
PART

One
Dynamics of Commodity

Price Behavior

A t times the prices of many commodities display volatile behaviors. Since agricul-
tural commodities and minerals, such as crude oil and metals, are among the

fundamental inputs of our economies on the production and/or the consumption
side, price volatility causes disruptions and can lead to crises. An improved under-
standing of the dynamics of price behavior is therefore highly desirable from a policy
as well as from a consumer and supplier perspective.

Part One consists of four chapters, each written from a different point of view. In
Chapter 1, the recently retired chief economist of Arcelor-Mittal and two colleagues
from academia present a new method for estimating long memory processes from
small samples, a common problem in industry, where forecasts frequently have to
be made from very short series. This contribution provides a theoretically sound and
interesting solution to a practical problem.

While the first chapter takes an industry and firm perspective, the second chapter
analyzes time-series data to study the link between commodity price developments
and business cycles. The question asked many times is whether commodity prices lead
inflation or inflation leads commodity prices. The answer is not immediately visible
from looking at the data, because trends can be obscured by short-run occurrences.
This chapter’s analysis offers a method to uncover the true trend and provides
evidence that, on balance, commodity prices are procyclical. The exceptions are the
price of gold, which is countercyclical, and the price of sugar, which is acyclical.

Chapter 3 also studies the connection between inflation and commodity prices.
The author uses a recently developed procedure to test the possible presence of
nonlinearity in the comovement of commodity prices and the consumer price index.
The results reveal interdependences between the different price series, with policy
implications, for example, on how to combat inflation.

Chapter 4 also is focused on macroeconomic issues, but the issue of interest turns
from domestic policy to the world market. The chapter deals with the relationship
between the dollar and the oil price. The real price of the oil in every currency
depends on a variety of factors, including OPEC policy. The price of crude oil is in
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2 DYNAMICS OF COMMODITY PRICE BEHAVIOR

U.S. dollars, but most of the imports of the largest oil-producing member countries
originate in the euro zone or in Japan. Hence, the devaluation of the dollar lowers the
purchase power of OPEC member countries, which they try to regain by adjusting
the price of oil upward.

Together, these four chapters provide models, data, results, and insights that
enhance our understanding of the dynamics of commodity price behavior. They
use the most current models and techniques in time-series analysis and illustrate
their application. The chapters complement each other by providing information at
different levels of aggregation while dealing with the same general subject. Because
of their mixed background in terms of professional experiences and geographic
location, the authors also bring different perspectives to their respective tasks.



CHAPTER 1
Indirect Inference and Long Memory

A New Truncated-Series Estimation Method

Armand Sadler, Jean-Baptiste Lesourd and
Vêlayoudom Marimoutou

INTRODUCTION

Long-memory processes are an important and even fundamental advance in time-
series modeling. More precisely, the so-called autoregressive fractionally integrated
moving average (ARFIMA) model has been introduced by Granger and Joyeux
(1980) and Hosking (1981). It is a generalization of the ARIMA model, which is
a short memory process, by allowing the differencing parameter d to take any real
value. The goal of this specification is to capture parsimoniously long-run multipliers
that decay very slowly, which amounts to modeling long memories in a time series.
ARFIMA processes, however, are associated with hyperbolically decaying autocor-
relations, impulse response weights, and spectral density function exploding at zero
frequency. As noted by Brockwell et al. (1998), while a long memory process can
always be approximated by an ARMA(p, q) process, the orders p and q required
to achieve a good approximation may be so large as to make parameter estima-
tion extremely difficult. In any case, this approximation is not possible with small
samples.

ARFIMA processes are defined as follows in their canonical form:

� (L) (1 − L)d yt = µ + � (L) εt, εt : i id(0, σ 2) (1.1)

where d ∈ (−0.5, 0.5) is the fractional difference operator and µ can be any deter-
ministic function of time. If µ is zero, this process is called fractionally differenced
autoregressive moving average (e.g., Fuller (1996)). The iid (independent and iden-
tically distributed) assumption is the strongest assumption; it implies mixing, that
is, conditions on the dependence of the sequence. For a stationary sequence, mixing
implies ergodicity (restrictions on the dependence of the sequence). Ergodic pro-
cesses are not necessarily mixing; mixing conditions are stronger than ergodicity.
For details, see White (1984) and Rosenblatt (1978).

For general overviews on long memory processes, surveys, and results, we refer
the reader to Baillie (1996); Brockwell and Davis (1998); Fuller (1996); Gouriéroux
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and Monfort (1995); Gourieroux and Jasiak (1999); Hamilton (1994); Jasiak (1999,
2000); Lardic and Mignon (1999); Maddala and Kim (1998); and Sowell (1990) as
well as to the discussions and comments by Bardet (1999), Bertrand (1999), Gourier-
oux (1999), Jasiak (1999), Lardic and Mignon (1999), Prat (1999), Renault (1999),
Taqqu (1999), and Truong-Van (1999). Concerning recent research on the topic of
long memory, we refer the reader to Andrews and Guggenberger (2003), Andrews
and Sun (2004), and Davidson and Terasvirta (2002). Note also the presentation
of a new stationarity test for fractionally integrated processes by Dolado, Gon-
zalo, and Mayoral (2002). Among the most important papers concerning estimation
techniques for these ARFIMA model are Fox and Taqqu (1986), Geweke and Porter-
Hudak (1983), Li and McLeod (1986), and Sowell (1992a). Tests for long memory
across a variety of commodity spot and futures prices can be found in Barkoulas,
Labys, and Onochie (1997, 1999) as well as in Cromwell et al. (2000).

