
Chapter 1

Writing Your First C++ Program
In This Chapter
▶ Finding out about C++

▶ Installing Code::Blocks from the accompanying CD-ROM

▶ Creating your first C++ program

▶ Executing your program

Okay, so here we are: No one here but just you and me. Nothing left to do

but get started. Might as well lay out a few fundamental concepts.

A computer is an amazingly fast but incredibly stupid machine. A computer

can do anything you tell it (within reason), but it does exactly what it’s told —

nothing more and nothing less.

Perhaps unfortunately for us, computers don’t understand any reasonable

human language — they don’t speak English either. Okay, I know what you’re

going to say: “I’ve seen computers that could understand English.” What

you really saw was a computer executing a program that could meaningfully

understand English.

Computers understand a language variously known as computer language or

machine language. It’s possible but extremely difficult for humans to speak

machine language. Therefore, computers and humans have agreed to sort of

meet in the middle, using intermediate languages such as C++. Humans can

speak C++ (sort of), and C++ can be converted into machine language for the

computer to understand.

Grasping C++ Concepts
A C++ program is a text file containing a sequence of C++ commands put

together according to the laws of C++ grammar. This text file is known as the

source file (probably because it’s the source of all frustration). A C++ source

file normally carries the extension .CPP just as a Microsoft Word file ends in

.DOC or an MS-DOS (remember that?) batch file ends in .BAT.

CO
PYRIG

HTED
 M

ATERIA
L

10 Part I: Introduction to C++ Programming

The point of programming in C++ is to write a sequence of commands that

can be converted into a machine-language program that actually does what

we want done. This is called compiling and is the job of the compiler. The

machine code that you wrote must be combined with some setup and tear-

down instructions and some standard library routines in a process known as

linking or building. The resulting machine-executable files carry the extension

.EXE in Windows.

That sounds easy enough — so what’s the big deal? Keep going.

To write a program, you need two specialized computer programs. One (an

editor) is what you use to write your code as you build your .CPP source file.

The other (a compiler) converts your source file into a machine-executable

.EXE file that carries out your real-world commands (open spreadsheet,

make rude noises, deflect incoming asteroids, whatever).

Nowadays, tool developers generally combine compiler and editor into a

single package — a development environment. After you finish entering the

commands that make up your program, you need only click a button to

create the executable file.

Fortunately, there are public-domain C++ environments. We use one of them

in this book — the Code::Blocks environment. This editor will work with a

lot of different compilers, but a version of Code::Blocks combined with the

GNU gcc compiler for 32-bit versions of Windows is included on the book’s

CD-ROM. You can download the most recent version of Code::Blocks from

www.codeblocks.org or you can download a recent version that’s been

tested for compatibility with the programs in this book from the author’s

Web site at www.stephendavis.com.

You can download versions of the gcc compiler for the Mac or Linux from

www.gnu.org.

Although Code::Blocks is public domain, you’re encouraged to pay some

small fee to support its further development. You don’t have to pay to use

Code::Blocks, but you can contribute to the cause if you like. See the Web site

for details.

I have tested the programs in this book with Code::Blocks combined with gcc

version 4.4; the programs should work with later versions as well. You can

check out my Web site for a list of any problems that may arise with future

versions of Code::Blocks, gcc, or Windows.

 Code::Blocks is a full-fledged editor and development environment front end.

Code::Blocks supports a multitude of different compilers including the gcc

compiler included on the enclosed CD-ROM.

11 Chapter 1: Writing Your First C++ Program

 The Code::Blocks/gcc package generates Windows-compatible 32-bit pro-

grams, but it does not easily support creating programs that have the classic

Windows look. I strongly recommend that you work through the examples

in this book first to learn C++ before you tackle Windows development. C++

and Windows programming are two separate things and (for the sake of your

sanity) should remain so in your mind.

Follow the steps in the next section to install Code::Blocks and build your

first C++ program. This program’s task is to convert a temperature value

entered by the user from degrees Celsius to degrees Fahrenheit.

Installing Code::Blocks
The CD-ROM that accompanies this book includes the most recent version of

the Code::Blocks environment at the time of this writing.

The Code::Blocks environment comes in an easy-to-install, compressed execut-

able file. This executable file is contained in the CodeBlocks directory on the

accompanying CD-ROM. Here’s the rundown on installing the environment:

 1. Insert the CD into the CD-ROM drive.

 2. When the CD interface appears with the License Agreement, click

Accept.

