 have 190. Increasing the size of a programming team from 5 to 10
members might, for example, might increase the production rate of the team from
5000 lines of code per week to 7500 lines of code per week, but not 10,000 lines of
code per week as would occur with linear scaling. In The Mythical Man - Month ,
Brooks described this phenomenon as Brooks ’ s law 6 :

 Adding manpower to a late software project makes it later .

 Brooks ’ s law is based on three factors:

 1. the time required for existing team members to indoctrinate new team
members,

 2. the learning curve for the new members, and
 3. the increased communication overhead that results from the new and existing

members working together.

 Brooks ’ s law would not be true if the work assigned to the new members did not
invoke any of these three conditions.

 A simile that illustrates the issues of team - oriented software development is that
of a team of authors writing a book as a collaborative project; a team of authors is
very much like a team of software developers. In the beginning, requirements analy-
sis must be performed to determine the kind of book to be written and the con-
straints that apply to writing it. The number and skills of team members will constrain
the kind and size of book that can be written by the available team of authors within
a specifi ed time frame. Constraints may include the number of people on the writing
team, knowledge and skills of team members, the required completion date, and the
word - processing hardware and software available to be used.

 Next the structure of the book must be designed: the number of chapters, a brief
synopsis of each, and the relationships (interfaces) among chapters must be speci-
fi ed. The book may be structured into sections that contain several chapters each
(subsystems), or the text may be structured into multiple volumes (a system of
systems). The dynamic structure of the text may fl ow linearly in time or it may
move backward and forward in time between successive chapters; primary and

 6 Ibid , pp. 25 and 274.

8 INTRODUCTION

secondary plot lines may be interleaved. An important constraint is to develop a
design structure that will allow each team member to accomplish some work while
other team members are accomplishing their work so that the work activities can
proceed in parallel. Some books are cleverly structured to have multiple endings;
readers choose the one they like.

 Design details to be decided include the format of textual layout, fonts to be used,
footnoting and referencing conventions, and stylistic guidelines (use of active and
passive voice, use of dialects and idioms). Writing of the text occurs within a prede-
termined schedule of production that includes reviews by other team members
(peer reviews) and independent reviews by copy editors (independent verifi cation).
Revisions determined by the reviews must be accomplished. The goal of the writing
team is to produce a seamless text that appears to have been written by one person
in a single setting.

 A deviation from the planned narrative by one or more team members might
produce a ripple effect that would require extensive revision of the text. If the
completed book were software, a single punctuation or grammatical error in the
text would render the book unreadable until the writers or their copy editor repaired
the defect. An editor determines that each iteration of elements of the text satisfy
the conditions placed on it by other elements (verifi cation). Finally, reviews by critics
and purchases by readers will determine the degree to which the book satisfi es its
intended purpose in its intended environment (validation).

 The various development phases of writing (analysis, high - level design, detailed
design, implementation, peer review, independent verifi cation, revision, and valida-
tion) are creative activities and thus rarely occur in linear, sequential fashion. Con-
ducting analysis, preparing and revising the design of the text, and production,
review, and revision of the various parts may be overlapped, interleaved, and iter-
ated. Team members must each do their assigned tasks, coordinate their work with
other team members, and communicate ideas, problems, and changes on a continu-
ous basis. The narrative above depicts a so - called Plan - driven approach to writing
a book and, by analogy, to developing software. An alternative is to pursue an Agile
approach by which the team members start with a basic concept and evolve the text
in an iterative manner. This approach can be successful:

 • if the team is small, say fi ve or six members (to limit the complexity of
communication);

 • if all members have in mind a common understanding of the desired structure
of the text (i.e., a “ design metaphor ”);

 • if there is a strict page limit and a completion date (the project constraints);
 • if each iteration occurs in one or a few days (to facilitate ongoing revisions in

structure; known as “ refactoring ”); and
 • if a knowledgeable reader (known as the “ customer ”) is available to review

each iteration and provide guidance for the contents of the next iteration.

 In some cases, the team members may work in pairs (“ pair programming ”) to
enhance synergy of effort.

 In reality, most software projects incorporate elements of a plan - driven approach
and an agile approach. When pursuing an agile approach, the team members must

understand the nature of the desired product to be delivered, a design metaphor
must be established, and the constraints on schedule, budget, resources, and technol-
ogy that must be observed; thus some requirements defi nition, design, and project
planning must be done. Those who pursue a plan - driven strategy often pursue an
iterative (agile) approach to developing, verifying, and validating the product to be
delivered; frequent demonstrations provide tangible evidence of progress and
permit incorporation of changes in an incremental manner.

 The approach taken in this text is to present a plan - driven strategy, based on
iterative development, that is suitable for the largest and most complex projects,
and to show how the techniques can be tailored and adapted to suit the needs of
small, simple projects as well as large, complex ones. Process models for software
development are presented in Chapter 2 .

 Over time humans have learned to conduct agricultural, construction, and manu-
facturing projects that employ teams of workers who accomplish their tasks effi -
ciently and effectively. 7 Because software is characterized by complexity, conformity,
changeability, and invisibility, and because software projects are conducted by teams
of individuals engaged in intellect - intensive teamwork, we humans are not always
as adept at conducting software projects as we are at conducting traditional kinds
of projects in agriculture, construction, and manufacturing. Nevertheless, the tech-
niques presented in this text will help you manage software projects effi ciently and
effectively, that is, with economical use of time and resources to achieve desired
outcomes.

 Your role as project manager is to plan and coordinate the work activities of your
project team so that the team can accomplish more working in a coordinated
manner than could be accomplished by each individual working with total
autonomy.

 1.4 THE NATURE OF PROJECT CONSTRAINTS

 Many of the problems you will encounter, or have encountered, in software projects
are caused by diffi culties of management and leadership (i.e., planning, estimating,
measuring, controlling, communicating, coordinating, and managing risk) rather
than technical issues (i.e., analysis, design, coding, and testing). These diffi culties
arise from multiple sources; some you can control as a project manager and some
you can ’ t. Factors you can ’ t control are called constraints , which are limitations
imposed by external agents on some or all of the operational domain, operational
requirements, product requirements, project scope, budget, resources, completion
date, and platform technology. Table 1.1 lists some typical constraints for software
projects and provides brief explanations.

 The operational domain is the environment in which the delivered software will
be used. Operational domains include virtually every area of modern society, includ-
ing health care, fi nance, transportation, communication, entertainment, business, and
manufacturing environments. Understanding the operational domain in which the
software will operate is essential to success. Operational requirements describe the

 7 To be effi cient is to accomplish a task without wasting time or resources; to be effective is to obtain the
desired result.

1.4 THE NATURE OF PROJECT CONSTRAINTS 9

10 INTRODUCTION

users ’ view (i.e., the external view) of the system to be delivered. Some desired
features, as specifi ed in the operational requirements, may be beyond the current
state of scientifi c knowledge, either at large or within your organization. Product
requirements are the developers ’ view (i.e., the internal view) of the system to be
built; they include the functional capabilities and quality attributes the delivered
product must possess in order to satisfy the operational requirements.

 Process standards specify ways of conducting the work activities of software
projects. Your organization may have standardized ways of conducting specifi c
activities, such as planning and estimating projects, and measuring project factors
such as conformance to the schedule, expenditure of resources, and measurement
of quality attributes of the evolving product. In some cases the customer may specify
standards and guidelines for conducting a project. Four of the most commonly used
frameworks for process standards are the Capability Maturity Model Integration
(CMMI), ISO/IEEE Standard 12207, IEEE Standard 1058, and the Project Manage-
ment Body of Knowledge (PMBOK). Elements of these standards and guidelines
are contained in appendixes to the chapters of this text.

