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CHAPTER 1

VECTOR SPACES, SIGNALS,
AND IMAGES

1.1 OVERVIEW

In this chapter we introduce the mathematical framework of vector spaces, matrices,
and inner products. We motivate the mathematics by using it to model signals and
images, both outside the computer (the analog signal as it exists in the “real world”)
and inside the computer (the digitized signal, suitable for computer storage and
processing). In either case the signal or image may be viewed as an element of a
vector space, so we define and develop some essential concepts concerning these
spaces. In particular, to analyze signals and images, we will decompose them into
linear combinations of basic sinusoidal or complex exponential waveforms. This is
the essence of the discrete Fourier and cosine transforms.

The process of sampling the analog signal and converting it to digital form causes
an essential loss of information, called “aliasing” and “quantization error.” We exam-
ine these errors rather closely. Analysis of these errors motivates the development of
methods to quantify the distortion introduced by an image compression technique,
which leads naturally to the concept of the “energy” of a signal and a deeper analysis
of inner products and orthogonality.

1.2 SOME COMMON IMAGE PROCESSING PROBLEMS

To open this chapter, we discuss a few common challenges in image processing, to
try to give the reader some perspective on the subject and why mathematics is such
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2 VECTOR SPACES, SIGNALS, AND IMAGES

an essential tool. In particular, we take a very short look at the following:

� Image compression
� Image restoration and denoising
� Edge and defect detection

We also briefly discuss the “transform” paradigm that forms the basis of so much
signal and image processing, and indeed, much of mathematics.

1.2.1 Applications

Compression Digitized images are everywhere. The Internet provides obvious
examples, but we also work with digitized images when we take pictures, scan
documents into computers, send faxes, photocopy documents, and read books on CD.
Digitized images underlie video games, and soon television will go (almost) entirely
digital. In each case the memory requirements for storing digitized images are an
important issue. For example, in a digital camera we want to pack as many pictures
as we can onto the memory card, and we’ve all spent too much time waiting for Web
pages to load large images. Minimizing the memory requirements for digitized images
is thus important, and this task is what motivates much of the mathematics in this text.

Without going into too much detail, let’s calculate the memory requirement for a
typical photograph taken with a digital camera. Assume that we have 24-bit color, so
that one byte of memory is required for each of the red, green, and blue components
of each pixel. With a 2048 × 1536 pixel image there will be 2048 × 1536 × 3 =
9, 431, 040 bytes or 9 megabytes of memory required, if no compression is used.
On a camera with a 64-megabyte memory card we can store seven large, gorgeous
pictures. This is unacceptably few. We need to do something more sophisticated, to
reduce memory requirements by a substantial factor.

However, the compression algorithm we devise cannot sacrifice significant image
quality. Even casual users of digital cameras frequently enlarge and print portions
of their photographs, so any degradation of the original image will rapidly become
apparent. Besides, more than aesthetics may be at stake: medical images (e.g., X rays)
may be compressed and stored digitally, and any corruption of the images could have
disastrous consequences. The FBI has also digitized and compressed its database of
fingerprints, where similar considerations apply; see [7].

At this point the reader might find it motivational to do Exercise 1.1.

Restoration Images can be of poor quality for a variety of reasons: low-quality
image capture (e.g., security video cameras), blurring when the picture is taken,
physical damage to an actual photo or negative, or noise contamination during the
image capture process. Restoration seeks to return the image to its original quality or
even “better.” Some of this technology is embedded into image capture devices such
as scanners. A very interesting and mathematically sophisticated area of research
involves inpainting, in which one tries to recover missing portions of an image,
perhaps because a film negative was scratched, or a photograph written on.
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Edge Detection Sometimes the features of essential interest in an image are
the edges, areas of sharp transition that indicate the end of one object and the start
of another. Situations such as this may arise in industrial processing, for automatic
detection of defects, or in automated vision and robotic manipulation.

1.2.2 Transform-Based Methods

The use of transforms is ubiquitous in mathematics. The general idea is to take a
problem posed in one setting, transform to a new domain where the problem is more
easily solved, then inverse transform the solution back to the original setting. For
example, if you’ve taken a course in differential equations you may have encountered
the Laplace transform, which turns linear differential equations into algebra problems
that are more easily solved.

Many imaging processing procedures begin with some type of transform T that
is applied to the original image. The transform T takes the image data from its
original format in the “image domain” to an altered format in the “frequency domain.”
Operations like compression, denoising, or other restoration are sometimes more
easily performed in this frequency domain. The modified frequency domain version
of the image can then be converted back to the original format in the image domain
by applying the inverse of T .

The transform operator T is almost always linear, and for finite-sized signals
and images such linear operators are implemented with matrix algebra. The matrix
approach thus constitutes a good portion of the mathematical development of the
text. Other processes, such as quantization (discussed later), are nonlinear. These are
usually the lossy parts of the computation; that is, they cause irreversible but (we
hope!) acceptable loss of data.

1.3 SIGNALS AND IMAGES

Before beginning a general discussion of vector spaces, it will be helpful to look at a
few specific examples that provide physical realizations of the mathematical objects of
interest. We’ll begin with one-dimensional signals, then move on to two-dimensional
images.

1.3.1 Signals

A signal may be modeled as a real-valued function of a real independent variable t ,
which is usually time. More specifically, consider a physical process that is dependent
on time. Suppose that at each time t within some interval a ≤ t ≤ b we perform a
measurement on some aspect of this process, and this measurement yields a real
number that may assume any value in a given range. In this case our measurements
are naturally represented by a real-valued function x(t) with domain a ≤ t ≤ b. We
will refer to x(t) as an analog signal. The function x(t) might represent the intensity
of sound at a given location (an audio signal), the current through a wire, the speed
of an object, and so on.
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FIGURE 1.1 Analog or continuous model x(t) = 0.75 sin(3t) + 0.5 sin(7t).

For example, a signal might be given by the function

x(t) = 0.75 sin(3t) + 0.5 sin(7t)

over the range 0 ≤ t ≤ 4π. The graph of this function is shown in Figure 1.1.
This signal is somewhat unrealistic, however, for it is a linear combination or su-
perposition of a small number of simple sinusoidal functions with no noise. In
general, in signal processing we can depend on being vexed by a few persistent
annoyances:

� We almost never have an explicit formula for x(t).
� Most signals are very complex.
� Most signals have noise.

Despite the difficulty of writing out an analog description in any specific instance,
many physical processes are naturally modeled by analog signals. Analog models
also have the advantage of being amenable to analysis using methods from calcu-
lus and differential equations. However, most modern signal processing takes place
in computers where the computations can be done quickly and flexibly. Unfortu-
nately, analog signals generally cannot be stored in a computer in any meaningful
way.

1.3.2 Sampling, Quantization Error, and Noise

To store a signal in a computer we must first digitize the signal. The first step in
digitization consists of measuring the signal’s instantaneous value at specific times
over a finite interval of interest. This process is called sampling. For the moment
let us assume that these measurements can be carried out with “infinite precision.”
The process of sampling the signal converts it from an analog form to a finite list
of real numbers, and is usually carried out by a piece of hardware known as an
analog-to-digital (“A-to-D”) converter.
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FIGURE 1.2 Discrete or sampled model, x(t) = 0.75 sin(3t) + 0.5 sin(7t).

More explicitly, suppose that the signal x(t) is defined on the time interval a ≤
t ≤ b. Choose an integer N ≥ 1 and define the sampling interval �t = (b − a)/N .
We then measure x(t) at times t = a, a + �t, a + 2�t, . . ., to obtain samples

xn = x(a + n�t), n = 0, 1, . . . , N .

Define

x = (x0, x1, . . . , xN ) ∈ R
N+1.

With the given indexing x0 = x(a) and xN = x(b). The vector x is the sampled
version of the signal x(t). The quantity 1/�t is the number of samples taken during
each time period, so it is called the sampling rate.

In Figure 1.2 we have a graphical representation of the sampled signal from Figure
1.1. It should be intuitively clear that sampling causes a loss of information. That
is, if we know only the sampled signal, then we have no idea what the underlying
analog signal did between the samples. The nature of this information loss can be
more carefully quantified, and this gives rise to the concept of aliasing, which we
examine later.

The sampling of the signal in the independent variable t isn’t the only source of
error in our A-to-D conversion. In reality, we cannot measure the analog signal’s
value at any given time with infinite precision, for the computer has only a finite
amount of memory. Consider, for example, an analog voltage signal that ranges from
0 to 1 volt. An A-to-D converter might divide up this one volt range into 28 = 256
equally sized intervals, say with the kth interval given by k�x ≤ x < (k + 1)�x
where �x = 1/256 and 0 ≤ k ≤ 255. If a measurement of the analog signal at an
instant in time falls within the kth interval, then the A-to-D converter might simply
record the voltage at this time as k�x . This is the quantization step, in which a
continuously varying quantity is truncated or rounded to the nearest of a finite set
of values. An A-to-D converter as above would be said to be “8-bit,” because each
analog measurement is converted into an 8-bit quantity. The error so introduced is
called the quantization error.
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FIGURE 1.3 Analog model and discrete model with noise, x(t) = 0.75 sin(3t) +
0.5 sin(7t).

Unfortunately, quantization is a nonlinear process that corrupts the algebraic struc-
ture afforded by the vector space model; see Exercise 1.6. In addition quantization
introduces irreversible, though usually acceptable, loss of information. This issue is
explored further in Section 1.9.

The combination of sampling and quantization allows us to digitize a signal or
image, and thereby convert it into a form suitable for computer storage and processing.

One last source of error is random noise in the sampled signal. If the noiseless
samples are given by xn as above, the noisy sample values yn might be modeled
as

yn = xn + εn, (1.1)

where εn represents the noise in the nth measurement. The errors εn are usually
assumed to be distributed according to some probability distribution, known or un-
known. The noise model in equation (1.1) is additive; that is, the noise is merely
added onto the sampled signal. Other models are possible and appropriate in some
situations.

In Figure 1.3 we show a discrete signal with noise added. The analog signal and
the corrupted discrete signal are graphed together so that the errors introduced by
noise may be easily seen.

1.3.3 Grayscale Images

For simplicity we first consider monochrome or grayscale images. An analog
grayscale image is modeled as a real-valued function f (x, y) defined on a two-
dimensional region �. Usually � is a rectangle, defined in xy coordinates by
a ≤ x ≤ b, c ≤ y ≤ d. The value f (x, y) represents the “intensity” of the image
at the point (x, y) in �. Grayscale images are typically displayed visually so that
smaller values of f correspond to darker shades of gray (down to black) and higher
values to lighter shades (up to white).
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FIGURE 1.4 Grayscale image from two perspectives.

For natural images f (x, y) would never be a simple function. Nonetheless, to
illustrate let us consider the image defined by the function

f (x, y) = 1.5 cos(2x) cos(7y) + 0.75 cos(5x) sin(3x)

−1.3 sin(9x) cos(15y) + 1.1 sin(13x) sin(11y)

on the domain � = {(x, y); 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The situation is illustrated in
Figure 1.4. The plot on the left is a conventional z = f (x, y) plot with the surface
“gray-coded” according to height, where f = −5 corresponds to black and f = 5
to white. The plot on the right is the same surface but viewed from directly above,
looking down the z axis. This is the actual grayscale image encoded by f according
to the scheme above.

1.3.4 Sampling Images

As in the one-dimensional case an analog image must be sampled prior to storage or
processing in a computer. The simplest model to adopt is the discrete model obtained
by sampling the intensity function f (x, y) on a regular grid of points (xs, yr ) in the
plane. For each point (xs, yr ) the value of f (xs, yr ) is the “graylevel” or intensity at
that location. The values f (xs, yr ) are collected into a m × n matrix A with entries
ars given by

ars = f (xs, yr ). (1.2)

If you’re wondering why it’s f (xs, yr ) instead of f (xr , ys), see Remark 1.1 below.
The sampling points (xs, yr ) can be chosen in many ways. One approach is as

follows: subdivide the rectangle � into mn identical subrectangles, with m equal
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vertical (y) subdivisions and n equal horizontal (x) subdivisions, of length �x =
(b − a)/n and height �y = (d − c)/m. We may take the points (xs, yr ) as the centers
of these subrectangles so that

(xs, yr ) = (
a + (

s − 1
2

)
�x, d − (

r − 1
2

)
�y
)
, (1.3)

or alternatively as the lower right corners of these rectangles,

(xs, yr ) = (a + s�x, d − r�y), (1.4)

where in either case 1 ≤ r ≤ m, 1 ≤ s ≤ n.
Note that in either case x1 < x2 < · · · < xn and y1 > y2 > · · · > ym . Using the

centers seems more natural, although the method (1.4) is a bit cleaner mathematically.
For images of reasonable size, however, it will make little difference.

Remark 1.1 On a computer screen the pixel coordinates conventionally start in
the upper left-hand corner and increase as we move to the right or down, which is
precisely how the rows and columns of matrices are indexed. This yields a natural
correspondence between the pixels on the screen and the indexes for the matrix A
for either (1.3) or (1.4). However, this is different from the way that coordinates
are usually assigned to the plane: with the matrix A as defined by either (1.3) or
(1.4), increasing column index (the index s in ars) corresponds to the increasing x
direction, but increasing row index (the index r in ars) corresponds to the decreasing
y direction. Indeed, on those rare occasions when we actually try to identify any
(x, y) point with a given pixel or matrix index, we’ll take the orientation of the y axis
to be reversed, with increasing y as downward.

Remark 1.2 There are other ways to model the sampling of an analog image. For
example, we may take ars as some kind of integral or weighted average of f near the
point (xs, yr ). These approaches can more accurately model the physical process of
sampling an analog image, but the function evaluation model in equation (1.2) has
reasonable accuracy and is a simple conceptual model. For almost all of our work in
this text we will assume that the sampling has been done and the input image matrix
or signal is already in hand.

Remark 1.3 The values of m and n are often decided by the application in mind, or
perhaps storage restrictions. It is useful and commonplace to have both m and n to
be divisible by some high power of 2.

1.3.5 Color

There are a variety of approaches to modeling color images. One of the simplest
is the “RGB” (red, green, blue) model in which a color image is described using
three functions r (x, y), g(x, y), and b(x, y), appropriately scaled, that correspond to
the intensities of these three additive primary colors at the point (x, y) in the image
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domain. For example, if the color components are each scaled in the range 0 to 1,
then r = g = b = 1 (equal amounts of all colors, full intensity) at a given point in
the image would correspond to pure white, while r = g = b = 0 is black. The choice
r = 1, g = b = 0 would be pure red, and so on. See [19] for a general discussion of
the theory of color perception and other models of color such as HSI (hue, saturation,
intensity) and CMY (cyan, magenta, yellow) models.

For simplicity’s sake we are only going to consider grayscale and RGB models,
given that computer screens are based on RGB. In fact we will be working almost
exclusively with grayscale images in order to keep the discussion simple and focused
on the mathematical essentials. An example where the CMY model needs to be
considered is in color laser printers that use cyan, magenta, and yellow toner. The
printer software automatically makes the translation from RGB to CMY. It is worth
noting that the actual JPEG compression standard specifies color images with a
slightly different scheme, the luminance-chrominance or “YCbCr” scheme. Images
can easily be converted back and forth from this scheme to RGB.

When we consider RGB images, we will assume the sampling has already been
done at points (xs, yr ) as described above for grayscale images. In the sampled image
at a given pixel location on the display device the three colors are mixed according
to the intensities r (xs, yr ), g(xs, yr ), and b(xs, yr ) to produce the desired color. Thus
a sampled m by n pixel image consists of three m by n arrays, one array for each
color component.

1.3.6 Quantization and Noise for Images

Just as for one-dimensional signals, quantization error is introduced when an image
is digitized. In general, we will structure our grayscale images so that each pixel is
assigned an integer value from 0 to 255 (28 values) and displayed with 0 as black, 255
as white, and intermediate values as shades of gray. The range is thus quantized with
8-bit precision. Similarly each color component in an RGB image will be assigned
value in the 0 to 255 range, so each pixel needs three bytes to determine its color.
Some applications require more than 8-bit quantization. For example, medical images
are often 12-bit grayscale, offering 4096 shades of gray.

Like one-dimensional signals, images may have noise. For example, let T be the
matrix with entries tsr representing the image on the left in Figure 1.5 and let A be the
matrix with entries asr representing the noisy image, shown on the right. Analogous
to audio signals we can posit an additive noise model

asr = tsr + εsr , (1.5)

where E has entries εsr and represents the noise. The visual effect is to give the image
a kind of “grainy” appearance.

1.4 VECTOR SPACE MODELS FOR SIGNALS AND IMAGES

We now develop a natural mathematical framework for signal and image analysis. At
the core of this framework lies the concept of a vector space.
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FIGURE 1.5 Image without and with additive noise.

