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  1.1   INTRODUCTION 

 The purpose of this text is to introduce the fundamental concepts that underlie the 
physics of multiphase fl ow and transport through porous media. This fi rst chapter 
introduces some of the qualitative physical characteristics of porous media. Param-
eters are introduced that provide quantitative measures of the characteristics that 
arise in modeling fl uid fl ow and chemical transport in the system of interest. Some 
simple elementary equations are employed that are helpful in initiating the transla-
tion of a qualitative understanding to a quantitative description. In the second 
chapter, the equations of conservation of mass are developed. In Chapter  3  appro-
priate constitutive relationships 1  are introduced that provide information needed to 
complete the mathematical defi nition of the physical systems involving fl uid fl ow. 
Chapter  4  is dedicated to developing the equations that describe mass transport. 
Finally, in the fi fth chapter, example physical problems involving multiphase fl ow 
and transport through porous media are detailed. 

 The approach of this presentation is to progress from observations of system 
behavior and characteristics to a mathematical description of those observations. 
This approach involves three steps: (i) description of experiments that reveal various 
phenomena; (ii) development and presentation of the governing equations; and (iii) 
application of the resulting equations to physical systems of interest.  

 1     Constitutive, or closure, relationships are typically correlations between fl uxes and physical variables. 
The correlations are motivated by experimental observations or from simplifi ed theoretical consider-
ations. They are not universal principles but are appropriate for some systems under certain operating 
conditions. Constitutive relations provide specifi c information that makes it possible to apply conserva-
tion equations to problems. 
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2   SETTING THE STAGE

  1.2     PHASES AND POROUS MEDIA   

 A    phase    is a liquid, solid, or gas that is separated from another solid, liquid, or gas 
by an identifi able boundary. An example is an oil bubble or oil globule submerged 
in water, where the oil and the water are each phases and the physical demarcation 
between the two liquid phases is an interface. Some transfer of material, momentum, 
and energy may occur between phases; a phase need not have a homogeneous 
composition or temperature. Thus, although gradients of properties may exist within 
a phase, sharp discontinuities in composition at an identifi able boundary are con-
sidered to be interfaces between phases. A second example of a two - phase system 
is raindrops falling through air. A raindrop is a liquid phase while the air is a gas 
phase, and transfer of water to the air may occur by evaporation across the bound-
ary of the raindrop. Because of evaporation, gradients in humidity may exist in the 
gas. An important attribute of this system is that the gas phase is continuous in that 
every point in the gas phase may be reached by a physical path without entering 
into the liquid phase. On the other hand, the liquid phase, comprised of raindrops, 
is an assemblage in which the properties of each drop may be distinctly different 
from those of a nearby drop. Modeling of a discontinuous phase as a unit requires 
some approximations or simplifi cations that are not needed when describing a con-
tinuous phase. As a third example, dry sand is actually a mixture of solid sand grains 
and air. The behavior of this two - phase mixture will be very different when air is 
pumped through a packed column of essentially immobile sand from when the air 
entrains the sand grains, imparting momentum and energy to them and causing them 
to move at signifi cant velocity in a cloud. Thus identifi cation of the components of 
a system is not suffi cient for determining how to model it. Multiphase models must 
be formulated to account for the modes of transfer of chemical constituents, momen-
tum, and energy within each phase and across the phase interfaces. 

    Porous media    are considered herein to exhibit a specifi c set of physical attributes 
that distinguish them from general multiphase systems. The most notable of these 
are the requirements that more than one phase exist within a specifi ed control 
volume, that one of these be a relatively immobile solid, and that at least one of 
these phases be fl uid (either a liquid or a gas). Furthermore, the defi nition of a 
mixture of phases as a porous medium requires that the solid phase contain 
multiply - connected spaces that are accessible to the fl uid. 

 Although the defi nition of a porous medium requires that the solid be  “ rela-
tively ”  immobile, a precise specifi cation of the degree of solid mobility or deforma-
tion that is allowable by this defi nition is not possible. At one extreme, an immobile 
solid, such as well - consolidated sand or a block of granite, may form the solid phase 
of a porous medium. At the other extreme, a solid such as sand scoured from the 
bottom of the ocean and carried in the waves or grain fl owing out of a grain elevator 
is a solid phase mixed with fl uid in a system that is not a porous medium. For a 
porous medium, the velocity of the solid phase with respect to the boundary of the 
system is much less than the velocity of the fl uid that can fl ow within the porous 
system. 

 In natural porous media systems, some consolidation of the solid phase may occur 
as fl ow moves through the pore space. This can be accounted for under the theoreti-
cal framework of porous media fl ow. Infi ltration of rainwater into a soil and move-
ment of subsurface water through a geologic formation are examples where porous 
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medium considerations apply. Situations where the withdrawal of water from the 
subsurface causes the ground to subside over a period of years may also be analyzed 
within a porous medium framework because the movement of the solid is very slow 
in comparison to the water movement. A system composed of snow, air, and melt-
water may be studied as a porous medium consisting of a solid and two fl uids if the 
rate of melting is small enough that the snow particles respond as a unit, are rela-
tively immobile, and are not carried off as solid particles within the fl owing water. 
The precise specifi cation of the conditions under which a fl uid - solid system cannot 
be studied in a meaningful way as a porous medium is elusive. The study of fl ow of 
water in a sponge is another system that may or may not fall under the umbrella of 
traditional porous media studies depending on the degree of deformation of the 
solid structure for the conditions of interest. 

 Despite the fact that it is not possible to defi ne precisely a porous medium, 
we will persevere and identify additional attributes of porous systems under study 
here. To be amenable to porous media fl ow modeling, the pore space within the 
solid must, in general, be continuous. For example, Styrofoam is composed of a solid 
phase in which air bubbles are encapsulated and separated. These air pockets are 
disconnected, and thus the behavior of the air in the Styrofoam cannot be studied 
under the guise of porous media analysis. At a larger scale, Swiss cheese is composed 
of both gas and solid phases. However, the gas phase is contained in isolated, gener-
ally disconnected void spaces within the cheese. Gas in one void space cannot 
readily travel to another void space. Although the absence of a connected void 
space precludes the scientifi c study of Swiss cheese as a porous medium, experimen-
tal sampling of this system remains a highly rewarding and widely practiced 
endeavor. 

 In porous media to be studied here, the individual fl uid phases must, under suit-
able conditions, have the potential to be continuous. That is, the possibility must 
exist for fl uid to fl ow from one location to another within the porous medium. Thus 
the structure of the pore space within the solid must be such that pathways exist 
that connect the regions of the system. For a single fl uid phase in such a system, the 
fl uid region will certainly be connected. However, when more than one fl uid is 
present in the connected pore space, one of the fl uids may divide into a number of 
separate disconnected elements. Systems in which a phase becomes disconnected 
are very diffi cult to model as the physics of each disconnected region of fl uid must 
be accounted for. 

 The study of porous media typically assumes that the solid phase is connected. 
However, the defi nition of    “ connection ”    for the solid is imprecise and the discussion 
can disintegrate to what it means for grains of sand to be  “ touching. ”  Nevertheless, 
we can make the somewhat satisfying observation that for the solid in a porous 
medium to possess the necessary degree of immobility, any individual grains must 
be in contact with other grains with points of mechanical interaction between grains 
changing very slowly relative to the rate of change of fl uid molecules that interact 
with a particular point on a grain. This observation does not preclude the possibility 
that grains will reorganize or deform in response to various stresses placed on the 
solid system, although it does suggest that treatment of consolidated media, in which 
the grains are essentially cemented together, may be somewhat more straightfor-
ward. Cases where the solid deforms more quickly and chaotically, as in grain fl ow 
or an avalanche, cannot be modeled as porous media. 
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 As an illustration that reveals some of the fundamental concepts that arise in 
porous media, consider the following simple experiment. Into a graduated cylinder 
of 2.0   cm diameter and a height of 30   cm pour sand until the top of the sand is located 
at the 10.0   cm mark (see Figure  1.1 ). The sand - air mixture in the graduated cylinder 
constitutes a porous medium because the air phase that is intermixed with the sand 
is continuous, identifi able interfaces exist between the air and sand phases, and the 
sand is essentially immobile relative to the bounding walls of the cylinder. Of course, 
shaking the cylinder can mobilize the sand and invalidate the porous medium 
assumption, but this will not be the situation in this example.   

 The portion of the sample that is not sand is called the    pore space   . In the present 
case, the pore space is occupied completely by air, and the air - sand mixture consti-
tutes a porous medium. 

 From a device capable of measuring the amount of fl uid dispensed, add water to 
the graduated cylinder until the water level is located at the 15.0   cm mark, 5.0   cm 
above the top of the sand surface. Assume that the experimental technique employed 
is such that the sand in the cylinder is not disturbed by the addition of water and 
that all of the pore space in the sand is fi lled with water with no air being trapped. 
Under these conditions, the porous medium is said to be saturated with water. We 
note that achievement of saturation is diffi cult as air tends to become trapped in 
the system. Nevertheless, taking advantage of the fact that this is an illustrative 
example, we happily discount this experimental complication. Assume the water 
dispenser indicates that the total volume of water added to the graduated cylinder, 
  V w

T , is 25.0 cubic centimeters (cm 3 ). The cylinder is now occupied by a sand - water 
mixture that is a porous medium, and this porous medium is overlain by a water 
phase that is connected to the water in the medium. 