The methods for estimating d, the long-range dependence parameter, can be
summarized in three classes:

1. The heuristic methods [the Hurst (1951) method, the Lo (1989, 1991) method,
the Higuchi (1988) method]

2. The semiparametric methods [Geweke and Porter-Hudak (GPH) (1983) method,
the Robinson (1983, 1995a, 1995b) estimation methods]

3. The maximum likelihood methods [the exact maximum likelihood method, the
Whittle (1951) approximate maximum likelihood method]

For a comparison of these classes of estimators, refer to Boutahar et al. (2005).
The estimation of fractional integration exponents leads to significant problems

in some cases. In the case of small samples, as often encountered with industrial data,
it is even impossible. Long-memory estimations often are performed with financial
time series with large numbers of observations (5,000 observations and more are
not uncommon). However, small samples of 50 to 100 observations are the order
of magnitude usually encountered in industrial forecasting problems. In such cases
the need for a consistent and precise estimation technique is of great interest. Thus,
we motivate the need for a new estimator for the long-memory parameter by the
small sample sizes often encountered in practice. Why should we care about long
memory in those situations? For instance, one could argue that from a forecasting
perspective, long memory starts to make a difference only when forecasting over
long horizons. In situations when you only have a few observations available, you
would not forecast too many steps ahead. The reply to this comment covers three
aspects:

1. What really matters in time series analysis is the span, not the number of obser-
vations. Fifty yearly observations on apparent steel use in a region have another
informational content than 5,000 real-time observations over a short period of
time on some financial stock index.

2. Many industry sectors are producing medium- and long-range forecasts based on
a relatively small number of yearly or quarterly observations. A steel producer
planning to invest in a new rolling mill or a new greenfield facility can not wait
for a long time series before making a decision but has to work with the actually
available data.
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3. We have come to believe from our past studies that for transfer function models
(models with explanatory variables), long memory does not even exist. Detected
long memory always followed some misspecification of the actual model. If a
model is correctly specified, long memory should disappear. In this sense, we
look at long memory as a specification test.

By using indirect inference to adjust for the bias, is the computational burden
increasing? The answer is no. We suggest the use of our reference tables to correct
for the bias. To our knowledge, since the work of Li and McLeod (1986), no new
estimation techniques that are valid for small samples have been proposed in the
econometric literature. Moreover, Li and McLeod developed an estimation technique
based on truncating the power series defining the process after about 50 terms.

In this chapter, we propose a completely different approach based on low-order
truncation (after about five terms). Li and McLeod considered their truncated model
as approximating the true model, whereas we explicitly consider our low-order
truncated model as an instrumental model that is necessarily biased. The bias is
corrected by an indirect inference technique, through minimizing a distance function.

This chapter aims at defining an estimation technique of the fractional integra-
tion exponent d for comparatively small samples. Its asymptotical properties are
based on a result established by Mira and Escribano (2000) about the almost sure
consistency of a nonlinear least square (NLS) estimator. The hypotheses used by
these authors are shown to apply to our particular case of truncated series. A new
method for identification and estimation of these truncated series is developed and
applied to steel consumption time series as well as to the analysis of atmospheric car-
bon dioxide (CO2) concentrations derived from in situ air measurements at Mauna
Loa Observatory, Hawaii.

ALMOST SURE CONSISTENCY OF THE NLS ESTIMATOR
FROM OUR TRUNCATED MODEL

We consider the simplest ARFIMA process, also called fractionally differenced (or
integrated) white noise (see, e.g., Fuller (1996) or Brockwell et al. (1998)):

(1 − L)d yt = et (1.2)

with et ∼ iid, or yt +
∞∑
j=1

κ j (d)yt− j = et.

κ j (d) = [�( j + 1)�(−d)]−1 �( j − d) =
j∏

i=1

i−1(i − 1 − d)

� is the gamma function and d ∈ (−0.5, 0.5). If ξ is not an integer, then ξ =
n + φ, φ ∈ (0, 1): � (ξ ) = (φ + n − 1) (φ + n − 2) . . . (φ + 1) φ� (φ). We define the
truncated version of this model by:

yt +
r∑

j=1

κ j (d)yt− j = et (1.3)
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In addition, we relax the iid assumption for et and replace it by the less restrictive
α-mixing assumption, thus allowing for some heteroscedasticity (see White (1984)
for details). In the appendix we show that the parameter d of model (1.3) can be
consistently estimated and that the true fractional parameter can be estimated by
indirect inference.

In the next section, we show how to identify and estimate the truncated long
memory process.

IDENTIF ICATION AND ESTIMATION OF THE TRUNCATED
LONG MEMORY PROCESS

We define the combined consumption model (CCM) as a transfer function model
including long memory. The starting point is either a cointegration relationship
between variables having a common stochastic trend or a stable relationship between
stationarized variables. In the case of structural breaks, the break may be in level,
in slope, or in both. Care has to be taken with the specification because, as pointed
out by Diebold and Inoue (2001), long memory and structural breaks are easily
confused.

The CCM is thus aiming at a parsimonious representation of reality by focusing
on a few key explanatory variables, an ARMA part in order to take account of short
memory and a fractional parameter representing long memory. With this definition,
the estimated parameter d will always lie in the open interval (–0.5, 0.5). An estimated
parameter d out of that range is an indication that the series have not been correctly
stationarized because the process is only both stationary and invertible if d < 10.51.

If long memory is specified by a truncated version of the model, the CCM can
be estimated easily. The next estimation procedure follows the outline proposed
by Hosking (1981), except that we change the order of the steps and estimate
the combined model. To illustrate the estimation procedure, let us start with the
ARFIMA model

� (L)


yt +

r∑
j=1

κ j (d) yt− j


 = � (L) εt (1.4)

or

F (L) ∇d yt = � (L) εt (1.5)

Define

ut = yt +
r∑

j=1

κ j (d)yt− j (1.6)

so that {ut} is an ARIMA (p, 0, q) process.