Definition 1.4.1 A vector space over the real numbers R is a set V with
two operations, vector addition and scalar multiplication, with the properties
that

1. for all vectors u, v ∈ V the vector sum u + v is defined and lies in V (closure
under addition);

2. for all u ∈ V and scalars a ∈ R the scalar multiple au is defined and lies in V
(closure under scalar multiplication);

3. the “familiar” rules of arithmetic apply, specifically, for all scalars a, b and
u, v, w ∈ V :

a. u + v = v + u, (addition is commutative),

b. (u + v) + w = u + (v + w) (addition is associative),

c. there is a “zero vector” 0 such that u + 0 = 0 + u = u (additive identity),

d. for each u ∈ V there is an additive inverse vector w such that u + w = 0;
we conventionally write −u for the additive inverse of u,

e. (ab)u = a(bu),

f. (a + b)u = au + bu,

g. a(u + v) = au + av,

h. 1u = u.

If we replace R above by the field of complex numbers C, then we obtain the definition
of a vector space over the complex numbers.

We’ll also make frequent use of subspaces:
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Definition 1.4.2 A nonempty subset W of a vector space V is called a “subspace”
of V if W is itself closed under addition and scalar multiplication (as defined for V ).

Let’s look at a few examples of vector spaces and subspaces, especially those
useful in signal and image processing.

1.4.1 Examples—Discrete Spaces

We’ll first consider examples appropriate for sampled signals or images.

� EXAMPLE 1.1

The vector space R
N consists of vectors x of the form

x = (x1, x2, . . . , xN ), (1.6)

where the xk are all real numbers. Vector addition and scalar multiplication are
defined component by component as

x + y = (x1 + y1, x2 + y2, . . . , xN + yN ), cx = (cx1, cx2, . . . , cxN ),

where y = (y1, y2, . . . , yN ) and c ∈ R. The space R
N is appropriate when we

work with sampled audio or other one-dimensional signals. If we allow the xk in
(1.6) and scalar c to be complex numbers, then we obtain the vector space C

N .
That R

N or C
N satisfy the properties of a vector space (with addition and scalar

multiplication as defined) follows easily, with zero vector 0 = (0, 0, . . . , 0) and
additive inverse (−x1,−x2, . . . ,−xn) for any vector x.

As we’ll see, use of the space C
N can simplify much analysis, even when the

signals we work with are real-valued.

Remark 1.4 Warning: In later work we will almost always find it convenient to
index the components of vectors in R

N or C
N starting with index 0, that is, as

x = (x0, x1, . . . , xN−1), rather than the more traditional range 1 to N .

� EXAMPLE 1.2

The sets Mm,n(R) or Mm,n(C), m × n matrices with real or complex entries respec-
tively, form vector spaces. Addition is defined in the usual way for matrices, entry
by entry, as is multiplication by scalars. The vector 0 is just the matrix with all
zero entries, and the additive inverse for a matrix M with entries m jk is the matrix
with entries −m jk . Any multiplicative properties of matrices are irrelevant in this
context. On closer examination it should be clear that these vector spaces are noth-
ing more than R

mn or C
mn , but spaces where we choose to display the “vectors”

as m rows of n components rather than a single row or column with mn entries.
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The vector space Mm,n(R) is an appropriate model for the discretization of
images on a rectangle. As in the one-dimensional case, analysis of images is often
facilitated by viewing them as members of space Mm,n(C).

� EXAMPLE 1.3

On occasion it is useful to think of an analog signal f (t) as beginning at some
time t = a and continuing “indefinitely.” If we sample such a signal at intervals
of �t starting at time t = a without stopping, we obtain a vector

x = (x0, x1, x2, . . .) (1.7)

with real components xk = f (a + k�t), k ≥ 0. Given another vector y =
(y0, y1, y2, . . .), we define vector addition and scalar multiplication as

cx = (cx0, cx1, cx2, . . .), x + y = (x0 + y0, x1 + y1, . . .).

Let V denote the resulting set with these operations. It’s an easy algebra problem
to verify that V is a vector space over the real numbers with zero vector 0 =
(0, 0, 0, . . .); the additive inverse of x above is (−x0,−x1,−x2, . . .). And though
it may seem painfully obvious, to say that “x = y” in V means precisely that
xk = yk for each k ≥ 0. We will later encounter vector spaces where we have to
be quite careful about what is meant by “x = y.”

A simple variant of this vector space is the bi-infinite space of vectors

x = (. . . , x−2, x−1, x0, x1, x2, . . .) (1.8)

with the analogous vector space structure. A space like this would be appropriate
for modeling a physical process with a past and future of indefinite duration.

� EXAMPLE 1.4

As defined, the set V in the previous example lacks sufficient structure for the kinds
of analysis we usually want to do, so we typically impose additional conditions on
the components of x. For example, let us impose the additional condition that for
each x as defined by equation (1.7) there is some number M (which may depend
on x) such that |xk | ≤ M for all k ≥ 0. In this case the resulting set (with addition
and scalar multiplication as defined above for V ) is a vector space called L∞(N)
(here N = {0, 1, 2, . . .} denotes the set of natural numbers), or often just �∞. This
would be an appropriate space for analyzing the class of sampled signals in which
the magnitude of any particular signal remains bounded for all t ≥ 0.

The verification that L∞(N) is a vector space over R is fairly straightforward.
The algebraic properties of item 3 in Definition 1.4.1 are verified exactly as
for V in the previous example, where again the zero vector is (0, 0, 0, . . .) and
the additive inverse of x is (−x0,−x1,−x2, . . .). To show closure under vector
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addition, consider vectors x and y with |xk | ≤ Mx and |yk | ≤ My for all k ≥ 0.
From the triangle inequality for real numbers

|xk + yk | ≤ |xk | + |yk | ≤ Mx + My,

so the components of x + y are bounded in magnitude by Mx + My . Thus x + y ∈
L∞(N), and the set is closed under addition. Similarly for any k the kth component
cxk of cx is bounded by |c|Mx , and the set is closed under scalar multiplication.
This makes L∞(N) a subspace of the vector space V from the previous example.

If we consider bi-infinite vectors as defined by equation (1.8) with the condition
that for each x there is some number M such that |xk | ≤ M for all k ∈ Z, then we
obtain the vector space L∞(Z).

� EXAMPLE 1.5

We may impose the condition that for each sequence of real numbers x of the form
in (1.7) we have

∞∑
k=0

|xk |2 < ∞, (1.9)

in which case the resulting set is called L2(N), or often just �2. This is even more
stringent than the condition for L∞(N); verification of this assertion and that L2(N)
is a vector space is left for Exercise 1.11. We may also let the components xk be
complex numbers, and the result is still a vector space.

Conditions like (1.9) that bound the “squared value” of some object are common
in applied mathematics and usually correspond to finite energy in an underlying
physical process.

A very common variant of L2(N) is the space L2(Z), consisting of vectors of
the form in equation (1.8) that satisfy

∞∑
k=−∞

|xk |2 < ∞.

The space L2(Z) will play an important role throughout Chapters 6 and 7.

Variations on the spaces above are possible, and common. Which vector space we
work in depends on our model of the underlying physical process and the analysis
we hope to carry out.

1.4.2 Examples—Function Spaces

In the examples above the spaces all consist of vectors that are lists or arrays, finite
or infinite, of real or complex numbers. Functions can also be interpreted as elements
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of vector spaces, and this is the appropriate setting when dealing with analog signals
or images. The mathematics in this case can be more complicated, especially when
dealing with issues concerning approximation, limits, and convergence (about which
we’ve said little so far). We’ll have limited need to work in this setting, at least until
Chapter 7. Here are some relevant examples.

� EXAMPLE 1.6

Consider the set of all real-valued functions f that are defined and continuous
at every point in a closed interval [a, b] of the real line. This means that for any
t0 ∈ [a, b],

lim
t→t0

f (t) = f (t0),

where t approaches from the right only in the case that t0 = a and from the
left only in the case that t0 = b. The sum f + g of two functions f and g is
the function defined by ( f + g)(t) = f (t) + g(t), and the scalar multiple c f is
defined via (c f )(t) = c f (t). With these operations this is a vector space over
R, for it is closed under addition since the sum of two continuous functions is
continuous. It is also closed under scalar multiplication, since a scalar multi-
ple of a continuous function is continuous. The algebraic properties of item 3
in Definition 1.4.1 are easily verified with the “zero function” as the additive
identity and − f as the additive inverse of f . The resulting space is denoted
C[a, b].

The closed interval [a, b] can be replaced by the open interval (a, b) to obtain
the vector space C(a, b). The spaces C[a, b] and C(a, b) do not coincide, for
example, f (t) = 1/t lies in C(0, 1) but not C[0, 1]. In this case 1/t isn’t defined
at t = 0, and moreover this function can’t even be extended to t = 0 in a continuous
manner.

� EXAMPLE 1.7

Consider the set of all real-valued functions f that are piecewise continuous on the
interval [a, b]; that is, f is defined and continuous at all but finitely many points
in [a, b]. With addition and scalar multiplication as defined in the last example
this is a vector space over R. The requisite algebraic properties are verified in
precisely the same manner. To show closure under addition, just note that any
point of discontinuity for f + g must be a point of discontinuity for f or g; hence
f + g can have only finitely many points of discontinuity. The discontinuities for
c f are precisely those for f .

Both C(a, b) and C[a, b] are subspaces of this vector space (which doesn’t
have any standard name).
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� EXAMPLE 1.8

Let V denote those functions f in C(a, b) for which∫ b

a
f 2(t) dt < ∞. (1.10)

A function f that is continuous on (a, b) can have no vertical asymptotes in the
open interval, but may be unbounded as t approaches the endpoint t = a or t = b.
Thus the integral above (and all integrals in this example) should be interpreted
as improper integrals, that is,∫ b

a
f 2(t) dt = lim

p→a+

∫ r

p
f 2(t) dt + lim

q→b−

∫ b

r
f 2(t) dt,

where r is any point in (a, b).
To show that V is closed under scalar multiplication, note that∫ b

a
(c f )2(t) dt = c2

∫ b

a
f 2(t) dt < ∞,

since f satisfies the inequality (1.10). To show closure under vector addition,
first note that for any real numbers p and q, we have (p + q)2 ≤ 2p2 + 2q2 (this
follows easily from 0 ≤ (p − q)2). As a consequence, for any two functions f
and g in V and any t ∈ (a, b), we have

( f (t) + g(t))2 ≤ 2 f 2(t) + 2g2(t).

Integrate both sides above from t = a to t = b (as improper integrals) to obtain∫ b

a
( f (t) + g(t))2 dt ≤ 2

∫ b

a
f 2(t) dt + 2

∫ b

a
g2(t) dt < ∞,

so f + g is in V . The algebraic properties in Definition 1.4.1 follow as before, so
that V is a vector space over R.

The space V as defined above doesn’t have any standard name, but it is
“almost” the vector space commonly termed L2(a, b), also called “the space
of square integrable functions on (a, b).” More precisely, the space defined above
is the intersection C(a, b) ∩ L2(a, b). Nonetheless, we will generally refer to it as
“L2(a, b),” and say more about it in Section 1.10.4. This space will make more
appearances in the text, especially in Chapter 7.

Similar to the inequality (1.9), the condition (1.10) comes up fairly often in
applied mathematics and usually corresponds to signals of finite energy.
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� EXAMPLE 1.9

Consider the set of functions f (x, y) defined on some rectangular region � =
{(x, y); a ≤ x ≤ b, c ≤ y ≤ d}. We make no particular assumptions about the
continuity or other nature of the functions. Addition and scalar multiplication are
defined in the usual way, as ( f + g)(x, y) = f (x, y) + g(x, y) and (c f )(x, y) =
c f (x, y). This is a vector space over R. The proof is in fact the same as in the case
of functions of a single variable. This space would be useful for image analysis,
with the functions representing graylevel intensities and � the image domain.

Of course, we can narrow the class of functions, for example, by considering
only those that are continuous on �; this space is denoted C(�). Or we can impose
the further restriction that∫ b

a

∫ d

c
f 2(x, y) dy dx < ∞,

which, in analogy to the one-dimensional case, we denote by L2(�). There are
many other important and potentially useful vector spaces of functions.

We could also choose the domain � to be infinite, for example, a half-plane
or the whole plane. The region is selected to give a good tractable vector space
model and to be relevant to the physical situation of interest, though unbounded
domains are not generally necessary in image processing.

In addition to the eight basic arithmetic properties listed in Definition 1.4.1, certain
other arithmetic properties of vector spaces are worth noting.

Proposition 1.4.1 If V is a vector space over R or C, then

1. the vector 0 is unique;

2. 0u = 0 for any vector u;

3. the additive inverse of any vector u is unique, and is given by (−1)u.

These properties look rather obvious and are usually easy to verify in any specific
vector space as in Examples 1.1 to 1.9. They also hold in any vector space, and can
be shown directly from the eight arithmetic properties for a vector space. The careful
proofs can be a bit tricky though! See Exercise 1.12.

We have already started to use the additive vector space structure when we modeled
noise in signals and images with equations (1.1) and (1.5). The vector space structure
will be indispensable when we discuss the decomposition of signals and images into
linear combinations of more “basic” components.

Tables 1.1 and 1.2 give a brief summary of some of the important spaces of interest,
as well as when each space might be used. As mentioned, the analog models are used
when we consider the actual physical processes that underly signals and images, but
for computation we always consider the discrete version.
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TABLE 1.1 Discrete Signal Models and Uses

Notation Vector Space Description

R
N {x = (x1, . . . , xN ) : xi ∈ R}, finite sampled signals

C
N {x = (x1, . . . , xN ) : xi ∈ C}, analysis of sampled signals

L∞(N) or �∞ {x = (x0, x1, . . .) : xi ∈ R, |xi | ≤ M for all i ≥ 0}
bounded, sampled signals, infinite time

L2(N) or �2 {x = (x0, x1, . . .) : xi ∈ R or xi ∈ C ,
∑

k |xk |2 < ∞}
sampled signals, finite energy, infinite time

L2(Z) {x = (. . . , x−1, x0, x1, . . .) : xi ∈ R or xi ∈ C ,
∑

k |xk |2 < ∞}
sampled signals, finite energy, bi-infinite time

Mm,n(R) Real m × n matrices, sampled rectangular images

Mm,n(C) Complex m × n matrices, analysis of images

1.5 BASIC WAVEFORMS—THE ANALOG CASE

1.5.1 The One-dimensional Waveforms

To analyze signals and images, it can be extremely useful to decompose them into
a sum of more elementary pieces or patterns, and then operate on the decomposed
version, piece by piece. We will call these simpler pieces the basic waveforms. They
serve as the essential building blocks for signals and images. In the context of Fourier
analysis for analog signals these basic waveforms are simply sines and cosines, or
equivalently, complex exponentials. Specifically, the two basic waveforms of interest
are cos(ωt) and sin(ωt), or their complex exponential equivalent eiωt , where ω acts
as a frequency parameter.

The complex exponential basic waveforms will be our preferred approach. Recall
Euler’s identity,

eiθ = cos(θ ) + i sin(θ ). (1.11)

TABLE 1.2 Analog Signal Models and Uses

Notation Vector Space Description

C(a, b) or C[a, b] Continuous functions on (a, b) or [a, b],
continuous analog signal

L2(a, b) f Riemann integrable and
∫ b

a f 2(x) dx < ∞,
analog signal with finite energy

L2(�) (� = [a, b] × [c, d]) f Riemann integrable and
∫ b

a

∫ d
c f 2(x, y) dy dx < ∞,

analog image
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From this we have (with θ = ωt and θ = −ωt)

eiωt = cos(ωt) + i sin(ωt),
(1.12)

e−iωt = cos(ωt) − i sin(ωt),

which can be solved for cos(ωt) and sin(ωt) as

cos(ωt) = eiωt + e−iωt

2
,

(1.13)

sin(ωt) = eiωt − e−iωt

2i
.

If we can decompose a given signal x(t) into a linear combination of waveforms
cos(ωt) and sin(ωt), then equations (1.13) make it clear that we can also decompose
x(t) into a linear combination of appropriate complex exponentials. Similarly equa-
tions (1.12) can be used to convert any complex exponential decomposition into sines
and cosines. We thus also consider the complex exponential functions eiωt as basic
waveforms.

Remark 1.5 In the real-valued sine/cosine case we only need to work with ω ≥
0, since cos(−ωt) = cos(ωt) and sin(−ωt) = − sin(ωt). Any function that can be
constructed as a sum using negative values of ω has an equivalent expression with
positive ω.

� EXAMPLE 1.10

Consider the signal x(t) = sin(t) + 3 sin(−2t) − 2 cos(−5t). From Remark 1.5
we can express x(t) as x(t) = sin(t) − 3 sin(2t) − 2 cos(5t), using only positive
values of ω in the expressions sin(ωt) and cos(ωt). Equations (1.13) also yield

x(t) = 1

2i
eit − 1

2i
e−i t − 3

2i
e2i t + 3

2i
e−2i t − e5i t − e−5i t ,

a sum of basic complex exponential waveforms. Whether we work in trigono-
metric functions or complex exponentials matters little from the mathematical
perspective. The trigonometric functions, because they’re real-valued and famil-
iar, have a natural appeal, but the complex exponentials often yield much cleaner
mathematical formulas. As such, we will usually prefer to work with the complex
exponential waveforms.