 The scope of a project is the set of activities that must be accomplished to deliver
an acceptable product on schedule and within budget. Resources are the assets, both
corporate and external, that can be applied to the project. Resources have both
quality and quantity attributes; for example, you may have a suffi cient number of
software developers available (quantity of assets), but they may not have the neces-
sary skills (quality of assets). The budget is the money available to acquire and use
resources; the budget for your project may be constrained so that resources avail-
able within the organization cannot be utilized. The completion date is the day on
which the product must be fi nished and ready for delivery. In some cases there may
be multiple completion dates on which subsets of the fi nal product must be deliv-
ered. The constrained delivery date(s) may be unrealistic.

 Platform technology includes the set of methods, tools, and development environ-
ments used to produce or modify a software product. Examples include tools to
develop and document requirements and designs, compilers and debuggers to gen-

 TABLE 1.1 Typical constraints on software projects

 Constraint Explanation

 Operational domain Environment of the users
 Operational requirements Users ’ needs and desires
 Product requirements Functional capabilities and quality attributes
 Scientifi c knowledge Algorithms and data structures
 Process standards Ways of conducting work activities
 Project scope Work activities to be accomplished
 Resources Assets available to conduct a project
 Budget Money used to acquire resources
 Completion date Delivery date for work products
 Platform technology Software tools and hardware/software base
 Business goals Profi t, stability, growth
 Ethical considerations Serving best interests of humans and society

erate and check the code, version control tools to track evolving versions of a proj-
ect ’ s work products, and testing tools to aid in verify the software. Platform
technology also includes the hardware processors and operating systems on which
the software is developed and on which it will operate (which may be the same or
different). One or more aspects of the platform technology may be obsolete or
otherwise inappropriate for the work to be done.

 Business goals may constrain your project to complete the product as soon as
possible (to maximize short - term revenue), or to produce the highest possible
quality (to maintain credibility with existing customers). Ethical considerations may
constrain your project from delivering a product with known defects or from incor-
porating knowledge of a competitor ’ s product gained by unethical methods.

 Some of the most diffi cult problems you will encounter in managing software
projects arise from establishing and maintaining a balance among the constraints
on project scope, budget, resources, technology, and the scheduled delivery date:

 1. scope: the work to be done;
 2. budget: the money to acquire resources;
 3. resources: the assets to do the job;
 4. technology: methods and tools to be used; and
 5. delivery date: the date on which the system must be ready for delivery.

 The initial balance among these factors is established in your initial project plan.
The scope of your project may change during project execution because of changes
to product requirements or other factors such as the budget or delivery date. The
constraints on your budget, resources, and schedule may change because of internal
factors in your organization, changes in the operational environment of the product
to be delivered, or competitive pressures. Changes in project scope must always be
accompanied by corresponding changes in schedule, budget, resources, and (perhaps)
technology.

 The constraints listed in Table 1.1 reduce the conceptual space available in which
to plan and conduct your project. For example, it may not be possible to deliver a
satisfactory product using 10 people for 12 months, but it might be possible if the
schedule were extended to 15 months or if the number of people were increased
from 10 to 15, or if the requirements for the product were reduced to the functional-
ity that can be delivered with acceptable quality by 10 people in 12 months. In
addition to the constraints listed in Table 1.1 , there may be political and sociological
factors that you cannot control.

 Some of the fi rst things you must do in managing a software project are:

 1. establish the success criteria for your project,
 2. clarify the constraints on the project and the product, and
 3. determine whether there is a reasonable chance of meeting the success criteria

within the constraints.

 Constraints should be clarifi ed to determine whether there is any fl exibility or
possibility of trade - offs among the constraints because fewer or looser constraints

1.4 THE NATURE OF PROJECT CONSTRAINTS 11

12 INTRODUCTION

increase the options for planning and executing your project. There may be priori-
ties among the success criteria of delivering an acceptable product on schedule and
within budget; for example, delivering on schedule may be more important than the
number of features delivered, or features delivered may be more important than
cost. There may be additional success criteria, such as establishing a working rela-
tionship with a new customer, or developing a product architecture that provides a
basis for developing future products, that is, developing a product - line architecture
that consists of base elements and confi gurable elements.

 Factors you will have (or should have) some infl uence over include:

 1. establishing the success criteria,
 2. negotiating the project constraints,
 3. obtaining consensus among project stakeholders on an initial set of opera-

tional requirements, and
 4. obtaining consensus among project stakeholders on an initial set of product

requirements.

 Factors you will have responsibility for include:

 5. making initial estimates and plans;
 6. maintaining a balance among requirements, schedule, and resources as the

project evolves;
 7. measuring and controlling the progress of the work;
 8. leading the project team and coordinating their work activities;
 9. communicating with stakeholders; and

 10. managing risk factors that might interfere with, or prevent achieving a suc-
cessful outcome.

 The major activities of project management are planning and estimating, measur-
ing and controlling, communicating and leading, and managing risk factors. Planning
and estimating are concerned with determining the scope of activities that must be
accomplished, estimating effort and schedule for the overall project, and developing
estimates and plans for each major work activity. Planning for measurement involves
establishing a data collection and reporting system that will be used to determine
and report the actual status of work activities and work products on a continuing
basis. Controlling involves applying corrective actions when actual status, as indi-
cated by the measurements, does not agree with planned status.

 Communicating involves establishing and maintaining adequate communication
channels among all involved parties so that everyone is aware of progress and
problems, and so that they are constantly reminded of the goals and success criteria
for the project. Leading is concerned with providing direction to, removing road-
blocks for, and maintaining the morale of project personnel.

 Risk management is concerned with identifying risk factors (potential problems),
both initially and on a continuing basis; monitoring identifi ed risk factors; and
engaging in risk mitigation activities such as preparing contingency plans and exe-
cuting them when necessary.

 1.5 A WORKFLOW MODEL FOR MANAGING SOFTWARE PROJECTS

 The primary objective of a software project is to develop and deliver one or more
acceptable work products within the constraints of required features, quality attri-
butes, project scope, budget, resources, completion date, technology, and other
factors. The work products to be delivered (e.g., object code, training materials, and
installation instructions) result from the fl ow of intermediate work products that
are produced by and fl ow through the work processes (requirements, design, source
code, and test scenarios).

 The model of project workfl ow used in this text is presented in Figure 1.1 . All
models, including the one in Figure 1.1 , are abstractions of real situations that
emphasize some aspects of interest and suppress details that are unimportant to the
purposes of the model. Important details may be expressed in subordinate models.
Subordinate models to Figure 1.1 are presented throughout this text.

 Figure 1.1 indicates some of the processes that support the primary activity of
Product Development; they include Verifi cation and Validation (V & V), Quality
Assurance of work processes and work products (QA), Confi guration Management
(CM), and others. Some supporting processes and their purposes are listed in Table
 1.2 . Each supporting process must be accomplished in accordance with a well -
 defi ned model for accomplishing the work activities of that process.

 The model in Figure 1.1 is called a process model because it emphasizes work
activities and the fl ow of work products among work activities. Each work activity
in a process model produces one or more work products that provide inputs to
subsequent work activities. By work product we mean any document produced by
a software project (including the source code). Some work products are delivered
to the customer (called deliverable work products), while others are intermediate
work products developed to advance the creative problem - solving process in
an orderly manner. Some of the work products of software projects are listed in
Table 1.3 .

 FIGURE 1.1 A workfl ow model for managing software projects

Deliver

Work
Products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning

Activity
Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Verification
& Validation

Measuring

Controlling

Data
Retention

Estimating and

Re-estimating

Reporting
Status ReportsProject Reports

Directives and
Constraints

Change Requests Problem Reports

Configuration

Management

Other
Supporting

Processes

Start Here

End Here

1.5 A WORKFLOW MODEL FOR MANAGING SOFTWARE PROJECTS 13

14 INTRODUCTION

 As Michael Jackson has observed, the entire description of a software system or
product is usually too complex for the entire description to be written directly in a
programming language, so we must prepare different descriptions at different levels
of abstraction, and for different purposes [Jack02] . Note that each of the work
products listed in Table 1.3 is a document; software developers and software project
managers do not produce physical artifacts other than documents, which may exist
in printed or electronic form.

