
Chapter 1: Working with the 
Visual C++ 2008 IDE and Projects

In This Chapter
✓ Considering the Visual C++ 2008 project types

✓ Developing a simple application

✓ Using help to write code faster

✓ Working with Solution Explorer

✓ Interacting with the standard toolbars

✓ Modifying application properties

✓ Changing the IDE appearance

Microsoft’s Visual C++ 2008 is an incredibly full-featured product, and 

this minibook can’t even begin to discuss most of the tasks you can 

perform using Visual C++. What you’ll discover in this minibook, starting 

with this chapter, are the traditional options that Visual C++ 2008 offers, 

including Win32 console applications and Microsoft Foundation Classes 

(MFC) graphical applications. You won’t find any coverage of Microsoft’s 

.NET Framework and managed coding.

Visual C++ 2008 is the Microsoft view of what C++ should offer, which may 

or may not be the same as your view. Let’s just say that Microsoft adds a 

wealth of features to Visual C++, some of which you’ll like and others that 

you might want to do without. (We know of some developers who go out of 

their way to overcome the less-liked features in Visual C++ 2008.) For the 

most part, this minibook goes with the flow and shows you what Visual C++ 

2008 has to offer so you can make your own decisions.

The focus of this chapter is the Integrated Development Environment (IDE). 

As you progress through the chapter, you discover how Visual C++ differs 

from the CodeBlocks IDE used for the other minibooks. In addition, you’ll 

create your first Visual C++ application, a simple console application that 

shows, even in this regard, that Microsoft is a bit different.

 This minibook relies on Visual Studio 2008 Service Pack 1 (SP1), Visual 

Studio Team System 2008 Edition. If you’re using a different version, some 

of your screenshots will vary from those shown here. In addition, you may 

find that your edition requires slightly different menu commands to perform 

44_317358-bk07ch01.indd   71544_317358-bk07ch01.indd   715 7/22/09   11:44:50 PM7/22/09   11:44:50 PM

CO
PYRIG

HTED
 M

ATERIA
L



716 Understanding the Project Types

tasks or that your version has fewer capabilities. Even with these differ-

ences, the examples in this minibook should work fine with any version of 

Visual Studio.

Understanding the Project Types
One of the first things you’ll notice is that Visual C++ offers a lot of different 

projects, all of which interact with Windows. To see the projects that Visual 

C++ has to offer, choose File➪New➪Project in Visual Studio. You see the 

New Project dialog box shown in Figure 1-1. The templates used to create 

new projects appear in the Visual C++ folder.

 

Figure 1-1: 
You use the 
New Project 
dialog box 
to create a 
new empty 
project with 
nothing in it.

 

Figure 1-1 shows all the templates installed on the target system. Note that 

you can add new projects to the list by clicking Search Online Templates. It’s 

also possible to create your own templates or to modify existing templates 

to meet your needs. However, creating a new template requires quite a bit of 

skill, so the chapter doesn’t discuss this option in any detail.

The list in Figure 1-1 could be overwhelming. Microsoft categorizes these 

projects according to task. For example, when you select the Visual C++\

Win32 folder, you see two templates:

 ✦ Win32 Console Application

 ✦ Win32 Project

44_317358-bk07ch01.indd   71644_317358-bk07ch01.indd   716 7/22/09   11:44:50 PM7/22/09   11:44:50 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
717Creating a New Win32 Console Application

Some templates create more than one kind of application. In this case, a 

wizard guides you through the process of defining the application type. For 

example, even though you see only one MFC Application template in the 

Visual C++\MFC folder, this one template creates a number of application 

types, as you discover in Chapters 2 and 3.

Creating a New Win32 Console Application
The Win32 Console Application template shown in Figure 1-1 helps you 

create an application that executes at the command prompt. The application 

won’t have any fancy Windows interface elements. In fact, the result is very 

much like the majority of the CodeBlocks applications created in the other 

minibooks. However, console applications do provide useful services and 

they’re a good place to begin discussing Visual C++ and the Visual Studio 

IDE. The following sections describe how you can create your own Win32 

console application.