    Figure 1.1:     Diagrammatic presentation of experiment to show concepts of phase and porous 
media.  
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 The fraction of the porous medium that is pore space can be determined by 
analyzing this experiment. First, determine the total volume of the porous medium 
consisting of the fl uid and solid mixture. Based on the equation for the volume of 
a cylinder of radius  r  and height  h , the volume of the porous medium in the cylinder 
with radius of 1.0   cm and a height of 10.0   cm is:

    V V V r hs w= + = = × ( ) × =π π2 2 31 0 10 0 31 4. . .cm cm cm     (1.1)  

where  V  is the total volume of the porous medium composed of sand and water,  V s   
is the volume of sand in the porous medium, and  V w   is the volume of water in the 
porous medium. In this case, where water completely fi lls the pore space,  V w   is also 
the volume of pore space. Although we have calculated the total volume of porous 
medium, the distribution of this volume between sand and pore space is not yet 
known. Consideration of the total amount of water dispensed will lead to this 
information. 

 The 25.0   cm 3  dispensed into the cylinder fi lls the pore space and the volume that 
extends 5.0   cm above the sand. The water volume in this 5 - cm   region within the 
cylinder,   V w

C , is easily calculated from the equation for a cylinder as:

    V r hw
C cm cm cm= = × ( ) × =π π2 2 31 0 5 0 15 7. . .     (1.2)  

Thus the volume of water in the pore space of the sample is:

    V V Vw w w= − = − =T C cm cm cm25 0 15 7 9 33 3 3. . .     (1.3)  

Combination of equations  (1.1)  and  (1.3)  also provides the volume of sand in the 
system:

    V V Vs w= − = − =31 4 9 3 22 13 3 3. . .cm cm cm     (1.4)  

The fraction of the porous medium that is pore space,   ε  , is thus obtained as:
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    (1.5)  

This fraction   ε   is called the    porosity    or    void fraction    of the sample. In general, for a 
sample of porous medium of size  V , the porosity is defi ned in terms of the size of 
the volume sample and the volume of solid in the sample as:

    ε = −
⎛
⎝⎜

⎞
⎠⎟∫1

1
V

V
V s

d     (1.6)  

Realize that the porosity calculated in this experiment provides a value that is 
characteristic of the entire sample. It provides no information as to how the pore 
volume is distributed within the sample. If half the sand were removed from cylin-
der, the value of porosity obtained from the remainder of the sample could be dif-
ferent from that for the entire sample. Certainly if one removes sand such that there 



6   SETTING THE STAGE

are only a few grains left in the cylinder, the porosity for that sample could be quite 
different from that for the full sample, or even meaningless as a quantity intended 
to characterize the system. These observations introduce the notion that when one 
is studying porous media, the length scale at which observations are made can be 
an important factor that infl uences the values of variables measured. 

 Furthermore, although the total volume of pore space within a sample can be 
measured, in general the geometry and volume of individual pores cannot be mea-
sured. Some specifi c information at this small scale can be obtained for samples of 
size on the order of 1   cm 3  using advanced imaging techniques, but, at best, only sta-
tistical distributions of the pore sizes of larger samples can be determined. Despite 
the fact that no single accepted physical measure of the size of a single pore exists, 
the concept of pore size is widely used. Each naturally occurring pore will have a 
variable cross section, and    grain size    is commonly used as a surrogate for the size 
of the pore. Methods for describing the distribution of grain sizes and pore sizes are 
discussed in the next section.  

  1.3     GRAIN AND PORE SIZE DISTRIBUTIONS   

 While the volume of a pore does depend upon the size of the grains in some sense, 
the relationship can be complex because of the infl uence of    grain packing   . For 
example, the packing of spherical grains of uniform size in Figure  1.2  is referred to 
as    cubic    and the porosity is 0.48. On the other hand the packing of the same grains 
in Figure  1.3  is    rhombohedral    and has a porosity of 0.26. The pore space is fully 
connected in both cases, and the pore space can be identifi ed as the region between 
adjacent spheres. Although the precise specifi cation of what constitutes a pore is 
not obvious, the pore space does illustrate the channels of fl uid fl ow. If any consistent 
measure of a pore is selected in both fi gures, the volume and pore diameter of an 
individual pore in Figure  1.2  is larger than that in Figure  1.3 . A random    packing    of 
uniform spheres will result in different values of porosity depending on the loose-
ness and organization of the spheres. A loose random packing of spheres will gener-
ally generate porosities from 0.32 to 0.35  [8] . Addition to this mix of solid spherical 
particles with a range of sizes and of nonspherical, arbitrarily shaped grains adds 
complexity to the identifi cation of  “ pore size ”  and to the range of porosities that 

    Figure 1.2:     Cubic packing of spheres generates a porosity of 0.48  [6] .  



can be achieved. In nature one is not likely to fi nd spheres of the same size or, for 
that matter, spherical particles at all. Normally one will fi nd a variety of grain sizes 
with the smaller grains occupying the spaces between the larger grains as concep-
tualized in Figure  1.4 .       

 Because of the diffi culty in characterizing pore space, the   grain size   distribution 
is used as a surrogate. For unconsolidated media, grain size is easily measured 
through the use of    sieves   . A classical sieve is composed of a metal cylinder approxi-
mately 5   cm in length and approximately 20   cm in diameter. It is open at one end 
and contains a metal screen at the other. Sieves are normally stacked with the sieve 
with the smallest screen size opening, or    mesh size   , at the base of the stack. Below 
the last sieve is a pan to collect those grains smaller than the smallest screen size 
(see Figure  1.5 ).   

 Sieve sizes are designated in two principal ways. Some sieves provide the sieve 
diameter in inches or millimeters. Others designate the sieve by a standard number 
that is not directly related to the mesh size but indicates the number of openings 
per inch. For example, a number 20 sieve has 20 openings per inch, or 400 openings 
per square inch. Typical sieve sizes are shown in Table  1.1 .   

 To sieve a sample of soil, a known weight of the soil is placed in the uppermost 
sieve. This sieve is covered and a shaking apparatus is used to vibrate the column 

    Figure 1.3:     Rhombohedral packing of spheres generates a porosity of 0.26  [6] .  

    Figure 1.4:     Small grains tend to occupy spaces left between larger grains to yield smaller 
porosities.  
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of sieves while it remains approximately vertical. The grains smaller than the opening 
in the top sieve eventually pass to the next lower sieve. This sieve, in turn, retains 
those grains with a diameter larger than its mesh size and smaller than the mesh 
size of the upper sieve. This process continues until the grains retained in the con-
tainer at the bottom of the column are smaller than the diameter of the sieve with 
the smallest mesh. Each soil fraction is then weighed and the results plotted as 
weight vs. sieve size. 

 Soils are classifi ed as coarse - grained when they are composed of sand and gravel. 
Typically, less than 50% of coarse - grained material will pass through the No. 200 
mesh. Fine - grained soils are composed of silt and clay. Fifty percent or more of a 
fi ne - grained soil will pass the No. 200 mesh. 

 Normally, solid material with components smaller than those captured by the No. 
200 mesh screen is very diffi cult to screen further and is therefore analyzed via a 
 “ wet ”  method that exploits the dependence of the settling rate of a small particle 
in a quiescent fl uid on its size. Wet methods make use of Stokes ’  law, which states 

    Figure 1.5:     Screens are stacked sequentially from the fi nest mesh at the bottom to the coarsest at 
the top.  

 Table 1.1:     Typical sieve sizes 

  U.S. Standard Test Sieves (ASTM)  [1]     

  Sieve Designation    Nominal Sieve Opening  

  Standard    Alternative    Inches    Millimeters  

  25.0   mm    1   in    1    25.7  
  11.2   mm    7/16   in    0.438    11.2  
  4.75   mm    No. 4    0.187    4.76  
  1.70   mm    No. 12    0.0661    1.68  
  0.075   mm    No. 200    0.0029    0.063  



that the diameter of a spherical particle falling through a fl uid is related to the 
velocity according to 2 :

    D
v

g s f

=
−( )

18μ
ρ ρ

    (1.7)  

where  D  is the particle diameter,   μ   is the dynamic viscosity,   ν   is the settling velocity, 
 g  is gravity,   ρ  s   is the solid particle density, and   ρ  f   is the density of the fl uid. In the 
analysis,   ρ  s   is assumed to be a constant independent of particle size, and the velocity, 
 v , is considered to be reached as soon as settling begins. The general idea in employ-
ing a wet method is to begin with a mixture of particles uniformly distributed in a 
fl uid consisting of water and a dispersing agent, such as hexametaphosphate, added 
to the mixture to ensure that the particles do not aggregate. The maximum size 
particle will be the largest size that passes through a number 200 sieve,  D  200 , approxi-
mately 70     μ  m based on Table  1.1 . Then measurement of the evolution of the density 
profi le of the mixture due to the different settling rates of the particles provides 
information concerning the distribution of particle sizes. Two principal    wet methods    
are employed. One is the    pipette method    while the second is the    hydrometer 
method   . 

 The pipette method involves collection of samples of the solid - fl uid mixture in 
a cylinder at various times and depths. Initially, the distribution of particles in the 
fl uid is uniform with a mass per volume of  m  0 . If the solution is dilute enough so 
that collisions between particles are not signifi cant, at a depth  L  at time  t , all parti-
cles with diameter greater than that given by equation  (1.7)  with  v  replaced by  L/t  
will have settled to a depth below  L . Suppose a small sample of the mixture col-
lected at this time and location using a pipette has a mass of sediment per volume 
of  m ( L, t ). Then 1    −     m / m  0  is the mass fraction of particles with diameter,  D , in the 
range:

    
18

200
μ

ρ ρ
L

g t
D D

s f−( )
< <     (1.8)  

Collection of samples at various times and depths in the mixture allows the distribu-
tion of particle diameters to be constructed. 