 As illustrated in the workfl ow model depicted in Figure 1.1 , a software project is
initiated by customer and managers. A customer is the person or organization that

 TABLE 1.2 Some supporting processes for software development

 Supporting Process Purpose

 Confi guration management Change control, baseline management, product audits,
product builds

 Verifi cation Determining the degree to which work products satisfy
the conditions placed on them by other work
products and work processes

 Validation Determining the degree of fi tness of work products for
their intended use in their intended environments

 Quality Assurance Determining conformance of work processes and work
products to policies, plans, and procedures

 Documentation Preparation and updating of intermediate and
deliverable work products

 Developer training Maintaining adequate and appropriate skills
 User and operator training Imparting skills needed to effectively use and operate

systems

 TABLE 1.3 Some work - product documents produced by software projects

 Document Content of Document

 Project plan Roadmap for conducting the project
 Status reports State of progress, cost, schedule, and quality
 Memos and meeting minutes Issues, problems, recommendations, and

resolutions
 e - Mail messages Ongoing communications
 Operational requirements User needs, desires, and expectations
 Technical specifi cation Product features and quality attributes
 Architectural design document Components and interfaces
 Detailed design specifi cation Algorithms, data structures, and interface details

of individual modules
 Source code Product implementation
 Test plan Product verifi cation criteria, test scenarios, and

facilities
 Reference manual Product encyclopedia
 Help messages Guidance for users
 Release notes Known issues, hints, and guidelines
 Installation instructions Guidance for operators
 Maintenance guide Guidance for maintainers

provides the requirements for and accepts the deliverable work products. Customers
may place constraints on a project, such as specifying a required database interface
(a product constraint) or the date when the delivered system must be available for
use (a process constraint). Managers include your management and you, the project
manager. Managers specify constraints and directives. A process constraint from
your manager might place a limit on the number of people available to conduct the
project; a management directive might require that all software projects in the
organization perform a design activity. You, the project manager, might issue direc-
tives requiring that the design be documented using UML (the Universal Modeling
Language) and that one or more design reviews be held.

 Requirements, constraints, and directives provide the inputs to the planning
process, which is (or should be) a group activity led by you, the project manager.
You should involve the customer, selected members of the development team, and
other primary stakeholders in the planning process. Planning involves estimation.
Factors to be initially estimated include a schedule for conducting the major work
activities; kinds and numbers of resources needed, when they will be needed, and
for how long; and the project milestones (points in time when progress is assessed).
Estimation is best accomplished by using historical data from a data repository. Data
at the completion of your project can be placed in a repository to aid in estimation
of future projects. Intermediate data can be retained to assess progress and prepare
completion estimates, which may result in replanning.

 The output of your planning process will include identifi cation of the roles to be
played in conducting the project, which results in assignment of personnel to those
roles. During initial planning, the major work activities to be planned include soft-
ware development and the various supporting processes such as confi guration man-
agement, process and product quality assurance, verifi cation, validation, user training;
plus other necessary activities that constitute the scope of your project. Detailed
plans for these activities will evolve as the project evolves.

 During execution of the project, data are collected and status reports are pre-
pared on a periodic basis by you and your staff. The status reports will be used by
you (the project manager), your customer, your managers, support groups, and other
project stakeholders. Status reports compare planned progress to actual progress;
they may cause you and your customer, working together, to revise plans and
requirements, or you might, for example, reassign some personnel to different
project roles (e.g., a software designer might be moved to the independent valida-
tion team). Status data are also used to provide a basis for estimating future progress
based on progress to date (which may result in replanning), and is retained to
provide a basis of estimation for future projects.

 Problem reports are generated to document defects discovered in work products
that must be reworked. Status reports, new requirements, and changes to require-
ments, constraints, directives, and problem reports provide the data needed to con-
tinually update, elaborate, and revise your project plan.

 Every organization that develops and maintains software, including yours, should
have one or more workfl ow models of software development that depicts the major
work activities and fl ow of work products. Each member of the organization should
be familiar with the workfl ow model(s) and understand the ways in which their work
activities and work products fi t into the model(s). Everyone in your software devel-
opment organization should be able to sketch and describe the workfl ow model(s)

1.5 A WORKFLOW MODEL FOR MANAGING SOFTWARE PROJECTS 15

16 INTRODUCTION

used in the organization. If there is more than one workfl ow model, everyone should
understand the kinds of projects for which the various models are appropriate.

 1.6 ORGANIZATIONAL STRUCTURES FOR SOFTWARE PROJECTS

 Projects are one - time, transient events that are initiated to accomplish a specifi c
purpose and are terminated when the project objectives are achieved (and are
sometimes cancelled before achieving the objectives). A project exists within the
context of the organization in which it is conducted; each project must adhere to
the structural model of the organization. Departments that conduct engineering
projects, including software projects, are typically organized in one of four ways:
functional structure, project structure, matrix structure, or hybrid structure.

 1.6.1 Functional Structures

 As the name implies, workers in a functional organization are grouped by the func-
tions they perform. Functional groups can be process - oriented or product - oriented.
One process - oriented functional group might, for example, specialize in require-
ments engineering, another in design of user interfaces, another in design and
implementation of code, another in product validation, and yet another in user
training. When organized by product specialty, one group might specialize in data
communication, another in database systems, another in user interfaces, and yet
another in numerical algorithms. Figure 1.2 illustrates a process - oriented functional
organization, and Figure 1.3 illustrates a product - oriented functional group.

 Each functional group has a functional manager whose job is to acquire and
maintain the quantity and quality of workers needed to support the projects within
the organization, train them as necessary, provide the necessary tools, and coordi-
nate their work activities on various projects. Different group members apply their

 FIGURE 1.2 A process - oriented functional organization

Department
Manager

Requirements
Group

Design
Group

Implementation
Group

. . .
Group

 FIGURE 1.3 A product - oriented functional organization

Department
Manager

User Interface
Group

Algorithms
Group

Database
Group

. . .
Group

expertise to different projects as needed. As a project manager in a functional orga-
nization, responsible for delivering an acceptable product on schedule and within
budget, your ability to successfully conduct your project will depend on your skill
in working with the functional managers and their team members to complete the
various work activities and develop the various work products for your project.

 1.6.2 Project Structures

 In a purely project - structured organization, you, as project manager, have full
authority and responsibility for managing budget and resources. You acquire the
kinds of workers you need to conduct your project and all project members report
directly to you; you might acquire your workers from functional groups or you might
hire them from outside. You, the project manager, have the authority to acquire staff
members within the constraints of your budget and to remove them when they are
no longer needed or are not performing up to your expectations. Your ability to
successfully conduct your project depends on acquiring the quantity and quality of
workers needed, training them as necessary, providing the necessary tools, and
coordinating their work activities. A project - structured organization is illustrated in
Figure 1.4 .

 1.6.3 Matrix Structures

 The goal of a matrix organization is to obtain the advantages of both functional and
project structures; functional specialists are assigned to projects as needed and work
for you, the project manager, while applying their expertise to your project. When
their tasks are completed, they return to their function groups and are assigned, as
needed, to other projects. Workers in a matrix organization thus have two bosses:
their functional manager and their project manager.

 An example of a matrix organization is illustrated in Figure 1.5 . The functional
groups might be, for example, a user interface group, an algorithms group, a database
group, and a communications protocol group. The numbers in the matrix indicate
the number of workers of each functional type assigned to each project; for example,
project #1 has 10 members: 2 of functional type #1 (user interface), 5 of functional
type #3 (database), and 2 of functional type #4 (communications). Project #3 is the
largest; it has 23 members. Currently 6 members of the user interface group are
assigned to this project, 8 from the algorithms group, 2 from the database group,
and 7 from communications.