We can visualize eiωt by simultaneously graphing the real and imaginary parts
as functions of t , as in Figure 1.6, with real parts solid and imaginary parts dashed.
Note that

cos(ωt) = Re(eiωt ),
(1.14)

sin(ωt) = Im(eiωt ).
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FIGURE 1.6 Real (solid) and imaginary (dashed) parts of complex exponentials.

Of course the real and imaginary parts, and eiωt itself, are periodic and ω controls
the frequency of oscillation. The parameter ω is called the natural frequency of
the waveform.

The period of eiωt can be found by considering those values of λ for which
eiω(t+λ) = eiωt for all t , which yields

eiω(t+λ) = eiωt eiωλ = eiωt (cos(ωλ) + i sin(ωλ)), (1.15)

so that eiω(t+λ) = eiωt forces cos(ωλ) + i sin(ωλ) = 1. The smallest positive value
of λ for which this holds satisfies λ|ω| = 2π . Thus λ = 2π/|ω|, which is the
period of eiωt (or the wavelength if t is a spatial variable).

The quantity q = l/λ = ω/2π (so ω = 2πq) is the number of oscillations
made by the waveform in a unit time interval and is called the frequency of the
waveform. If t denotes time in seconds, then q has units of Hertz, or cycles per
second. It is often useful to write the basic waveform eiωt as e2π iqt , to explicitly
note the frequency q of oscillation. More precisely, the frequency (in Hertz) of the
waveform e2π iqt is |q| Hertz, since frequency is by convention nonnegative.

In real-valued terms, we can use cos(2πqt) and sin(2πqt) with q ≥ 0 in place
of cos(ωt) and sin(ωt) with ω ≥ 0.

As we will see later, any “reasonable” (e.g., bounded and piecewise continuous)
function x(t) defined on an interval [−T, T ] can be written as an infinite sum of
basic waveforms eiωt , as

x(t) =
∞∑

k=−∞
ckeπ ikt/T (1.16)

for an appropriate choice of the constants ck . The natural frequency parameter
ω assumes the values πk/T for k ∈ Z, or equivalently the frequency q assumes
values k/2T . An expansion analogous to (1.16) also exists using the sine/cosine
waveforms.
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1.5.2 2D Basic Waveforms

The 2D basic waveforms are governed by a pair of frequency parameters α and β. Let
(x, y) denote coordinates in the plane. The basic waveforms are products of complex
exponentials and can be written in either additive form (left side below) or a product
form (right side),

ei(αx+βy) = eiαx eiβy . (1.17)

As in the one-dimensional case we can convert to a trigonometric form,

ei(αx+βy) = cos(αx + βy) + i sin(αx + βy),

and conversely,

cos(αx + βy) = ei(αx+βy) + e−i(αx+βy)

2
,

sin(αx + βy) = ei(αx+βy) − e−i(αx+βy)

2i
.

Thus the family of functions

{cos(αx + βy), sin(αx + βy)} (1.18)

is an alternate set of basic waveforms.
Sometimes a third class of basic waveforms is useful. An application of Euler’s

formula to both exponentials on the right in equation (1.17) shows that

ei(αx+βy) = cos(αx) cos(βy) − sin(αx) sin(βy)

+i(cos(αx) sin(βy) + sin(αx) cos(βy)),

so these complex exponential basic waveforms can be expanded into linear combi-
nations of functions from the family

{cos(αx) cos(βy), sin(αx) sin(βy), cos(αx) sin(βy), sin(αx) cos(βy)}. (1.19)

Conversely, each of these functions can be written in terms of complex exponentials
(see Exercise 1.15). The functions in (1.19) also form a basic set of waveforms.

Just as in the one-dimensional case, for the real-valued basic waveforms (1.18) or
(1.19) we can limit our attention to the cases α, β ≥ 0.

We almost always use the complex exponential waveforms in our analysis, how-
ever, except when graphing. As in the one-dimensional case these exponential
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FIGURE 1.7 Grayscale image of cos(2π (px + qy)) = Re(e2π i(px+qy)) for various p and q .

waveforms can be written in a frequency format as

ei(αx+βy) = e2π i(px+qy),

where p and q are frequencies in the x and y directions. In the plots in Figure 1.7 we
show the real parts of the basic exponential waveforms for several values of p and q,
as grayscale images on the unit square 0 ≤ x, y ≤ 1, with y downward as per Remark
1.1 on page 8. The waves seem to have a direction and wavelength; see Exercise 1.18.

1.6 SAMPLING AND ALIASING

1.6.1 Introduction

As remarked prior to equation (1.16), an analog signal or function on an interval
[−T, T ] can be decomposed into a linear combination of basic waveforms eiωt ,
or the corresponding sines and cosines. For computational purposes, however, we
sample the signal and work with the corresponding discrete quantity, a vector. The
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FIGURE 1.8 Sampled signal, �T = 0.05.

analog waveforms eiωt must then be replaced with “equivalent” discrete waveforms.
What should these waveforms be?

The obvious answer is to use the sampled analog waveforms, but an interesting
phenomenon called aliasing shows up. It should be intuitively clear that sampling
destroys information about the analog signal. It is in the case where the sampling is
done on basic waveforms that this loss of information is especially easy to quantify.
We will thus take a short detour to discuss aliasing, and then proceed to the discrete
model waveforms in the next section.

To illustrate aliasing, consider the sampled signal graphed in Figure 1.8, obtained
by sampling the basic waveform sin(ωt) for some “unknown” ω on the interval
0 ≤ t ≤ 1 at intervals of �T = 0.05. The sampled waveform appears to make exactly
two full cycles in the time interval [0, 1], corresponding to a frequency of two Hertz
and the basic waveform sin(4π t). However, Figure 1.9 shows a plot of the “true”
analog signal, superimposed on the sampled signal!

The actual analog waveform is x(t) = sin(44π t), corresponding to a frequency
of 22 Hertz (ω = 44π ). The plot of the sampled signal is quite deceptive and

0 0.2 0.4 0.6 0.8 1
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FIGURE 1.9 Analog and sampled signal, �T = 0.05.
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illustrates aliasing, in which sampling destroys our ability to distinguish between
basic waveforms with certain relative frequencies.

1.6.2 Aliasing for Complex Exponential Waveforms

To quantify this phenomenon, let’s first look at the situation for complex waveforms
eiωt . For simplicity we write these in frequency form e2π iqt with q = ω/2π , so q is in
Hertz; note q is not required to be an integer. Suppose that we sample such a waveform
N times per second, at times t = k/N for k = 0, 1, 2, . . .. The sampled waveform
yields values e2π iqk/N . Under what circumstances will another analog waveform
e2π i q̃t at frequency q̃ Hertz yield the same sampled values at times t = k/N? Stated
quantitatively, this means that

e2π iqk/N = e2π i q̃k/N

for all integers k ≥ 0. Divide both sides above by e2π iqk/N to obtain 1 = e2π i(q̃−q)k/N ,
or equivalently,

1 = (
e2π i(q̃−q)/N

)k
(1.20)

for all k ≥ 0. Now if a complex number z satisfies zk = 1 for all integers k then z = 1
(consider the case k = 1). From equation (1.20) we conclude that e2π i(q̃−q)/N = 1.
Since ex = 1 only when x = 2π im where m ∈ Z, it follows that 2π i(q̃ − q)/N =
2π im, or q̃ − q = m N . Thus the waveforms e2π iqt and e2π i q̃t sampled at times
t = k/N yield identical values exactly when

q̃ − q = m N (1.21)

for some integer m.
Equation (1.21) quantifies the phenomenon of aliasing: When sampled with sam-

pling interval �T = 1/N (frequency N Hertz) the two waveforms e2π iqt and e2π i q̃t

will be aliased (yield the same sampled values) whenever q̃ and q differ by any
multiple of the sampling rate N . Equivalently, eiωt and eiω̃t yield exactly the same
sampled values when ω̃ − ω = 2πm N .

Aliasing has two implications, one “physical” and one “mathematical.” The phys-
ical implication is that if an analog signal consists of a superposition of basic wave-
forms e2π iqt and is sampled at N samples per second, then for any particular frequency
q0 the waveforms

. . . , e2π i(q0−2N )t , e2π i(q0−N )t , e2π iq0t , e2π i(q0+N )t , e2π i(q0+2N )t . . .

are all aliased. Any information concerning their individual characteristics (ampli-
tudes and phases) is lost. The only exception is if we know a priori that the signal
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consists only of waveforms in a specific and sufficiently small frequency range.
For example, if we know that the signal consists only of waveforms e2π iqt with
−N/2 < q ≤ N/2 (i.e., frequencies |q| between 0 and N/2), then no aliasing will
occur because q ± N , q ± 2N , and so on, do not lie in this range. This might be the
case if the signal has been low-pass filtered prior to being sampled, to remove (by
analog means) all frequencies greater than N/2. In this case sampling at frequency
N would produce no aliasing.

The mathematical implication of aliasing is this: when analyzing a signal sampled
at frequency N , we need only use the sampled waveforms e2π iqk/N with −N/2 <

q ≤ N/2. Any discrete basic waveform with frequency outside this range is aliased
with, and hence identical to, a basic waveform within this range.

1.6.3 Aliasing for Sines and Cosines

Similar considerations apply when using the sine/cosine waveforms. From equations
(1.13) it’s easy to see that when sampled at frequency N the functions sin(2πqt) or
cos(2πqt) will be aliased with waveforms sin(2π q̃t) or cos(2π q̃t) if q̃ − q = m N
for any integer m. Indeed, one can see directly that if q̃ = q + m N , then

sin(2π q̃k/N ) = sin(2π (q + m N )k/N ) = sin(2πqk/N + 2πkm) = sin(2πqk/N ),

since sin(t + 2πkm) = sin(t) for any t , where k and m are integers. A similar compu-
tation holds for the cosine. Thus as in the complex exponential case we may restrict
our attention to a frequency interval in q of length N , for example, −N/2 < q ≤ N/2.

However, in the case of the sine/cosine waveforms the range for q (or ω) can be
narrowed a bit further. In light of Remark 1.5 on page 18 we need not consider q < 0
if our main interest is the decomposition of a signal into a superposition of sine or
cosine waveforms, for cos(−2πqt) = cos(2πqt) and sin(−2πqt) = − sin(2πqt). In
the case of the sine/cosine waveforms we need only consider the range 0 ≤ q ≤ N/2.
This is actually identical to the restriction for the complex exponential case, where
the frequency |q| of e2π iqt is restricted to 0 ≤ |q| ≤ N/2.

1.6.4 The Nyquist Sampling Rate

For both complex exponential waveforms e2π iqt and the basic trigonometric wave-
forms sin(2πqt), cos(2πqt), sampling at N samples per second results in frequencies
greater than N/2 being aliased with frequencies between 0 and N/2. Thus, if an ana-
log signal is known to contain only frequencies of magnitude F and lower, sampling
at a frequency N ≥ 2F (so F ≤ N/2) results in no aliasing. This is one form of
what is called the Nyquist sampling rate or Nyquist sampling criterion: to avoid
aliasing, we must sample at twice the highest frequency present in an analog signal.
This means at least two samples per cycle for the highest frequency. One typically
samples at a slightly greater rate to ensure greater fidelity. Thus commercial CD’s
use a sample rate of 44.1 kHz, which is slightly greater than the generally accepted
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maximum audible frequency of 20 kHz. A CD for dogs would require a higher
sampling rate!

A closely related result, the Shannon sampling theorem, states that if an analog
signal x(t) contains only frequencies in the range 0 to N/2 and is sampled at sampling
rate N , then x(t) can be perfectly recovered for all t ; see [17, p. 87].

1.6.5 Aliasing in Images

Aliasing also occurs when images are sampled. Consider the simple grayscale image
embodied by the function

f (x, y) = 256 sin(2π (50x + 70y))

on the domain 0 ≤ x, y ≤ 1. In Figure 1.10 are images based on sampling f on n
by n grids for n = 60, 100, 300, and 1000, and displayed with 0 as black, 255 as
white (rounded down). To avoid aliasing, we expect to need a sampling frequency of
at least 100 samples per unit distance in the x direction, 140 in the y. The 1000 by
1000 image comes closest to the “true” analog image, while the n = 60 and n = 100
images completely misrepresent the nature of the underlying analog signal. When
n = 60, the stripes actually go the wrong way.
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FIGURE 1.10 Aliasing in a 2D region, n = 60 (top left), n = 100 (top right), n = 300
(bottom left), and n = 1000 (bottom right).
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In general, however, aliasing in images is difficult to convey consistently via the
printed page, or even on a computer screen, because the effect is highly dependent
on printer and screen resolution. See Section 1.11 at the end of this chapter, in
which you can construct your own aliasing examples in Matlab, as well as audio
examples.

1.7 BASIC WAVEFORMS—THE DISCRETE CASE

1.7.1 Discrete Basic Waveforms for Finite Signals

Consider a continuous signal x(t) defined on a time interval [0, T ], sampled at the
N times t = nT/N for n = 0, 1, 2, . . . , N − 1; note we don’t sample x(t) at t = T .
This yields discretized signal x = (x0, x1, . . . , xN−1), where xn = nT/N , a vector in
R

N . In all that follows we will index vectors in R
N from index 0 to index N − 1, as

per Remark 1.4 on page 11.
As we show in a later section, the analog signal x(t) can be decomposed into an

infinite linear combination of basic analog waveforms, in this case of the form e2π ikt/T

for k ∈ Z. As discussed in the previous section, the appropriate basic waveforms are
then the discretized versions of the waveforms e2π ikt/T , obtained by sampling at times
t = nT/N . This yields a sequence of basic waveform vectors which we denote by
EN ,k , indexed by k, of the form

EN ,k =

⎡⎢⎢⎢⎢⎣
e2π ik0/N

e2π ik1/N

...

e2π ik(N−1)/N

⎤⎥⎥⎥⎥⎦ , (1.22)

a discrete version of e2π ikt/T . Note though that the waveform vectors don’t depend
on T . The mth component EN ,k(m) of EN ,k is given by

EN ,k(m) = e2π ikm/N . (1.23)

For any fixed N we can construct the basic waveform vector EN ,k for any k ∈ Z,
but as shown when we discussed aliasing, EN ,k = EN ,k+m N for any integer m. As a
consequence we need only consider the EN ,k for a range in k of length N , say of the
form k0 + 1 ≤ k ≤ k0 + N for some k0. A “natural” choice is k0 = −N/2 (if N is
even) corresponding to −N/2 < k ≤ N/2 as in the previous aliasing discussion, but
the range 0 ≤ k ≤ N − 1 is usually more convenient for indexing and matrix algebra.
However, no matter which range in k we use to index, we’ll always be using the same
set of N vectors since EN ,k = EN ,k−N .

When there is no potential confusion, we will omit the N index and write simply
Ek , rather than EN ,k .
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� EXAMPLE 1.11

As an illustration, here are the vectors E4,k for k = −2 to k = 3:

E4,−2 =

⎡⎢⎢⎢⎣
1

−1

1

−1

⎤⎥⎥⎥⎦ , E4,−1 =

⎡⎢⎢⎢⎣
1

−i

−1

i

⎤⎥⎥⎥⎦ , E4,0 =

⎡⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎦ ,

E4,1 =

⎡⎢⎢⎢⎣
1

i

−1

−i

⎤⎥⎥⎥⎦ , E4,2 =

⎡⎢⎢⎢⎣
1

−1

1

−1

⎤⎥⎥⎥⎦ , E4,3 =

⎡⎢⎢⎢⎣
1

−i

−1

i

⎤⎥⎥⎥⎦ .

Note the aliasing relations E4,−2 = E4,2 and E4,−1 = E4,3. In particular, the sets
{E4,−1, E4,0, E4,1, E4,2} and {E4,0, E4,1, E4,2, E4,3} (corresponding to EN ,k on the
range −N/2 < k ≤ N/2 or 0 ≤ k ≤ N − 1) are identical.

It’s also worth noting the relation

EN ,k = EN ,N−k, (1.24)

where the overline denotes complex conjugation. Equation (1.24) is sometimes
called “conjugate aliasing.” See Exercise 1.20.

Remark 1.6 There are a lot of periodic functions in the discussion above. For
example, the basic waveform e2π ikt/T is periodic in t with period T/k. The quantity
EN ,k(m) in equation (1.23) is defined for all k and m and periodic in both. As a
consequence EN ,k is defined for all k, and periodic with period N . The one entity that
is not manifestly periodic is the analog time signal x(t), or its sampled version x =
(x0, x1, . . . , xN−1). At times it will be useful, at least conceptually, to extend either
periodically. The sampled signal x = (x0, . . . , xN−1) can be extended periodically
with period N in its index by defining

xm = xm mod N

for all m outside the range 0 ≤ m ≤ N − 1. We can also extend the analog signal x(t)
periodically to all real t by setting x(t) = x(t mod P), where P denotes the period
of x(t).