 The hydrometer method also exploits the differential settling characteristics of a 
dilute mixture of particles. By this approach, a hydrometer is inserted into the set-
tling solution at various times and the depth of fl otation as well as the density of 
the mixture associated with that fl otation are recorded. If the density of the solid 
fl uid mixture as would be measured by the hydrometer is initially   ρ  h   0  and the density 
reading obtained at some later time is   ρ  h  ( L, t ), then:

    
m L t

m
h f

h f

,( )
=

−
−

⎛
⎝⎜

⎞
⎠⎟0 0

ρ ρ
ρ ρ

    (1.9)  

 2  An important assumption that is made in Stokes ’  law is that the grains are spherical. While this may be 
appropriate for sand particles, clay particles tend to be platelike and some calibration of the procedure 
may be necessary  . 
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where  m/m  0  is the mass fraction of particles with diameter less than  D  calculated 
using equation  (1.7) . The distribution of particle sizes may be constructed using this 
data collected at a sequence of times. 

 Although the methods outlined above are conceptually very simple, they are 
complicated by the need to compensate for temperature effects, for the time inter-
vals for insertion of the pipette into the solution, the initial concentration of particles 
in the solution, the method of obtaining the initial uniform particle distribution in 
the fl uid, and other protocols. Details of implementation of these methods have 
been standardized, for example in  [1]  and  [5] . For purposes of subsequent discussion 
here, an example of a set of data that could be obtained from the pipette or hydrom-
eter method is provided in Table  1.2 .   

 The information gained from sieve and wet method analyses reveals more than 
just the range of grain sizes. It can help to classify the soil as to its type, e.g., sand, 
silt, silty sand, etc. Particle sizes smaller than 0.002   mm are considered to be clay or 
clay - sized fractions. In addition the data reveal the degree of sorting of the soil. A 
course - grained soil for which all the grains are approximately the same size is called 
well sorted (or poorly graded). A soil that exhibits a wide range of grain sizes is 
designated as poorly sorted (or well graded). The shape of the resulting    grain size 
distribution curve    can also reveal information regarding the history of the soil. 3  

 The grain size distribution curves for two soil samples are plotted in Figure  1.6 . 
Along the horizontal axis is plotted the grain size. On the vertical axis is plotted the 
percent weight fi ner than the indicated grain size. For example, the percent by 
weight of grains with diameter smaller than 0.01   mm in the clayey sandy - silt sample 
is approximately 40%. Similarly, in the case of the silty fi ne - sand sample, approxi-
mately 25% of the grains have diameters smaller than 0.1   mm. It should be kept in 
mind that the process of sieving measures the smallest cross - sectional diameter of 
the grain. A needle - shaped grain will be categorized as having a size equal to its 
width rather than its length, assuming of course it does not get lodged crosswise in 
the sieve. Thus only spherical particles that have the same measure of size regardless 
of orientation are uniquely identifi ed by sieving. Nevertheless sieving is applied 
widely to soils containing grains of all shapes.   

 Figure  1.6  demonstrates that the clayey sandy-silt sample is fi ner grained than 
the silty fi ne - sand sample. In fact, by referring to the soil classifi cation found beneath 
the distribution curve, it is evident how these samples received their classifi cation. 

 Table 1.2:     Experimental results from a wet method experiment for determining fi ne grain 
size distribution 

  Grain Size  D  (mm)    Weight with Diameter    <     D  (g)    Mass Ratio  m / m  0   

  0.070    150.0    1.00  
  0.040    147.0    0.98  
  0.010    127.5    0.85  
  0.005    91.5    0.61  
  0.002    42.2    0.28  
  0.001    22.5    0.15  

 3     We will consider this in more detail in the next chapter. 



 Additional information may be obtained from the shape of the distribution 
curves. Note that the largest slope of the silty fi ne - sand curve is much steeper than 
that of the clayey sandy - silt curve. This indicates that the silty fi ne sand has a more 
uniform size distribution. In other words, the silty fi ne sand is considered to be better 
   sorted    or more poorly    graded    than the clayey sandy silt. 

 Two measures have been developed to describe the range in grain sizes of a soil 
sample. One is called the    coeffi cient of uniformity    and is defi ned as:

    C
D
D

u = 60

10

    (1.10)  

where  D  n  refers to the grain size greater than or equal to n% of the grains by weight. 
For example, 60% of the grains by weight are smaller than  D  60 . The denominator 
designated as  D  10  is also known as the    effective grain size   . The second measure is 
the    coeffi cient of curvature    calculated as:

    C
D

D D
c = 30

2

10 60

    (1.11)  

A well - graded soil has a coeffi cient of curvature between 1.0 and 3.0. Additionally, 
the   coeffi cient of uniformity   is greater than 4.0 for a well - graded gravel and greater 
than 6.0 for sands. A soil whose   coeffi cient of uniformity   is less than 2.0 is a    uniform 
soil   . A poorly graded soil violates at least one of these criteria, and a soil is said to 
be uniform if its coeffi cient of uniformity is less than or equal to 2.0  [7] . For the data 
of Figure  1.6 , the coeffi cients of uniformity and curvature of the clayey sandy - silt 
sample are, respectively:

    C
D
D

u
mm
mm

= = =60

10

0 02
0 001

20 0
.
.

.     (1.12)  

    Figure 1.6:     The grain size distribution indicates the soil classifi cation of a sample and its degree of 
gradation.  
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    (1.13)  

For the silty fi ne sand, these coeffi cients are calculated as:

    C
D
D

u
mm
mm

= = =60

10

0 15
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3 0
.
.

.     (1.14)  

    C
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.     (1.15)  

The fact that  C  u  for clayey sandy silt is greater than  C  u  for silty fi ne sand confi rms 
the previous observation that the clayey sandy silt is a better graded, or less uniform, 
soil 4   

  1.4   THE   CONCEPT OF SATURATION   

 Consider again the experimental apparatus consisting of a graduated cylinder con-
taining 10   cm of a porous medium composed of sand and water covered by 5   cm of 
water. Suppose that a tap at the base of the graduated cylinder covered by a piece 
of glass wool is opened to allow the water to drain out while preventing the sand 
from escaping. The water that drains out is collected in a glass beaker. When the 
water has drained suffi ciently such that no water remains above the porous medium, 
what remains in the bottom 10   cm of the graduated cylinder is a mixture of air, water, 
and sand. This is a three - phase porous media system. The fraction of pore space 
occupied by the water phase is called the    saturation   . Mathematically, the water satu-
ration is defi ned as:

    s
V

V
V
V

w
v

V

w

v
w

= =∫
1

d     (1.16)  

where  V v   is the pore volume within the sample volume of porous medium,  V , and 
is defi ned as:

    V V Vv s= −     (1.17)  

Notice that in equation  (1.16)  the size of the sample is important. For example, 
if the entire porous medium is used, a single average value of saturation is obtained 
for the medium at any time. If smaller subvolumes within the porous system are 
considered, one may produce a spatially variable saturation fi eld that characterizes 
the system at any instant. If the sample size is too small, the value of  s w   calculated 
will change with small changes in the sample size. The saturation can take on values 
ranging from 0, when no water is present in the sample such that the void space is 

 4     See the Earth Manual  [3]  for more information regarding grain size distributions and soil 
classifi cation. 



occupied completely by air, to 1, when the water occupies all of the void space and 
no air phase is present in the porous medium sample. From equation  (1.15) , the 
porosity is the pore volume divided by the total volume occupied by the porous 
medium such that   ε    =   V v /V.  Substitution of this expression into equation  (1.16)  to 
eliminate  V v   and multiplication by the porosity yields:

    εs
V

V
V
V

w

V

w

w

= =∫
1

d     (1.18)  

This relation motivates defi nition of the  water content  as the ratio of the volume of 
water to the total volume denoted by   θ  , such that:

    θ ε= =s
V
V

w
w

    (1.19)  

After a suffi ciently long period of time (where the defi nition of  “ suffi ciently ”  is itself 
an interesting question usually answered as being somewhere from minutes to 
several hours), the drainage from the sand will stop, although some water will 
remain held in the sand. This water is called the    residual saturation   , and it exists as 
isolated droplets, is immobile, and will not normally drain. 

 While the concept of   residual saturation   is useful in theory, it is actually an 
imprecise quantity that is diffi cult to defi ne unambiguously either physically or 
mathematically. In fact, if the graduated cylinder with the sample is kept in a low 
humidity environment for a number of days after residual saturation has been 
reached, the sand will continue to dry out gradually, and the saturation will decrease 
below residual. The reason for this is that the water will evaporate into the air in 
the pore space and then move out of the sand, primarily by vapor diffusion. The 
transfer of vapor from the liquid water phase to the vapor phase is a    phase trans-
formation   . Water changes from liquid to gas as it moves across the interface from 
the liquid to the gas phase. Residual saturation will be encountered again when the 
topic of   constitutive relationships   is explored. 