 Matrix organizations can be characterized as weak or strong, depending on the
relative authority of the functional managers and the project managers. In a strong

 FIGURE 1.4 A project - oriented organization

Department
Manager

Project #1 Project #2 Project #3 Project #n

1.6 ORGANIZATIONAL STRUCTURES FOR SOFTWARE PROJECTS 17

18 INTRODUCTION

matrix, the functional managers have authority to assign workers to projects, and
project managers must accept the workers assigned to them. In a weak matrix, the
project manager controls the project budget, can reject workers from functional
groups and hire outside workers if functional groups do not have suffi cient quanti-
ties or qualities of workers.

 When a matrix organization performs as intended, functional workers apply their
specialties to different projects, under the direction of project managers, over time
while retaining membership in a group of like - minded experts. Two problems that
can occur in matrix organizations are (1) confl icts between functional managers and
project managers over the allocation of worker resources (which puts the workers
in untenable situations), and (2) frequent shifting of workers from project to project
as crises occur (know as “ fi refi ghting ” mode).

 1.6.4 Hybrid Structures

 Few, if any, organizations are purely functional, project, or matrix in nature. In a
purely functional organization, there would be no project managers; a coordinator
at the department level would assign tasks to the functional groups and work prod-
ucts would be passed from group to group as they become available. In a purely
project organization, the project would be an entirely separate organization. The
project manager would be responsible for physical facilities, janitorial service, human
resources (i.e., hiring, fi ring, payroll, health insurance, and confl ict resolution), and
other organizational functions. Similarly projects organized in matrix format do not
operate in isolation but are dependent on other functional elements of the organiza-
tion to provide physical facilities, payroll processing, and janitorial service. Figure
 1.6 illustrates the organizational continuum from pure function to pure project with
matrix organizations occupying the middle region [Youk77] .

 You, as project manager, will have fewer or more responsibilities and more or
fewer constraints on your authority depending on whether your organization has
predominantly a functional, matrix, or project structure.

 FIGURE 1.5 A matrix - structured organization

Department
Manager

Project
Manager #2

Project
Manager #1

Project
Manager #m

Functional
Manager #1

Functional
Manager #2

Functional
Manager #3

Functional
Manager #4

Project
Manager #3

2

3

1

4

86

2

5

7

2 7

4

3

9

6

 1.7 ORGANIZING THE PROJECT TEAM

 The way in which your organization is structured determines the way in which you
acquire your project members. It is your job to organize your project team, and to
participate, as appropriate as a member of other teams such as the system engineer-
ing team.

 1.7.1 The System Engineering Team

 The responsibilities of systems engineers include:

 • defi ning the operational requirements;
 • specifying system requirements;
 • developing the system design;
 • allocating system requirements to system components;
 • integrating the system components as they become available;
 • verifying that the system to be delivered is correct, complete, and consistent

with respect to its technical specifi cations; and
 • validating operation of the system with its intended users in its intended opera-

tional environment.

 System engineering, when it exists as a separate entity, is typically a specialty
function in an organization. System engineers may be assigned to projects from a
functional group within a matrix organization, or they may provide internal consult-
ing to projects while remaining in their functional group. System engineers must be
experts in their customer domains and knowledgeable of their organization ’ s capa-
bilities; they are more likely to be long - term organizational members than to be
hired from outside the organization by a project manager.

 Note that system engineers are not component specialists; they are generalists
who understand (must understand) the operational domains of their customers and
users and the capabilities of their organizations to develop systems for those domains.

 FIGURE 1.6 The organizational continuum [Youk77]

Project

Functional

Matrix

Project Coordinator orP ject Manager

 0%

100% 0%

100%

Functional
Emphasis

Project
Emphasis

1.7 ORGANIZING THE PROJECT TEAM 19

20 INTRODUCTION

System engineers work with component specialists to specify collections of compo-
nents that will satisfy user needs and customer expectations.

 A system engineering team for a complex, software - intensive system should
include hardware, software, and human factors specialists as appropriate for the
various kinds of hardware, software, and manual operations of the envisioned
system. You, as manager of the software project for a software - intensive system,
should be (must be) a member of the system engineering team. In addition the lead
technical person on your software team (if you are not that person) and a repre-
sentative of the group that will maintain the software portion of the system (if that
is not your team) should also be members of the system engineering team.

 1.7.2 The Software Engineering Team

 Every software project, whether stand - alone or a subproject of a system - level
program, should include a project manager, a lead designer/software architect, and
one or more small development teams, each with a designated team leader. On a
small project (up to 10 members), the roles of team leader, project manager, and
lead designer may be played by a single individual (you). Or, a project manager may
be assigned on a part - time basis with another individual playing the roles of lead
designer and team leader. For intermediate - size projects (11 to 20 members), there
will be (must be) separate people playing the roles of lead designer and full - time
project manager. On large projects (more than 20 members), there may be a design
team with a designated chief architect, staff members to support the project manager,
and multiple development teams.

 Figure 1.7 illustrates a hierarchical model for organizing software projects that
can be expanded or contracted to accommodate various sizes of software projects.

 FIGURE 1.7 An organizational model for software projects

Project Manager

Team
Leader #1

Team
Leader#2

Team
Leader #3

V&V CM

Member

Member Member

Member

Software Architect

Customer

XX

.

Each team has 2 to 5 members plus
a team leader

V&V: Verification and Validation
 CM: Configuration Management
 XX: other supporting processes

A very small project (5 or fewer members) may have only one team whose leader
is the project manager and software architect; a project having 5 to 10 members
may include two teams and a project manager/software architect. Intermediate - size
projects will have one individual playing the role of project manager and another
as lead designer; a project having 20 software developers might have 4 teams of
5 members, with one member of each team playing the role of team leader.
For projects of more than 50 members, the team leaders depicted in Figure 1.7
will be subsystem managers and subsystem designers with team leaders and
their teams reporting to them; a project having 100 software developers might be
decomposed into 4 subsystems with, for example, 5 teams of 5 assigned to each
subsystem.

 A hierarchical project structure, as depicted in Figure 1.7 , thus provides a
fl exible model that can be expanded and contracted as the needs of various
projects dictate. The purpose of hierarchical structures is not to restrict the fl ow
of communication within the project but rather to provide well - defi ned work
activities, roles, authorities, and responsibilities at each level in the hierarchy
that minimizes the need for communication among different groups. Communica-
tion paths among teams are not restricted to the hierarchy; the communication
paths are informal networks that are dynamically established and disbanded as
appropriate.

 To facilitate communication, a fundamental principle of software analysis and
design is that the requirements must be partitioned and the design structured so
that the work of each small team can proceed concurrently with the work of other
teams. The reason for limiting the size of each team is to control the number of
intensive communication paths among software developers who are engaged in
closely coordinated work activities. As previously mentioned, communication paths
can be modeled as links in a fully connected graph where each team member is a
node in the graph. The number of links in a fully connected graph of n nodes is
 n (n − 1)/2. Five members thus have 10 paths; 10 members have 45.

 The need to partition the work into well - defi ned work activities for multiple
teams either by process function (e.g., design, coding, testing) or product function
(e.g., database, algorithms, user interface) is particularly important if the team
members reside in functional groups or are geographically distributed. In these
cases the work to be done must be partitioned so that each functional group or
geographic group can proceed with their work activities with a large degree of
autonomy from the other groups.