� (L) [ut] = � (L) εt (1.7)
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Let

xt = {� (L)}−1 � (L) yt (1.8)

so that xt is a truncated ARIMA (0, d, 0) process because

∇dxt = {� (L)}−1 � (L) ∇d yt = εt (1.9)

d is estimated in four steps:

1. Start the algorithm by setting d = 0 in (1.4) and estimating the ARMA parameters
by the Gauss-Newton algorithm.

2. Take the residuals (zt) from the equation in step 1 and check if the series displays
long memory; in other words, estimate d.

3. Calculate ut from equation 1.6 with the d estimated in step 2.
4. Reestimate the ARMA parameters from equation 1.7 and check for convergence.

If not converged, reestimate d and go to step 3.

Adding additional exogenous explanatory variables poses no problem in this
estimation procedure. There is generally no convergence problem in applying this
procedure, except when the sample size is really too small.

INFORMAL PROOF OF THE CONVERGENCE OF THE ABOVE
ESTIMATION PROCEDURE

In practice, we are running a conditional loop. The instructions in the loop are
executed repeatedly until a specified condition is true. In our case, the condition is
that the distance between successive values of the respective parameters in successive
runs gets arbitrarily small (the Cauchy criterion of convergence of a sequence).
Suppose the true DGP (data generating process) is given by formula 1.4 and that d
is positive. By setting d = 0 in step 1, the ARMA parameters are capturing partly
the impact of a missing explanatory variable and are distorted. But the ARMA
specification cannot capture long memory. Thus, the residuals (zt) in step 2 are not
iid and the estimated d in this step is necessarily positive, given our assumption. In
step 4, the reestimated ARMA parameters are closer to reality as we are taking into
account the new estimated d. By proceeding further in this way, the distortions are
becoming smaller and smaller. The procedure is converging.

Monte Carlo Simulat ion and Ind irect Inference Est imat ion
of an ARFIMA (0,d,0)

In this section, we use a methodology called indirect inference to demonstrate the
usefulness of our approach. This methodology, introduced by Gouriéroux, Monfort,
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and Renault (1993), Smith (1993), and Gallant and Tauchen (1996) is nowadays
largely used in applied econometric research. The idea is to draw a simulation-based
inference on generally intractable structural models through an instrumental model,
conceived as easier to handle. We refer the reader to Gouriéroux and Monfort (1997)
for a detailed description of the methodology.

The initial model (M) is equation 1.2 and the approximated one (Ma) is equa-
tion 1.3. The estimator is obtained by minimizing equation A.1 (see appendix) by
nonlinear least squares.

Equation A.1 may be written

Qn (d) = n−1
n∑

t=1

f a(yt, d),

whereas the initial model is

Qn (d) = n−1
n∑

t=1

f (yt, d)

with yt denoting the present and past values yt, yt −1, yt − 2, and so on, of the process
y. Let d be the true value of the parameter and da the estimated parameter of the
instrumental model. The estimated parameter da does not generally converge toward
the true parameter d because f (yt, d) �= f a(yt, d).

First we will show that the asymptotic bias is a function of d. We simulated dif-
ferent ARFIMA (0,d,0) models by using a RATS program written by Schoen (1997).
The fractionally integrated parameter d (the true d) is estimated by considering the
estimator da obtained by minimizing formula 1.3 with six lags and with large sam-
ples. da , reported in row 2 in Tables 1.1 to 1.5, is the arithmetic mean of 10,000
(respectively 50,000) parameters estimated from each simulation. We observe an
important bias when approaching the nonstationary case for positive d. The gain in
precision is significant for increasing n.

A visual representation of the relationship between the value of the true d and
the estimated value d2 is provided in Figure 1.1. It shows that the bias is a function
of d.

We next test the sensitivity of estimates as a function of the lag, r. Table 1.5
shows simulation results when r = 3.

It follows from Tables 1.1 to 1.5 that the estimated fractional parameter da

does not differ significantly from the true d, except for values of d approaching
the extreme points of the open interval (–0.5,0.5). Nevertheless, the bias has to be

TABLE 1.1 Bias as a Function of d with 1,000 Observations and 10,000 Simulations

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

da –.405 –0.345 –0.271 –0.188 –0.098 0.101 0.212 0.333 0.474 0.706
Std Error 0.035 0.036 0.036 0.037 0.037 0.037 0.037 0.036 0.035 0.029
Stat T 2.4 1.5 0.8 0.3 0.05 0.03 0.3 0.9 2.1 7.5



Indirect Inference and Long Memory 9

TABLE 1.2 Bias as a Function of d with 500 Observations and 50,000 Simulations

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

da –0.405 –0.345 –0.271 –0.189 –0.101 0.099 0.208 0.329 0.467 0.70
Std Error 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04
Stat T 1.7 1.1 0.6 0.2 –0.02 –0.02 0.2 0.6 1.3 5.3

TABLE 1.3 Bias as a Function of d with 100 Observations and 10,000 Simulations

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

da –0.41 –0.35 –0.28 –0.20 –0.11 0.08 0.19 0.31 0.44 0.69
Std Error 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10
Stat T 0.7 0.4 0.2 0.0 –0.1 –0.2 –0.1 0.1 0.3 2.0

TABLE 1.4 Bias as a Function of d with 50 Observations and 10,000 Simulations

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

da –0.416 –0.360 –0.291 –0.213 –0.130 0.060 0.163 0.280 0.421 0.680
Std Error 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.15
Stat T 0.4 0.2 0.05 –0.07 –0.2 –0.2 –0.2 –0.1 0.1 1.3

TABLE 1.5 Estimates of da as a Function of Lag when r = 3

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

da –0.379 –0.326 –0.262 –0.187 –0.104 0.088 0.200 0.326 0.478 0.751
Std Error 0.12 0.12 0.12 0.12 0.125 0.125 0.124 0.121 0.115 0.088
Stat T 0.9 0.6 0.3 0.1 –0.03 –0.1 0.0 0.2 0.7 3.0

n = number of observations = 100; 10,000 simulations.