Defining the project
Visual Studio provides two levels of application management. The top level 

is a solution. A solution is the set of executables needed to create a complete 

application. Every application has only one solution. The second level is the 

project. A project contains the files needed to create a single executable. A 

solution can contain as many projects as needed to create a complete appli-

cation. This example requires only one project — the executable used to 

display “Hello World” at the command prompt.

Before you can begin writing code for a project, you need to define the 

project itself. The following steps describe how to create a Win32 Console 

Application project:

 1. Choose File➪New➪Project.

  You see the New Project dialog box (refer to Figure 1-1).

 2. Select the Visual C++\Win32 folder in the Project Types list. 

Highlight the Win32 Console Application template in the Templates 

list.

 3. Type a project name in the Name field (the example uses Hello 

World).

  The New Project dialog box automatically changes the Solution Name 

field content to match the project name. You can always type a different 

solution name if desired.

 4. Click Browse.

  You see a Project Location dialog box.

44_317358-bk07ch01.indd   71744_317358-bk07ch01.indd   717 7/22/09   11:44:50 PM7/22/09   11:44:50 PM



718 Creating a New Win32 Console Application

 5. Select a location for the project and click OK.

  The Location field of the New Project dialog box contains the location 

you selected.

 6. Click OK.

  Visual Studio starts the Win32 Application Wizard. You see the Welcome 

page of this wizard.

 7. Click Next.

  You see the Application Settings page shown in Figure 1-2. The Win32 

Console Application template actually provides access to four kinds of 

applications, including a DLL or static library. You can also add support 

for both the MFC and Active Template Library (ATL). The default set-

tings work fine for the example, but it’s important to know that other 

options exist.

 

Figure 1-2: 
The 
Application 
Settings 
page 
lets you 
choose an 
application 
type.

 

 8. Click Finish.

  The wizard creates a new solution and project that contains four files. 

Normally, you won’t care about stdafx.cpp, which contains a list of 

standard headers for your project. You’ll add any headers you need for 

your project to the stdafx.h file. The targetver.h file contains special 

code that tells the compiler which version of Windows to target for the 

application (you can find the acceptable values for the Windows versions 

at http://msdn.microsoft.com/en-us/library/6sehtctf.aspx). 

The final file, Hello World.cpp, contains the application source code.

44_317358-bk07ch01.indd   71844_317358-bk07ch01.indd   718 7/22/09   11:44:50 PM7/22/09   11:44:50 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
719Creating a New Win32 Console Application

Adding code
One of the first things you must decide is which version of Windows to 

target with your application. Open the targetver.h file and you’ll see an 

explanation of its purpose. Microsoft always assumes that you’ll want to 

target the latest version of Windows and will ignore anything older, which 

isn’t a reasonable approach. Consequently, you normally need to change 

this file to match the version of Windows you want to work with. All you 

need to do is change the version number as shown here:

#ifndef _WIN32_WINNT        
#define _WIN32_WINNT 0x0501 
#endif

 Using a version number of 0x0501 means that you’re targeting Windows 

XP. If you’d wanted to target Windows 2000, you would have used a value of 

0x0500. Windows Server 2003 uses a version number value of 0x0502.

The application will use standard input and output functionality, so you 

need to open the stdafx.h file next. You might wonder why Microsoft uses 

this separate file to store headers. Using a centralized location for declara-

tions you plan to use for the entire application makes sense because you 

need to make changes only once. To the standard header declarations, you 

add #include <iostream> as shown here:

#pragma once

#include “targetver.h”

#include <stdio.h>
#include <tchar.h>

#include <iostream>

It’s time to add the code to the Hello World.cpp file. Here’s the simple 

code used for this example:

#include “stdafx.h”

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
   // Display the message.
   cout << “Hello World!” << endl;

   // Pause so you can see it in the debugger.
   system(“PAUSE”);

   return 0;
}

44_317358-bk07ch01.indd   71944_317358-bk07ch01.indd   719 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



720 Creating a New Win32 Console Application

In most respects, this code doesn’t look much different from code you type 

in CodeBlocks. The example begins by including stdafx.h, which contains 

the list of common declarations for the example as described earlier. As with 

any C++ application, you must also include a namespace declaration.

The body of the example application looks similar to other examples in this 

book. The basic idea is to output some text to the command prompt and 

then pause until the user presses Enter.