1.7.2 Discrete Basic Waveforms for Images

As with the one-dimensional waveforms, the appropriate discrete waveforms in the
two-dimensional case are the sampled basic waveforms. These discrete waveforms
are naturally rectangular arrays or matrices.
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To be more precise, consider a rectangular domain or image defined by 0 ≤ x ≤ S,
0 ≤ y ≤ R, but recall Remark 1.1 on page 8; here increasing y is downward. The
sampling will take place on an m (in the y direction) by n (x direction) rectangular
grid. The basic two-dimensional waveforms were given in equation (1.17). As we
will see later, the parameters α and β are most conveniently taken to be of the form
α = 2πl/S and β = 2πk/R for integers k and l. Thus the analog basic waveforms to
be sampled are the functions e2π i(lx/S+ky/R). Each such waveform is sampled at points
of the form xs = sS/n, yr = r R/m, with 0 ≤ s ≤ n − 1, 0 ≤ r ≤ m − 1. The result
is an m × n matrix Em,n,k,l with row r , column s entry

Em,n,k,l (r, s) = e2π i(kr/m+ls/n). (1.25)

Note that Em,n,k,l does not depend on the image dimensions R or S. The indexes may
seem a bit confusing, but recall that m and n are fixed by the discretization size (an m
by n pixel image); l and k denote the frequency of the underlying analog waveform
in the x and y directions, respectively. The parameters s and r correspond to the x
and y coordinates of the sample point. These m × n matrices Em,n,k,l constitute the
basic waveforms in the discrete setting.

In Exercise 1.17 you are asked to show that Em,n,k,l can be factored into a product

Em,n,k,l = Em,kET
n,l , (1.26)

where the superscript T denotes the matrix transpose operation and where the vectors
Em,k and En,l are the discrete basic waveforms in one-dimension, as defined in
equation (1.22) (as column vectors). For example,

E4,4,1,2 = E4,1 E T
4,2 =

⎡⎢⎢⎢⎣
1

i

−1

−i

⎤⎥⎥⎥⎦[1 −1 1 −1
] =

⎡⎢⎢⎢⎣
1 −1 1 −1

i −i i −i

−1 1 −1 1

−i i −i i

⎤⎥⎥⎥⎦
As in the one-dimensional case we will write Ek,l instead of Em,n,k,l when there is no
possibility for confusion.

A variety of aliasing relations for the waveforms Em,n,k,l follow from equation
(1.26) and those for the Em,k ; see Exercise 1.21. Also the Em,n,k,l are periodic in k
with period m, and periodic in l with period n. If we confine our attention to the
ranges 0 ≤ k < m, 0 ≤ l < n, there are exactly mn distinct Em,n,k,l waveforms. For
any index pair (l, k) outside this range the corresponding waveform is identical to
one of the mn basic waveforms in this range.

The 2D images of the discrete 2D waveforms look pretty much the same as the
analog ones do for low values of k and l. For larger values of k and l the effects of
aliasing begin to take over and the waveforms are difficult to accurately graph.
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Remark 1.7 As in the one-dimensional case it may occasionally be convenient
to extend an image matrix with entries ar,s , 0 ≤ r ≤ m − 1 and 0 ≤ s ≤ n − 1,
periodically to the whole plane. We can do this as

ar,s = ar mod m,s mod n.

1.8 INNER PRODUCT SPACES AND ORTHOGONALITY

1.8.1 Inner Products and Norms

Vector spaces provide a convenient framework for analyzing signals and images.
However, it is helpful to have a bit more mathematical structure to carry out the
analysis, specifically some ideas from geometry. Most of the vector spaces we’ll
be concerned with can be endowed with geometric notions such as “length” and
“angle.” Of special importance is the idea of “orthogonality.” All of these notions can
be quantified by adopting an inner product on the vector space of interest.

Inner Products The inner product is just a generalization of the familiar dot
product from basic multivariable calculus. In the definition below a “function on
V × V ” means a function whose domain consists of ordered pairs of vectors from V .

Definition 1.8.1 Let V be a vector space over C (resp., R). An inner product (or
scalar product) on V is a function from V × V to C (resp., R). We use (v, w) to denote
the inner product of vectors v and w and require that for all vectors u, v, w ∈ V and
scalars a, b in C (resp., R).

1. (v, w) = (w, v), (conjugate symmetry)

2. (au + bv, w) = a(u, w) + b(v, w), (linearity in the first argument)

3. (v, v) ≥ 0, and (v, v) = 0 if and only if v = 0

In the case where V is a vector space over R, condition 1 is simply (v, w) = (w, v).
If V is over C, then condition 1 also immediately implies that (v, v) = (v, v) so that
(v, v) is always real-valued, and hence condition 3 makes sense. The linearity with
respect to the first variable in property 2 easily extends to any finite linear combination.

One additional fact worth noting is that the inner product is conjugate-linear in
the second argument, that is,

(w, au + bv) = (au + bv, w), by property 1,

= a (u, w) + b (v, w), by property 2,

= a (w, u) + b (w, v), by property 1. (1.27)

A vector space equipped with an inner product is called an inner product space.
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Norms Another useful geometric notion on a vector space V is that of a norm, a
way of quantifying the size or length of vectors in V . This also allows us to quantify
the distance between elements of V .

Definition 1.8.2 A norm on a vector space V (over R or C) is a function ‖v‖ from
V to R with the properties that

1. ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0
2. ‖av‖ = |a|‖v‖
3. ‖v + w‖ ≤ ‖v‖ + ‖w‖ (the triangle inequality)

for all vectors v, w ∈ V , and scalars a.

A vector space equipped with a norm is called (not surprisingly) a normed vector
space, or sometimes a normed linear space.

An inner product (v, w) on a vector space V always induces a corresponding norm
via the relation

‖v‖ =
√

(v, v). (1.28)

(See Exercise 1.27.) Thus every inner product space is a normed vector space, but
the converse is not true; see Example 1.16 and Exercise 1.28. We’ll make frequent
use of equation (1.28) in the form ‖v‖2 = (v, v).

Remark 1.8 It’s also useful to define the distance between two vectors v and w in
a normed vector space as ‖v − w‖. For example, in R

n ,

‖v − w‖ = ((v1 − w1)2 + · · · + (vn − wn)2)1/2,

which is the usual distance formula.
Generally, the function ‖v − w‖ on V × V defines a metric on V , a way to measure

the distance between the elements of the space, and turns V into a metric space. The
study of metrics and metric spaces is a large area of mathematics, but in this text we
won’t need this much generality.

Remark 1.9 If the normed vector space V in question has any kind of physical
interpretation, then the quantity ‖v‖2 frequently turns out to be proportional to some
natural measure of “energy.” The expression for the energy of most physical systems
is quadratic in nature with respect to the variables that characterize the state of the
system. For example, the kinetic energy of a particle with mass m and speed v is
1
2 mv2, quadratic in v . The energy dissipated by a resistor is V 2/R, quadratic in V ,
where R is the resistance and V the potential drop across the resistor. The concept of
energy is also important in signal and image analysis, and the quantification of the
energy in these settings is quadratic in nature. We’ll say more on this later.
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1.8.2 Examples

Here are some specific, useful inner product spaces, and the corresponding norms.

� EXAMPLE 1.12

R
n (real Euclidian space): The most common inner product on R

n is the dot
product, defined by

(x, y) = x1 y1 + x2 y2 + · · · + xn yn

for vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in R
n . Properties 1 to 3 for inner

products are easily verified.
The corresponding norm from equation (1.28) is

‖x‖ = (
x2

1 + x2
2 + · · · + x2

n

)1/2
,

the usual Euclidean norm.

� EXAMPLE 1.13

C
n (complex Euclidean space): On C

n the usual inner product is

(x, y) = x1 y1 + x2 y2 + · · · + xn yn

for vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in C
n . Conjugation of the second

vector’s components is important! The corresponding norm from equation (1.28) is

‖x‖ = (|x1|2 + |x2|2 + · · · + |xn|2)1/2,

where we have made use of the fact that zz = |z|2 for any complex number z.

� EXAMPLE 1.14

Mm,n(C) (m × n matrices with complex entries): On Mm,n(C) an inner product is
given by

(A, B) =
m∑

j=1

n∑
k=1

a j,kb j,k

for matrices A and B with entries a j,k and b j,k , respectively. The corresponding
norm from equation (1.28) is

‖A‖ =
⎛⎝ m∑

j=1

n∑
k=1

|a j,k |2
⎞⎠1/2

,

called the Frobenius norm. As in Example 1.2, as an inner product space Mm,n(C)
is really “identical” to C

mn .
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� EXAMPLE 1.15

C[a, b] (continuous functions on [a, b]): Consider the vector space C[a, b], and
suppose that the functions can assume complex values. An inner product on this
space is given by

( f, g) =
∫ b

a
f (t)g(t) dt.

It’s not hard to see that the integral is well-defined, for f and g are continuous
functions on a closed interval, hence bounded, so that the product fg is continuous
and bounded. The integral therefore converges. Of course, if the functions are real-
valued, the conjugation is unnecessary.

Properties 1 and 2 for the inner product follow easily from properties of the
Riemann integral. Only property 3 for inner products needs comment. First,

( f, f ) =
∫ b

a
| f (t)|2 dt ≥ 0, (1.29)

since the integrand is nonnegative and the integral of a nonnegative function is
nonnegative. However, the second assertion in property 3 needs some thought—if
the integral in (1.29) actually equals zero, must f be the zero function?

We can prove that this is so by contradiction: suppose that f is not identically
zero, say f (t0) 
= 0 for some t0 ∈ [a, b]. Then | f (t0)|2 > 0. Moreover, since f
is continuous, so is | f (t)|2. We can thus find some small interval (t0 − δ, t0 + δ)
with δ > 0 on which | f (t)|2 ≥ | f (t0)|2/2. Then

( f, f ) =
∫ t0−δ

a
| f (t)|2 dt +

∫ t0+δ

t0−δ

| f (t)|2 dt +
∫ b

t0+δ

| f (t)|2 dt.

Since | f (t)|2 ≥ | f (t0)|2/2 for t ∈ (t0 − δ, t0 + δ) the middle integral on the right
above is positive and greater than δ| f (t0)|2 (the area of a 2δ width by | f (t0)|2/2 tall
rectangle under the graph of | f (t)|2). The other two integrals are at least nonneg-
ative. We conclude that if f ∈ C[a, b] is not the zero function, then ( f, f ) > 0.
Equivalently ( f, f ) = 0 only if f ≡ 0.

The corresponding norm for this inner product is

‖ f ‖ =
(∫ b

a
| f (t)|2 dt

)1/2

.

In light of the discussion above ‖ f ‖ = 0 if and only if f ≡ 0.
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� EXAMPLE 1.16

Another commonly used norm on the space C[a, b] is the supremum norm, defined
by

‖ f ‖∞ = sup
x∈[a,b]

| f (x)|.

Recall that the supremum of a set A ⊂ R is the smallest real number M such
a ≤ M for every a ∈ A, meaning M is the “least upper bound” for the elements
of A. If f is continuous, then we can replace “sup” in the definition of ‖ f ‖∞ with
“max,” since a continuous function on a closed bounded interval [a, b] must attain
its supremum.

The supremum norm does not come from any inner product in equation (1.28);
see Exercise 1.28.

� EXAMPLE 1.17

C(�) (the set of continuous complex-valued functions on a closed rectangle � =
{(x, y); a ≤ x ≤ b, c ≤ y ≤ d}): An inner product on this space is given by

( f, g) =
∫ b

a

∫ d

c
f (x, y)g(x, y) dy dx .

As in the one-dimensional case, the integral is well-defined since f and g must be
bounded; hence the product f g is continuous and bounded. The integral therefore
converges. An argument similar to that of the previous example shows that property
3 for inner products holds.

The corresponding norm is

‖ f ‖ =
(∫ b

a

∫ d

c
| f (x, y)|2 dy dx

)1/2

.

This space can be considerably enlarged, to include many discontinuous functions
that satisfy ‖ f ‖ < ∞.

When we work in a function space like C[a, b] we’ll sometimes use the notation
‖ f ‖2 (rather than just ‖ f ‖) to indicate the Euclidean norm that stems from the inner
product, and so avoid confusion with the supremum norm (or other norms).

1.8.3 Orthogonality

Recall from elementary vector calculus that the dot product (v, w) of two vectors v
and w in R

2 or R
3 satisfies the relation

(v, w) = ‖v‖‖w‖ cos(θ ), (1.30)
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where ‖v‖ is the length of v, ‖w‖ the length of w, and θ is the angle between v and
w. In particular, it’s easy to see that (v, w) = 0 exactly when θ = π/2 radians, so v
and w are orthogonal to each other. The notion of orthogonality can be an incredibly
powerful tool. This motivates the following general definition:

Definition 1.8.3 Two vectors v and w in an inner product space V are “orthogonal”
if (v, w) = 0.

The notion of orthogonality depends on not only the vectors but also the inner product
we are using (there may be more than one!) We will say that a subset S (finite or
infinite) of vectors in an inner product space V is pairwise orthogonal, or more
commonly just orthogonal, if (v, w) = 0 for any pair of distinct (v 
= w) vectors
v, w ∈ S.

� EXAMPLE 1.18

Let S = {e1, e2, . . . , en} denote the standard basis vectors in R
n (ek has a “1” in

the kth position, zeros elsewhere), with the usual Euclidean inner product (and
indexing from 1 to n). The set S is orthogonal since (e j , ek) = 0 when j 
= k.

� EXAMPLE 1.19

Let S denote the set of functions eπ ikt/T , k ∈ Z, in the vector space C[−T, T ],
with the inner product as defined in Example 1.15. The set S is orthogonal, for if
k 
= m, then

(
eπ ikt/T , eπ imt/T

) =
∫ T

−T
eπ ikt/T eπ imt/T dt

=
∫ T

−T
eπ ikt/T e−π imt/T dt

=
∫ T

−T
eπ i(k−m)t/T

= T (eπ i(k−m) − e−π i(k−m))

π i(k − m)

= 0,

since eπ in − e−π in = 0 for any integer n.

� EXAMPLE 1.20

Let S denote the set of basic discrete waveforms EN ,k ∈ C
N , −N/2 < k ≤ N/2,

as defined in equation (1.22). With the inner product on C
N as defined in
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Example 1.13, but on the index range 0 to N − 1 instead of 1 to N , the set S
is orthogonal. The proof is based on the surprisingly versatile algebraic identity

1 + z + z2 + · · · + zN−1 = 1 − zN

1 − z
if z 
= 1. (1.31)

If k 
= l, then

(Ek, El ) =
N−1∑
r=0

e2π ikr/N e2π ilr/N

=
N−1∑
r=0

e2π ikr/N e−2π ilr/N

=
N−1∑
r=0

e2π i(k−l)r/N

=
N−1∑
r=0

(
e2π i(k−l)/N

)r
. (1.32)

Let z = e2π i(k−l)/N in (1.31) and equation (1.32) becomes

(Ek, El ) = 1 − (
e2π i(k−l)/N

)N

1 − e2π i(k−l)/N

= 1 − e2π i(k−l)

1 − e2π i(k−l)/N

= 0,

since e2π i(k−l) = 1. Moreover the denominator above cannot equal zero for
−N/2 < k, l ≤ N/2 if k 
= l. Note the similarity of this computation to the com-
putation in Example 1.19.

Remark 1.10 A very similar computation to that of Example 1.20 shows that the
waveforms or matrices Em,n,k,l in Mm,n(C) (with the inner product from Example
1.14 but indexing from 0) are also orthogonal.

1.8.4 The Cauchy–Schwarz Inequality

The following inequality will be extremely useful. It has wide-ranging application
and is one of the most famous inequalities in mathematics.
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Theorem 1.8.1 (Cauchy–Schwarz) For any vectors v and w in an inner product
space V over C or R,

|(v, w)| ≤ ‖v‖‖w‖,
where ‖ · ‖ is the norm induced by the inner product via equation (1.28).

Proof Note that 0 ≤ (v − cw, v − cw) for any scalar c, from property 3 for inner
products. If we expand this out by using the properties of the inner product (including
equation (1.27)), we find that

0 ≤ (v − cw, v − cw)

= (v, v) − c(w, v) − c(v, w) + (cw, cw)

= ‖v‖2 − c(w, v) − c(v, w) + |c|2‖w‖2.

Let us suppose that w 
= 0, for otherwise, Cauchy–Schwarz is obvious. Choose
c = (v, w)/(w, w) so that c = (w, v)/(w, w); note that (w, w) is real and positive.
Then c(w, v) = c(v, w) = |(v, w)|2/‖w‖2 and

0 ≤ ‖v‖2 − 2
|(v, w)|2
‖w‖2

+ |(v, w)|2
‖w‖2

= ‖v‖2 − |(v, w)|2
‖w‖2

from which the Cauchy-Schwarz inequality follows.