F IGURE 1.1 Bias of da as a Function of d
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corrected. This is done by minimizing the following distance (Gouriéroux, Monfort
and Renault (1993); Gouriéroux and Monfort (1997); and Smith (1993)):

daSn (
) = arg min [dan − daSn (d)]′ 
 [dan − daSn (d)] (1.10)

d ∈ (−0.5, 0.5) with dan = arg min Qn (d) = n−1
n∑

t=1

f a (yt, d),

daSn (d) = (
1
/

S
) S∑

s=1

dan (d)

In short, dan is the estimator of d obtained by maximizing the instrumental
criterion in the case of a given sample of interest whereas daSn (d) is the arithmetic
mean of the maximization of the same instrumental criterion for the S simulated
samples. So, daSn (d) is what we report in Tables 1.1 to 1.5. In order to maximize
the asymptotic covariance matrix of an M-estimator like daSn (
), Gouriéroux et al.
have shown that the optimal choice of 
 is:


∗ = J0 (I0 − K0)−1 J0 (1.11)

We use the notation proposed in Dridi and Renault (2000). In the absence of ad-
ditional exogenous variables, as in the case here, K0 = 0 (Gouriéroux et al., 1996).
Gouriéroux et al. (1993) noted that the efficiency gain obtained by using the optimal
estimator is negligible (and that for practical applications they) only consider the
estimator based on 
 = Id′. Thus, (10) is simplified to

daSn (
) = arg min [dan − daSn (d)]2 (1.12)

d ∈ (−0.5, 0.5)

Suppose the following simple analytical form for the relationship between the
true d and daSn (d): d = daSn (d) − 0.1.

daSn (
) = arg min
[
d2

an − 2dan (d + 0.1) + (d + 0.1)2
]

(1.13)

By minimizing the above distance with respect to d we obtain:

−2dan + 2 (d + 0.1) = 0 and d = dan − 0.1. (1.14)

As the analytical form of the relationship is unknown, we correct on the basis of
Tables 1.1 to 1.4.

We will show that this procedure works remarkably well by simulating different
ARFIMA (0, d, 0) series with n = 500 observations. The corresponding fractional
parameter is then estimated by indirect inference (II) and by the method of Geweke
and Porter-Hudak (GPH). The results are reported in Tables 1.6 and 1.7.

The results from the two simulations are presented in Figure 1.2. Note that the
results diverge toward the endpoints of the (–0.5, +0.5) open interval and that the
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TABLE 1.6 Estimation by Indirect Inference

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

Estimated d –0.463 –0.379 –0.285 –0.191 –0.096 0.103 0.212 0.321 0.444 0.558
Std error 0.053 0.053 0.054 0.054 0.054 0.054 0.054 0.052 0.049 0.038
Bias 0.027 0.021 0.015 0.009 0.004 0.003 0.012 0.021 0.044 0.068

n = number of observations = 500; 1000 replications.

TABLE 1.7 Estimation by GPH

True d –0.49 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.49

Estimated d –0.387 –0.352 –0.267 –0.197 –0.107 0.106 0.217 0.317 0.49 0.79
Std Error 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.17
Bias 0.1 0.05 0.03 0.003 –0.07 0.006 0.017 0.017 0.09 0.30

n = number of observations = 500; 1000 replications.

F IGURE 1.2 Bias of da for the Two Methods

indirect inference (II) method generates better estimates than the method suggested
by GPH. The standard error and the bias are much smaller for the II method.

APPLICATIONS

In this section, we apply the estimation procedure described in the previous section to
the analysis of apparent steel consumption (ASC) in the European Union 15, North
America, Japan, and China.
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Apparent Steel Consumpt ion and Industr ia l Product ion

The starting point is the demand equation from the traditional standard commodity
model (SCM) (see G. Adams (1996)). This demand equation is obtained from the
first-order conditions of cost minimization by the firm. The explicit demand function
for factor xi for a given firm may be written:

xi = hi (p1, p2, . . . , pi , . . . , pn, q) (1.15)

where xi = demand of commodity i
q = the production of the firm
pi = price of commodity i

By aggregating over the total number of firms in a country, the demand function of
commodity i may be written:

Dt = D(Pt, PSt, Yt) (1.16)

where P = price of commodity i
PS = price of competing commodities
Y = production of the sectors consuming commodity i

The commodity steel (xi ) is widely used in most production sectors so that it is
reasonable to replace Y with the index of industrial production (IP) of the country.
This approach has been taken by Afrasiabi, Moallem, and Labys (1991) in their
study of the demand for copper, zinc, and lead. The properties of the global demand
function of a given production factor are generally:

∂ D/∂ P < 0, ∂ D/∂/PS > 0, ∂ D/∂Y > 0 (1.17)

For this exercise, prices have been removed from the equations, mainly because of
a common stochastic trend in the aluminum price and steel price series. Table 1.8
summarizes the descriptive statistics of the endogenous and exogenous series. Figures
1.3 and 1.4 show the growth patterns of these series over the period 1974 to 2006.