 Consider, again, the drainage of the sand saturated with water. Suppose that while 
the drainage is occurring, some olive oil is poured onto the sand such that it seeps 
into some of the space between the grains. For this scenario, four phases comprise 
the porous medium: solid grains, water, the vapor, and oil. Although identifi able 
interfaces exist between each pair of phases, some material will transfer across the 
interfaces. Over time, some of the oil will dissolve into the water, and some of the 
water will dissolve into the oil. This transfer of molecules between phases is an 
example of    interphase transfer    or    interfacial transport    between two liquid phases 
across their interface. Despite this interphase transfer, the distinct interface remains 
as a location where material properties undergo a sharp transformation.  

  1.5   THE   CONCEPT OF PRESSURE   

    Pressure   , by its defi nition, is the magnitude of a force acting normal to a surface per 
unit area. It is also a measure of energy per unit volume. The concept is most easily 
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understood for a static system. Consider the simple case of a graduated cylinder 
fi lled to the point where the water depth is 15   cm as shown in Figure  1.7 . As a refer-
ence defi ne the pressure at the top of the water column to be zero, and defi ne a 
coordinate axis  z  that is positive downward and also equal to zero at the top of the 
water column. For this small system, the water density can be considered constant 
throughout the column. The force due to water acting downward at any cross section 
of the cylinder is equal to the weight of water above the cross section. This weight, 
 W , is equal to the density of water times the gravitational acceleration times the 
volume. Thus, at a distance  z  from the top of the water column, the downward force 
exerted by the water is:

    W gV g r zw w= =ρ ρ π 2     (1.20)  

where   ρ  w   is the density of water and  r  is the radius of the cylinder. Pressure is the 
force per unit area; thus division of equation  (1.20)  by the cross - sectional area,   π r  2 , 
gives the water pressure,  p w  , as:

    p
W
A

gzw w= = ρ     (1.21)  

The pressure is independent of the size or shape of the cross section of the cylinder; 
it depends only on the distance from the water surface. At the bottom of the cylinder, 
under 15   cm of water, the pressure is:

    p gz
g

w w= = × × = ×ρ bot
cm

cm
cm

dynes
cm

1 0 980 15 1 47 10
3 2

4
2

.
sec

.     (1.22)  

Pressure is also energy per volume. Thus the energy in the cylinder due to water, 
 E p  , can be calculated by integrating the pressure over the cylinder of fl uid. Since the 
cross - sectional area is constant, this integral is:

    Figure 1.7:     Defi nition sketch for discussion of pressure. Note that the axis is positive downwards with 
a value of zero at the top of the water column.  
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where  z  bot  is the coordinate of the bottom of the cylinder (15   cm in the present 
example) and  z  top  is the coordinate of the top of the cylinder (0   cm in the present 
example). Since the volume of the fl uid in the cylinder is   π r  2 ( z  bot     −     z  top ), the energy 
per volume is a pressure denoted as  p w   such that:

    
E
V

p g
z zp

w w= =
+

ρ bot top

2
    (1.24)  

Thus  p w  , the pressure obtained as energy per volume is equal to the pressure calcu-
lated as force per area using equation  (1.21)  if the area is located at the mid - height 
of the water column, the centroid.   

 The quantity  p w   is also seen to be a volume - averaged pressure for the region of 
interest. For the cylindrical geometry considered here, the pressure obtained by 
averaging over the cylindrical volume of water can easily be shown to be equal to 
the pressure obtained by averaging the pressure over the surface of the cylinder. 
For an arbitrarily shaped region, and even for a cylinder whose axis is not aligned 
with the direction of gravity, this is not the case. This observation introduces the 
important concept that even if the point values of a quantity are well - described, 
average values of the quantity can be different depending on the averaging proce-
dure used. 

 The preceding discussion of pressure is relatively transparent because the water 
is static and the geometry is simple. Most important, one can measure pressure in 
a fl uid,  p w  , based on the above concepts whenever a static column of water (or any 
other liquid of known density) can be created and placed in contact with a location 
where it is desired to measure the pressure. To demonstrate this fact and to provide 
a foundation for a subsequent presentation of constitutive theory, another experi-
ment is discussed next based on the design illustrated in Figure  1.8 .   

    Figure 1.8:     Apparatus used to demonstrate the concept of pressure measurements and later to 
describe the measurement of hydraulic conductivity.  
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 In this experiment, the water moves parallel to the cylinder axis through the sand; 
as it does so, it loses energy. One measure of this loss of energy is the pressure 
decrease. While it is quite challenging to measure the pressure of the moving water 
in the sand directly, the pressure can be easily measured indirectly by creating a 
static column of water that accesses the moving fl uid. The two vertical standpipes, 
or    manometers   , that are attached to the experimental apparatus in Figure  1.8  facili-
tate the measurement of the pressure in the moving water. Water rises in the 
manometers to the level consistent with the pressure at the access point at the base 
of the manometer tube. Given the height of the water in the tube, one can determine 
the pressure at the base of the tube using equation  (1.21)  and therefore in the 
moving fl uid at that point of entry into the manometer. 

 If there were no fl ow occurring in the apparatus depicted in Figure  1.8 , the water 
levels in the manometers would be equal such that  Δ  h    =   0. One must be careful to 
note that this observation does not mean that the pressure at the bases of the two 
manometers are equal. In fact, when there is no fl ow the pressures at the bases of 
the two manometers differ by   ρ  g    Δ  z  bot . A pressure difference between two points 
will cause fl ow to occur only if it is suffi cient to overcome the force of gravity. The 
reservoir serves to provide this additional force. For the case indicated when fl ow 
is occurring, the water height in the right manometer is less than that in the left by 
 Δ  h . This indicates that accompanying the fl ow is a loss of energy between the two 
points where the manometers contact the fl uid. This energy loss is related to the 
viscous character of the fl uid and its interaction with the sand; it is not related to 
the fact that the fl uid is fl owing  “ uphill. ”   

  1.6       SURFACE TENSION   CONSIDERATIONS   

 While the physical effects of pressure on fl ow of a single fl uid in a porous medium 
are rather straightforward to describe, the relation between the pressures in adja-
cent fl uid phases separated by an interface is more complex. This situation arises 
when more than one fl uid phase is present. Before discussing the impact of this situ-
ation within a porous medium, we consider a simple experiment wherein the behav-
ior of a bead of water on a waxed surface is observed, such as a raindrop resting on 
the hood of a recently waxed car. The drop surface has the geometry of an oblate 
spheroid (squashed sphere), perhaps approaching spherical if it is small enough that 
gravitational effects are negligible. A circle of contact area exists between the 
spherical shape and the waxed surface with the radius of the contact area being 
somewhere between 0 and the radius of the droplet. If the same bead of water were 
placed on an unwaxed hood, it would spread over the surface as a thin fi lm. Of 
interest is an explanation of the factors that infl uence the interactions between fl uids 
and of fl uids with surfaces. 

 The explanation of fl uid - solid interactions lies in the molecular structure of the 
fl uid comprising the drop and the way that structure relates to the molecules at the 
surface of the solid. In general, water molecules attract one another. At the bound-
ary of the drop, however, the attractive forces of molecules within the drop are not 
balanced by the attractive forces of molecules outside the drop. The result is a 
modifi cation of the structural arrangement of the molecules at the drop surface. 
Although the resulting molecular arrangement cannot be formally considered as a 



skin, it has characteristics often identifi ed with a membrane under tension, such as 
the surface of a balloon fi lled with air. 

 The change in energy of a volume of static fl uid due to an infi nitesimal decrease 
in its volume is equal to  −  p d V . This expresses the fact that work must be done on 
the volume (i.e., it must be compressed by an external force per unit area) for its 
energy to increase. Similarly, a change in the surface area bounding a material is 
accompanied by a change in energy. Expansion of the surface requires that the 
attractive forces among the molecules be overcome. The change in energy will be 
designated   γ   d A , where  A  is the surface area. For an interface between two different 
fl uids,   γ   is referred to as the    interfacial tension   . In the case of an interface between 
a liquid and its own vapor,   γ   is called the    surface tension   . In many instances, these 
terms are used less precisely and interchangeably. 

 We emphasize that the change in energy of a surface is positive when the surface 
expands because work must be done to stretch that surface. On the other hand, the 
energy of a volume is increased by compressing that volume. The quantity,   γ  , has 
units of force per unit length, or energy per unit area. Mechanically, this can be 
understood by realizing that stretching a membrane may be accomplished by apply-
ing a force per unit length along the curve that bounds the membrane. Analogous 
to the fact that a force per unit area causes a change in volume, a force per unit 
length is needed to cause a change in area. 

 A droplet of water in air will attempt to minimize its surface area in response to 
the surface tension. The minimum surface area for a specifi ed volume of fl uid is a 
sphere. Thus one infl uence on the shape of a drop of water tends to cause the drop 
to be spherical. Gravity can cause deviation from the spherical shape, but in the 
immediate discussion, this force will be neglected. When the droplet is placed in 
contact with the solid, the force of interaction between the fl uid and solid and the 
fact that the solid is rigid will infl uence the drop shape. The interface between the 
water and air tends to be spherical. If the water molecules are more attracted to 
each other than to the solid, as is the case for a waxed surface, the drop will minimize 
the area of contact with the solid. In the limit of no attraction to the solid, the droplet 
would be a sphere sitting on the solid. An increased attraction between the water 
and solid will cause the area of contact between the fl uid and solid to increase. In 
the limit where the attraction to the solid is much stronger than the attraction 
between water molecules, the droplet will spread as a fi lm over the solid. At inter-
mediate levels of attraction, the surface area of contact between the fl uid and solid 
will take on values intermediate between a complete sphere and a fi lm. The forces 
acting on the surface of the droplet are the fl uid pressures. At the curve at the edge 
of the water droplet where the solid, water, and air phases come together, the 
   common line   ,   interfacial tension   and   surface tension   forces are operative. If the 
droplet surface or the common line contain signifi cant mass, gravitational forces will 
also be operative. 