 3. Click the Installing Code::Blocks button on the left.

 4. Click Open Directory.

 5. Double-click the codeblocks_setup.exe file.

 You can also choose Start➪Run and type x:\codeblocks\setup in the

window that appears, where x is the letter designation for your CD-ROM

drive (normally D).

 6. Depending on what version of Windows you’re using, you may get the

ubiquitous “An unidentified programs wants access to your computer”

warning pop-up. If so, click Allow to get the installation ball rolling.

 7. Click Next after closing all extraneous applications as you are warned

in the Welcome dialog to the CodeBlocks Setup Wizard.

 8. Read the End User Legal Agreement (commonly known as the EULA)

and then click I Agree if you can live with its provisions.

 It’s not like you have much choice — the package really won’t install

itself if you don’t accept. Assuming you do click OK, Code::Blocks opens

a window showing the installation options. The default options are fine.

12 Part I: Introduction to C++ Programming

 9. Click the Next button.

 The installation program asks where you want it to install Code::Blocks.

This dialog box also shows you how much disk space the installation

requires (and whether you have enough). The default is okay assuming

you have enough disk space (if not, you’ll have to delete one of your

reruns of the Simpsons).

 10. Click Install.

 Code::Blocks commences to copying a whole passel of files to your hard

disk. Code::Blocks then asks “Do you want to run Code::Blocks now?”

 11. Click Yes to start Code::Blocks.

 Code::Blocks now asks which compiler you intend to use. The default is

GNU GCC Compiler, which is the proper selection.

 12. Click OK to select the GNU GCC compiler and start Code::Blocks.

 Code::Blocks now wants to know which file associations you want to

establish. The default is to allow Code::Blocks to open .CPP files. This

option in fine unless you have another C++ compiler that you would

rather have as the default.

 13. Select the Yes, Associate C++ Files with Code::Blocks option if you do

not have another C++ compiler installed. Otherwise, select the No,

Leave Everything as It Is option. Click OK.

 You now need to make sure that the compiler options are set to enable

all warnings and C++ 2009 features.

 14. From within Code::Blocks, choose Settings➪Compiler and Debugger.

In the Compiler Flags tab, make sure that the Enable All Compiler

Warnings is selected.

 15. Select the Enable All Compiler Warnings option, as shown in Figure 1-1.

 Start Code::Blocks. From within Code::Blocks, choose Settings➪Compiler

and debugger. In the Compiler Flags tab, make sure that the Enable All

Compiler Warnings is selected.

 16. Set the options to ensure C++ 2009 compliance.

 The 2009 extensions are still considered a bit experimental as of this

writing, so you need to tell gcc to enable these features. Click the Other

Options tab and add the two lines -std=c++0x and -Wc++0x-compat

as shown in Figure 1-2.

 17. Click OK.

 18. Click Next in the Code::Blocks Setup window and then click Finish to

complete the setup program.

 The setup program exits.

13 Chapter 1: Writing Your First C++ Program

Figure 1-1:
Ensure that
the Enable

All Compiler
Warnings

is set.

Figure 1-2:
Add these

lines to
enable the

C++ 2009
features.

Creating Your First C++ Program
In this section, you create your first C++ program. You enter the C++ code

into a file called CONVERT.CPP and then convert the C++ code into an execut-

able program.

14 Part I: Introduction to C++ Programming

Creating a project
The first step to creating a C++ program is to create what is known as a proj-

ect. A project tells Code::Blocks the names of the .CPP source files to include

and what type of program to create. Most of the programs in the book will

consist of a single source file and will be command-line style:

 1. Choose Start➪Programs➪CodeBlocks➪CodeBlocks to start up the

CodeBlocks tool.

 2. From within Code::Blocks, choose File➪New➪Project.

 3. Select the Console Application icon and then click Go.

 4. Select C++ as the language you want to use from the next window.

Click Next.

 Code::Blocks and gcc also support plain ol’ C programs.

 5. Select the Console Application icon and then click Go.

 6. In the Folder to Build Project In field, navigate to the subdirectory

where you want your program built.

 I have divided the programs in this book by chapter, so I created the

folder C:\CPP_Programs\Chap01 using Windows Explorer and then

selected it from the file menu.

 7. In the Project Title field, type the name of the project, in this case

Conversion.

 The resulting screen is shown in Figure 1-3.

Figure 1-3:
I created

the project
Conversion
for the first

program.