Data come from three sources: Global Insight, Inc., the European Commission,
and the International Iron and Steel Institute (IISI). The period studied were the years

TABLE 1.8 Descriptive Statistics, 1974–2006

Series Obs Mean Std Error Minimum Maximum H0 = I(1)

LEU15 33 4.78 0.13 4.5 5.0 accept
LAMERNOR 33 4.75 0.15 4.4 5.0 accept
LJAPAN 33 4.28 0.13 3.9 4.5 accept
LCHINE 33 4.23 0.82 2.8 5.8 accept
IPEU15 33 1.6 2.6 –6.3 6.9 reject
IPAMNOR 33 2.6 3.7 –8.7 9.1 reject
IPJAPAN 33 2.0 5.0 –11.0 11.1 reject
IPCHINE 33 12.1 4.7 0.7 21.6 reject
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FIGURE 1.3 (a) ASC in EU15 (in logs, LEU15), 1974–2006. (b) ASC in Japan (in logs,
LJAPAN), 1974–2006. (c) ASC in North America (in logs, LAMERNOR), 1974–2006. (d)
ASC in China (in logs, LCHINE), 1974–2006
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F IGURE 1.4 (a) Industrial Production in EU15 (IPEU15), 1974–2006. (b) Industrial
Production in Japan (IPJAPAN), 1974–2006. (c) Industrial Production in North America
(IPAMNOR), 1974–2006. (d) Industrial Production in China (IPCHINE), 1974–2006
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1974 to 2006, and the data were obtained for each year. For this study we defined
these variables:

� EU15 = apparent steel consumption in the European Union 15, in million metric
tons

� AMERNOR = apparent steel consumption in North America (US, Canada, and
Mexico), in million metric tons

� JAPAN = apparent steel consumption in Japan, in million metric tons
� CHINE = apparent steel consumption in China, in million metric tons
� LEU15 = log(EU15)
� LAMERNOR = log(AMERNOR)
� LJAPAN = log(JAPAN)
� LCHINE = log(CHINE)
� D = (1 − L); e.g., DLEU15 = (1 – L)*LEU15 = LEU15t – LEU15t−1
� IP = industrial production growth rate, year on year; e.g., IPEU15 = industrial

production growth rate in the EU15

Figures 1.3a to 1.3d show the apparent steel consumption in the European
Union (EU15), North America, Japan, and China from 1974 to 2006. The difference
in trend between China and the other three economies stands out, with consumption
in the latter growing rapidly to support the growth and development of its economy,
whereas the other economies were growing at a slower pace and becoming less
dependent on manufacturing; hence the flatter curves.

The trend differences shown in Figures 1.3a to 1.3d are also reflected in Figures
1.4a to 1.4d, which show industrial production in the same economies, but the
differences are not as striking. Whereas the ASC trend lines are relatively smooth,
the production trend lines have pronounced peaks and valleys.

The most important stylized facts of these series are:

� The ASC (apparent steel consumption) series (in logs) are I(1) whereas the
growth rates of IP are I(0).

� All series display highly stochastic cycles. Real steel consumption (RC) equals
ASC +/– stocks movements and is unobserved. The stochastic cycles in RC
follow closely those in the IP series. ASC cycles, however, have much larger am-
plitude due to the speculative behavior on inventories held by the steel consumers
(merchants, steel service centers, and final consumers, e.g., automotive, construc-
tion, mechanical engineering, domestic appliances, metal ware and tubes).

The specification of the statistical model, together with the constraints imposed
by economic theory, raises some identification problems. The latter are solved by the
rigorous modeling strategy proposed in the previous sections, taking into account
exogenous explanatory variables, short-memory ARMA components, as well as a
long-memory parameter.

Tables 1.9 to 1.12 show the results by running the CCM by country or region.
It follows from Tables 1.9 to 1.12 that the fractional parameter d is not signifi-

cantly different from zero, so that the formulas can be simplified (see Tables 1.13 to
1.16). All processes are characterized by the property of short memory. Additional
specifications not reproduced in this chapter show that price variables of steel and
aluminium were not significant.
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TABLE 1.9 European Union (EU15)

1975–2006 CONSTANT N IPEU15{0} d

DLEU15 –0.0341 0.0258 –0.1067
(Significance) (0.0005) (0.0000) (0.4623)

R
2 = 0.72 Q(8-0) = 2.34

(0.97)

TABLE 1.10 North America

1979–2006 CONSTANT N IPAMNOR{0} Dummy (1982) d

DLAMERNOR –0.042 0.023 –0.192 –0.124
(Significance) (0.005) (0.000) (0.001) (0.503)

R
2 = 0.76 (7-0) = 8.82

(0.26)

TABLE 1.11 Japan

1979–2006 CONSTANT N IPJAPAN{0} AR{1} MA{1} MA{2} d

DLJAPAN −0.018 0.015 −0.369 0.521 0.514 −0.004
(Significance) (0.213) (0.000) (0.337) (0.142) (0.011) (0.976)

R
2 = 0.63 Q(7-3) = 3.02

(0.55)

TABLE 1.12 China

1979–2006 CONSTANT N IPCHINE{0} Dummy (1994–1995) d

DLCHINE –0.133 0.020 –0.254 –0.082
(Significance) (0.027) (0.000) (0.001) (0.586)

R
2= 0.49 Q(7-0) = 11.74

(0.109)

TABLE 1.13 Reestimated Combined Consumption, European Union (EU15)

1975–2006 CONSTANT N IPEU 15{0}

DLEU15 –0.036 0.026
(Significance) (0.0004) (0.0000)

R
2 = 0.72 Q(8-0) = 1.46

(0.99)

JB = 1.67, Hansen (1992) = 0.32, DF = –5.8.
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TABLE 1.14 Reestimated Combined Consumption, North America

1975–2006 CONSTANT N IPAMNOR{0} Dummy (1982)

DLAMERNOR –0.040 0.020 –0.210
(Sign) (0.003) (0.000) (0.001)

R
2 = 0.75 Q(8-0) = 11.3

(0.19)

JB = 1.40, Hansen (1992) = 0.21, DF = –6.5.