 To quantify the relationship between surface tension and the fl uid pressures 
consider the simple geometry involved in the rise of water in a capillary tube (Figure 
 1.9 a). If the water in the tube is in static equilibrium, then there must be a balance 
of forces acting on the interface between the air and the water phases. The forces 
that act on the interface are the pressure of the air acting on the concave side of 
the interface, the pressure of the water acting on the convex side, and the   interfacial 
tension   effects that act tangent to the surface. The fl uid on the concave side, in this 
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case air, is referred to as the   nonwetting fl uid   because it is less attracted to the solid 
than the other fl uid. This pressure will be signifi ed as  p n  , where the subscript  n  indi-
cates  “ nonwetting. ”  The fl uid on the convex side of the interface, in this case water, 
is referred to as the   wetting fl uid   since it preferentially wets the the solid. The 
wetting phase pressure is indicated as  p w  , where  w  indicates the  “ wetting ”  phase. 5  
In addition to the pressure acting on the interface, at the edge of the interfacial 
surface forces are applied by the interfacial tension,   γ  wn  , and the surface tensions, 
 γ  ws  and  γ   ns  . These forces are exerted on the common line, the curve where the three 
phases come together. In addition, a lineal tension of the common line can contrib-
ute to a force balance. At equilibrium, the forces that act on the interface must be 
balanced, as must the forces that act on the common line.   

 To analyze the total force balance on the interface, integrals are formulated, each 
of which accounts for one of the forces summed over its geometric region of appli-
cation. The forces acting on the  wn  interface include the fl uid pressures that act on 
the surfaces and the surface tension along the common line. Analogously with a 
membrane, the pressures on the two sides will infl uence the shape of the interface 
while the tensions on the edge pin the location of the boundary or allow for slippage. 
The total force from the pressure is obtained as the integral of the pressure over 
the complete surface of the interface. The force from the surface tension is obtained 
as an integral over the common line. 

 The force on the  wn  interface due to the nonwetting air phase acts in a direction 
normal to the surface and in the direction pointing out from this phase. If this normal 
at any point on the surface is designated as  n   n  , the total force due to the nonwetting 
phase may be calculated as the vector:

    F nn
n n

S

p S
wn

= ∫ d     (1.25)  

where  S wn   is the surface of the interface. On the other side of the interface, the 
wetting phase exerts a force normal to the interfacial surface in the direction tangent 

    Figure 1.9:     Defi nition sketch of the force balance between pressure and tensile forces at the static 
water - gas interface in a capillary tube: (a) the capillary tube; (b) forces acting on the interface.  

 5     Note that regardless of the chemical makeup of the two fl uids in contact with the solid, the one that is 
more attracted to the solid is called the wetting phase. This can be confusing, for example, in the case of 
an oil and water mixture in contact with a plastic such that the oil is the  “ wetting ”  phase while water is 
referred to as  “ nonwetting. ”  



to  n   w  , the unit vector normal to the surface that points outward from the wetting 
phase. This force may be obtained as the integral:

    F nw
w w

S

p S
wn

= ∫ d     (1.26)  

Finally, the force exerted by the interfacial tension along the bounding line is in a 
direction tangent to the unit vector  n   wn   that points outward from the interface in a 
direction that is normal to the bounding line and tangent to the surface. The total 
force exerted by the interfacial tension is therefore:

    F nwn
wn wn

C

C
wns

= ∫ γ d     (1.27)  

where  C wns   is the bounding curve where the wetting, nonwetting, and solid phases 
come together. Since the total force acting on the interface must be zero for the 
static case, the sum of the three forces in equations  (1.25) ,  (1.26) , and  (1.27)  must 
be zero, or:

    p S p S Cn n

S

w w

S

wn wn

Cwn wn wns

n n nd d d∫ ∫ ∫+ + =γ 0     (1.28)  

The formulation of the total force in equation  (1.28)  has intuitive appeal on 
physical grounds. However, besides the total force balance for the interface, the 
forces at each point on the interface must also balance at equilibrium. Direct for-
mulation of this balance is not intuitive. Nevertheless, application of mathematical 
theorems, that may require the user to leave intuition behind, to the physical equa-
tion  (1.28)  will lead to the desired result. The mathematical expression that is useful 
in this analysis converts the integral over the curve bounding the surface to an 
integral over the surface. This relation is the    divergence theorem    for a surface and 
has the general form  [7] :

    f C f S f Swn

C S

n

S

n
wns wn wn

n n nd d d∫ ∫ ∫= ′∇ − ′∇ ⋅( )     (1.29)  

where  ∇  ′  is the two - dimensional del operator acting in the surface. Application of 
this relation to the last term on the left side of equation  (1.28)  with  f  replaced by 
  γ  wn   yields:

    p S p S S Sn n

S

w w

S

wn

S

n n wn

Swn wn wn wn

n n n nd d d d∫ ∫ ∫ ∫+ + ′∇ − ′∇ ⋅( ) =γ γ 0  

or, after collection of the terms in the integrands:

    p p Sn n w w wn n n wn

Swn

n n n n+ + ′∇ − ′∇ ⋅( )[ ] =∫ γ γ d 0     (1.30)  

Since this relation must hold, regardless of the size or portion of the interfacial 
surface over which the integration is performed, the integrand in equation  (1.30)  
must be zero at every point on the surface so that:
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    p pn n w w wn n n wnn n n n+ + ′∇ − ′∇ ⋅( ) =γ γ 0     (1.31)  

This equation is a vector equation and has components in each of three orthogo-
nal coordinate directions. The fi rst, second, and fourth terms are vectors normal to 
the surface. The third term involves the gradient in the surface and thus is a vector 
tangent to the surface. Since equation  (1.31)  must be valid in any direction, 
the component of the equation in the directions tangent to the surface surface is 
obtained as:

    ′∇ =γ wn 0     (1.32)  

Equation  (1.32)  indicates that at equilibrium, the surface tension of an interface 
between two fl uids will be constant, independent of position, since its gradient is 
zero. 

 The balance of forces in the direction normal to the interface is obtained as the 
dot product of equation  (1.31)  with the unit vector normal to the surface,  n   n  . Note 
that  n   n     =    −  n   w   such that  n   n      ·     n   n     =   1 and  n   n      ·     n   w     =    − 1. Thus the normal component of 
the force balance at any point on the interface is:

    p pn w n wn− − ′∇ ⋅( ) =n γ 0     (1.33)  

For the case where the interface is fl at, the orientation of  n   n   does not change with 
position on the surface, and the divergence of this normal will be zero. Thus for a 
fl at interface, equation  (1.33)  simplifi es to the condition that the pressure across the 
interface will be continuous with  p n    =   p w  . This is the condition that is typically 
imposed on large - scale systems where the curvature is small, such as the surface of 
a bucket of water or at the top of a swimming pool. In general, the quantity  ∇  ′     ·     n   n   
is equal to the sum of the curvatures of the surface in any two orthogonal directions. 
If the  curvature of the surface  is denoted as 2 /R c  , where  R c   is the  geometric     mean , 
the  radius of curvature    6  is calculated as:

    ′∇ ⋅ = = +⎛
⎝

⎞
⎠nn

cR R R
2 1 1

1 2

    (1.34)  

where  R  1  and  R  2  are the radii of curvature of any two orthogonal curves on the 
surface and  ∇  ′     ·     n   n   is called the    mean curvature   . Each of the radii of curvature is 
positive when the corresponding curve is concave on the  n  side and negative when 
the corresponding curve is concave on the  w  side. Then equation  (1.33)  can be 
rewritten in the form:

    p p
R

n w
c

wn− = 2 γ     (1.35)  

The    capillary pressure   ,  p c  , is now defi ned, in general, as the product of the mean 
curvature and the interfacial tension:

 6     For a spherically shaped surface,  R c   is equal to the radius of the sphere; for a fl at surface,  R c   is 
infi nite. 



    p
R

c
c

wn= 2 γ     (1.36)  

Thus, equation  (1.35)  expresses the fact that at equilibrium:

    p p pn w c− =     (1.37)  

Equation  (1.35)  is known as the    Laplace equation for capillary pressure   . Note 
that  p n     ≠    p w   whenever | R c  |    ≠     ∞ . Thus, when the surface tension is zero, the equilibrium 
pressure drop across an interface will be zero only if the interface is fl at or at points 
on the interface where the radii of curvature are equal in magnitude and opposite 
in sign. Equation  (1.35)  is similar to that which describes the pressure difference 
across a physical membrane, such as for a balloon. If the surface tension 
of the membrane is inadequate to sustain the pressure difference, the balloon will 
burst. 