 1.8 MAINTAINING THE PROJECT VISION AND
THE PRODUCT VISION

 Every software project, large or small, simple or complex, must maintain the process
vision (the project roadmap) and the product vision (the goals for the product) from
beginning to end; otherwise, it is easy to lose sight of vision and goals in the midst
of the daily work activities of a project. You, as the project manager, are the keeper
of the process vision, which is documented in the project plan (and is updated as
the project evolves). The software architect is the keeper of the product vision,

1.8 MAINTAINING THE PROJECT VISION AND THE PRODUCT VISION 21

22 INTRODUCTION

which is documented in the requirements and architectural design specifi cations
(and is updated as the product evolves). 8

 The project manager can be likened to a movie producer and the software archi-
tect to a movie director. The producer has overall responsibility for schedules,
budgets, resources, customer relations, and delivery of a satisfactory product on time
and within budget. The director is responsible for the content of the product. Pro-
ducer and director must work together to maintain and constantly communicate the
process vision and the product vision to the cast of developers and supporting per-
sonnel as well as all other project stakeholders.

 Fred Brooks observes that producer and director can be the same person on a
small project (fi ve to seven developers), but they must be different individuals on
larger projects because of the differing skills required and the number of tasks to
be performed. As Brooks points out, if you, as project manager (producer) are not
also the director (i.e., lead designer), you must “ proclaim the director ’ s technical
authority. . . . For this to be possible, the producer and director must see alike on
fundamental technical philosophy; they must talk out the main technical issues pri-
vately, before they really become timely; and the producer must have a high respect
for the director ’ s technical prowess. ” 9 We should add that, conversely, the director
must have a high respect for the producer ’ s managerial prowess.

 1.9 FRAMEWORKS, STANDARDS, AND GUIDELINES

 A process framework is a generic process model that can be tailored and adapted
to fi t the needs of particular projects and organizations. An engineering standard is
a codifi cation of methods, practices, and procedures that is usually developed and
endorsed by a professional society or independent agency. Guidelines are pragmatic
statements of practices that have been found to be effective in many practical
situations.

 Some well - known frameworks, standards, and guidelines for software engineer-
ing and the associated URLs are:

 • the Capability Maturity Model ® Integration for development (CMMI - DEV -
 v1.2) [www.sei.cmu.edu/cmmi/models];

 • ISO/IEC and IEEE/EIA Standards 12207 [www.iso.org], [standards.ieee.
org/software];

 • IEEE/EIA Standard 1058 [standards.ieee.org/software]; and
 • the Project Management Body of Knowledge (PMBOK ®) [www.pmibookstore.

org].

 Elements of these models that are relevant to managing and leading software proj-
ects are presented in appendixes to the chapters of this text, including Appendix
 1A to this chapter.

 8 Ibid , pp. 79 – 83.
 9 Ibid, p. 79.

 1.10 KEY POINTS OF CHAPTER 1

 • A project is a coordinated set of activities that occur within a specifi c time
frame to achieve specifi c objectives.

 • The primary activities of software project management are planning and
estimating; measuring and controlling; communicating, coordinating and
leading; and managing risk.

 • Software projects are inherently diffi cult because software is complex, change-
able, conformable, and invisible.

 • Software projects are conducted by teams of individuals who engage in intel-
lect - intensive teamwork.

 • Project constraints consist of limitations imposed by external agents on some
or all of the operational domain, operational requirements, product require-
ments, project scope, budget, resources, completion date, and platform
technology.

 • A workfl ow model depicts the work activities and the fl ow of work products
among work activities in a software project.

 • The entire description of a software system or product is usually too complex
for the entire description to be written directly in a programming language, so
we must prepare different descriptions at different levels of abstraction, and
for different purposes.

 • Organizations that conduct software projects use functional, project, weak
matrix, and strong matrix structures.

 • Software projects organized in a hierarchical manner provide well - defi ned
work activities, roles, authorities, and responsibilities at each level in the hier-
archy; hierarchies can expand and shrink to fi t the needs of each project.

 • Requirements must be allocated and the design structured so that the work of
each small team can proceed concurrently with the work of other teams.

 • The project manager maintains the project vision, as documented in the project
plan, and the software architect maintains the product goals, as documented in
the requirements and architectural design.

 • A software process framework is a generic process model that can be tailored
and adapted to fi t the needs of particular projects and organizations.

 • A software engineering standard is a codifi cation of methods, practices, and
procedures, usually developed and endorsed by a professional society or inde-
pendent agency.

 • SEI, ISO, IEEE, and PMI provide process frameworks, standards, and guide-
lines that contain information relevant to managing software projects (see
Appendix 1A to this chapter).

 1.11 OVERVIEW OF THE TEXT

 This text is organized into 11 chapters. The fi rst 3 chapters present the context in
which software projects are conducted. This chapter provides an overview of and
an introduction to managing software projects. Chapter 2 presents commonly used

1.11 OVERVIEW OF THE TEXT 23

24 INTRODUCTION

process models for software development and the project management consider-
ations for each of the models. Chapter 3 describes product and process foundations
for software projects. Product foundations include operational requirements, system
requirements and system design, design constraints, and software requirements.
Process foundations include the workfl ow model, the software development model,
the contractual agreement, and the project plan.

 Chapters 4 , 5 , and 6 are concerned with planning and estimation. Chapter 4
describes the planning process and the format and contents of project management
plans. Chapter 5 presents planning techniques, including work breakdown struc-
tures, work packages, activity networks (critical paths and PERT), Gantt charts, and
resource - loading histograms. Chapter 6 is concerned with estimation techniques,
including pragmatic, theory - based, and regression - based techniques.

 Chapter 7 presents an introduction to measures and measurement, and measure-
ment and control of work products, including techniques to measure and analyze
software defects. Chapter 8 presents measurement and control of work processes,
including techniques for measuring and controlling schedule, budget, progress, and
risk. Chapter 9 covers risk management, including risk identifi cation, analysis and
prioritization, mitigation strategies, action plans and action items, contingency plans
and contingent actions, and crisis management.

 Chapter 10 covers teamwork, motivation, personality styles, and leadership styles.
Chapter 11 covers organizational issues; it concludes with 15 guidelines for organiz-
ing and leading software engineering teams.

 Each chapter provides exercises; completing them will further your understand-
ing of the topics covered in the chapter. An appendix to each chapter of this text
includes relevant topics, keyed to that chapter, from the SEI Capability Maturity
Model ® Integration CMMI - DEV - v1.2, ISO/IEC and IEEE/EIA Standards 12207,
IEEE/EIA Standard 1058, and the PMI Project Management Body of Knowledge
(PMBOK ®).

 Appendix A to this text provides a glossary of terms used throughout the text.
Appendix B describes some topics for term projects and a schedule of assignments
for a term project to develop a software project management plan. Presentation
slides for each chapter and other supporting material are available at the URL listed
in the Preface.

 REFERENCES

 [Brooks95] Brooks , F. P. The Mythical Man - Month . Addison Wesley, 1995 .
 [CMMI06] SEI . CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,

 2006 .
 [IEEE1058] IEEE Std 1058 ™ — 1998 IEEE Standard for Software Project Management

Plans . IEEE Press , New York , 1998 . Also in Engineering Standards Collection.
IEEE Product: SE113. Institute of Electrical and Electronic Engineers, August
2003.

 [IEEE12207] Industry Implementation of International Standard ISO/IEC 12207:1995 Stan-
dard for Information Technology – Software Life Cycle Processes . IEEE/EIA
12207.0/.1/.2 - 1996 (March), IEEE Press , New York , 1996 . Also in Engineering

Standards Collection. IEEE Product: SE113. Institute of Electrical and Elec-
tronic Engineers, August 2003.

 [Jack02] Jackson , M. Descriptions in Software Development . Lecture Notes in Computer
Science. Springer Verlag , 2002 .

 [PMI04] PMI , A Guide to the Project Management Body of Knowledge , 3rd ed.
(PMBOK ® Guide). Project Management Institute, 2004 .

 [Youk77] Youker , R. Organizational alternatives for project managers . Project Manage-
ment Quarterly , Vol. VIII , No. 1 , (March 1977).