TABLE 1.15 Reestimated Combined Consumption, Japan

1976–2006 CONSTANT N IPJAPAN{0} AR{1} MA{1} MA{2}

DLJAPAN –0.036 0.015 –0.570 0.637 0.510
(Sign) (0.0211) (0.000) (0.044) (0.02) (0.009)

R
2 = 0.50 Q(7-3) = 8.50

(0.07)

JB = 6.91, Hansen (1992) = 0.10, DF = –6.5.

TABLE 1.16 Reestimated Combined Consumption, China

1975–2006 CONSTANT N IPCHINE{0} Dummy (1994–1995)

DLCHINE –0.117 0.018 –0.278
(Sign) (0.034) (0.000) (0.000)

R
2= 0.46 Q(8-0) = 20.36

(0.009)

JB = 0.167, Hansen (1992) = 0.05, DF = –4.3.

Tables 1.13 to 1.16 show the reestimated equations with the fractional parameter
dropped and the analysis of the residuals from these equations as well as a test of
the stability of the parameter linked to industrial production.

The results of this model are compatible with economic theory. For the EU15,
North America, and China, the stochastic cycle in the ASC series seems to be entirely
captured by the cyclical pattern of the explanatory variable. In Japan, however,
additional ARMA parameters are needed to explain the cycle in ASC. The analysis
of the residuals shows that the latter are iid normal, except in the case of Japan.

Steel Intensity Curve (SI Curve)

The so-called SI curve is part of the rich history of studies related to materials use
in economic systems. Main references to this literature are found in Sadler (2003).
The first SI curve was constructed in the late 1960s by the Committee on Economic
Studies of the IISI (International Iron and Steel Institute). It relates the evolution of
SI (the ratio of apparent steel consumption to gross domestic product [GDP]) to the
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level of economic development of a country as measured by GDP per capita (IISI
1974).

There are five stages in the development of SI:

1. Very low level before economic takeoff
2. Rapid rise
3. Leveling-off stage
4. Decline
5. Stabilization

The development at the first two stages of SI is due to changes in the economic struc-
ture of a country, mainly increases in the shares of investments and manufacturing
production.

The decline at the fourth stage results from the changes in the relative importance
of activity of steel-using sectors in total economic activity (Swip [Steel Weighted
Industrial Production Index]/GDP) and a decline of specific steel consumption defined
as “apparent steel consumption/Swip.”

Apparent steel consumption (ASC) of a country A is defined as production
+ imports – exports. So ASC equals real steel consumption +/– stock movements.
Production and trade figures are based on a broad definition of steel industry products
as compiled by the IISI, including ingots and semifinished products, tubes and tube
fittings, single-strand wire, railway wheels, tires, and axles.

The IISI and the Organization for Economic Cooperation and Development
(OECD) (H. Duisenberg 1985) proposed the following formula to estimate the SI
curve:

SI = f − (a − bx) e−cx,

where x = GDP/capita with SI > 0, x > 0, and b > 0

The formula above largely reproduces the theoretical SI curve.
Figures 1.5 to 1.7 show the SI patterns over the period 1960 to 2005. The results

are in Table 1.17.
The long memory parameter is not significant. We conclude that there is no (ad-

ditional) long memory. In other words, no important “other” explanatory variables
are omitted in the above-specified models.

Atmospheric Concentrat ions

In this application, we test for the presence of a long memory parameter in a series
of atmospheric CO2 concentrations (ppmco2) derived from in situ air measurements
at Mauna Loa Observatory, Hawaii. The period covers monthly data from March
1958 to January 2007 (Keeling et al. 2005).

Figure 1.8 shows the growth pattern of CO2 concentrations over the period
March 1958 to January 2007.

The Hodrick-Prescott filter was used to extract the trend. Further, the series
ppmco2 is stationarized by taking logs and applying a seasonal differencing filter
to the latter. The series tested for long memory is labeled lppm1. The spectrum
(Figure 1.9) suggests the presence of long memory.
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FIGURE 1.5 Steel Intensity Curve, EU15

We use our instrumental model with six lags to estimate the long memory
parameter. The results are reported in Table 1.18.

From Table 1.2, we correct for bias and derive an estimated d of about 0.46.
Testing for structural change in the first and second half of the sample revealed an
unstable parameter. The Chow test for the Gauss-Newton regression is F(6,563) =
2.58 with significance level 0.017. Splitting the sample in two halves, we estimated
with the instrumental model a d of 0.578 for the first half and a d of 0.641 for the
second half. We test the model by running intrasample forecasts over the observations
451 to 588 on the basis of an estimate of d, using the first 450 observations. Figure
1.10 shows that the model forecasts well.

F IGURE 1.6 Steel Intensity Curve, Japan
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F IGURE 1.7 Steel Intensity Curve, USA

TABLE 1.17 SI Curve

f a b c d

EU15 0.011 3.423 0.434 0.435 0.129
(Significance) (0.000) (0.31) (0.28) (0.000) (0.35)

Japan 0.010 37.880 3.24 0.438 0.116
(Significance) (0.000) (0.35) (0.34) (0.000) (0.441)

USA 0.013 0.187 0.029 0.199 0.154
(Significance) (0.000) (0.247) (0.153) (0.000) (0.314)

F IGURE 1.8 CO2 Concentrations (Parts per Million, ppm)
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FIGURE 1.9 Long Memory Test, Spectrum lppm1

TABLE 1.18 CO2 Concentrations, 1958(3)–2007(1)

c d

Lppm1 0.0005 0.626
(0.00000000) (0.00000000)

R
2 = 0.67, Log Likehood = 3071

F IGURE 1.10 PPMCO2 Intrasample Forecast 451–588
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CONCLUSIONS

Fractional integration is an important issue in modern time-series analysis. Tradi-
tional ARMA models, insofar as they are parsimonious, do not accurately describe
situations where the long memory component of the impulse-response coefficients
is predominant. Of course, long memory could be approximated arbitrarily well
with a suitably large-order ARMA representation, but this is of little help in the
case of small samples. Care must be taken to correctly stationarize the original time
series. Long memory and structural change are easily confused. The concept of long
memory leads in a natural way to the detection of stable relationships for stationary
series, the so-called copersistence.