 Before illustrating the balance of forces on an interface between phases with an 
example calculation, we will develop the expression for the balance of forces on the 
  common line  . This expression provides information about the relationships among 
the interfacial tensions. Because the common line is located on the surface of the 
solid where the two fl uid phases and the solid contact each other, the balance equa-
tion must account for the forces exerted by the interfaces. Consider the situation 
presented in Figure  1.10  where a drop   of liquid is sitting on a solid surface, for 
example a drop of water on the hood of a car. The drop is a cap with spherical shape. 
A magnifi cation of the region in the vicinity of the common line is provided as part 
(b) of the fi gure, and various unit vectors are illustrated there. The force exerted by 

    Figure 1.10:     (a) Drop of water on a horizontal surface with angle of contact   θ   and circle of contact 
with radius  r . (b) Enlargement of region where three phases meet with the unit normal vectors  n   wn  , 
 n   ws  , and  n   n s  indicated at a point on the common line  .  
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each interface on the common line is tangent to the interface and exerts a force on 
the common line trying to displace it. The total force exerted on a segment of the 
common line by the interfaces is therefore given as the sum of the integrals of each 
of the three interface forces over the common line:

    F n n ninterfaces d d d= − − −∫ ∫ ∫γ γ γwn wn

C

ws ws

C

ns ns

C

C C C
wns wns wns

    (1.38)  

where each of the unit vectors is normal to the common line  C , tangent to its cor-
responding interface, and points outward from the interface at the common line. In 
addition to these forces, the mechanical behavior of the solid and its surface rough-
ness exert an attractive force on the common line with magnitude  f s   normal to the 
smooth representation of the surface in the direction pointing into the solid. This 
force is  −  f s   n   s  . Finally, the common line has its own tension that acts along its axis, 
much like a rubber band or a spring. Thus forces are exerted at the ends of the 
common line segment by the line tension,   γ  wns  , in a direction tangent to the common 
line and pointing outward. These additional forces may be expressed as:

    F n n nline d= − + ( ) + ( )∫ f Cs s

C

wns wns wns wns
wns

γ γ1 2     (1.39)  

where the subscripts  “ 1 ”  and  “ 2 ”  refer to the two ends of the segment being studied 
and  n   wns   is the outward directed tangent vector at each end. If a curve being studied 
is a closed loop, the full circle of contact in the present case, the forces due to line 
tension will not appear as there are no ends. At equilibrium, the total force acting 
on the common line segment will be zero. Thus, addition of equations  (1.38)  and 
 (1.39)  yields:
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(1.40)
  

The expression for the balance of forces at a point on the common line may be 
obtained by making use of the divergence theorem for a curve to relate the terms 
evaluated at the ends of the segment to integrals over the segment. This theorem 
has the form  [7] :

    f f f C f Cwns wns
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n n n n( ) + ( ) = ′′∇ + ⋅ ′′∇( )∫ ∫1 2 d d     (1.41)  

where  ∇  ″  is the one - dimensional del operator acting along the curve. Application 
of equation  (1.41)  to equation  (1.40) , with  f  replaced by   γ  wns  , to eliminate the terms 
at the ends of the curve then provides:
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or, after collection of the integrands:
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This equality must hold regardless of the length of common line segment over 
which the integration is performed. Therefore, the integrand itself must be zero 
or:

    − − − − + ′′∇ + ⋅ ′′∇( ) =γ γ γ γ γwn wn ws ws ns ns s s wns wns wns wnsfn n n n n n 0     (1.44)  

The term in parentheses in this equation is the vector known as the    curvature    
of the common line. It may be expressed in terms of two orthogonal vector 
components as:

    n n n nwns wns n s g ws⋅ ′′∇ = +κ κ     (1.45)  

where   κ  n   is the    normal curvature    and   κ  g   is the    geodesic curvature     [4] . Substitution 
of this relation into equation  (1.44)  yields the force   balance on the common line   
as:

    − − − − + ′′∇ + + =γ γ γ γ κ γ κ γwn wn ws ws ns ns s s wns n wns s g wns wsfn n n n n n 0     (1.46)  

This equilibrium balance of forces at a point on the common line is a vector equa-
tion that states the balance of forces in any coordinate direction. Important balance 
expressions may be obtained by calculating the dot product of equation  (1.46)  with 
each of the three orthogonal vectors  n   wns  ,  n   s  , and  n   ws  .   

 The dot product of  n   wns   with equation  (1.46)  yields:

    nwns wns⋅ ′′∇ =γ 0     (1.47)  

where use has been made of the fact that all the unit vectors that appear explicitly 
in equation  (1.46)  are orthogonal to  n   wns  . This equation expresses the equilibrium 
requirement that   γ  wns   be a constant along the common line in that its spatial deriva-
tive taken in the direction along the common line is zero. 

 The dot product of  n   s   with equation  (1.46)  gives the balance of forces in the 
direction normal to the solid surface:

    − ⋅ − + =γ κ γwn s s n wnswn fn n 0     (1.48)  

The angle between the  wn  interface and the  ws  interface at the common line is 
called the    contact angle    and is designated as   θ  . Therefore:

    n nwn s⋅ = − sinθ     (1.49)  

and equation  (1.48)  may be written:
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    γ θ κ γwn s n wnsfsin − + = 0     (1.50)  

This equation indicates that the force exerted on the common line by the  wn  inter-
face that tends to pull the common line away from the solid is balanced by an 
attractive force of the solid and a tendency of the curved common line to expand 
(or contract) due to the lineal tension. Note that if the common line has no curvature 
in the direction normal to the solid (such that   κ  n     =   0 as in Figure  1.10 ), the lineal 
tension will not result in a force in the direction normal to the solid. 

 Finally, the component of balance equation  (1.46)  in the direction tangent to the 
solid surface and normal to the common line (i.e., in direction  n   ws  ) is obtained from 
the dot product of equation  (1.46)  with  n   ws  :

    − − + + =γ θ γ γ κ γwn ws ns g wnscos 0     (1.51)  

where use has been made of the facts that  n   wn      ·     n   w s    =   cos     θ   and  n   ws      ·     n   w s    =    −  n   ws      ·     n   ns    
 =   1. This equation expresses the balance of forces in the direction tangent to the 
solid surface. When an imbalance exists, the common line will be displaced as one 
fl uid spreads onto the surface. Equation  (1.51)  may be rearranged to the form:

    cosθ γ γ
γ

κ γ
γ

= − +ns ws

wn

g wns

wn

    (1.52)  

Typically, either from historical precedent or because the line tension and geodesic 
curvature are small, the last term in this expression is excluded so that the force 
balance becomes:

    cosθ γ γ
γ

= −ns ws

wn

    (1.53)  

Equation  (1.53)  is known as    Young ’ s equation   . 
 The contact angle   θ   plays a very important role in multiphase fl ow. If the angle 

is less than 90 degrees, then the fl uid  w  in Figure  1.10  is the   wetting fl uid  . The fl uid 
for which the wetting angle is greater than 90 degrees, the fl uid  n  in the fi gure, is 
the   nonwetting fl uid  . If |  γ  ns     −     γ  ws |    >     γ  wn  , then no equilibrium is possible as |cos   θ   | 
would have to be greater than 1 for equation  (1.53)  to be satisfi ed. In this case, the 
wetting phase will spread until it completely coats the solid surface. 7  

 In light of this theoretical analysis, we return to the question of why water will 
bead on a waxed car surface but not on an unwaxed surface. The explanation lies 
in the magnitude of the contact angle between the water and the painted surface as 
opposed to the contact angle between the water and the waxed surface. Water beads 
on the waxed solid surface because the contact angle between the water and the 
wax is greater than 90 degrees such that the air is the  “ wetting fl uid ”  in this case. 
On the other hand, the contact angle between water and the unwaxed surface is less 
than 90 degrees such that the water tends to wet this surface. When the magnitude 

 7     The wettability of various fl uids can be infl uenced by additives that affect the surface tension of 
the fl uids. 



of the right side of equation  (1.53)  is greater than 1, as is the case for a poorly waxed 
car in need of a new paint job, the water tends to spread in sheets over the surface. 
In this comparison the    wettability    of the painted surface is said to be greater than 
that of the waxed surface. 

 Consider an experiment whereby a 0.10   cc droplet of water is placed on the hood 
of a car at a place where the hood is horizontal. Assume that the drop is small 
enough that its shape may be considered spherical. The contact angle between the 
water and solid phase is observed to be 100    °  such that the size of the droplet is 
more than half a sphere. The volume of the drop may be related to the radius of 
the  ws  circle of contact,  r , and the contact angle,   θ  , according to:

    V
r= ( ) −( ) +( )π

θ
θ θ

3
1 2

3
2

sin
cos cos     (1.54)  

For this system, where the surface is concave in the wetting phase, the mean radius 
of curvature is the negative of the radius of the drop cap:

    R
r

c = −
sinθ

    (1.55)  

If two variables from among  V, r,  θ  , and  R c   are observed, then the remaining vari-
ables may be calculated from the last two equations. If more than two of the vari-
ables are observed, the equations can serve as measures of the accuracy of the 
measurements. For the present case with  V    =   0.1   cc and   θ     =   100    ° , rearrangement of 
equation  (1.54)  yields:

    r
V= ( ) −( ) +( ) =3 1

1
1

2
0 331

1 3 2 3 1 3

π θ θ
θ

cos cos
sin . cm     (1.56)  

and equation  (1.55)  provides  R c     =    − 0.336   cm. At room temperature, the surface 
tension of an air water interface 8  is approximately   γ  wn     =   72.5 dynes/cm  [2] . Thus, 
from equation  (1.36)  the capillary pressure of the  wn  interface is:

    p p p
R

n w c
c

wn− = = = − ×2
4 32 102 2γ . dynes cm     (1.57)  

where  n  refers to the air phase,  w  to the water phase, and the difference in the pres-
sures is negative since the air preferentially  “ wets ”  the solid as indicated by the fact 
that the air - solid contact angle is less than 90    ° . For context, it may be helpful to note 
that this pressure is the same as the decrease experienced at the bottom of a glass 
of water if the depth of water is decreased by 0.44   cm. Although this magnitude of 
capillary pressure is small, it should seem reasonable that for fl ow in porous media 
where the curvatures can be orders of magnitude higher, capillary pressure is 
important. 