1.8.5 Bases and Orthogonal Decomposition

Bases Recall that the set of vectors S = {e1, e2, . . . , en} in R
n is called the stan-

dard basis. The reason is that any vector x = (x1, x2, . . . , xn) in R
n can be written as

a linear combination

x = x1e1 + x2e2 + · · · + xnen

of elements from S, in one and only one way. The ek thus form a convenient set of
building blocks for R

n . The set is “minimal” in the sense that any vector x can be
constructed from the ek in only one way.

The following concepts may be familiar from elementary linear algebra in R
N ,

but they are useful in any vector space.

Definition 1.8.4 A set S (finite or infinite) in a vector space V over C (resp.,
R) is said to “span V ” if every vector v ∈ V can be constructed as a finite linear
combination of elements of S,

v = α1v1 + α2v2 + · · · + αnvn,

for suitable scalars αk in C (resp., R) and vectors vk ∈ S.
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Definition 1.8.5 A set S (finite or infinite) in a vector space V over C (resp., R) is
said to be “linearly independent” if, for any finite set of vectors v1, . . . , vn in S, the
only solution to

α1v1 + α2v2 + · · · + αnvn = 0

is αk = 0 for all 1 ≤ k ≤ n.

A set S that spans V is thus sufficient to build any vector in V by superposition.
Linear independence ensures that no vector can be built in more than one way. A set
S that both spans V and is linearly independent is especially useful, for each vector
in V can be built from elements of S in a unique way.

Definition 1.8.6 A linearly independent set S that spans a vector space V is called
a basis for V .

Be careful: a basis S for V may have infinitely many elements, but according
to the definition above we must be able to construct any specific vector in V using
only a finite linear combination of vectors in S. The word “basis” has a variety of
meanings in mathematics, and the more accurate term for the type of basis defined
above, in which only finite combinations are allowed, is a “Hamel basis.” If infinite
linear combinations of basis vectors are allowed (as in Section 1.10), then issues
concerning limits and convergence arise. In either case, however, we’ll continue to
use the term “basis,” and no confusion should arise.

It’s worth noting that no linearly independent set and hence no basis can contain
the zero vector.

The standard basis in R
n or C

n , of course, provides an example of a basis. Here
are a couple slightly more interesting examples.

� EXAMPLE 1.21

Consider the space Mm,n(C) of m × n complex matrices, and define mn distinct
elements Ap,q ∈ Mm,n(C) as follows: let the row p, column q entry of Ap,q equal
1, and set all other entries of Ap,q equal to zero (quite analogous to the standard
basis of R

n or C
n). The set S = {Ap,q ; 1 ≤ p ≤ m, 1 ≤ q ≤ n} forms a basis for

Mm,n(C).

� EXAMPLE 1.22

Let P denote the vector space consisting of all polynomials in the variable x ,

p(x) = a0 + a1x + · · · + an xn

with real coefficients ak and no condition on the degree n. You should convince
yourself that this is indeed a vector space over R, with the obvious operations. And
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note that a polynomial has a highest degree term; we’re not allowing expressions
like 1 + x + x2 + · · ·, that is, power series. One basis for P is given by the infinite
set

S = {1, x, x2, x3, . . .}

It’s not hard to see that any polynomial can be expressed as a finite linear combi-
nation of elements of S, and in only one way.

A vector space typically has many different bases. In fact each vector space that
will interest us in this text has infinitely many different bases. Which basis we use
depends on what we’re trying to do.

If a vector space V has a finite basis S = {v1, . . . , vn}, then V is said to be finite-
dimensional. It is a fact from elementary linear algebra that any other basis for V
must also contain exactly n vectors. In this case V is called an n-dimensional vector
space. In light of the remarks above we can see that R

n really is an n-dimensional
vector space over R (surprise!), while C

n is n-dimensional over C. Based on Example
1.21 the spaces Mm,n(R) and Mm,n(C) are both mn-dimensional vector spaces over
R or C, respectively. The space P in Example 1.22 is infinite-dimensional.

Orthogonal and Orthonormal Bases A lot of vector algebra becomes ridicu-
lously easy when the vectors involved are orthogonal. In particular, finding an orthog-
onal set of basis vectors for a vector space V can greatly aid analysis and facilitate
certain computations.

One very useful observation is the following theorem.

Theorem 1.8.2 If a set S ⊂ V of non-zero vectors is orthogonal then S is linearly
independent.

Proof Consider the equation

α1v1 + α2v2 + · · · + αnvn = 0,

where the vk are elements of S. Form the inner product of both sides above with any
one of the vectors vm , 1 ≤ m ≤ n, and use the linearity of the inner product in the
first variable to obtain

n∑
k=1

αk(vk, vm) = (0, vm).

The right side above is, of course, 0. Since S is orthogonal, (vk, vm) = 0 unless
k = m, so the equation above degenerates to αm(vm, vm) = 0. Because (vm, vm) > 0
(each vm is nonzero by hypothesis), we obtain αm = 0 for 1 ≤ m ≤ n.
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In the remainder of this section we assume that V is a finite-dimensional vector
space over either R or C. Of special interest are bases for V that are orthogonal so
that (vk, vm) = 0 for any two distinct basis vectors. In this case it’s easy to explicitly
write any v ∈ V as a linear combination of basis vectors.

Theorem 1.8.3 Let S = {v1, v2, . . . , vn} be an orthogonal basis for a vector space
V . Then any v ∈ V can be expressed as

v =
n∑

k=1

αkvk, (1.33)

where αk = (v, vk)/(vk, vk).

Proof This proof is very similar to that of Theorem 1.8.2. First, since S is a basis,
there is some set of αk that work in equation (1.33). Form the inner product of both
sides of equation (1.33) with any vm , 1 ≤ m ≤ n, and use the linearity of the inner
product in the first variable to obtain

(v, vm) =
n∑

k=1

αk(vk, vm).

Since S is orthogonal (vk, vm) = 0 unless k = m, in which case the equation above
becomes (v, vm) = αm(vm, vm). Thus αm = (v, vm)/(vm, vm) is uniquely determined.
The denominator (vm, vm) cannot be zero, since vm cannot be the zero vector (because
vm is part of a linearly independent set).

Definition 1.8.7 An orthogonal set S is orthonormal if ‖v‖ = 1 for each v ∈ S.

In the case where a basis S for V forms an orthonormal set, the expansion in Theorem
1.8.3 becomes a bit simpler since (vk, vk) = ‖vk‖2 = 1, so we can take αk = (v, vk)
in equation (1.33).

Remark 1.11 Any orthogonal basis S can be replaced by a “re-scaled” basis that
is orthonormal. Specifically, if S is an orthogonal basis for a vector space V , let
S′ denote the set obtained by replacing each vector x ∈ S by the re-scaled vector
x′ = x/ ‖x‖ of length 1. If a vector v ∈ V can be expanded according to Theorem
1.8.3, then v can also be written as a superposition of elements of S′, as

v =
n∑

k=1

(αk‖vk‖)v′
k,

where v′
k = vk/ ‖vk‖ has norm one.



P1: OSO
JWST561-c01 JWST561/Broughton November 24, 2014 7:58 Printer Name: Yet to Come

40 VECTOR SPACES, SIGNALS, AND IMAGES

� EXAMPLE 1.23

The standard basis for C
N certainly has its place, but for many types of analysis the

basic waveforms EN ,k are often more useful. In fact they also form an orthogonal
basis for C

N . We’ve already shown this to be true when in Example 1.20 we showed
that the N vectors EN ,k for 0 ≤ k ≤ N − 1 (or −N/2 < k ≤ N/2) are mutually
orthogonal. By Theorem 1.8.2, the vectors are necessarily linearly independent,
and since a set of N linearly independent vectors in C

N must span C
N , the EN ,k

form a basis for C
N .

From equation 1.33 we then obtain a simple decomposition formula

x =
N−1∑
k=0

(x, EN ,k)

(EN ,k, EN ,k)
EN ,k

= 1

N

N−1∑
k=0

(x, EN ,k)EN ,k (1.34)

for any vector x ∈ C
N , where we’ve made use of (EN ,k, EN ,k) = N for each k (see

Exercise 1.30). Equation (1.34) will be of paramount importance later; indeed
most of Chapter 3 is devoted to the study of equation (1.34)!

� EXAMPLE 1.24

An entirely analogous argument shows that the matrices Em,n,k,l form a basis for
Mm,n(C), and for any matrix A ∈ Mm,n(C)

A =
m−1∑
k=0

n−1∑
l=0

(A, Em,n,k,l )

(Em,n,k,l , Em,n,k,l )
Em,n,k,l

= 1

mn

m−1∑
k=0

n−1∑
l=0

(A, Em,n,k,l )Em,n,k,l , (1.35)

where we’ve made use of (Em,n,k,l , Em,n,k,l ) = mn (see Exercise 1.31).

Parseval’s Identity Suppose that S is an orthonormal basis for an n-dimensional
vector space V . Let v ∈ V be expanded according to equation (1.33). Then

‖v‖2 = (v, v)

=
⎛⎝∑

j

α j v j ,
∑

k

αkvk

⎞⎠
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=
n∑

j,k=1

α jαk(v j , vk)

=
n∑

k=1

|αk |2, (1.36)

where we have used the properties of the inner product (including equation (1.27)),
αkαk = |αk |2, and the fact that S is orthonormal so (vk, vk) = 1. Equation (1.36) is
called Parseval’s identity.

As noted in Remark 1.9 on page 30, ‖v‖2 is often interpreted as the energy of the
discretized signal. If the basis set S is orthonormal, then each vector vk represents a
basis signal that is scaled to have energy equal to 1, and it’s easy to see that the signal
αkvk has energy |αk |2. In this case Parseval’s identity asserts that the “energy of the
sum is the sum of the energies.”

1.9 SIGNAL AND IMAGE DIGITIZATION

As discussed earlier in the chapter, general analog signals and images cannot be
meaningfully stored in a computer but must be converted to digital form. As noted in
Section 1.3.2, this introduces a quantization error. It’s tempting to minimize this error
by storing the underlying real numbers as high-precision floating point values, but this
would be expensive in terms of storage. In Matlab a grayscale image stored as double
precision floating point numbers requires eight bytes per pixel, compared to one byte
per pixel for the eight-bit quantization scheme discussed Section 1.3.6. Furthermore,
if very fast processing is required, it’s usually better to use integer arithmetic chips
than floating point hardware. Thus we must balance quantization error with the
storage and computational costs associated with more accurate digitization. In order
to better understand this issue, we now take a closer look at quantization and a more
general scheme than that presented in Section 1.3.2.

1.9.1 Quantization and Dequantization

Let’s start with a simple but representative example.

� EXAMPLE 1.25

Consider an analog signal x(t) that can assume “any” real value at any particular
time t . The signal would, of course, be sampled to produce a string of real
numbers xk for k in some range, say 0 ≤ k ≤ n. This still doesn’t suffice for
computer storage though, since we can’t store even a single real number xk to
infinite precision. What we’ll do is this: divide the real line into “bins,” say the
disjoint intervals (−∞,−5], (−5, 3], (3, 7], and (7,∞). Note that these are chosen
arbitrarily here, solely for the sake of example. We thus have four quantization
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intervals. Every real number falls into exactly one of these intervals. We’ll refer
to the interval (−∞,−5] as “interval 0,” (−5, 3] as “interval 1,” (3, 7] as “interval
2,” and (7,∞) as “interval 3.” In this manner any real number z can be associated
with an integer in the range 0 to 3, according to the quantization interval in which
z lies. This defines a quantization map q from R to the set {0, 1, 2, 3}. Rather than
storing z we store (with some obvious loss of information) q(z). Indeed, since
q(z) can assume only four distinct values, it can be stored with just two bits. We
can store the entire discretized signal x(t) with just 2(n + 1) bits, for example, as
“00” for a sample xk in interval 0, “01” for interval 1, “10” for interval 2, “11” for
interval 3.

To reconstruct an approximation to any given sample xk , we proceed as follows:
for each quantization interval we choose a representative value zk for quantization
interval k. For example, we can take z0 = −10, z1 = −1, z2 = 5, and z3 = 10.
Here z1 and z2 are chosen as the midpoints of the corresponding interval, z0 and z3

as “representative” of their intervals. If a sample xk falls in quantization interval
0 (i.e., was stored as the bit sequence “00”), we reconstruct it approximately as
x̃k = z0. A similar computation is performed for the other intervals. This yields a
dequantization map q̃ from the set {0, 1, 2, 3} back to R.

As a specific example, consider the sampled signal x ∈ R
5 with components

x0 = −1.2, x1 = 2.3, x2 = 4.4, x3 = 8.8, and x4 = −2.8. The quantization map
yields q(x) = (1, 1, 2, 3, 1) when q is applied component-by-component to x. The
reconstructed version of x is q̃(q(x)) = (−1,−1, 5, 10,−1).

The General Quantization Scheme The quantization scheme above general-
izes as follows. Let r be the number of quantization levels (r = 4 in the previous exam-
ple). Choose r − 1 distinct quantization “jump points” {y1, . . . , yr−1}, real numbers
that satisfy −∞ < y1 < y2 < · · · < yr−1 < ∞ (we had y1 = −5, y2 = 3, y3 = 7
above). Let y0 = −∞ and yr = ∞. We call the interval (yk, yk+1] the kth quantiza-
tion interval, where 0 ≤ k ≤ r − 1 (we should really use an open interval (yr−1,∞)
for the last interval). The leftmost and rightmost intervals are unbounded. Each real
number belongs to exactly one of the r quantization intervals.

The quantization map q : R → {0, 1, . . . , r − 1} assigns an integer quantization
level q(x) to each x ∈ R as follows: q(x) is the index k such that yk < x ≤ yk+1,

meaning, x belongs to the kth quantization interval. The function q can be written
more explicitly if we define the Heaviside function

H (x) =
{

0, x ≤ 0,

1, x > 0,

in which case

q(x) =
r−1∑
k=1

H (x − yk).
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FIGURE 1.11 Quantization function H (x + 3) + H (x + 1.5) + H (x − 1.5) + H (x − 3).

A sample graph of a quantization function is given in Figure 1.11, in which we have
chosen y1 = −3, y2 = −1.5, y3 = 1.5, y4 = 3, and y0 = −∞, y5 = ∞. Notice that
the quantization interval around zero is bigger than the rest. This is not uncommon
in practice.

The quantization map is used as follows: Let x denote a sampled signal, so each
component x j of x is a real number and has not yet been quantized. The quantized
version of x is just q(x), in which q is applied component-by-component to x. Each
x j is thus assigned to one of the r quantization intervals. If r = 2b for some b > 0,
then each quantized x j can be stored using b bits, and we refer to this as “b-bit
quantization.” A similar procedure would be applied to images.

Dequantization Once quantized, the vector x cannot be exactly recovered because
q is not invertible. If we need to approximately reconstruct x after quantization we
do the following: pick real numbers z0, z1, . . . , zr−1 such that zk lies in the kth
quantization interval, that is yk−1 < zk−1 ≤ yk . Ideally the value of zk should be a good
approximation to the average value of the entries of x that fall in the kth quantization
interval. A simple choice is to take zk as the midpoint of the kth quantization interval,
as in the example above. The set {zk : 0 ≤ k ≤ r − 1} is called the codebook and the
zk are called the codewords. Define the dequantization map q̃ : {0, . . . , r − 1} → R

that takes k to zk . Then define the approximate reconstruction of x as the vector x̃
with components x̃ j where

x̃ j = q̃(q(x j )) = zq(x j ).

If yk−1 < x j ≤ yk , then x j is mapped to the kth quantization interval (i.e.,
q(x j ) = k) and x̃ j = q̃(q(x j )) = zk where yk−1 < z j ≤ yk . In other words, x j and
the quantized/dequantized quantity x̃ j both lie in the interval yk−1 < x j ≤ yk , so at
worst the discrepancy is

|x j − x̃ j | ≤ yk − yk−1. (1.37)
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If the yk are finely spaced, the error won’t be too large. But, of course, more yk means
more bits are needed for storage. The same procedure can be applied to images/
matrices.

Measuring Error Ideally we’d like to choose our quantization/dequantization
functions to minimize the distortion or error introduced by this process. This requires
a way to quantify the distortion. One simple measure of the distortion is ‖x − x̃‖2,

the squared distance between x and x̃ as vectors in R
n (or C

n). Actually it is slightly
more useful to quantify distortion in relative terms, as a fraction of the original signal
energy, so we use (‖x − x̃‖2)/‖x‖2. By adjusting the values of the yk’s and the zk’s,
we can, in principle, minimize distortion for any specific signal x or image. In the case
of image compression, the quantization levels {zk} can be stored with the compressed
file. For other applications, we may want the quantization levels to be fixed ahead of
time, say in an audio application. In this case, it’s sensible to minimize the distortion
over an entire class of signals or images. We would also like the quantization and
dequantization computations to be simple. The following example gives a scheme
that works fairly well.