The problem with fractional integration, however, lies in the estimation tech-
niques of the parameters. In order to simplify these techniques, we propose a trun-
cated version of the fractionally integrated model that has the advantage of being
easy to estimate and that captures parsimoniously the growth pattern of processes
displaying impulse-response coefficient decaying at a much slower rate than those
for stationary ARMA processes.

In this chapter we show that the number of autoregressive lags in this truncation
can be chosen in the short range, from 2 to 6. We derived two results. First, under the
assumption that the truncated model is the true model, the NLS estimator d* of the
parameter d of this model is consistent. This result is obtained under rather general
assumptions. Specifically, we relax the iid assumption for et and replace it with the
less restrictive α-mixing assumption. Second, using Monte Carlo experiments, we
show that the fractional parameter (of the nontruncated model) can be consistently
estimated by NLS and indirect inference on the basis of the simple truncated model.
In our applications related to apparent steel consumption (annual data), we found
no evidence for the presence of long memory. However, we found stochastic cycles
and a significant impact of IP, particularly in the EU15, North America, and Japan,
confirming economic theory. In the case of China, the exogenous variable IP has less
explanatory power. Concerning the SI curves in the EU15, the United States, and
Japan, there was no evidence for long memory, so that we conclude that there is no
misspecification, in other words, no important explanatory variables are missing in
the specification.

For a series of atmospheric CO2 concentrations derived from in situ air mea-
surements at Mauna Loa Observatory, Hawaii, we found a high persistence with a
significant positive long memory parameter.

APPENDIX: PROOF OF CONSISTENCY OF THE
ESTIMATOR D *

We assume that model 1.3 is the true model and show that the NLS estimator d* of
the parameter d from model 1.3 is consistent.

First, we justify the choice of the NLS estimator. It follows from assumption OP
(optimand) in Gallant and White (1988) that the methodology proposed hereafter in
order to prove almost sure consistency allows us to consider the class of M estimators,
which are defined as solutions to an optimization problem, such as NLS estimators,
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maximum likelihood (ML) estimators, and generalized method of moments (GMM)
estimators. The unified theory of these estimators was developed originally in Hansen
(1982). We use the NLS estimator for the following reasons.

The ML approach is primarily a large-sample approach (see Davidson and Mack-
innon (1993), p. 247). The same argument holds for the GMM approach. As claimed
by Bates (1990), the method of instrumental variables is inherently a large-sample
estimation method based as it is on the law of large numbers and the central limit
theorem. Of course, the GMM allows us to deal efficiently with heteroskedasticity
if the latter is of a known form. This however is generally not the case. So we rely
only on NLS. However, we propose to correct for heteroskedasticity by computing
a consistent estimate of the covariance matrix as in White (1980). This correction
does not affect the coefficients themselves, only their standard errors. Of course, if
the form of heteroskedasticity is known, this latter approach will not be as efficient
as weighted least squares.

Note that the robust errors approach is also a way to check the quality of
the Monte Carlo simulation of ARFIMA processes. For example, we simulated an
ARFIMA (0, 0.2, 0) with iid errors and estimated the fractional parameter d on the
basis of the truncated model 1.3 with r = 6 lags. The estimated d was 0.206 with
a standard error of 0.009 without the robust errors correction of the covariance
matrix, while the standard error was 0.0091 if this correction is taken into account.

Let {yt}n
t=1 be a process generated by equation 1.3, and we desire an estimator

of d. Consider d̂ solution of

d̂ = arg min Qn(d) = n−1
n∑

t=1


yt +

r∑
j=1

κ j (d)yt− j




2

(A.1)

r is a constant that may be chosen in practice.
We specify the nonlinear autoregressive distributed lag model 1.3 in companion

form. Let us define the p vectors Yt = [yt, . . . , yt−p+1]′, Vt = [et, 0, . . . , 0]′, and the
p2 matrix B* by

B∗ =




0 0
... 0 0

1 0
... 0 0

. . . . . .
. . . 0 . . .

0 0
... 1 0




(A.2)

Define also the p vector F (Yt−1, d∗) = [ f (yt−1, . . . , yt−p, d∗), 0, . . . , 0]′. Thus, (3) can
be rewritten as

Yt = B∗Yt−1 + F (Yt−1, d∗) + Vt (A.3)

We will now prove the almost sure (a.s.) consistency of the nonlinear least
squares estimator d*. To do this, we apply theorem 3.5 from Mira and Escribano
(2000) by checking that the assumptions (MD, MX, CT, LR, and LN) they used to
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derive the consistency result are satisfied in the case of model 1.3. Their approach is
based on Gallant and White (1988), the seminal paper on estimation of and inference
for nonlinear dynamic models, with the main advantage that they are able to write
explicit assumptions related to a nonlinear model, such as moment conditions and
conditions on the nonlinear function. They show (lemma 3.4) that assumptions MD
to LN imply near epoch dependence, r-integrability uniformly in t, s-domination and
the Lipschitz-L1 condition a.s., and thus consistency.