 8     Surface tension for an air - water interface is approximately   γ  wn     =   75.6    −    0.15    T  dynes/cm, where  T  is 
temperature in degrees Celsius. 
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 With the information obtained thus far, we can also make use of equation  (1.53)  
to determine the difference in interfacial tensions between the fl uids and the 
solid:

    γ γ γ θns ws wn− = = ° = −cos . cos .72 5 100 12 6
dynes

cm
dynes

cm
    (1.58)  

Although this result provides the magnitude by which   γ  ws     >     γ  ns   for this system, 
no information is obtained about the values of each of these interfacial tensions. 

 Also, the result neglects the effects of common line tension. In fact, values of 
common line tensions involving a solid and a pair of fl uids vary depending on the 
way the solid is prepared. The common line effects are considered to be small in 
porous media applications relative to other diffi culties involving heterogeneity and 
scale. Nevertheless, one should be aware that this approximation is employed. 

 The  wn  interfacial tension exerts a force normal to the solid surface that is coun-
tered by the attraction of the solid to the common line. This attraction may be cal-
culated using equation  (1.50) . Because the surface is fl at and the force we are 
investigating acts normal to the surface on the curve, the normal curvature is zero. 
Therefore, the lineal tension does not affect the results for geometric reasons, and 
not by assumption. Equation  (1.50)  thus provides the attraction force per unit length 
of common line as:

    fs wn= = ° =γ θsin . sin .72 5 100 71 4
dynes

cm
dynes

cm
    (1.59)  

The preceding discussion and examples involve the effects of surface tension and 
capillary pressure at the microscale. The study of these phenomena in porous media 
columns or in the fi eld is undertaken at the macroscale. At this scale, rather than 
looking at a particular interface or the points on an interface, the aggregate effects 
of interfacial processes within a representative region of the medium are accounted 
for. The term    capillarity    is commonly employed to refer to the fact that one fl uid 
is preferentially drawn into a porous medium. This phenomenon is attributable 
to   surface tension   infl uences. Some aspects of this effect will now be examined 
briefl y. 

 Generally, when water is brought into contact with dry soil, it is drawn into the 
soil. If the soil is above the water, the elevation to which the water will be drawn 
against gravity depends on the material that composes the soil and the pore sizes 
and geometry. To some degree, water will exist in soil above a saturated region and 
will be hydrodynamically connected to that region. The    water table    is the location 
in the subsurface where the water saturates the medium and where the pressure is 
equal to atmospheric. In fi ne - grained soil, water tends to be found at elevations 
higher above the water table than under similar conditions in more coarse soil. To 
demonstrate the reason this occurs, another simple experiment is considered. 

 The ends of two vertical clean glass tubes (   capillary tubes   ) with inside diameters 
of 0.5   mm and 1.0   mm, respectively, are dipped into a beaker of water as depicted 
in Figure  1.11 . The glass tubes are the solid phase, indicated as material  s g  . After a 
short time, water is observed to have entered the tubes and risen above the level of 



the water in the beaker. Moreover, the water level in the 0.5   mm diameter tube is 
approximately twice as high as in the 1.0   mm tube.   

 This experiment demonstrates that the rise in the water level is roughly linearly 
inversely proportional to the radius of the tube. Also, at a horizontal observation 
level below the surface of the water in the beaker, the pressure in the water will be 
constant. Therefore if a mathematical plane is located such that it intersects a capil-
lary tube, the water pressure in the tube at that position should be equal to the water 
pressure on the outside of the tube. 

 From this observation, the pressure of the water in the capillary tube at elevations 
above the water surface in the beaker can be calculated. Since the pressure differ-
ence between the air and the atmosphere across a fl at surface will be zero according 
to equation  (1.35) , the water pressure at the water surface in the beaker is atmo-
spheric. Therefore, the pressure in the capillary tube above this surface will be less 
than atmospheric. Pressure relative to atmospheric is called    gauge pressure   , and thus 
the pressure in the capillary tube is referred to as being    negative pressure   . Further-
more, since the water in the tube is static, the pressure decreases in direct proportion 
to elevation in the tube according to equation  (1.21)  in the form:

    p p gZw = −atm ρ     (1.60)  

with a change in coordinate such that  Z  is the distance above the water level in the 
beaker and  p  atm  is atmospheric pressure. The higher the elevation above the water 
surface, the more negative will be the   gauge pressure   of the water. Since the density 
of air is very small, the pressure in the air may be considered to be constant in the 
study region (i.e., gravitational effects on the air pressure are negligible). At the top 
of the water column in the capillary tube, a jump in pressure takes place between 
the water and air phases. This jump is accounted for in equation  (1.35) . If the height 
of water in the capillary tube is designated as  Z   =   h , combination of equations  (1.35)  
and  (1.60)  gives:

    Figure 1.11:     A suite of experiments demonstrating the relative wettability of glass and plastic in contact 
with air, water, and mercury.  
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    p gh
R

w
c

wn= 2 γ     (1.61)  

This equation indicates that    capillary rise    can occur in a capillary tube only if the 
surface tension between the two fl uids is nonzero and the interface between the 
fl uids is curved with the interface being convex (i.e., bulging outward) from the air 
side. If the interface is concave from (i.e., bulging into) the air side, the capillary rise 
will be negative such that the liquid level will decrease in a    capillary depression   . 
Equation  (1.61)  will be discussed further subsequently. 

 Now extend the experiment by dipping into the water a tube made of plastic 
material, denoted  s p  , and with an inside diameter equal to that of the smaller glass 
tube, 0.5   mm (as indicated in Figure  1.11 ). Despite the equality of the tube diameters, 
the water does not rise as high in the plastic tube as in the glass tube. The interfacial 
tension of the air - water interface is unchanged, so based on equation  (1.61) , the 
lower rise in the plastic tube must be accompanied by a larger value of the radius 
of curvature of the interface,  R c  , refl ective of different interaction between the tube 
materials and the water. 

 As a fi nal element of this experiment, dip a smaller diameter glass tube into a 
beaker of mercury (fl uid  m  in Figure  1.11 ). In this case, the mercury does not pene-
trate the bottom of the tube and fl ow into the tube unless one pushes the tube 
deeper into the beaker. Indeed, the air displaces the mercury slightly as the mercury 
level in the tube is lower than that outside. In addition, the curved meniscus between 
the air and the fl uid, that has thus far been convex from the air side, is now 
concave. 

 The explanation of the behavior of the water and mercury interactions with the 
tubes is found in the concept of    wettability   . In the air - water - solid systems, water 
preferentially   wets   the sides of the capillary tubes relative to air, and wets glass more 
enthusiastically than it wets plastic. The water is drawn up in the capillary tube 
because of its affi nity for the sides of the tube and its ability to sustain a pressure 
jump across its interface with air. 

 The height of capillary rise is determined from the balance of forces as indicated 
in equation  (1.61)  at the meniscus between the water and the air. The   contact angle   
between the meniscus and the tube wall,   θ   in Figure  1.11 , is generally considered 
to be a property of the three phases. Although the roughness of the solid surface 
can impact the value of the contact angle, this effect will be neglected here. For 
the small capillary tubes under consideration, assume that the interface is essentially 
spherical such that the radius of curvature,  R c  , is related to the tube radius,  r , 
according to:

    r Rc= cosθ     (1.62)  

Substitution of this equation into equation  (1.61)  and rearrangement yields the 
height of the capillary rise as:

    h
r g
wn

w

= 2γ θ
ρ

cos
    (1.63)  



Equation  (1.63)  demonstrates that the smaller the tube radius, the higher the 
meniscus will be drawn into the tube. As long as the tube is small enough that the 
approximation of a spherical interface applies, the capillary rise is linearly propor-
tional to the inverse of the radius. Similarly, in naturally occurring fi ne - grained 
material, which would typically have smaller diameter pores than coarse - grained 
material, water is more easily held in the region above the water table. The observa-
tion that water does not rise as high in the plastic tube as in the glass tube suggests 
that the wettability of water relative to air on plastic is less than on glass. Finally, 
the observation that there is a depression rather than rise of mercury in the glass 
tube indicates that mercury does not wet glass relative to air. 

 While a capillary tube can, to a limited degree, be a surrogate for the channels 
in a porous medium, the analogy has some serious limitations. The pores in a porous 
medium are irregular in geometry and variable in shape. The cross - sectional char-
acteristic length of a pore will vary over at least a couple of orders of magnitude. 
Pores are also connected to each other and allow fl ow to follow a complex, multi-
directional path. 