15 Chapter 1: Writing Your First C++ Program

 8. Click Next.

 The next window gives you the option of creating an application for test-

ing or the final version. The default is fine.

 9. Click Finish to create the Conversion project.

Entering the C++ code
The Conversion project that Code::Blocks creates consists of a single, default

main.cpp file that does nothing. The next step is to enter our program:

 1. In the Management window on the left, double-click main, which is

under Sources, which is under Conversion.

 Code::Blocks opens the empty main.cpp program that it created in the

code editor, as shown in Figure 1-4. (Figure 1-4 shows all the projects

from the entire book as well.)

Figure 1-4:
The

Manage-
ment

window
displays a
directory

structure for
all available

programs.

 2. Edit main.cpp with the following program exactly as written.

 Don’t worry too much about indentation or spacing — it isn’t critical

whether a given line is indented two or three spaces, or whether there

are one or two spaces between two words. C++ is case sensitive, how-

ever, so you need to make sure everything is lowercase.

 You can cheat by using the files contained on the enclosed CD-ROM as

described in the next section “Cheating.”

16 Part I: Introduction to C++ Programming

//
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>

#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the temperature in Celsius
 int celsius;
 cout << “Enter the temperature in Celsius:”;
 cin >> celsius;

 // calculate conversion factor for Celsius
 // to Fahrenheit
 int factor;
 factor = 212 - 32;

 // use conversion factor to convert Celsius
 // into Fahrenheit values
 int fahrenheit;
 fahrenheit = factor * celsius/100 + 32;

 // output the results (followed by a NewLine)
 cout << “Fahrenheit value is:”;
 cout << fahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

 3. Choose File➪Save to save the source file.

 I know that it may not seem all that exciting, but you’ve just created

your first C++ program!

Cheating
All the programs in the book are included on the enclosed CD-ROM along

with the project files to build them. You can use these files in two ways: one

way is to go through all the steps to create the program by hand first but

copy and paste from the sources on the CD-ROM into your program if you get

into trouble (or your fingers start cramping). This is the preferred technique.

17 Chapter 1: Writing Your First C++ Program

Alternatively you can use the following procedure to copy all the programs to

your hard disk at once:

 1. Copy all the sources from the CD-ROM to the hard disk.

 This copies all the source code from the book along with the project

files to build those programs.

 2. Double-click AllPrograms.workspace in C:\CPP_Programs.

 A workspace is a single file that references one or more projects. The

AllPrograms.workspace file contains references to all the projects

defined in the book.

 3. Right-click the Conversion project in the Management window on

the left. Choose Activate Project from the context-sensitive menu that

appears.

 Code::Blocks turns the Conversion label bold to verify that this is the

program you are working with right now.

Building your program
After you’ve saved your C++ source file to disk, it’s time to generate the exe-

cutable machine instructions.

To build your Conversion program, you choose Build➪Build from the menu

or press Ctrl-F9. Almost immediately, Code::Blocks takes off, compiling your

program with gusto. If all goes well, the happy result of 0 errors, 0 warnings

appears in the lower-right window.

Code::Blocks generates a message if it finds any type of error in your C++

program — and coding errors are about as common as ice cubes in Alaska.

You’ll undoubtedly encounter numerous warnings and error messages, prob-

ably even when entering the simple Conversion.cpp. To demonstrate the

error-reporting process, let’s change Line 16 from cin >> celsius; to cin
>>> celsius;.

This seems an innocent enough offense — forgivable to you and me perhaps,

but not to C++. Choose Build➪Build to start the compile and build process.

Code::Blocks almost immediately places a red square next to the erroneous

line as shown in Figure 1-5. The message in the Build Message tab is a rather

cryptic error: expected primary-expression before ‘>’ token.

To get rid of the message, remove the extra > and recompile.

18 Part I: Introduction to C++ Programming

Figure 1-5:
Code::

Blocks flags
the source

of errors
quickly.

 You probably consider the error message generated by the example a little

cryptic but give it time — you’ve been programming for only about 30 minutes

now. Over time you’ll come to understand the error messages generated by

Code::Blocks and gcc much better.

 Code::Blocks was able to point directly at the error this time but it isn’t always

that good. Sometimes it doesn’t notice the error until the next line or the one

after that, so if the line flagged with the error looks okay, start looking at its

predecessor to see if the error is there.

Executing Your Program
It’s now time to execute your new creation . . . that is, to run your program.

You will run the CONVERT.EXE program file and give it input to see how well

it works.