 

The big difference is the use of _tmain() rather than main(). The _
tmain() function declaration appears in tchar.h. If you look at this file, 

you’ll see that using _tmain() expands to either main() (when working 

with ANSI characters) or wmain() (when working with Unicode characters). 

In short, _tmain() is simply a convenience that lets you compile your code 

for either ANSI or Unicode use as needed without having to change your 

application code. Microsoft provides a number of _t* declarations in the 

tchar.h file, and you may want to look at them at some point.

Running the application
At this point, your application is ready to compile and run. To compile an 

application using Visual C++, you choose Build➪Build Solution. In the Output 

window, you see a series of build messages like the ones shown in Figure 1-3. 

If there are any errors when you compile your application, you see them in 

the Error List window (simply click the Error List tab shown in Figure 1-3 to 

see the errors).

 

Figure 1-3: 
The Output 
window 
shows 
the steps 
used to 
compile the 
application.

 

To see your application in action, click Start Debugging (the green arrow) on 

the Standard toolbar or press F5. If you want to start your application with-

out debugging support, choose Debug➪Start Without Debugging or press 

Ctrl+F5. Figure 1-4 shows the output from this application.

44_317358-bk07ch01.indd   72044_317358-bk07ch01.indd   720 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
721Writing Code Faster

 

Figure 1-4: 
Running the 
application 
displays 
a simple 
message.

 

Writing Code Faster
Microsoft provides a number of ways to obtain help in writing code faster. 

The two most commonly used techniques are working with the help files and 

relying on IntelliSense. The following sections describe how to use these two 

approaches.

Obtaining coding help
You have access to a wealth of help options. The first place most people 

look is the Help menu. The Help menu does contain a wealth of options, but 

the help you receive is generic. These options may open a copy of MSDN 

Library, but you still have to look for the topic you need help with and most 

developers want something faster.

Another approach is to double-click the keyword you need to understand 

better and press F1. Using this technique opens a copy of MSDN Library, 

but this time you see the help associated with the keyword. Unfortunately, 

you get the help that Microsoft thinks you need. MSDN Library can contain 

a host of entries for any given keyword. If you don’t see what you want, you 

can always type the keyword in the Index tab or perform a search.

Visual Studio also has a feature called Dynamic Help. This window displays 

help based on whatever you’re typing at the time. For example, Figure 1-5 

shows what you see when you type cout. The advantage of using Dynamic 

Help is that you normally see multiple useful help selections, so you can 

click the one that looks like it will answer your question. Unfortunately, 

Dynamic Help can also cause problems by eating system resources and 

causing the IDE to work slowly. You display Dynamic Help by choosing 

Help➪Dynamic Help. Simply close the window when you no longer need it.

44_317358-bk07ch01.indd   72144_317358-bk07ch01.indd   721 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



722 Writing Code Faster

 

Figure 1-5: 
Dynamic 
help 
provides 
information 
about the 
current task.

 

Working with IntelliSense
IntelliSense is a special Visual Studio feature that looks at what you’re typing 

and then provides suggestions on what to type next. Using this special fea-

ture means that you spend less time remembering how to spell and capital-

ize function names and more time coding. In many cases, IntelliSense can 

direct your attention to code that you may have forgotten about. In addition 

to function names, IntelliSense also tells you about function arguments and 

other code you need to type.

Figure 1-6 shows an example of IntelliSense in action. In this case, the 

figure shows what you see when you type the system keyword. Note 

that IntelliSense shows precisely what you should type as input for the 

system() function.

 

Figure 1-6: 
IntelliSense 
provides 
helpful 
information 
about the 
code you 
write.

 

44_317358-bk07ch01.indd   72244_317358-bk07ch01.indd   722 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
723Viewing Your Project in Solution Explorer

 You don’t have to type something to see IntelliSense. To see the same dis-

play as Figure 1-6 for any function you have already typed, place the cursor 

within the function call and press Ctrl+Shift+Spacebar. If you want to see a 

list of items you can type, press Ctrl+Spacebar instead.

Viewing Your Project in Solution Explorer
Every time you create a new application in Visual Studio, you work with a 

solution. The solution contains one or more projects, as previously men-

tioned. It’s helpful to see the hierarchy of solution, project, and associated 

files, and Solution Explorer provides this view. Figure 1-7 shows the hierar-

chy for the sample console application in this chapter.