These assumptions are called Lipschitz-type assumptions. Consistency can be
proved also on the basis of an equicontinuity assumption of the underlying functions
(see Pötscher and Prucha 1991). The latter paper also provides a set of modules that
can readily be used to prove consistency of a variety of M-estimators. Mira’s and
Escribano’s (2000) assumptions are:

Assumption MD: Model 1.3 is the true model in the sense that

E
(
yt|yt−1, . . . , yt−p

) ≡ f
(
yt−1, . . . , yt−p, d∗) (A.4)

Assumption MX (mixing): The sequence {Vt} is strong mixing with {an} of size
−v

/
(v − 2) with v > 2.
By this assumption, we allow for some heterogeneity (some nonstationarity).
Assumption CT:

(i) For some fixed value ε > 0 and for all matrices B∇ F given by B∇ F ≡ B +
∇y F (Y, d), with θ ∈ �, we have that ρ (B∇ F ) < 1 − ε < 1 where ρ (B∇ F ) is
the spectral radius of B∇ F , i.e., the largest eigenvalue of the matrix B∇ F .

Notice that for each specific matrix B∇ F , its associated norm ‖.‖S will verify
that

‖B∇ F‖S ≡ δBY < 1 − ε (A.5)

‖.‖s ≡ (
E

(‖.‖r
s

))1/r ≡ E1/r (‖.‖r
s

)
(A.6)

(ii) For the norms ‖.‖S and ‖.‖2 we have ‖B‖ ≤ δCB.
(iii) The compact parametric space � is such that the Jordan decomposition of the

matrix B∇F given in part (i), J = M−1 (B∇F) M, verifies ‖M−1‖∞ < �−1 and
‖M‖∞ < � for some fixed values � and �−1.

Assumption CN: f (yt−1, . . . , yt−p,d) is continuously differentiable in each argu-
ment, and its second-order derivatives with respect to d are continuous functions.

Assumption LR: For r = 6 we have

E ‖Vt‖r
S ≤ �

(r )
V (A.7)

E ‖Vt‖r
S ‖Vs‖r

S ≤ �
(r )
VV (A.8)

Assumption LN: For the norms‖.‖S and ‖.‖2:
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The following inequality holds a.s.:

‖F (Yt, d)‖S ≤ δCF (‖Yt‖S) (A.9)

The following inequality holds a.s.:

‖∇d F (Yt−1, d)‖2
s ≤ ∥∥∇d f

(
yt−1,...,yt−p, d

)∥∥2
s ≤ δL

(‖Yt−1‖S

)2 (A.10)

We will now check these assumptions in the case of model 3.
Assumption MD: Assumption MD is satisfied because of the specification of

model 1.3.
Assumption MX (mixing): α-mixing sequences are called strong mixing. The

quantity α (m) measures how much dependence exists between events separated by
at least m time periods. By definition, yt is a stationary time series where all ARMA
components have been removed. It is therefore reasonable to assume that assumption
MX is satisfied for the sequence {Vt} because et may effectively be interpreted as an
innovation.

Assumption CT(i):

yt = dyt−1 + d(1 − d)/2yt−2 + d(1 − d)(2 − d)/6yt−3

+ d(1 − d)(2 − d)(3 − d)/24yt−4 + d(1 − d)(2 − d)(3 − d)(4 − d)/120yt−5

+ d(1 − d)(2 − d)(3 − d)(4 − d)(5 − d)/720yt−6 + et

≡ f (.) (A.11)

∂ f (.)
/
∂yt−1 = d = κ1

∂ f (.)
/
∂yt−2 = d (1 − d)

/
2 = κ2

...
...

∂ f (.)
/
∂yt−6 = d (1 − d) (2 − d) (3 − d) (4 − d) (5 − d)

/
720 = κ6

(A.12)

B∗ =




0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




∇F =




κ1 κ2 κ3 κ4 κ5 κ6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(A.13)

B∇ F =




κ1 κ2 κ3 κ4 κ5 κ6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




(A.14)
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Figure A.1 shows the growth pattern of the spectral radius of the matrix B∇ F =
B + ∇ F as a function of d.

As the spectral radius is less than 1 for −0.5 < d < 0.5, we conclude that as-
sumption CT is satisfied.

Assumption LR are restrictions as moment conditions on Vt.
Assumption LN(i):

| f (yt−1, . . . yt−6, d)| = |dyt−1 + . . . + d(1 − d)(2 − d)(3 − d)(4 − d)(5 − d)/720yt−6|
≤ ∣∣d∣∣ |yt−1| + . . . + |d(1 − d)(2 − d)(3 − d)(4 − d)(5 − d)/

720| |yt−6| <

6∑
i=1

|yt−i | (A.15)

The last inequality follows from −0.5 < d < 0.5.
Assumption LN(ii):

∣∣∣∣
∂ f (yt−1, . . . , yt−6, d)

∂d

∣∣∣∣ =
∣∣∣∣yt−1 + (1 − 2d)

2
yt−2 + 3d2 − 6d + 2

6
yt−3 · · ·

∣∣∣∣
≤ |yt−1| +

∣∣∣∣
1 − 2d

2

∣∣∣∣ |yt−2| + · · ·

<

6∑
i=1

|yt−i |

(A.16)

Again, the last inequality follows from −0.5 < d < 0.5. Thus, assumption LN is
satisfied.

The next theorem proves the consistency of the NLS estimator d that minimizes
equation A.1.

� Theorem 1: Under assumptions MD, MX, CT, CN, LR and LN and the identi-
fication condition stated below, the nonlinear least squares estimator for model
1.3 converges a.s. to the true value of the parameter.

� Proof: See Mira and Escribano (2000).

F IGURE A.1 Growth Pattern of Spectral Radius of Matrix B∇F = B + ∇F
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In our case, the identification assumption is: Since the mean square error has
a unique minimum at the conditional mean, and since model 1.3 is the conditional
mean from assumption MD, the identification condition is that

F (Yt−1, d∗) �= F (Yt−1, d) for d∗ �= d (A.17)
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