� EXAMPLE 1.26

In this example we’ll quantize an image, but the same principles apply to a one-
dimensional signal. Let us assume that the intensity values of a class of grayscale
images of interest satisfy m ≤ a(x, y) ≤ M on some rectangle �, where a(x, y) is
the analog image intensity. Let A denote the matrix with components a jk obtained
by sampling (but not quantizing) the analog image a(x, y). Select the yk so that
they split up the interval [m, M] into r subintervals of equal length, and let zk be
the mid-point of each interval. If we define h = (M − m)/r, then we obtain the
following formulas for the yk’s, the zk’s, q, and q̃:

yk = m + kh, k = 1, . . . , r − 1, y0 = −∞, yr = ∞,

zk = m +
(

k + 1

2

)
h, k = 0, . . . , r − 1,

q(x) = ceil

(
r

x − m

M − m

)
− 1 for x > m, q(m) = 0,

q̃(k) = m +
(

k + 1

2

)
h.

The ceiling function “ceil” from R to Z is defined by taking ceil(x) as the smallest
integer greater than or equal to x .

To illustrate, the image at the top left in Figure 1.12 has a sample matrix A
(stored as double precision floating point) with limits 0 ≤ ai j ≤ 255. The quan-
tization method above at 5 bits per pixel (32 quantization intervals) or greater
gives no measurable distortion. In Figure 1.12 we illustrate quantization at each
of b = 4, 2, 1 bits per pixel (bpp) in order to see the distortion. The measure of
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FIGURE 1.12 Original image (top left) and quantization at 4 bits (top right), 2 bits (bottom
left) and 1 bit (bottom right).

the distortion mD is reported as a percentage of the total image energy,

mD = 100

∥∥A − Ã
∥∥2

‖A‖2 ,

where ‖ · ‖ denotes the Frobenius norm of Example 1.14. The resulting errors are
0.2, 3.6, and 15.2 percent for the 4, 2, and 1 bit quantizations, respectively.
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Example 1.26 illustrates uniform quantization with midpoint codewords. It also
yields an improvement over the error estimate 1.37, namely

∣∣ai j − ãi j

∣∣ ≤ h

2
. (1.38)

1.9.2 Quantifying Signal and Image Distortion More Generally

Suppose that we have signal that we want to compress or denoise to produce a
processed approximation. The quantization discussion above provides a concrete
example, but other similar situations will arise later. In general, what is a reasonable
way to quantify the accuracy of the approximation?

Many approaches are possible, but we’ll do essentially as we did for the image in
Example 1.26. For a discretized image (or signal) A approximated by Ã, write

Ã = A + E,

where E = Ã − A is the error introduced by using the approximation Ã for A. We
could also consider E as some kind of random noise. Our measure of distortion (or
noise level, if appropriate) is

mD =
∥∥Ã − A

∥∥2

‖A‖2 = ‖E‖2

‖A‖2 , (1.39)

the relative error as is typically done in any physical application. We will often report
this error as a percentage as we did with the images above, by multiplying by 100.

1.10 INFINITE-DIMENSIONAL INNER PRODUCT SPACES

Analog signals and images are naturally modeled by functions of one or more real
variables, and as such the proper setting for the analysis of these objects is a function
space such as C[a, b]. However, vector spaces of functions are infinite-dimensional,
and some of the techniques developed for finite-dimensional vector spaces need a
bit of adjustment. In this section we give an outline of the mathematics necessary
to carry out orthogonal expansions in these function spaces, especially orthogonal
expansions with regard to complex exponentials. The ideas in this section play a huge
role in applied mathematics. They also provide a nice parallel to the discrete ideas.

Example: An Infinite-dimensional Space Let’s focus on the vector space
C[a, b] for the moment. This space is not finite-dimensional. This can be shown
by demonstrating the existence of m linearly independent functions in C[a, b] for
any integer m > 0. To do this, let h = (b − a)/m and set xk = a + (k − 1)h for
0 ≤ k ≤ m; the points xk partition [a, b] into m equal subintervals, each of length h
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(with x0 = a, xm = b). Let Ik = [xk−1, xk] for 1 ≤ k ≤ m, and define m functions

φk(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if x is not in Ik,

2

h
(x − xk−1), xk−1 ≤ x ≤ (xk−1 + xk)/2,

2

h
(xk − x), (xk−1 + xk)/2 < x ≤ xk,

for 1 ≤ k ≤ m. Each function φk is continuous and piecewise linear, identically zero
outside Ik , with φk = 1 at the midpoint of Ik (such a function is sometimes called a
“tent” function—draw a picture). It’s easy to show that the functions φk are linearly
independent, for if

m∑
k=1

ckφk(x) = 0

for a ≤ x ≤ b, then evaluating the left side above at the midpoint of I j immediately
yields c j = 0. The φk thus form a linearly independent set. If C[a, b] were finite-
dimensional, say of dimension n, then we would not be able to find a set of m > n
linearly independent functions. Thus C[a, b] is not finite-dimensional.

A similar argument can be used to show that any of the vector spaces of functions
from Section 1.4.2 are infinite-dimensional.

1.10.1 Orthogonal Bases in Inner Product Spaces

It can be shown that any vector space, even an infinite-dimensional space, has a basis
in the sense of Definition 1.8.6 (a Hamel basis), in which only finite combinations
of the basis vectors are allowed. However, such bases are usually difficult to exhibit
explicitly and of little use for computation. As such, we’re going to expand our
notion of basis to allow infinite combinations of the basis vectors. Of course, the
word “infinite” always means limits are involved, and if so, we need some measure
of distance or length, since limits involve some quantity “getting close” to another.

In light of this criterion it’s helpful to restrict our attention to vector spaces in which
we have some notion of distance, such as a normed vector space. But orthogonality,
especially in the infinite-dimensional case, is such a valuable asset that we’re going
to restrict our attention to inner product spaces. The norm will be that associated with
the inner product via equation (1.28).

Let V be an inner product space, over either R or C. We seek a set S of vectors
in V ,

S = {v1, v2, v3, . . .}, (1.40)

that can act as a basis for V in some reasonable sense. Note that we are assuming that
the elements of S can be listed, meaning put into a one-to-one correspondence with
the positive integers. Such a set is said to be countable (many infinite sets are not!)



P1: OSO
JWST561-c01 JWST561/Broughton November 24, 2014 7:58 Printer Name: Yet to Come

48 VECTOR SPACES, SIGNALS, AND IMAGES

Remark 1.12 In what follows it’s not important that the elements of the set S be
indexed as 1, 2, 3, . . .. Indeed the elements can be indexed from any subset of Z, Z

itself, or even Z × Z. The main point is that we must be able to sum over the elements
of S using traditional summation notation,

∑
. We index the elements starting from

1 in the discussion that follows solely to fix notation.

In the finite-dimensional case the basis vectors must be linearly independent, and
this was an automatic consequence of orthogonality. In the infinite-dimensional case
we’ll cut straight to the chase: in this text we will only consider as prospective bases
those sets that are orthogonal (though nonorthogonal bases can be constructed).

In the finite-dimensional case, a basis must also span the vector space. In the
present case, we are allowing infinite linear combinations of basis vectors, and want
to be able to write

v =
∞∑

k=1

αkvk (1.41)

for any v ∈ V by choosing the coefficients αk suitably. But infinite linear combinations
have no meaning in a general vector space. How should equation (1.41) be interpreted?

Recall that in elementary calculus the precise definition of an infinite sum

∞∑
k=1

ak = A

is that limn→∞(
∑n

k=1 ak) = A (the sequence of partial sums converges to A). This is
equivalent to

lim
n→∞

∣∣∣∣∣
n∑

k=1

ak − A

∣∣∣∣∣ = 0.

This motivates our interpretation of equation (1.41) and the definition of what it
means for the set S in (1.40) to span V . However, in an infinite-dimensional inner
product space the term “span” is replaced by “complete.”

Definition 1.10.1 An (orthogonal) set S as in (1.40) is “complete” if for each
v ∈ V there are scalars αk , k ≥ 1, such that

lim
n→∞

∥∥∥∥∥
n∑

k=1

αkvk − v

∥∥∥∥∥ = 0. (1.42)

The limit in (1.42) is just an ordinary limit for a sequence of real numbers. The norm
on the inner product space takes the place of absolute value in R.

We can now define
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Definition 1.10.2 A set S as in (1.40) is called an “orthogonal basis” for V if S
is complete and orthogonal. If S is orthonormal, then S is called an “orthonormal
basis.”

The existence of an orthogonal basis as in Definition 1.10.2 is not assured but
depends on the particular inner product space. However, all of the function spaces
of interest from Section 1.8.2 have such bases. In the case of spaces consisting of
functions of a single real variable (e.g., C[a, b]), we can write out a basis explicitly,
and also for function spaces defined on a rectangle in the plane. We’ll do this shortly.

1.10.2 The Cauchy–Schwarz Inequality and Orthogonal Expansions

For now let’s assume that an orthogonal basis S = {v1, v2, . . .} exists. How can we
compute the αk in the expansion (1.41)? Are they uniquely determined? It’s tempting
to mimic the procedure used in the finite-dimensional case: take the inner product of
both sides of (1.41) with a specific basis vector vm to obtain (v, vm) = (

∑
k αkvk, vm)

then use linearity of the inner product in the first argument to obtain (v, vm) =∑
k αk(vk, vm) = αm(vm, vm). This immediately yields αm = (v, vm)/(vm, vm), just

as in the finite-dimensional case. This reasoning is a bit suspect, though, because it
requires us to invoke linearity for the inner product with respect to an infinite sum.
Unfortunately, the definition of the inner product makes no statements concerning
infinite sums. We need to be a bit more careful (though the answer for αm is correct!)

To demonstrate the validity of the conclusion above more carefully we’ll use
the Cauchy–Schwarz inequality in Theorem 1.8.1. Specifically, suppose that S =
{v1, v2, . . .} is an orthogonal basis so that for any v ∈ V there is some choice of
scalars αk for which equation (1.42) holds. For some fixed m consider the inner
product (v −∑n

k=1 αkvk, vm). If we expand this inner product and suppose n ≥ m
while taking absolute values throughout, we find that∣∣∣∣∣

(
v −

n∑
k=1

αkvk, vm

)∣∣∣∣∣ =
∣∣∣∣∣(v, vm) −

n∑
k=1

αk(vk, vm)

∣∣∣∣∣
= |(v, vm) − αm(vm, vm)| . (1.43)

Note that all sums above are finite. On the other hand, the Cauchy–Schwarz inequality
yields ∣∣∣∣∣

(
v −

n∑
k=1

αkvk, vm

)∣∣∣∣∣ ≤ ‖v −
n∑

k=1

αkvk‖‖vm‖. (1.44)

Combine (1.43) and (1.44) to find that for n ≥ m

|(v, vm) − αm(vm, vm)| ≤
∥∥∥∥∥v −

n∑
k=1

αkvk

∥∥∥∥∥ ‖vm‖. (1.45)
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The completeness assumption forces ‖v −∑n
k=1 αkvk‖ → 0 as n → ∞ on the right

side of (1.45) (and ‖vm‖ remains fixed, since m is fixed). The left side of (1.45) must
also approach zero, but the left side doesn’t depend on n. We must conclude that
(v, vm) − αm(vm, vm) = 0, so αm = (v, vm)/(vm, vm). Of course, if S is orthonormal,
this becomes just αm = (v, vm).

Note that we assumed an expansion as in (1.42) exists. What we’ve shown above
is that IF such an expansion exists (i.e. , if S is complete), THEN the αk are uniquely
determined and given by the formula derived. Let’s state this as a theorem.

Theorem 1.10.1 If S is an orthogonal basis for an inner product space V, then for
any v ∈ V, equation (1.42) holds where αk = (v, vk)/(vk, vk).

It’s conventional to write the expansion of v in the shorthand form of (1.41), with the
understanding that the precise meaning is the limit in (1.42).

Interestingly, Parseval’s identity still holds. Note that if S is an orthonormal basis
and αk = (v, vk), then∥∥∥∥∥v −

n∑
k=1

αkvk

∥∥∥∥∥
2

=
(

v −
n∑

k=1

αkvk, v −
n∑

k=1

αkvk

)

= (v, v) −
n∑

k=1

αk(vk, v) −
n∑

k=1

αk(v, vk) +
n∑

k=1

|αk |2

= ‖v‖2 −
n∑

k=1

|αk |2.

As n → ∞ the left side approaches zero; hence so does the right side, and we obtain

∞∑
k=1

|αk |2 = ‖v‖2, (1.46)

which is Parseval’s identity in the infinite-dimensional case.
There are a variety of equivalent characterizations or definitions of what it means

for a set S to be complete (e.g., S is complete if Parseval’s identity holds for all v),
and some may make it easier or harder to verify that any given set S is complete.
Proving that a given set of vectors in a specific inner product space is complete always
involves some analysis (“analysis” in the sense of limits, inequalities, and estimates).
We won’t go into these issues in much detail in this text. We will simply exhibit,
without proof, some orthogonal bases for common spaces of interest.

1.10.3 The Basic Waveforms and Fourier Series

For the moment let’s focus on the space C[−T, T ] of continuous complex-valued
functions on the closed interval [−T, T ], where T > 0. This, of course, includes the
real-valued functions on the interval. The vector space C[−T, T ] becomes an inner
product space if we define the inner product as in Example 1.15.
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Complex Exponential Fourier Series Let S denote the set of basic analog
waveforms φk(t) = eikπ t/T for k ∈ Z introduced in Example 1.19. In that example it
was shown that this set is orthogonal. It can be shown with a bit of nontrivial analysis
that this set is complete in C[−T, T ] or L2(−T, T ) (see, e.g., [21] or [10], sec. II.4.4).
As a consequence S is a basis.

Note that the basis φk here is indexed in k, which ranges over all of Z, but according
to Remark 1.12 on page 48 this makes no essential difference.

Consider a typical function f (t) in C[−T, T ]. From Theorem 1.10.1 we have the
expansion

f (t) =
∞∑

k=−∞
αkeikπ t/T , (1.47)

where

αk = ( f, eikπ t/T )

(eikπ t/T , eπ ikt/T )
= 1

2T

∫ T

−T
f (t)e−ikπ t/T dt, (1.48)

since
∫ T
−T eikπ t/T e−ikπ t/T dt = 2T . The right side of equation (1.47) is called the

Fourier series for f , and the αk of equation (1.48) are called the Fourier coefficients.

� EXAMPLE 1.27

Let T = 1, and consider the function f (t) = t2 in C[−1, 1]. The Fourier coeffi-
cients from equation (1.48) are given by

αk = 1

2

∫ 1

−1
t2e−ikπ t dt

= 2(−1)k

π2k2

for k 
= 0 (integrate by parts twice), while α0 = 1
3 . We can write out the Fourier

series for this function as

f (t) = 1

3
+ 2

π2

∞∑
k=−∞,k 
=0

(−1)keikπ t

k2
.

It should be emphasized that the series on the right “equals” f (t) only in the
sense defined by (1.42). As such, it is instructive to plot f (t) and the right side
above summed from k = −n to n for a few values of n, as in Figure 1.13. In
the case where n = 0 the approximation is just f (t) ≈ a0 = (

∫ T
−T f (t) dt)/2T ,

the average value of f over the interval. In general, there is no guarantee that the
Fourier series for any specific value t = t0 converges to the value f (t0), unless one
knows something more about f . However, the Fourier series will converge in the
sense of equation (1.42) for any function f ∈ L2(−T, T ).
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FIGURE 1.13 Function f (t) = t2 (solid) and Fourier series approximations (dashed), n =
0, 2, 4, 8.

It’s also worth noting that the Fourier series itself continues periodically outside
the interval [−T, T ] with period 2T , since each of the basic waveforms are periodic
with period 2T . This occurs even though f does not need to be defined outside
this interval. This case is shown in Figure 1.14.

Sines and Cosines Fourier expansions can be also written using sines and
cosines. Specifically, we can write the Fourier coefficients of a function f (t) on
[−T, T ] as

αk = 1

2T

∫ T

−T
f (t)e−ikπ t/T dt

= 1

2T

∫ T

−T
f (t)

(
cos

(
kπ t

T

)
− i sin

(
kπ t

T

))
dt

= ak − ibk (1.49)
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FIGURE 1.14 Function f (t) = t2, −1 ≤ t ≤ 1, and eight-term Fourier series approxima-
tion extended to [−3, 3].

where

ak = 1

2T

∫ T

−T
f (t) cos

(
kπ t

T

)
dt, bk = 1

2T

∫ T

−T
f (t) sin

(
kπ t

T

)
dt. (1.50)

Observe that b0 = 0, while a0 = α0 and α−k = ak + ibk . Let us rewrite the com-
plex exponential Fourier series as

f (t) =
∞∑

k=−∞
αkeikπ t/T

= α0 +
∞∑

k=1

(
αkeikπ t/T + α−ke−ikπ t/T

)
= a0 +

∞∑
k=1

(
(ak − ibk)eikπ t/T + (ak + ibk)e−ikπ t/T

)
= a0 +

∞∑
k=1

(
ak
(
eikπ t/T + e−ikπ t/T

)− ibk
(
eikπ t/T − e−ikπ t/T

))
= a0 + 2

∞∑
k=1

(ak cos(kπ t/T ) + bk sin(kπ t/T )) (1.51)

where we’ve made use of equation (1.13). If f is real-valued, then the Fourier series
with respect to the sine/cosine basis can be computed from (1.50) and (1.51) with no
reference to complex numbers.
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Fourier expansions can be performed on any interval [a, b], by translating and scal-
ing the functions eiπkt/T appropriately. The linear mapping φ : t → T (2t − (a + b))/
(b − a) takes the interval [a, b] to [−T, T ]. As a consequence we can check that the
functions

eiπkφ(t)/T = eikπ(2t−(a+b))/(b−a)

are orthogonal on [a, b] with respect to the L2(a, b) inner product, and so form a
basis.