 URL s

 SEI Capability Maturity Model Integration (CMMI ®) [www.sei.cmu.edu/cmmi/models].
 ISO/IEC Standard 12207 – 1995 [www.iso.org].
 IEEE/EIA Software Engineering standards , including IEEE/EIA Standard 12207 – 1996 and

IEEE/EIA Standard 1058 [standards.ieee.org/software].
 PMI Project Management Body of Knowledge (PMBOK ® Guide), 3rd Ed., 2004 [www.

pmibookstore.org].

 EXERCISES

 1.1. A project is a collection of coordinated work activities conducted within a
specifi c time frame that utilizes resources to achieve specifi ed objectives.

 a. Briefl y describe a project from your personal life that you have recently
completed. State the nature of the project, the initial objectives, and planned
the starting and ending dates and the actual starting and ending dates of
the project. List any resources used (money, tools, materials, labor).

 b. List and compare the outcome of your project to the initial objectives.

 1.2. Different kinds of projects tailor and adapt the generic techniques of project
management (planning, estimating, measuring, controlling, communicating,
coordinating, leading, managing risk) to fi t the needs of the projects. For each
of the following kinds of projects, list some factors that would infl uence the
way you would plan, estimate, measure, control, communicate, coordinate,
lead, and managing risk those projects:

 a. Building construction
 b. Restaurant kitchen
 c. Fruit picking
 c. Handcrafting of race cars

 1.3. A 1,000,000 line of code program, when printed at 50 lines per page, results
in stack of paper about 10 feet high (3 meters). Show the calculation of this
result. List any assumptions made.

 1.4. In the text The Mythical Man - Month , Fred Brooks differentiates accidental
diffi culties from essential diffi culties in software engineering. Accidental

EXERCISES 25

26 INTRODUCTION

diffi culties are those that arise because of the current state of our knowledge,
processes, tools, and technology. Essential diffi culties arise from the inherent
complexity, conformity, changeability, and invisibility of software.

 a. List and briefl y describe fi ve accidental diffi culties that make software
development diffi cult.

 b. Compare and contrast the current state of your fi ve accidental diffi culties
to the state of those diffi culties in 1960.

 1.5. Describe a circumstance in which adding more people to a software project
would not invoke Brooks ’ s law; that is, a situation where the 3 factors listed
in the text would not apply.

 1.6. The text describes the ways in which a team of people writing a book is like
a team of people writing software. Read the description and develop a two -
 column table in which the activities of writing a book are listed in the fi rst
column and comparable activities of writing software are listed in the rows of
the second column.

 1.7. Describe three ways in which a team effort to develop software is not similar
to a team effort to write a book.

 1.8. Describe a circumstance in which a software team would be:

 a. effi cient but not effective and
 b. effective but not effi cient.

 1.9. Briefl y describe an example of each kind of constraint listed in Table 1.1 .

 1.10. In an example in the text, it is stated that the project discussed might be suc-
cessfully completed by 10 developers in 12 months if the 10 were outstanding
 team members . List fi ve attributes of an outstanding team member; include
some individual and some team membership skills.

 1.11. Table 1.2 lists some supporting processes for software development. List and
briefl y describe three additional supporting processes that might be needed
for some software projects.

 1.12. Authority and responsibility are major issues for project managers.

 a. Briefl y state what is meant by authority.
 b. Briefl y state what is meant by responsibility.
 c. Can authority be delegated? If not, why not? If so, give an example.
 d. Can responsibility be delegated? If not, why not? If so, give an example.
 e. Briefl y explain why authority must be commensurate with responsibility.

 1.13. Briefl y describe the work environment of a software developer working in a
software department organized as:

 a. a functional organization
 b. a project organization
 c. a matrix organization

 1.14. Figure 1.3 illustrates an organizational model for software projects. List the
kind of work each of the three teams might do if the project is organized:

 a. by process component
 b. by product component

 1.15. In the text, software project managers are compared to movie producers and
software architects to movie directors. Briefl y explain the roles comparable to
project manager and software architect if software projects are compared
to:

 a. symphony orchestras
 b. sports teams (baseball, soccer)
 c. an army platoon

 1.16. ISO and IEEE standards 12207 include fi ve activities for managing software
projects: initiation and scope defi nition, planning, execution and control,
review and evaluation, and closure. Consult a copy of either ISO 12207 or
IEEE 12207 and briefl y summarize the topics included in each of these fi ve
activities.

 1.17. The seven processes included in level 2 of the staged representation of CMMI -
 DEV - v1.2 are some of the most important processes for managing software
projects. Access CMMI - DEV - v1.2 at www.sei.cmu.edu/cmmi/models .

 a. Briefl y summarize, in your own words, the purpose of each of these seven
processes.

 b. Briefl y summarize, in your own words, the Introductory Notes for each of
these seven processes.

 c. Briefl y summarize, in your own words, the related process areas for each
of these seven processes.

 d. Briefl y explain why and how the related process areas are important for
the purposes of managing software projects.

EXERCISES 27

 APPENDIX 1A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR MANAGING
SOFTWARE PROJECTS

28

 1A.1 THE CMMI - DEV - v 1.2 PROCESS FRAMEWORK

 CMMI process frameworks are developed and supported by the Software Engineer-
ing Institute, which is an affi liate of Carnegie Mellon University [CMMI06] . As
stated on the home page for CMMI [http://www.sei.cmu.edu/cmmi/general/general.
html]:

 Capability Maturity Model ® Integration (CMMI) is a process improvement approach
that provides organizations with the essential elements of effective processes. It can be
used to guide process improvement across a project, a division, or an entire organiza-
tion. CMMI helps integrate traditionally separate organizational functions, set process
improvement goals and priorities, provide guidance for quality processes, and provide
a point of reference for appraising current processes.

 This text is not primarily focused on process improvement. However, understand-
ing the goals and adopting the specifi c practices of the process areas for project
management in the CMMI frameworks will improve your ability, and your organi-
zation ’ s ability to manage software projects. Thereby your chances of delivering
acceptable products on schedule and within budget will be enhanced.

 Version 1.2 of CMMI is structured as a framework from which various “ constel-
lations ” can be derived. CMMI - DEV - v1.2 is the fi rst constellation; see www.sei.cmu.
edu/cmmi/models . CMMI - ACQ - v1.2 for acquisition processes has just been released
at the time of writing this text. Other constellations of the version 1.2 framework
are under development. It is important to note that the v1.2 constellations are not
process models but rather frameworks for developing and improving processes that
satisfy the goals of the CMMI frameworks.

 This text is primarily concerned with the process areas related to managing soft-
ware and systems projects in CMMI - DEV - v1.2, which contains 22 process areas.
Both staged and continuous representations are provided. The staged representa-

tion places each process area into one of fi ve maturity levels numbered 1 through 5
and the continuous representation provides capability levels for each process area
on a scale of 0 to 5. In the staged representation each higher level adds more pro-
cesses. The maturity levels and their names are listed in Table 1A.1 .

 The 22 process areas in the staged representation of CMMI - DEV - v1.2 are illus-
trated in Figure 1A.1 . The purposes of each process in Figure 1A.1 are listed in Table
 1A.4 of this appendix. In the continuous representation of CMMI - DEV - v1.2 a
capability level is determined for each individual process area selected for assess-
ment. All the CMMI processes or any subset of them can be assessed and improved,
as determined by business needs of the organization. There are six capability levels,
numbered 0 through 5 and named as indicated in Table 1A.2 .