 

Figure 1-7: 
Solution 
Explorer 
displays a 
list of the 
files in the 
project.

 

Notice how Visual Studio organizes the application content for you. The 

solution and its name appear at the top, followed by the project, both of 

which are named Hello World in this case. Under the project, you see three 

folders containing headers, resources, and source files. In this case, the proj-

ect contains two header files and two source files.

 

The ReadMe.txt file contains information about the project that the template 

creates for you. This file doesn’t add anything to the application. However, it 

does contain useful information that can help you remember the purpose of 

default files in the application.

Solution Explorer can also help you interact with your project. When you 

right-click an object in Solution Explorer, you see a list of tasks you can 

perform with that object. Upcoming chapters in this minibook will point out 

44_317358-bk07ch01.indd   72344_317358-bk07ch01.indd   723 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



724 Using the Standard Toolbars

several ways to use context menus. For now, just realize that you can per-

form a number of tasks with each object in Solution Explorer.

Across the top of Solution Explorer, you see four buttons. These buttons 

provide quick access to some application features as described in the follow-

ing list (not every button is enabled for every object in the Solution Explorer 

hierarchy):

 ✦ Properties: Displays information associated with the file or other object.

 ✦ Show All Files: By default, Solution Explorer displays only essential files 

to keep the display from becoming cluttered. This option displays all the 

files so that you can modify less-used files, such as a project file.

 ✦ View Code: Opens a source-code file for editing.

 ✦ View Class Diagram: Creates a class diagram for an application that 

contains classes. Although this button is always available, it produces a 

result only when working with an application that creates objects.

Using the Standard Toolbars
You can quickly become confused by the plethora of toolbars that Visual 

Studio provides. Fortunately, you work with only a few of these toolbars at 

any given time. In fact, the toolbar you need normally pops up in response 

to the task you want to perform. This minibook doesn’t show you how to use 

every toolbar. It focuses mainly on the three toolbars described in the fol-

lowing list:

 ✦ Build: The Build toolbar contains just three buttons. The first builds the 

project you have selected in Solution Explorer. The second builds an 

entire solution. The third cancels a build and is disabled unless you’re 

building a project or a solution.

 ✦ Standard: The Standard toolbar contains a number of buttons grouped 

into six sections. The first section contains buttons for creating new 

projects and saving your files. The second section contains the Cut, 

Copy, and Paste buttons that you see in nearly every Windows applica-

tion. The third section contains buttons for undoing and redoing actions 

within the editors. The fourth section contains a single button contain-

ing a green arrow that lets you start debugging the application. The fifth 

section chooses the kind of build you’ll create when you build the appli-

cation (the default is a Debug build, which contains debugging informa-

tion). The sixth section contains buttons that provide access to common 

Visual Studio windows, such as Solution Explorer and Properties.

 ✦ Text Editor: The Text Editor toolbar may not contain the buttons you’d 

think it would. After all, you won’t format your source code, so you 

won’t find a font selection here or the ability to add color to your text. 

44_317358-bk07ch01.indd   72444_317358-bk07ch01.indd   724 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
725Changing Application Properties

Instead, this toolbar contains buttons that help you interact with the 

text in various ways. The first section contains IntelliSense buttons that 

show you object members, parameter lists, and quick information about 

a particular function. In addition, clicking Display Word Completion 

automatically completes text you’re typing when IntelliSense can figure 

it out. The second section contains buttons that change the indentation 

of code in your application. You can also use one of two buttons to com-

ment or uncomment code you’ve written. The third section contains 

a series of buttons for working with bookmarks. A bookmark is simply 

a means of marking your place in the source code, much as you use a 

bookmark in a book.

Changing Application Properties
Visual Studio includes a Properties Window (see Figure 1-8) that you can 

use for a number of purposes. This chapter looks at only one use, changing 

application properties. However, you’ll see the Properties Window in most 

of the chapters in this minibook.

 

Figure 1-8: 
The 
Properties 
Window 
lets you 
change the 
properties 
associated 
with the 
selected 
object.