Fourier Series on Rectangles The set of functions φk,m(x, y), k ∈ Z, and m ∈
Z defined by

φk,m(x, y) = e2π i(kx/a+my/b)

forms an orthogonal basis for the set C(�) where � = {(x, y); 0 ≤ x ≤ a, 0 ≤ y ≤
b}. As in the one-dimensional case, we can also write out an equivalent basis of sines
and cosines.

Orthogonal bases can be proved to exist for more general two-dimensional regions,
or regions in higher dimensions, but they cannot usually be written out explicitly.

1.10.4 Hilbert Spaces and L 2(a, b)

The inner product space of continuous, square-integrable functions on an interval
(a, b) was defined in Example 1.15. This space is satisfactory for some purposes, but
in many cases it’s helpful to enlarge the space to contain discontinuous functions.
The inclusion of discontinuous functions brings with it certain technical difficulties
that, in full generality and rigor, require some sophisticated analysis to resolve. This
analysis is beyond the scope of this text. Nonetheless, we give below a brief sketch
of the difficulties, the resolution, and a useful fact concerning orthogonal bases.

Expanding the Space of Functions In our Fourier series examples above we
worked in inner product spaces that consist of continuous functions. However, the
definition of the inner product

( f, g) =
∫ b

a
f (t)g(t) dt

requires much less of the functions involved. Indeed we might want to write out
Fourier expansions for functions that have discontinuities. Such expansions can be
very useful, so it makes sense to enlarge this inner product space to include more
than just continuous functions.

The Cauchy–Schwarz inequality indicates the direction we should move. The
inner product ( f, g) of two functions is guaranteed to be finite if the L2 norms ‖ f ‖
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and ‖g‖ are both finite. This was exactly the condition imposed in Example 1.8. We
will thus enlarge our inner product space to include all functions f that satisfy∫ b

a
| f (t)|2 dt < ∞. (1.52)

This guarantees that the inner product ( f, g) is defined for all pairs f, g ∈ V . However,
equation (1.52) presumes that the function | f (t)|2 can be meaningfully integrated
using the Riemann integral. This may seem like a technicality, but while continuous
functions are automatically Riemann integrable, arbitrary functions are not. We thus
require Riemann integrability of f (which ensures that | f |2 is Riemann integrable).
Our notion of L2(a, b) is thus enlarged to include many types of discontinuous
functions.

Complications This enlargement of the space creates a problem of its own
though. Consider a function f that is zero at all but one point in [a, b]. Such a
function, as well as | f (t)|2, is Riemann integrable, and indeed the integral of | f (t)|2
will be zero. In short, ‖ f ‖ = 0 and also ( f, f ) = 0, even though f is not identically
zero. This violates property 1 for the norm and property 3 for the inner product. More
generally, functions f and g that differ from each other at only finitely many (perhaps
even more) points satisfy ‖ f − g‖ = 0, even though f 
= g. Enlarging our inner prod-
uct space has destroyed the inner product structure and notion of distance! This wasn’t
a problem when the functions were assumed to be continuous; recall Example 1.15.

The fix for this problem requires us to redefine what we mean by “ f = g” in
L2(a, b); recall the remark at the end of Example 1.3. Functions f1 and f2 that differ
at sufficiently few points are considered identical under an equivalence relation “∼,”
where “ f1 ∼ f2” means

∫ | f1 − f2|2 dt = 0. The elements of the space of L2(a, b)
thus consist of equivalence classes of functions that differ at sufficiently few points
(just as the rational numbers consist of “fractions,” but with a1/b1 and a2/b2 identified
under an equivalence relation, namely, a1/b1 ∼ a2/b2 meaning a1b2 = a2b1; thus 1

2 ,
2
4 , and 3

6 are all the same rational number). As a consequence functions in L2(a, b)
do not have well-defined point values. When we carry out computations in L2(a, b),
it is almost always via integration or inner products.

These changes also require some technical modifications to our notion of integra-
tion. It turns out Riemann integration is not sufficient for the task, especially when
we need to deal with sequences or series of functions in L2(a, b). The usual approach
requires replacing the Riemann integral with the Lebesgue integral, a slightly more
versatile approach to integration. The modifications also have the happy consequence
of “completing” the inner product space by guaranteeing that Cauchy sequences in
the space converge to a limit within the space, which greatly simplifies the analysis. A
complete inner product space is known as a Hilbert space. The Hilbert space obtained
in this situation is known as L2(a, b). These spaces play an important role in applied
mathematics and physics.

Despite all of these complications, we will use the notation L2(a, b) for the set
of all Riemann integrable functions that satisfy inequality (1.52). Indeed, if we limit
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our attention to the subset of piecewise continuous functions, then real no difficulties
arise. For the details of the full definition of L2(a, b) the interested reader can refer
to [20] or any advanced analysis text.

A Converse to Parseval Parseval’s identity (1.46) shows that if φk , k ≥ 0, is an
orthonormal basis for L2(a, b) and f ∈ L2(a, b), then f can be expanded as f =∑

k ckφk and
∑

k |ck |2 = ‖ f ‖2 < ∞. That is, every function in L2(a, b) generates
a sequence c = (c0, c1, . . .) in L2(N). In our new and improved space L2(a, b) it
turns out that the converse is true: if we choose any sequence c = (c0, c1, . . .) with∑

k c2
k < ∞, then the sum

∞∑
k=0

ckφk (1.53)

converges to some function f ∈ L2(a, b), in the sense that

lim
n→∞

∥∥∥∥∥ f −
n∑

k=0

ckφk

∥∥∥∥∥ = 0.

In short, the functions in L2(a, b) and sequences in L2(N) can be matched up one to
one (the correspondence depends on the basis φk). This is worth stating as a theorem.

Theorem 1.10.2 Let φk , k ≥ 0, be an orthonormal basis for L2(a, b). There is an
invertible linear mapping � : L2(a, b) → L2(N) defined by

�( f ) = c,

where c = (c0, c1, . . .) with ck = ( f, φk). Moreover ‖ f ‖L2(a,b) = ‖c‖L2(N) (the map-
ping is an “isometry,” that is, length-preserving.)

1.11 MATLAB PROJECT

This section is designed as a series of Matlab explorations that allow the reader to
play with some of the ideas in the text. It also introduces a few Matlab commands
and techniques we’ll find useful later. Matlab commands that should executed are in
a bold typewriter font and usually displayed prominently.

1. Start Matlab. Most of the computation in the text is based on indexing vectors
beginning with index 0, but Matlab indexes vectors from 1. This won’t usually
cause any headaches, but keep it in mind.

2. Consider sampling the function f (t) = sin(2π (440)t) on the interval 0 ≤
t < 1, at 8192 points (sampling interval �T = 1/8192) to obtain samples
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fk = f (k�T ) = sin(2π (440)k/8192) for 0 ≤ k ≤ 8191. The samples can be
arranged in a vector f. You can do this in Matlab with

f = sin(2*pi*440/8192*(0:8191));

Don’t forget the semicolon or Matlab will print out f!
The sample vector f is stored in double precision floating point, about 15

significant figures. However, we’ll consider f as not yet quantized. That is,
the individual components fk of f can be thought of as real numbers that vary
continuously, since 15 digits is pretty close to continuous for our purposes.

a. What is the frequency of the sinewave sin(2π (440)t), in Hertz?

b. Plot the sampled signal with the command plot(f). It probably doesn’t
look too good, as it goes up and down 440 times in the plot range. You can
plot a smaller range, say the first 100 samples, with plot(f(1:100)).

c. At the sampling rate 8192 Hertz, what is the Nyquist frequency? Is the
frequency of f (t) above or below the Nyquist frequency?

d. Type sound(f) to play the sound out of the computer speaker. By default,
Matlab plays all sound files at 8192 samples per second, and assumes the
sampled audio signal is in the range −1 to 1. Our signal satisfies these
conditions.

e. As an example of aliasing, consider a second signal g(t) = sin(2π (440 +
8192)t). Repeat parts (a) through (d) with sampled signal

g = sin(2*pi*(440+8192)/8192*(0:8191));

The analog signal g(t) oscillates much faster than f (t), and we could expect
it to yield a higher pitch. However, when sampled at frequency 8192 Hertz,
f (t) and g(t) are aliased and yield precisely the same sampled vectors f and
g. They should sound the same too.

f. To illustrate the effect of quantization error, let us construct a 2-bit (4
quantization levels) version of the audio signal f (t) as in the scheme of
Example 1.26. With that notation we have minimum value m = −1 and
maximum value M = 1 for our signal, with r = 4. The command

qf = ceil(2*(f+1))-1;

produces the quantized signal q(f). Sample values of f (t) in the ranges
(−1,−0.5], (−0.5, 0], (0, 0.5], and (0.5, 1] are mapped to the integers
0, 1, 2, 3, respectively.

To approximately reconstruct the quantized signal, we apply the dequan-
tization formula to construct f̃ as

ftilde = -1 + 0.5*(qf+0.5);

This maps the integers 0, 1, 2, and 3 to values −0.75,−0.25, 0.25, and 0.75,
respectively (the codewords in this scheme).
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g. Plot the first hundred values of f̃ with plot(ftilde(1:100));. Play
the quantized signal with sound(ftilde);. It should sound harsh com-
pared to f.

h. Compute the distortion (as a percentage) of the quantized/dequantized signal
using equation (1.39). In Matlab this is implemented as

100*norm(f-ftilde)ˆ2/norm(f)ˆ2

The norm command computes the standard Euclidean norm of a vector.

i. Repeat parts (f) through (h) using 3-,4-,5-,6-,7-, and 8-bit quantiza-
tion. For example, 5-bit quantization is accomplished with qf=ceil
(16*(f+1))-1, dequantization with ftilde=-1+(qf+0.5)/16.
Here 16 = 25−1. Make sure to play the sound in each case. Make up a table
showing the number of bits in the quantization scheme, the corresponding
distortion, and your subjective rating of the sound quality.

At what point can your ear no longer distinguish the original audio signal
from the quantized version?

3. Type load(′splat′). This loads in an audio signal sampled at 8192 samples
per second. By default the signal is loaded into a vector “y” in Matlab, while
the sampling rate is loaded into a variable “Fs”. Execute the Matlab command
whos to verify this (or look at the workspace window that shows the currently
defined variables).

a. Play the sampled signal with sound(y).

b. Plot the sampled signal. Based on the size of y and sample rate 8192 Hertz,
what is T , the length (in seconds) of the sampled sound?

c. The audio signal was sampled at frequency 8192. We can mimic a lower
sampling rate 8192/m by taking every mth entry of the original vector y;
this is called downsampling. In particular, let’s try m = 2. Execute y2 =
y(1:2:10001);. The downsampled vector y2 is the same sound, but
sampled at frequency 8192/2 = 4096 Hertz.

Play the downsampled y2 with sound(y2,4096). The second argu-
ment to the sound command indicates the sound should be played back at
the corresponding rate (in Hertz).

d. Comment: why does the whistling sound in the original audio signal fall
steadily in pitch, while the downsampled version seems to rise and fall?

4. You can clear from Matlab memory all variables defined to this point with the
command clear. Do so now.

a. Find an image (JPEG will do) and store it in Matlab’s current working
directory. You can load the image into Matlab with

z = imread(’myimage.jpg’);

(change the name to whatever your image is called!) If the image is color,
the “imread” command automatically converts the m × n pixel image (in
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whatever conventional format it exists) into three m × n arrays, one for each
of red, blue, and green as in Section 1.3.5. Each array consists of unsigned
eight-bit integers, that is, integers in the range 0 to 255. Thus the variable
z is now an m × n × 3 array. If the image is grayscale you’ll get only one
array.

b. The command

image(z);

displays the image in color, under the convention that z consists of unsigned
integers and the colors are scaled in the 0 to 255 range. If we pass an m × n
by 3 array of floating point numbers to the image command, it is assumed
that each color array is scaled from 0.0 to 1.0. Consult the help page for the
“image” command for more information.

c. A simple way to construct an artificial grayscale image is by picking off one
of the color components and using it as a grayscale intensity, for example,
zg = double(z(:,:,1));. However, a slightly more natural result is
obtained by taking a weighted average of the color components, as

zg = 0.2989*double(z(:,:,1))

+0.5870*double(z(:,:,2))+0.1140*double(z(:,:,3));

The double command indicates that the array should be converted from
unsigned integers to double precision floating point numbers, for example,
13 becomes 13.0. It’s not strictly necessary unless we want to do floating
point arithmetic onzg (which we do). The weighting coefficients above stem
from the NTSC (television) color scheme; see [14] for more information.
Now we set up an appropriate grayscale color map with the commands

L = 255;

colormap([(0:L)/L; (0:L)/L; (0:L)/L]’);

Type help colormap for more information on this command. Very
briefly, the array that is passed to the colormap command should have
three columns, any number of rows. The three entries in the kth row should
be scaled in the 0.0 to 1.0 range, and indicate the intensity of red, green,
and blue that should be displayed for a pixel that is assigned integer value
k. In our colormap command above, the kth row consists of elements
((k − 1)/255, (k − 1)/255, (k − 1)/255), which correspond to a shade of
gray (equal amounts of red, blue, and green), with k = 0 as black and
k = 255 as white.

Now display the grayscale image with

image(zg);
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It’s not necessary to execute the colormap command prior to displaying
every image—once will do, unless you close the display window, in which
case you must re-initialize the color map.

d. The image is currently quantized at eight bit precision (each pixel’s graylevel
specified by one of 0, 1, 2, . . . , 255). We can mimic a cruder quantization
level, say six-bit, with

qz = 4*floor(zg/4);

followed by image(qz);. This command has the effect of rounding each
entry of zg to the next lowest multiple of 4, so each pixel is now encoded
as one of the 64 numbers 0, 4, 8, . . . , 252. Can you tell the difference in the
image?

Compute the percent distortion introduced with

100*norm(zg-qz,’fro’).ˆ2/norm(zg,’fro’).ˆ2

The “fro” argument indicates that the Frobenius norm of Example 1.14
should be used for the matrices, that is, take the square root of the sum of
the squares of the matrix entries.

Repeat the above computations for other b-bit quantizations with b =
1, 2, 3, 4, 5. Display the image in case, and compute the distortion. At what
point does the quantization become objectionable?

e. We can add noise to the image with

zn = zg + 50*(rand(size(zg))-0.5);

which should, of course, be followed by image(zn);. The size com-
mand returns the dimensions of the matrix zg, and the rand com-
mand generates a matrix of that size consisting of uniformly distributed
random numbers (double precision floats) on the interval 0 to 1. Thus
50*(rand(size(zg))-0.5) yields an array of random numbers in
the range −25 to 25 that is added to zg. Any values in zn that are out of
range (less than 0 or greater than 255) are “clipped” to 0 or 255, respectively.

5. This exercise illustrates aliasing for images. First, clear all variables with
clear, and then execute the commands L = 255; and

colormap([(0:L)/L;(0:L)/L;(0:L)/L]’);

as in the previous exercise.
Let’s sample and display an analog image, say

f (x, y) = 128(1 + sin(2π (20)x) sin(2π (30)y)),
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on the square 0 ≤ x, y ≤ 1; we’ve chosen f to span the range 0 to 256. We
will sample on an m by n grid for various values of m and n. This can be
accomplished with

m = 50; X = [0:m-1]/m;

n = 50; Y = [0:n-1]/n;

f = 128*(1 + sin(2*pi*30*Y)’*sin(2*pi*20*X));

The first portion sin(2*pi*30*Y)’ are the y values of the grid points
(as a column vector) and sin(2*pi*20*X) are the x values (as a row
vector). Plot the image with image(f).

Try various values of m and n from 10 to 500. Large values of m and n
should produce a more “faithful” image, while small values should produce
obvious visual artifacts; in particular, try m = 20, n = 30. The effect is highly
dependent on screen resolution.

EXERCISES

JPEG Compression

1.1 Find at least five different color JPEG images on a computer (or with a Web
browser); they’ll have a “.jpg” suffix on the file name. Try to find a variety
of images, for example, one that is “mostly dark” (astronomical images are a
good bet). For each image determine the following:
� Its pixel by pixel size—how many pixels wide, how many tall. This can

usually be determined by right mouse clicking on the image and selecting
“Properties.”