 To obtain some insight into how a variable pore diameter might affect the behav-
ior of multiphase fl uids, consider yet another simple experiment. Figure  1.12  depicts 
a capillary tube with a small, but variable, diameter that is a simple surrogate for 
pores. The experiment begins by immersing the lower, fl anged end of the capillary 
tube into a beaker of water. The tube is lowered very slowly until the water has just 
entered the tube up to point  “ 1 ”  in Figure  1.12 b, the minimum constriction. This 
process is the    imbibition     stage , as water moves into the tube displacing the air that 
fl ows upward to leave the tube. If the capillary tube is lowered further into the water, 
for example by a distance   δ  , the water level in the capillary will increase only by an 
amount between 0 and   δ  . The reason the capillary rise is not sustained in this process 
is that the capillary forces are less effective because of the increased diameter of 
the tube. This difference will be minimized when the tube has been lowered such 
that the water just rises to point  “ 2 ” . If the tube is lowered further, the height of the 
water level in the capillary relative to the level in the beaker once again increases. 
This is due to the decrease in capillary diameter that gives rise to an increase in the 

    Figure 1.12:     The constriction in the capillary tube tends to retain water at a higher elevation on drain-
age ( a ) and to preclude the water level from reaching a higher elevation on imbibition ( b ).  
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capillary force. Once location  “ 3 ”  is reached, the process continues in the same 
fashion as the tube is immersed further.   

 Let us now immerse the capillary tube to the location marked 4 in Figure  1.12 a. 
Now slowly raise the capillary tube so the water moves downward in the capillary. 
In this, the    drainage     stage , the minimum cross section of the capillary tends to infl u-
ence the behavior of the fl uid by maintaining it at a level above the larger pore. 
Note that maintaining this higher level depends on the radius of the pore, the surface 
tension, and the wettability. The capillary forces are not infl uenced by the larger 
cross - section geometry of the capillary below the neck where the interface is 
established. 

 On the other hand, during imbibition the wider opening associated with the 
larger pore (or a large pore in a network in a natural soil) does not provide as 
attractive a region for water fl ow as does a small opening. 9  From another perspec-
tive, with all other factors being equal, the air - water interface tends to remain where 
the radius of the pore is the smallest. Thus water is precluded from advancing until 
the pressure is suffi cient to overcome the impediment of the larger pore. 

 From this example it is evident that the physical behavior of the modifi ed capil-
laries shown in Figure  1.12  is infl uenced by whether the water is draining or imbib-
ing. In the macroscale study of porous media, the capillary pressure is related to the 
saturation. Thus it is not surprising that the equilibrium relationship between satura-
tion and capillary pressure is not single - valued. The equilibrium relation depends 
on whether imbibition or drainage has occurred prior to examination of the state 
of the system. This situation is described by saying that the capillary pressure is a 
 hysteretic  function of saturation, that is, the relationship is dependent upon the 
history of the porous media system. Thus different equilibrium states (that is, dis-
tributions of fl uid) may be obtained for the same external pressure conditions, 
depending upon the path taken to get to the new state. There are other reasons 
for hysteresis, and these will be considered in the chapter on constitutive 
relationships. 

 In summary, it is fair to say that the description of a porous media system com-
posed of two or more fl uids and a solid is complicated in comparison with the case 
of a single fl uid and a solid by the presence of the interface between the fl uids. The 
interactions between the fl uids and between each of the fl uids and the solids must 
be considered to obtain a complete description of the physical processes. Capillary 
effects allow for discontinuity of pressure across the fl uid - fl uid interfaces that is an 
important factor in modeling multiphase fl ow.  

  1.7     CONCEPT OF CONCENTRATION   

 One fi nal basic concept, the    concentration    of a chemical species in a fl uid phase, will 
be introduced here to conclude this chapter. The relatively short length of this 
section does not imply that the study of concentrations of species is simple, unim-

 9     Recall that water rises more readily in a small diameter capillary than one of large diameter. 



portant, or straightforward. In fact, the study of the transport and reaction of chemi-
cals within a phase and their transfer between phases is a challenging and timely 
problem that is seldom easy. As with saturation, porosity, and pressure, concentra-
tion is one of the primitive variables in mathematical simulation. Its evolution is 
described by a conservation equation, and properties of a fl uid depend on the con-
centrations of its chemical constituents. Additionally, the concentration of a material 
is refl ective of its amount in the total solution. Thus, issues of scale involving the 
size of the sample in which a concentration is measured are important. An average 
concentration of a contaminant in a groundwater system does not indicate whether 
hot pockets of concentration threaten water supply wells. In this section measures 
of the concentration of constituents dissolved in a fl uid are explored. If the chemi-
cals are dissolved in a water phase, they are referred to as the solutes in the water 
solvent, and the phase is referred to as an aqueous solution. 

    Concentration    is generally expressed in terms of mass of solute per unit volume 
of solution. If, for example, one had a mass of 10   g of salt in a solution of one liter, 
the concentration could be expressed as a concentration of 10   g/1000   cc, or 0.01   g/cc. 
Alternatively, one could express the concentration as the number of grams of salt 
per given weight of solution. In the above example this would yield 10   g/1010   g, 
or 0.01. For dilute solutions, the difference between these two measures is 
insignifi cant. 

 In fi eld situations, one normally works with concentration in terms of parts per 
million (ppm) defi ned as the dimensionless ratio:

    ppm
mass of solute

mass of solution
= × 106     (1.64)  

Alternatively, the concentration is sometimes expressed as parts per billion (ppb) 
where:

    ppb
mass of solute

mass of solution
= × 109     (1.65)  

For the case of ten grams of salt in a liter of water, the concentration is ten thousand 
parts per million or ten million parts per billion. Concentrations in terms of parts 
per billion are often used in studying organic contamination of water. Some chemi-
cals are considered to be health hazards in concentrations on the order of 1   ppb. At 
such a low concentration, the dissolved chemical may have minimal impact on the 
fl ow properties of the phase. Nevertheless, the movement of the chemical relative 
to the phase is important to study. 

 Concentrations are also expressed in terms of moles of a constituent per volume. 
However, in this text, all references to concentration will be on a mass basis. When 
a contaminant adheres to a solid phase, its concentration relative to the solid may 
also be expressed as mass per mass of solid. Material attached to subsurface solids 
is immobile unless it dissolves into the fl uids in contact with the solid. The scope of 
this text is primarily limited to subsurface fl uid phases. However, it is not possible 
to completely isolate interacting components of environmental problems.  
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  1.8   SUMMARY 

 The purpose of this chapter is to introduce the reader to the basic concepts that 
must be considered in studying fl ow in porous media. After introduction of several 
fundamental porous media properties, current methodology for quantifi cation of 
porosity and grain - size distribution was presented. 

 Pressure has been described and defi ned for both saturated (single - phase fl ow) 
and unsaturated (multiphase, air - water) fl ow.   Capillarity  , a multiphase phenomenon, 
was introduced to demonstrate how negative gauge pressure can arise in water in 
air - water fl ow. The importance and behavior of the interface between fl uid phases 
was presented along with the infl uence of surface tension, curvature, common lines, 
and hysteresis. Commonly used measures of solute concentration were briefl y 
discussed.  

  1.9   EXERCISES   

  1.     Indicate whether each of the following items exists at the microscale or the 
macroscale. For items that exist at both scales, propose a relation between the 
microscale and macroscale measures: (a) pressure; (b) velocity; (c) density; (d) 
porosity; (e) saturation; (f) capillary pressure; (g) chemical species concentra-
tion; (h) temperature.  

  2.     Find the minimum pore diameter in a cubic packing of equal - sized spheres of 
radius  R .  

  3.     For the soil described by the data provided in Table  1.2 , determine the coeffi -
cient of uniformity,  C  u , the coeffi cient of curvature,  C  c , and the possible soil 
type.  

  4.     A porous medium is made up of grain particles with a density of 2.65   g/cc, water 
with a density of 1.0   g/cc, and air. A 1   cc sample taken from the medium has a 
mass of 2.05   g. If the porosity of the sample is 0.3, determine the water saturation 
and the water content.  

  5.     A porous medium is constructed that is a collection of hollow spheres. A second 
porous medium is constructed using a similar collection of spheres except that 
these spheres are not hollow. Which medium has a higher porosity? Justify your 
answer.  

  6.     The    void ratio    is defi ned as the volume of voids (i.e., the volume not occupied 
by solid particles) divided by the volume of solid particles in a sample of porous 
medium. Obtain a mathematical relation between the void ratio,  e , and the 
porosity,   ε  .  

  7.     Consider a 20   cm vertical column of water in a right circular cylinder. The 
pressure in the water is hydrostatic. Calculate the average pressure in the 
water obtained by averaging over the volume of the water. Compare this result 
with the average pressure in the water calculated by averaging over the surface 
that bounds the water. Can any general conclusions be drawn from this 
result?  



  8.     Now consider a container that is a cylindrical column with radius  R  1  for the 
bottom 10   cm and radius  R  2  for the next 10   cm. Note that if  R  1    =    R  2 , the system 
is the same as in the last problem. Calculate the average pressure of a 20   cm 
column of water in this cylinder based on averaging over the volume and then 
based on averaging over the surface that bounds the water. What are the impli-
cations of this result in relation to a porous media system in which the water 
content is not constant.  

  9.     A capillary tube is constructed as an alternating sequence of water - wet and air -
 wet materials. Suppose that the air - wet material is the fi rst (bottom) segment. 
Describe the behavior of the system as the tube is dipped into a beaker of water, 
pushed into the water, and withdrawn from the water. How would the behavior 
be different if the bottom segment were water - wet?  

  10.     Consider a cone with the point on the bottom and with the angle at the tip des-
ignated as   φ  . Suppose the cylinder is fi lled to a depth of water  b  such that the 
radius of the common line circle is  R . Provide expressions for the curvature of 
the common line, the normal curvature, and the geodesic curvature. Also provide 
a sketch that illustrates these quantities.                  
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