 

The Properties Window has two main sections. The upper section contains 

a list of properties and their values. You see the Active config property 

selected in Figure 1-8. It currently has a value of Debug|Win32. To change 

the active configuration, select a new value from the drop-down list box. It’s 

possible to change any blank property value (such as Description) or a prop-

erty value that appears in bold type. However, you can’t change a dimmed 

property, such as Path.

Property names won’t always tell you enough about a property to change its 

value. In this case, you can rely on the lower half of the Properties Window 

for additional information. The text description of Active config shown in 

44_317358-bk07ch01.indd   72544_317358-bk07ch01.indd   725 7/22/09   11:44:51 PM7/22/09   11:44:51 PM



726 Modifying the IDE Appearance

Figure 1-8 is usually enough to jog your memory. However, if you still don’t 

understand the purpose of the property, you can press F1 for additional 

information. Highlighting a new property always changes the property infor-

mation in the lower half of the Properties Window.

As you change selections in Solution Explorer, the content of the Properties 

Window changes to reflect the properties of the newly selected object. Some 

objects, such as the Header Files folder, won’t have any properties you can 

modify, but it’s helpful to look at the property values anyway to understand 

how the Solution Explorer object works.

 

Visual Studio normally opens the Properties Window by default. However, if 

you don’t see the Properties Window, you can open it using any of the fol-

lowing techniques:

 ✦ Click Properties Window on the Standard toolbar

 ✦ Choose View➪Properties Window

 ✦ Press F4

Modifying the IDE Appearance
It’s possible to bend Visual Studio to your will. If you don’t like how 

Microsoft arranged the display, change it. You can add or remove menus 

and toolbars, create new menus or toolbars, change the position of win-

dows, hide windows from view, or make windows disappear completely. 

You’re the master of everything to do with the appearance of your Visual 

Studio setup.

 Because the IDE is so flexible, your screen may not always precisely match 

the screenshots in this minibook. The important thing is to look for the fea-

ture or option illustrated in the figure, rather than a precise match of every 

figure element. The following sections describe how to work with toolbars, 

menus, and windows.

Changing toolbars and menus
You can modify any menu or toolbar that Visual Studio provides. In addition, 

you can create new menus and toolbars as needed. Most developers leave 

the Visual Studio menus alone and work exclusively with toolbars because 

toolbars are easier to use. However, you have the option of performing any 

kind of change you want to the IDE.

 It’s important to modify menus and toolbars with care. In most cases, you 

don’t want to remove existing commands from menus or toolbars because 

people won’t be able to help you with problems. For example, if you remove 

the File menu, someone won’t be able to tell you how to create a new project 

of a specific type. Experienced developers create custom menus or toolbars 

44_317358-bk07ch01.indd   72644_317358-bk07ch01.indd   726 7/22/09   11:44:52 PM7/22/09   11:44:52 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
727Modifying the IDE Appearance

to satisfy special needs and then hide the standard items from view. Using 

this approach makes it easy to restore the standard menu or toolbar later to 

interact with others.

You can change menus and toolbars in many ways. However, the easiest 

method is to right-click anywhere in the menu or toolbar area and choose 

Customize from the context menu. You see the Customize dialog box shown 

in Figure 1-9.

 

Figure 1-9: 
Use the 
Customize 
dialog box 
to change 
both 
toolbars 
and menus.

 

The Toolbars tab shows a complete list of all the toolbars that Visual Studio 

supports. Place a checkmark next to any toolbar you want to display or 

remove the checkmark next to any toolbar you no longer need. When you 

don’t see the toolbar you want, click New to display the New Toolbar dialog 

box, type a name in the Toolbar Name field, and click OK. Visual Studio auto-

matically displays the new toolbar so that you can add commands to it. You 

can also use the features on this tab to rename or remove custom toolbars 

you create (you can’t delete standard toolbars) and reset standard toolbars 

to their original state.

The three options at the bottom of the Toolbars tab help you control the 

appearance of the toolbar. The following list describes each option:

 ✦ Use Large Icons: Displays toolbar icons in a larger size to make them 

easier to see.

 ✦ Show ScreenTips on Toolbars: Displays the name of the icon as a tool-

tip when you hover the mouse cursor over the icon.