To execute the Conversion program, choose Build➪Build and Run or press

F9. This rebuilds the program if anything has changed and executes the pro-

gram if the build is successful.

A window opens immediately, requesting a temperature in Celsius. Enter a

known temperature, such as 100 degrees. After you press Enter, the program

returns with the equivalent temperature of 212 degrees Fahrenheit as follows:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press any key to continue . . .

19 Chapter 1: Writing Your First C++ Program

The message Press any key to continue... gives you the opportunity

to read what you’ve entered before it goes away. Press Enter, and the window

(along with its contents) disappears. Congratulations! You just entered, built,

and executed your first C++ program.

Notice that Code::Blocks is not truly intended for developing Windows pro-

grams. In theory, you can write a Windows application by using Code::Blocks,

but it isn’t easy. (Building windowed applications is so much easier in Visual

Studio.NET.)

Windows programs show the user a visually oriented output, all nicely

arranged in onscreen windows. Conversion.exe is a 32-bit program that exe-

cutes under Windows, but it’s not a Windows program in the visual sense.

If you don’t know what 32-bit program means, don’t worry about it. As I said,

this book isn’t about writing Windows programs. The C++ programs you write

in this book have a command line interface executing within an MS-DOS box.

Budding Windows programmers shouldn’t despair — you didn’t waste your

money. Learning C++ is a prerequisite to writing Windows programs. I think

that they should be mastered separately: C++ first, Windows second.

Reviewing the Annotated Program
Entering data in someone else’s program is about as exciting as watching

someone else drive a car. You really need to get behind the wheel itself.

Programs are a bit like cars as well. All cars are basically the same with small

differences and additions — okay, French cars are a lot different than other

cars, but the point is still valid. Cars follow the same basic pattern — steering

wheel in front of you, seat below you, roof above you, and stuff like that.

Similarly, all C++ programs follow a common pattern. This pattern is already

present in this very first program. We can review the Conversion program by

looking for the elements that are common to all programs.

Examining the framework
for all C++ programs
Every C++ program you write for this book uses the same basic framework,

which looks a lot like this:

20 Part I: Introduction to C++ Programming

//
// Template - provides a template to be used as the
// starting point
//
// the following include files define the majority of
// functions that any given program will need
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // your C++ code starts here

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Without going into all the boring details, execution begins with the code con-

tained in the open and closed braces immediately following the line begin-

ning main().

I’ve copied this code into a file called Template.cpp located in the main

CPP_Programs folder on the enclosed CD-ROM.

Clarifying source code with comments
The first few lines in the Conversion program appear to be freeform text.

Either this code was meant for human eyes or C++ is a lot smarter than I give

it credit for. These first six lines are known as comments. Comments are the

programmer’s explanation of what she is doing or thinking when writing a

particular code segment. The compiler ignores comments. Programmers

(good programmers, anyway) don’t.

A C++ comment begins with a double slash (//) and ends with a newline. You

can put any character you want in a comment. A comment may be as long as

you want, but it’s customary to keep comment lines to no more than 80 char-

acters across. Back in the old days — “old” is relative here — screens were

limited to 80 characters in width. Some printers still default to 80 characters

across when printing text. These days, keeping a single line to fewer than 80

characters is just a good practical idea (easier to read; less likely to cause

eyestrain; the usual).

21 Chapter 1: Writing Your First C++ Program

A newline was known as a carriage return back in the days of typewriters —

when the act of entering characters into a machine was called typing and not

keyboarding. A newline is the character that terminates a command line.

 C++ allows a second form of comment in which everything appearing after a

/* and before a */ is ignored; however, this form of comment isn’t normally

used in C++ anymore. (Later in this book, I describe the one case in which this

type of comment is applied.)

It may seem odd to have a command in C++ (or any other programming lan-

guage) that’s specifically ignored by the computer. However, all computer

languages have some version of the comment. It’s critical that the program-

mer explain what was going through her mind when she wrote the code. A

programmer’s thoughts may not be obvious to the next colleague who tries

to use or modify her program. In fact, the programmer herself may forget

what her program meant if she looks at it months after writing the original

code and has left no clue.

Basing programs on C++ statements
All C++ programs are based on what are known as C++ statements. This sec-

tion reviews the statements that make up the program framework used by

the Conversion program.