 In the continuous representation the CMMI processes are grouped into four
categories. Categories are not levels; they are a way of grouping related process
areas. The process areas in each category are as follows:

 TABLE 1A.1 CMMI maturity levels

 Maturity Level Name

 Level 1 Initial
 Level 2 Managed
 Level 3 Defi ned
 Level 4 Quantitatively managed
 Level 5 Optimizing

 FIGURE 1A.1 Staged representation of the CMMI - DEV - v1.2

requirements management
project planning
project monitoring and control
supplier agreement management
measurement and analysis
process and product quality assurance
configuration management

requirements development
technical solution
product integration
verification
validation
organizational process focus
organizational process definition + IPPD
organization training program
integrated software management + IPPD
risk management
decision analysis and resolution

level 2
(managed)

level 3
(defined)

organization process performance
quantitative project management

level 4
(quantitatively managed)

organizational innovation.
causal analysis & resolution

level 5
(optimizing)

1A.1 THE CMMI-DEV-v1.2 PROCESS FRAMEWORK 29

30 INTRODUCTION

 • Project management
 ° Project planning
 ° Project monitoring and control
 ° Supplier agreement management
 ° Integrated project management + IPPD
 ° Risk management

° Quantitative project management
 • Engineering

 ° Requirements development

° Requirements management
 ° Technical solution
 ° Product integration
 ° Verifi cation
 ° Validation

 • Support
 ° Confi guration management

° Process and product quality assurance
 ° Measurement and analysis
 ° Decision analysis and resolution
 ° Causal analysis and resolution

 • Process management
 ° Organizational process focus
 ° Organizational process defi nition + IPPD
 ° Organizational training
 ° Organizational process performance
 ° Organizational innovation and deployment

 Each of the four process categories is divided into basic and advanced process
areas. The basic and advanced process areas of project management are listed in
Table 1A.3 . Note that the basic process areas in Table 1A.3 are level 2 processes in
the staged representation of CMMI - DEV - v1.2 and the advanced processes are at
level 3 in the staged representation.

 TABLE 1A.2 Capability levels in the CMMI continuous
representations

 Capability Level Name

 Level 0 Incomplete
 Level 1 Performed
 Level 2 Managed
 Level 3 Defi ned
 Level 4 Quantitatively managed
 Level 5 Optimizing

 The generic goals and specifi c goals for a given level, plus all of the goals for lower
levels, must be satisfi ed to reach that level. It is expected that the generic and specifi c
practices will be implemented unless you can demonstrate that you are using equiv-
alent or superior processes. Informative components are illustrative in nature; they
are neither required nor expected.

 Generic goals and generic practices apply to each process area; their purpose is
to institutionalize the process areas so that they are embedded in the corporate
memory and corporate procedures. Generic goal 2 (GG2), for example, must be
satisfi ed for level 2 (managed) processes. The generic practices of GG2 are as
follows:

 GG 2 Institutionalize a managed process
 GP 2.1 Establish an organizational policy
 GP 2.2 Plan the process
 GP 2.3 Provide resources
 GP 2.4 Assign responsibility
 GP 2.5 Train people
 GP 2.6 Manage confi gurations
 GP 2.7 Identify and involve relevant stakeholders
 GP 2.8 Monitor and control the process
 GP 2.9 Objectively evaluate adherence
 GP 2.10 Review status with higher level management

 Satisfying GG3 for a process area assumes that a standard organizational process
exists and that you have tailored it to suit the needs of your project. At level 3
(managed) each process is documented (at the organizational level) to specify:

 TABLE 1A.3 Process areas for project management in the continuous representation of
 CMMI - DEV - v 1.2

 Basic process areas for project management • Project planning
 • Project monitoring and control
 • Supplier agreement management

 Advanced process areas for project
management

 • Integrated project management + IPPD
 • Risk management
 • Quantitative project management

1A.1 THE CMMI-DEV-v1.2 PROCESS FRAMEWORK 31

 Each of the 22 process areas in CMMI - DEV - V1.2 has:

 • generic and specifi c goals (required components),
 • generic and specifi c practices (expected components), and
 • informative components, which include typical work products, examples, notes,

and references

32 INTRODUCTION

 • purpose
 • inputs
 • entry criteria
 • activities
 • roles
 • measures
 • verifi cation steps
 • outputs
 • exit criteria

 At level 2, each project can satisfy the generic and specifi c goals using different
practices, but at level 3, all projects in an organization implement the process
areas in a uniform manner so that consistent data can be collected from projects
across the organization. Levels 4 and 5 are concerned with analyzing process and
product data and using the results to make improvements in processes and
technology.

 Specifi c goals and specifi c practices are, as the name implies, specifi c to each
process area. For example, the specifi c goals and specifi c practices of project plan-
ning are as follows:

 SG 1 Establish estimates
 SP 1.1 Estimate the scope of the project
 SP 1.2 Establish estimates of work product and task attributes
 SP 1.3 Defi ne project life cycle
 SP 1.4 Determine estimates of effort and cost

 SG 2 Develop a project plan
 SP 2.1 Establish the budget and schedule
 SP 2.2 Identify project risks
 SP 2.3 Plan for data management
 SP 2.4 Plan for project resources
 SP 2.5 Plan for needed knowledge and skills
 SP 2.6 Plan stakeholder involvement
 SP 2.7 Establish the project plan

 SG 3 Obtain commitment to the plan
 SP 3.1 Review plans that affect the project
 SP 3.2 Reconcile work and resource levels
 SP 3.3 Obtain plan commitment

 The purpose of the quantitative project management (QPM) process area (a level
3 process in the staged representation) is to quantitatively manage the project ’ s
defi ned process to achieve the project ’ s specifi ed quality and process - performance
objectives, namely to manage projects “ by the numbers. ” This involves defi ning
measures for each project phase and each kind of work process, collecting quantita-

1A.1 THE CMMI-DEV-v1.2 PROCESS FRAMEWORK 33

 TABLE 1A.4 Purposes of the CMMI - DEV - v 1.2 processes

 Process Area Purpose

 Requirements management Control requirements and maintain consistency of
requirements with plans and work products

 Project planning Establish and maintain the plans that defi ne the project
work activities

 Project monitoring and control Compare progress to plans and apply corrective actions
as needed

 Supplier agreement
management

 Manage acquisition of product elements from vendors
and subcontractors

 Measurement and analysis Supply status information needed to support decisions
 Process and product quality

assurance
 Evaluate processes and work products to identify areas

of noncompliance
 Confi guration management Establish and maintain control of work products
 Requirements development Obtain, analyze, and develop customer, product, and

product - component requirements
 Technical solution Design, develop, and implement solutions that satisfy

requirements
 Product integration Integrate components, validate overall functionality, and

deliver the product
 Verifi cation Ensure that selected work products meet their specifi ed

requirements
 Validation Ensure that selected work products satisfy their intended

use when placed in their intended environments
 Organizational process focus Plan and implement organizational process improvement
 Organizational process

defi nition + IPPD
 Establish and maintain a usable set of organizational

process assets
 Organizational training Develop skills and knowledge so that people can

perform their jobs effi ciently and effectively
 Integrated project

management + IPPD
 Develop and use an integrated and defi ned set of

processes that are tailored from the organization ’ s set
of standard processes

 Risk management Identify potential problems; develop and implement
strategies and techniques for mitigating them

 Decision analysis and
resolution

 Identify possible decisions using a formal evaluation
process that evaluates alternatives against established
criteria

 Quantitative project
management

 Use quantifi ed data to manage each project ’ s quality and
process - performance objectives

 Organizational process
performance

 Provide process performance data and quantitative
models to understand the organization ’ s standard
processes

 Organizational innovation and
deployment

 Select and deploy incremental and innovative
improvements that measurably improve the
organization ’ s processes and technologies

 Causal analysis and resolution Identify causes of defects and other problems and take
action to prevent them from occurring in the future

34 INTRODUCTION

tive data, performing statistical analyses, and comparing results to plans and expec-
tation on an ongoing basis.

 A staged maturity level cannot be attained until all of the generic and specifi c
goals of all processes at lower levels plus the generic and specifi c goals for the
processes in that level are satisfi ed. A higher capability level for an individual
process cannot be attained until all of the generic and specifi c goals of the lower
levels plus the generic and specifi c goals for that level have been attained for that
process.

 In general, staged representations provide a systematic approach to building
process maturity, level by level. Continuous representations allow different organi-
zations to choose the processes to be improved according to the priorities estab-
lished by those organizations.