� The memory storage requirements for the image if it was stored “naively”
as in the example in the text above.

� The actual memory storage requirement (the file size).
� The ratio of the actual and “naive” storage requirements.

Summarize your work in a table. Note the range of compression ratios
obtained. Can you detect any correlation between the nature or quality of the
images and the compression ratios achieved?

Complex Numbers

1.2 Use Euler’s identity (1.11) to prove that if x is real, then
� e−i x = eix ,
� e2π i x = 1 if and only if x is an integer.
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1.3 The complex number z is an N th root of unity if and only if zN = 1. Draw the
eighth roots of unity on the unit circle.

1.4 Prove that the entries of EN ,k are N th roots of unity (see Exercise 1.3).

1.5 Suppose that

x(t) = a cos(ωt) + b sin(ωt)

= ceiωt + de−iωt

for all real t . Show that

a = c + d, b = ic − id,

c = a − ib

2
, d = a + ib

2
.

Sampling and Quantization

1.6 Let x(t) = 1.3t and y(t) = sin(π
2 t) be analog signals on the interval 0 ≤ t

≤ 1.

a. Sample x(t) at times t = 0, 0.25, 0.5, 0.75 to produce sampled vector
x = (x(0), x(0.25), x(0.5), x(0.75)) ∈ R

4. Sample y(t) at the same times
to produce vector y ∈ R

4.
Verify that the sampled version (same times) of the analog signal x(t) +

y(t) is just x + y (this should be painfully clear).

b. Let q denote a function that takes any real number r and rounds it to
the nearest integer, a simple form of quantization. Use q to quantize x
from part (a) component by component, to produce a quantized vector
q(x) = (q(x0), q(x1), q(x2), q(x3)). Do the same for y and x + y.

Show that q(x) + q(y) 
= q(x + y), and also that q(2x) 
= 2q(x). Quan-
tization is a nonlinear operation!

Vector Spaces

1.7 Is the set of all quadratic polynomials in x with real-valued coefficients (with
polynomial addition and scalar multiplication defined in the usual way) a vector
space over R? Why or why not? (Consider something like a0 + a1x + 0x2 a
quadratic polynomial.)

1.8 Is the set of all continuous real-valued functions f (x) defined on [0, 1] that
satisfy ∫ 1

0
f (x) dx = 3

a vector space over R? Assume function addition and scalar multiplication are
defined as usual.
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1.9 Clearly, R
n is a subset of C

n . Is R
n a subspace of C

n (where C
n is considered

a vector space over C)?

1.10 Verify that the set in Example 1.3 with given operations is a vector space.

1.11 Verify that the set L2(N) in Example 1.5 with given operations is a vector
space. Hint: This closely parallels Example 1.8, with summation in place of
integrals.

Explain why L2(N) is a subspace of L∞(N).

1.12 The point of this exercise is to prove the assertions in Proposition 1.4.1 for an
abstract vector space.

a. Show that the 0 vector is unique. To do this, suppose that there are two
vectors, 01 and 02, both of which play the role of the zero vector. Show that
01 = 02. Hint: Consider 01 + 02.

b. Below is a proof that 0u = 0 in any vector space. In this proof −u denotes
the additive inverse for u, so u + (−u) = 0. What property or properties of
the eight listed in Definition 1.4.1 justifies each step?

(1 + 0)u = 1u + 0u

1u = u + 0u

u = u + 0u,

u + (−u) = (u + (−u)) + 0u

0 = 0 + 0u

0 = 0u.

c. Show that if u + v = 0, then v = (−1)u (this shows that the additive inverse
of u is (−1)u).

Basic Analog and Discrete Waveforms

1.13 Write out the basic waveforms E2,k for k = −2,−1, 0, 1, 2, and verify that
the resulting vectors are periodic with period 2 with respect to the index k.

Repeat for E3,k (same k range). Verify periodicity with period 3.

1.14 Let a = reiθ be a complex number (where r > 0 and θ are real).

a. Show that the function f (t) = aeiωt satisfies | f (t)| = r for all t .

b. Show that f (t) = aeiωt is shifted θ/ω time units to the left, compared
to |r |eiωt .

1.15 Show that each of the four types of waveforms in (1.19) can be expressed as a
linear combination of waveforms e±iαx±iβy of the form (1.17).

1.16 Let Ck be the vector obtained by sampling the function cos(2πkt) at the points
t = 0, 1/N , 2/N , . . . , (N − 1)/N , and let Sk be similarly defined with respect
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to the sine function. Prove the following vector analogs of the equations (1.12),
(1.13), and (1.14) relating the exponential and trigonometric wave forms.

Ek = Ck + iSk, Ek = Ck − iSk,

Ck = 1

2
(Ek + Ek), Sk = 1

2i
(Ek − Ek),

Ck = Re(Ek), Sk = Im(Ek),

where Ek = EN ,k is as defined in equation (1.22).

1.17 Show that we can factor the basic two-dimensional waveform Em,n,k,l as

Em,n,k,l = Em,kET
n,l

(recall superscript T denotes the matrix/vector transpose operation), where the
vectors Em,k and Em,k are the discrete basic waveforms in one-dimension as
defined in equation (1.22), as column vectors.

1.18 Consider an exponential waveform

f (x, y) = e2π i(px+qy)

as was discussed in Section 1.5.2 (p and q need not be integers). Figure 1.7
in that section indicates that this waveform has a natural “direction” and
“wavelength.” The goal of this problem is to understand the sense in which
this is true, and how these quantities depend on p and q.

Define v = (p, q), so v is a two-dimensional vector. Consider a line L
through an arbitrary point (x0, y0) in the direction of a unit vector u = (u1, u2)
(so ‖u‖ = 1). The line L can be parameterized with respect to arc length as

x(t) = x0 + tu1, y(t) = y0 + tu2.

a. Show that the function g(t) = f (x(t), y(t)) with x(t), y(t) as above (i.e., f
evaluated along the line L) is given by

g(t) = Ae2π i‖v‖ cos(θ)t ,

where A is some complex number that doesn’t depend on t and θ is the
angle between v and u. Hint: Use equation (1.30).

b. Show that if L is orthogonal to v, then the function g (and so f ) remains
constant.

c. Find the frequency (oscillations per unit distance moved) of g as a function
of t , in terms of p, q, and θ .

d. Find the value of θ that maximizes the frequency at which g(t) oscillates.
This θ dictates the direction one should move, relative to v so that f



P1: OSO
JWST561-c01 JWST561/Broughton November 24, 2014 7:58 Printer Name: Yet to Come

EXERCISES 65

oscillates as rapidly as possible. How does this value of θ compare to the
θ value in question (b)? What is this maximal frequency of oscillation, in
terms of p and q?

e. Find the “peak-to-peak” distance or wavelength of the waveform f (x, y),
in terms of p and q.

Aliasing and Basic Waveforms

1.19 Write out the vectors E6,0, E6,1, . . . , E6,5 as in Section 1.7.1. Determine all
aliasing relations or redundancies (including conjugate aliasing) you can from
the chart. (Remember to index the vector components from 0 to 5.)

1.20 For a pure 1D wave form of N samples prove the aliasing relation

EN−k = Ek .

1.21 Find all the aliasing relations you can (including conjugate aliasing) for Em,n,k,l .

This can be done directly, or you might use equation (1.26) and the aliasing
relations for the EN ,k .

Inner Products and Norms

1.22 Let S = {v1, v2, v3}, where v1 = (1, 1, 0), v2 = (−1, 1, 1), and v3 =
(1,−1, 2) are vectors in R

3.

a. Verify that S is orthogonal with respect to the usual inner product. This
shows that S must be a basis for R

3.

b. Write the vector w = (3, 4, 5) as a linear combination of the basis vectors
in S. Verify that the linear combination you obtain actually reproduces w!

c. Rescale the vectors in S as per Remark 1.11 on page 39 to produce an
equivalent set S′ of orthonormal vectors.

d. Write the vector w = (3, 4, 5) as a linear combination of the basis vectors
in S′.

e. Use the results of part (d) to check that Parseval’s identity holds.

1.23 Let S = {E4,0, E4,1, E4,2, E4,3} (these vectors are written out explicitly just
prior to equation (1.24)). The set S is orthogonal and a basis for R

4.

a. Use Theorem 1.8.3 to write the vector v = (1, 5,−2, 3) as a linear combi-
nation of the basis vectors in S.

b. Rescale the vectors in S as per Remark 1.11 on page 39 to produce an
equivalent set S′ of orthonormal vectors.

c. Write the vector v = (1, 5,−2, 3) as a linear combination of the basis
vectors in S′.

d. Use the results of part (c) to check that Parseval’s identity holds.
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1.24 There are infinitely many other inner products on R
n besides the standard dot

product, and they can be quite useful too.
Let d = (d1, d2, . . . , dn) ∈ R

n . Suppose that dk > 0 for 1 ≤ k ≤ n.

a. Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vectors in R
n . Show

that the function

(v, w)d =
n∑

k=1

dkvkwk

defines an inner product on R
n . Write out the corresponding norm.

b. Let d = (1, 5) in R
2, and let S = {v1, v2} with v1 = (2, 1), v2 = (5,−2).

Show that S is orthogonal with respect to the (, )d inner product.

c. Find the length of each vector in S with respect to the norm induced by this
inner product.

d. Write the vector w = (−2, 5) as a linear combination of the basis vectors
in S. Verify that the linear combination you obtain actually reproduces w!

1.25 Let v and w be elements of a normed vector space. Prove the reverse triangle
inequality,

|‖v‖ − ‖w‖| ≤ ‖v − w‖. (1.54)

Hint: Start with v = (v − w) + w, take the norm of both sides, and use the
usual triangle inequality.

1.26 Let d(t) be a real-valued, positive, continuous function that is bounded away
from 0 on an interval [a, b]; that is, d(t) ≥ δ > 0 for some δ and all t ∈ [a, b].
Verify that

( f, g)d =
∫ b

a
d(t) f (t)g(t) dt

defines an inner product on C[a, b] (with complex-valued functions). Write
out the corresponding norm.

1.27 Suppose that V is an inner product space with inner product (v, w). Show that
if we define

‖v‖ =
√

(v, v),

then ‖v‖ satisfies the properties of a norm. Hints: All the properties are straight-
forward, except the triangle inequality. To show this, note that

‖v + w‖2 = ‖v‖2 + ‖w‖2 + (v, w) + (w, v).

Apply the Cauchy-Schwarz inequality to both inner products on the right side
above, and note that for any z ∈ C we have |Re(z)| ≤ |z|.
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1.28 Suppose that V is an inner product space, with a norm ‖v‖ = √
(v, v) that

comes from the inner product.

a. Show that this norm must satisfy the parallelogram identity

2‖u‖2 + 2‖v‖2 = ‖u + v‖2 + ‖u − v‖2.

b. Let f (x) = x and g(x) = x(1 − x) be elements of the normed vector space
C[0, 1] with the supremum norm. Compute each of ‖ f ‖∞, ‖g‖∞, ‖ f +
g‖∞, and ‖ f − g‖∞, and verify that the parallelogram identity from part
(a) does not hold. Hence the supremum norm cannot come from an inner
product.

1.29 Suppose that S is an orthogonal but not orthonormal basis for R
n consisting

of vectors vk , 1 ≤ k ≤ n. Show that Parseval’s identity becomes

‖v‖2 =
n∑

k=1

|αk |2‖vk‖2.

where v = ∑n
k=1 αkvk . Hint: Just chase through the derivation of equation

(1.36).

1.30 For the basic waveforms defined by equation (1.22) show that

(EN ,k, EN ,k) = N

with the inner product defined in Example 1.13.

1.31 For 2D wave forms which are m × n matrices defined by equation (1.25) prove
that

(Ek,l, Ep,q ) = 0

when k 
= p or l 
= q, and

(Ek,l , Ek,l ) = mn

with the inner product on Mm,n(C) defined in Example 1.14. It may be helpful
to look at Example 1.20.

1.32 Let vk , 1 ≤ k ≤ n, be any set of vectors in C
n , considered as column vectors.

Define the n × n matrix

A = [
v1 v2 · · · vn

]
.

Let A* = (A)T (conjugate and transpose entries). What is the relationship
between the entries bm,k of the n × n matrix B = (A*)(A) and the inner
products (vk, vm) (inner product defined as in Example 1.13)?
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1.33 Use the result of the last exercise to show that if S is an orthonormal set of
vectors vk ∈ C

n , 1 ≤ k ≤ n, and A is the matrix from the previous problem,
then (A*)(A) = I, where I denotes the n × n identity matrix.

Infinite-Dimensional Inner Product Spaces and Fourier Series

1.34 Let φk , 1 ≤ k < ∞ be an orthonormal set in an inner product space V (no
assumption that φk is complete). Let f ∈ V and define ck = ( f, φk). Prove
Bessel’s inequality,

∞∑
k=1

|ck |2 ≤ ‖ f ‖2. (1.55)

Hint: Start with

0 ≤
(

f −
n∑

k=1

ckφk, f −
n∑

k=1

ckφk

)

(first explain why this inequality is true).

1.35 Suppose that V is a normed vector space and vn a sequence of elements in V
that converge to v ∈ V , that is,

lim
n→∞ ‖vn − v‖ = 0.

Show that

lim
n→∞ ‖vn‖ = ‖v‖.

Hint: Use equation (1.54) from Exercise 1.25.
Show that the converse of this statement is false (provide a counterexample).

1.36 We can endow the vector space L2(N) in Example 1.5 (see also Exercise 1.11)
with an inner product

(x, y) =
∞∑

k=0

xk yk,

where x = (x0, x1, x2, . . .) and y = (y0, y1, y2 . . .) and all components are
real-valued.

a. Verify that this really does define an inner product. In particular, you should
first show that the inner product of any two elements is actually defined;
that is, the infinite sum converges. (Hint: Use |xk yk | ≤ (x2

k + y2
k )/2 as in

Example 1.8.)
What is the corresponding norm on L2(N)?
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b. Let ek denote that element of L2(N) that has xk = 1 and all other xm = 0.
Show that S = ∪∞

k=0ek is an orthonormal set.

c. For an arbitrary x ∈ L2(N), show that

x =
∞∑

k=0

αkek

for a suitable choice of the αk . Hint: This is very straightforward; just use
Theorem 1.10.1.

1.37 Let V be an infinite-dimensional inner product space with orthonormal basis
φk , k ≥ 1. Suppose that x and y are elements of V and

x =
∞∑

k=1

akφk y =
∞∑

k=1

bkφk .

Of course, ak = (x, φk) and bk = (y, φk).

a. Define partial sums

xN =
N∑

k=1

akφk yN =
N∑

k=1

bkφk .

Show that

(xN , yN ) =
N∑

k=1

akbk .

b. Show that

(x, y) =
∞∑

k=1

akbk .

Hint: Note that for any N ,

(x, y) − (xN , yN ) = (x, y − yN ) + (x − xN , yN ),

and of course, xN → x and yN → y. Use the Cauchy–Schwarz inequality
to show that the right side above goes to zero; then invoke part (a). The
result of Exercise 1.35 may also be helpful.

1.38 Show that if v and w are nonzero vectors, then equality is obtained in the
Cauchy–Schwarz inequality (i.e., |(v, w)| = ‖v‖‖w‖) if and only if v = cw
for some scalar c. (One direction is easy, the other is somewhat challenging.)
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1.39 Let φk(t) = eiπkt/
√

2 for k ∈ Z.

a. Verify that the φk form an orthonormal set in C[−1, 1] (complex-valued
functions) with the inner product defined in Example 1.15.

b. Find the Fourier coefficients αk of the function f (t) = t with respect to the
φk explicitly in terms of k by using equation (1.48). Hint: It’s a pretty easy
integration by parts, and α0 doesn’t fit the pattern.

c. Use the result of part (b) to prove the amusing result that

∞∑
k=1

1

k2
= π2

6
.

1.40 Let f (t) be a real-valued continuous function defined on an interval [−T, T ].

a. Show that if f (t) is an even function ( f (−t) = f (t)), then the Fourier
series in (1.51) contains only cosine terms (and the constant term).

b. Show that if f (t) is an odd function ( f (−t) = − f (t)), then the Fourier
series in (1.51) contains only sine terms.

1.41 Let φk(t) = cos(kπ t) for k ≥ 0.

a. Verify that the φk are orthogonal on [0, 1] with respect to the usual inner
product (note φ0(t) = 1).

b. Show that this set of functions is complete as follows (where we’ll make
use of the given fact that the functions eiπkt are complete in C[−1, 1]): Let
f (t) be a function in C[0, 1]. We can extend f to an even function f̃ (t) in
C[−1, 1] as

f̃ (t) =
{

f (t), t ≥ 0,

f (−t), t < 0.

Now use the result of Exercise 1.40 to show that f̃ has a Fourier expansion
in appropriate cosines on [−1, 1]. Why does this show that cos(kπ t) is
complete on [0, 1]?