A statement is a single set of commands. Almost all C++ statements other

than comments end in a semicolon. (You see one other exception in Chapter

10). Program execution begins with the first C++ statement after the open

brace and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and new-

lines appear throughout the program. In fact, I place a newline after every

statement in this program. These characters are collectively known as

whitespace because you can’t see them on the monitor.

 You may add whitespace anywhere you like in your program to enhance

readability — except in the middle of a word:

See wha

t I mean?

Although C++ may ignore whitespace, it doesn’t ignore case. In fact, C++ is

case sensitive to the point of obsession. The variable fullspeed and the

variable FullSpeed have nothing to do with each other. The command int

is completely understandable, but C++ has no idea what INT means. See what

I mean about fast but stupid compilers?

22 Part I: Introduction to C++ Programming

Writing declarations
The line int nCelsius; is a declaration statement. A declaration is a state-

ment that defines a variable. A variable is a “holding tank” for a value of some

type. A variable contains a value, such as a number or a character.

The term variable stems from algebra formulas of the following type:

x = 10
y = 3 * x

In the second expression, y is set equal to 3 times x, but what is x? The vari-

able x acts as a holding tank for a value. In this case, the value of x is 10, but

we could have just as well set the value of x to 20 or 30 or –1. The second for-

mula makes sense no matter what the value of x is.

In algebra, you’re allowed but not required to begin with a statement such as

x = 10. In C++, the programmer must define the variable x before she can

use it.

In C++, a variable has a type and a name. The variable defined on line 11 is

called celsius and declared to hold an integer. (Why they couldn’t have

just said integer instead of int, I’ll never know. It’s just one of those things you

learn to live with.)

The name of a variable has no particular significance to C++. A variable must

begin with the letters A through Z, the letters a through z, or an underscore

(_). All subsequent characters must be a letter, a digit 0 through 9, or an

underscore. Variable names can be as long as you want to make them.

 It’s convention that variable names begin with a lowercase letter. Each new

word within a variable begins with a capital letter, as in myVariable.

 Try to make variable names short but descriptive. Avoid names such as x

because x has no particular meaning. A variable name such as lengthOf
LineSegment is much more descriptive.

Generating output
The lines beginning with cout and cin are known as input/output state-

ments, often contracted to I/O statements. (Like all engineers, programmers

love contractions and acronyms.)

23 Chapter 1: Writing Your First C++ Program

The first I/O statement says “Output the phrase Enter the temperature in
Celsius to cout” (pronounced “see-out”). cout is the name of the standard C++

output device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. It says, in effect, “Extract a value from

the C++ input device and store it in the integer variable celsius.” The C++

input device is normally the keyboard. What we have here is the C++ analog

to the algebra formula x = 10 just mentioned. For the remainder of the pro-

gram, the value of celsius is whatever the user enters there.

Calculating Expressions
All but the most basic programs perform calculations of one type or another.

In C++, an expression is a statement that performs a calculation. Said another

way, an expression is a statement that has a value. An operator is a command

that generates a value.

For example, in the Conversion example program — specifically in the two

lines marked as a calculation expression — the program declares a

variable factor and then assigns it the value resulting from a calculation. This

particular command calculates the difference of 212 and 32; the operator is

the minus sign (–), and the expression is 212–32.

Storing the results of an expression
The spoken language can be very ambiguous. The term equals is one of those

ambiguities. The word equals can mean that two things have the same value

as in “a dollar equals one hundred cents.” Equals can also imply assignment,

as in math when you say that “y equals 3 times x.”

To avoid ambiguity, C++ programmers call = the assignment operator, which

says (in effect), “Store the results of the expression to the right of the equal

sign in the variable to the left.” Programmers say that “factor is assigned

the value 212 minus 32.” For short, you can say “factor gets 212 minus 32.”

 Never say “factor is equal to 212 minus 32.” You’ll hear this from some lazy

types, but you and I know better.

24 Part I: Introduction to C++ Programming

Examining the remainder of Conversion
The second expression in the Conversion program presents a slightly more

complicated expression than the first. This expression uses the same math-

ematical symbols: * for multiplication, / for division, and + for addition. In

this case, however, the calculation is performed on variables and not simply

on constants.

The value contained in the variable called factor (which was calculated as

the results of 212 – 32, by the way) is multiplied by the value contained in

celsius (which was input from the keyboard). The result is divided by 100

and summed with 32. The result of the total expression is assigned to the

integer variable fahrenheit.

The final two commands output the string Fahrenheit value is: to the

display, followed by the value of fahrenheit — and all so fast that the user

scarcely knows it’s going on.