 ✦ Show Shortcut Keys in ScreenTips: Displays the shortcut for executing 

the command (when a shortcut is available) along with the icon name 

when you hover the mouse cursor over the icon.

44_317358-bk07ch01.indd   72744_317358-bk07ch01.indd   727 7/22/09   11:44:52 PM7/22/09   11:44:52 PM



728 Modifying the IDE Appearance

The Commands tab displays a categorized list of commands that you can 

execute using either a menu entry or a toolbar icon, as shown in Figure 1-10. 

The Categories list helps you locate a command more quickly.

 

Figure 1-10: 
The 
Commands 
tab shows 
all the 
commands 
you can 
execute 
in Visual 
Studio.

 

To use Commands tab, select an entry in the Categories list. Locate the 

command you want to add, drag it to a menu or toolbar, and drop it. At that 

point, you can right-click the command and configure it as desired.

You may wonder at this point how you add a new menu. The Categories list 

contains a special New Menu category. Simply drag the New Menu command 

to the location you want, even a top-level location, and drop it in place. 

Configuring your custom menu is the same as using any other command.

 

If you make a mistake changing a command, which includes menus, you can 

return the commands to their default state by right-clicking the command 

and choosing Reset from the context menu. Be careful about where you 

use Reset. If you reset a custom command, what you’ll see is a blank entry, 

rather than an unmodified version of the command you expect because a 

custom command has no default state.

Modifying windows
Visual Studio provides considerable flexibility in working with windows. 

Windows have two states: hidden or visible. You can’t hide an editing 

window, but you can hide any other window simply by clicking the Auto 

Hide button in the upper-right corner (the icon looks like a thumbtack). 

The window will slide out of view except for a label identifying its position. 

When you move the mouse over to the label, the window reappears. Hiding 

44_317358-bk07ch01.indd   72844_317358-bk07ch01.indd   728 7/22/09   11:44:52 PM7/22/09   11:44:52 PM



Book VII
Chapter 1

W
orking w

ith the 
Visual C++ 2008 IDE 

and Projects
729Modifying the IDE Appearance

windows creates more space for working with editors without making the 

window inaccessible.

Figure 1-11 shows three kinds of windows. The editor window appears in the 

center. You can close it, but you can’t hide it. The Server Explorer, Toolbox, 

Error List, and Output windows are all hidden. If you hover the mouse 

cursor over their labels, the windows will reappear. Solution Explorer and 

Properties Window are both visible. Notice the thumbtack icon in the upper-

right corner of these windows. Clicking that icon will hide the window; click-

ing it again will make it visible.

 

Figure 1-11: 
Windows 
have 
different 
states 
depending 
on their use 
in Visual 
Studio and 
how you 
configure 
them.

 

You can undock any visible window simply by grabbing its title bar with the 

mouse and dragging it anywhere you like — even outside the Visual Studio 

IDE window. When you drag a dockable window within the Visual Studio IDE 

confines, you see the docking indicators shown in Figure 1-12. Simply drag-

and-drop the dockable window onto any of the docking indicators to dock it. 

Visual Studio shows where the window will dock by showing a highlighted 

area within the IDE. Windows can appear as separate areas within the IDE or 

as a tab with another window (where you select the window you want to see 

by selecting its tab).

44_317358-bk07ch01.indd   72944_317358-bk07ch01.indd   729 7/22/09   11:44:52 PM7/22/09   11:44:52 PM



730 Modifying the IDE Appearance

 

Figure 1-12: 
Use docking 
indicators to 
determine 
where a 
window 
appears in 
the IDE.

 

 

Dockable windows need not be dockable. Right-click the title bar of the 

window and you can choose to make the window floating, which means it 

never docks, or a tabbed document in the editor.

Editor windows also provide some choices. You can right-click a document 

tab and choose New Horizontal Tab Group or New Vertical Tab Group from 

the context menu to create a new editing area. Normally, these additional 

editing areas simply chew up screen real estate that you could better use to 

edit your code. However, using multiple editing areas can be helpful when 

you want to compare the content of two files.

44_317358-bk07ch01.indd   73044_317358-bk07ch01.indd   730 7/22/09   11:44:53 PM7/22/09   11:44:53 PM