 Note that levels 4 and 5 in both the staged and continuous representations are
termed “ quantitatively managed and optimizing. ” Quantitatively managed process
areas are those for which uniformly defi ned and measured data are collected from
all projects across an organization and analyzed for strengths and weaknesses. At
level 5 the results of level 4 data analysis are used to improve process areas and to
introduce new technologies in support of the process areas. Level 5 is “ optimizing ”
and not “ optimized. ” The latter term (optimized) implies that the organization ’ s
processes are as good as possible. In contrast, the former term (optimizing) implies
that the organization ’ s processes are being continuously improved but are not
optimum; there is always room for improvement.

 The purpose of each of the 22 processes in CMMI - DEV - v1.2 is briefl y summa-
rized in Table 1A.4 . Relevant elements of CMMI - DEV - v1.2 are presented in appen-
dixes to the chapters of this text.

 1A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 ISO/IEC Standard 12207 is a framework for organizing and conducting software
life cycle processes. ISO/IEC 12207 was published in 1995 and amended in 2002 and
2004. Amendments 1 and 2 revise 12207 to incorporate lessons learned in using
12207 and to more closely align it with ISO Standard 15504, which is a standard for
assessing the software processes within an organization to determine areas of
strength and weakness.

 ISO/IEC Standard 12207 provides a comprehensive set of life cycle processes for
acquisition, supply, development, operation, and maintenance of software. It includes
17 processes:

 • 5 primary life cycle processes,
 • 8 supporting processes, and
 • 4 organizational processes.

 The fi ve primary processes are:

 • acquisition,
 • supply,
 • development,

 • operation, and
 • maintenance.

 The acquisition and supply processes are concerned with the relationships
between a customer and a supplier. In ISO/IEC 12207, the development process
consists of 13 activities:

 1. Process implementation
 2. System requirements analysis
 3. System architectural design
 4. Software requirements analysis
 5. Software architectural design
 6. Software detailed design
 7. Software coding and testing
 8. Software integration
 9. Software qualifi cation testing

 10. System integration
 11. System qualifi cation testing
 12. Software installation
 13. Software acceptance support

 The eight supporting processes in ISO/IEC 12207 are:

 • documentation,
 • confi guration management,
 • quality assurance,
 • verifi cation,
 • validation,
 • joint review,
 • audit, and
 • problem resolution.

 The four organizational life cycle processes are:

 • management,
 • infrastructure,
 • improvement, and
 • training.

 The management process in ISO/IEC 12207 includes fi ve activities for managing
software projects:

 • initiation and scope defi nition,
 • planning,

1A.2 ISO/IEC AND IEEE/EIA STANDARDS 12207 35

36 INTRODUCTION

 • execution and control,
 • review and evaluation, and
 • closure.

 ISO/IEC 12207 is packaged in three volumes:

 • 12207.0, software life cycle processes;
 • 12207.1, life cycle data; and
 • 12207.2, implementation considerations.

 ISO/IEC 12207.0 is the primary document; in addition to specifying primary life
cycle processes, supporting processes and organizational life cycle processes, it
includes appendixes that provide guidance for tailoring the various processes to fi t
particular situations.

 ISO/IEC 12207.1 (life cycle data) includes generic guidelines for 7 types of docu-
ments (e.g., plans, descriptions, records) and specifi c guidelines for 30 kinds of docu-
ments (e.g., project management plans, software design descriptions, software quality
assurance records).

 ISO/IEC 12207.2 (implementation considerations) provides guidance, based on
industry experiences, for implementing the life cycle processes in 12207.0.

 The IEEE/EIA version of ISO/IEC Standard 12207 was developed by the Soft-
ware and Systems Engineering Standards Committee of the IEEE Computer Society
 [IEEE12207] . Simply stated, IEEE/EIA 12207 is ISO/IEC 12207 with modifi cations
and clarifi cations of wording and the addition of some appendixes. It is the umbrella
standard for the IEEE ’ s suite of approximately 40 standards for software engineer-
ing documents and processes [standards.ieee.org/software]; each of those standards
is (is intended to be) harmonious with IEEE/EIA 12207.

 According to the abstract in IEEE/EIA Standard 12207.0 – 1996, the standard
includes clarifi cations, additions, and changes accepted by the Institute of Electrical
and Electronics Engineers (IEEE) and the Electronic Industries Association (EIA).
The goal of the standard is to provide better understanding of and a basis for soft-
ware practices in both national and international business. According to the Fore-
word to IEEE/EIA 12207.2, it summarizes the best practices of the U.S. software
industry in the context of the process structure provided by ISO/IEC 12207. Rele-
vant elements of the ISO and IEEE Standards 12207 are presented in appendixes
to the chapters of this text.

 1A.3 IEEE / EIA STANDARD 1058

 Project management plans based on IEEE Std 1058 ™ – 1998 IEEE Standard for
Software Project Management Plans will include plans for [IEEE1058] :

 • managerial processes,
 • technical processes,

 • supporting processes, and
 • additional processes.

 Plans for managerial processes include:

 • a startup plan,
 • a work plan,
 • a control plan,
 • a risk management plan, and
 • a closeout plan.

 Plans for technical processes include plans for a development process model;
methods, tools, and techniques; infrastructure; and product acceptance. Supporting
process plans include plans for the eight supporting processes in IEEE/EIA Stan-
dard 12207; namely confi guration management, verifi cation and validation, docu-
mentation, quality assurance, reviews and audits, problem resolution, subcontractor
management, and process improvement.

 Plans for additional processes include plans for other processes such as user
training, installation, or ongoing maintenance and support that may not be required
on some projects.

 An overview of IEEE/EIA Standard 1058 is presented in Chapter 4 of this text.
A template for preparing project management plans based on IEEE/EIA Standard
1058 is contained in Appendix 4B to Chapter 4 of this text; an electronic copy of
the template can be accessed at the URL for the text, which is listed in the Preface.
Relevant elements of IEEE/EIA Standard 1058 are presented in appendixes to the
chapters of this text.

 1A.4 THE PMI BODY OF KNOWLEDGE

 The PMI Body of Knowledge was developed by the Project Management Institute,
which is a nonprofi t organization that promotes the profession of project manage-
ment by sponsoring chapters, special interest groups, and affi liations with colleges
and universities [www.pmi.org]. PMI has more than 200,000 members worldwide.
PMI ’ s activities include education and knowledge acquisition, professional develop-
ment and networking, career advancement and professional standards, and products
and services. PMI offers a certifi cate examination by which one can become a certi-
fi ed project management professional.

 The Guide to the PMI Body of Knowledge (PMBOK ®) covers fi ve process
groups [PMI04] :

 • project initiation,
 • project planning,
 • executing a project,
 • monitoring and controlling a project, and
 • closing a project.

1A.4 THE PMI BODY OF KNOWLEDGE 37

38 INTRODUCTION

 These fi ve process groups include 44 management processes. PMBOK also includes
34 key competencies for project managers. Titles of the chapters in A Guide to the
Project Management Body of Knowledge , 3rd ed. (PMBOK ® Guide) are listed in
Table 1A.5 ; they indicate the scope of topics addressed by PMBOK [PMI04] . Rele-
vant elements of PMBOK are presented in appendixes to the chapters of this
text.

 TABLE 1A.5 Chapters in the PMBOK ® Guide

 Chapter 1 Introduction
 Chapter 2 Project Life Cycle and Organization
 Chapter 3 Project Management Processes for a Project
 Chapter 4 Project Integration Management
 Chapter 5 Project Scope Management
 Chapter 6 Project Time Management
 Chapter 7 Project Cost Management
 Chapter 8 Project Quality Management
 Chapter 9 Project Human Resource Management
 Chapter 10 Project Communication Management
 Chapter 11 Project Risk Management
 Chapter 12 Project Procurement Management

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

