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CHAPTER

1
Introduction to Fault 

Tolerance

Like any subject of study, there is a specialized language associated with fault 
tolerance. This chapter introduces these terms.

The focus of this book is on ‘Fault Tolerance’ in general and in particular on 
things that can be done during the design of software to support fault tolerant 
operation. A system of software or hardware and software that is fault tolerant 
is able to operate even though some part is no longer performing correctly. Thus 
the focus of this book is on the software structures and mechanisms that can be 
designed into a system to enable its continued operation, even though a different 
part isn’t working correctly. This book describes practices to improve the reliability 
and availability of software systems. These practices are currently in use in a variety 
of software application domains.

The next few sections defi ne the vocabulary needed to discuss fault tolerance.

Fault -� Error -� Failure

The terms fault, error and failure have very specifi c meanings.
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4  Chapter 1 Introduction to Fault Tolerance

Every fault tolerant system composed of software and hardware must have a 
specifi cation that describes what it means for that system to operate without failure. 
The system’s specifi cation defi nes its expected behavior, such as available 99.999 % 
of the time. When the system doesn’t behave in the manner specifi ed in its require-
ments, it has failed. The term failure refers to system behavior that does not conform 
to the systems specifi cation.

These are examples of failures: The system crashes to a stop when it shouldn’t, 
the system computes an incorrect result, the system is not available for service, 
the system is unable to respond to user interaction. Whenever the system does the 
wrong thing it has failed.

Failures are detected by the observer and users of the system.
Failures are dependant upon the requirements and the defi nition of agreed-upon 

correct operation of the system. If there is not a specifi cation of what the system 
should do, there cannot be a failure.

Failures are caused by errors.
An error is the incorrect system behavior from which a failure may occur. Errors 

can be categorized into two types, timing or value. Errors that manifest as value er-
rors might be incorrect discrete values or incorrect system state. Timing errors can 
include total non-performance (the time was infi nite).

Some common examples of errors include:

Timing or Race conditions: communicating processes get out of synchronization 
and a race for resources occurs.

Infi nite Loops: continuous execution of a tight loop without pausing and with-
out acknowledging the requests of others for shared resources.

Protocol Error: errors in the messaging stream because of non-conformance 
with the protocol in use. Unexpected messages sent to other parts of the 
system, messages sent at inappropriate times, or out of sequence. 

Data inconsistency: Data may be different between two locations, for example 
memory and disk, or between different elements in a network.

Failure to Handle Overload conditions: the system is unable to handle the 
workload.

Wild Transfer or Wild Write: Data written to an incorrect location of 
memory or a transfer to an incorrect location occurs if there is a fault in 
the system.
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A system failure occurs when the delivered service no longer complies with the speci-
fi cation, the latter being an agreed description of the system’s expected function and/
or service. An error is that part of the system state that is liable to lead to subsequent 
failure; an error affecting the service is an indication that a failure occurs or has 
occurred. The adjudged or hypothesized cause of an error is a fault. [Lap91, p. 4]



Any of these example errors could be failures if they deviate from the system’s 
specifi cation. 

Errors are important when talking about fault tolerant systems because errors can 
be detected before they become failures. Errors are the manifestation of faults, and 
errors are the way that we can look into the system to discover if faults are present.

A fault is the defect that is present in the system that can cause an error. It is the 
actual deviation from correctness. In a computer program it is the misplaced comma 
or period, or the missing break statement in a C�� switch statement. Colloquially the 
fault is often called a ‘bug’, but that word will not appear elsewhere in this book.

The fault might be a latent software defect, or it might be a garbled message 
received on a communications channel, or a variety of other things. In general, 
neither the software nor the observers are aware of the presence of a fault until an 
error occurs.

A number of causes lead to the introduction of a fault into software. These include:

Incorrect Requirement Specifi cation: Sometimes the software designers and 
coders were told to build the wrong thing.

Incorrect Designs: Translating system requirements into a working software 
design is a complicated process that sometimes results in incorrect designs. The 
design might not be workable from a pure software standpoint, or it might not 
be an accurate translation of the requirements. In either case it is faulty.

Coding Errors: Translating the design into working code can also introduce 
faults into the system. The compiler/interpreter/code examination tool can 
catch some faults or a fault can produce syntactically correct code that just 
does not perform the specifi ed task.

Faults are present in every system. When a fault is lying dormant and not causing 
any mischief it is said to be latent. When the circumstances arise that the latent fault 
causes something incorrect to happen it is said to become active. A fault’s activation 
results in an error.

Examples of Fault -� Error -� Failure

To help make these very important defi nitions clear, here are a few examples.
A misrouted telephone call is an example of a failure. Telephone system require-

ments specify that calls should be delivered to the correct recipient. When a faulty 
system prevents them from being delivered correctly, the system has failed. In this 
case the fault might have been an incorrect call routing data being stored in the 
system. The error occurs when the incorrect data is accessed and an incorrect 
network path is computed with that incorrect data.

A robotic arm used to drill a part in a manufacturing environment provides 
another example. Consider the fault of a misplaced decimal point in a data constant 
that is used in the computation of the rotation of the robot’s arm. The data constant 
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might be the number of steps required to rotate the robotic arm one degree. The 
error might be that it rotates in the wrong direction because of the erroneous com-
putation made with the faulty decimal point. The arm fails by lowering its drill at 
the wrong location

The preparation of an incorrect bill for service is another example of a failure. 
The system requirements specify that the customer will be accurately charged for 
service received. A faulty identifi cation received in a message by a billing system 
can result in the charges being erroneously applied to the wrong account. The fault 
in this case might have been in the communications channel (a garbled message), 
or in the system component that prepares the message for transmission. The error 
was applying the charges to the wrong account. The fact that the customer receives 
an incorrect charge is the failure, since they agreed with the carrier to pay for the 
service that they used and not for unused service.

Consider a spacecraft that is given an updated set of program instructions by the 
Earth station controlling it. An error occurs because someone designing the update in-
correctly computed the memory range to be updated. The new program was updated to 
this incorrect range, which corrupted another part of the programming. The corrupted 
instructions caused the spacecraft’s antenna to point away from Earth, breaking off 
communications between Earth and the spacecraft, which led to the mission being con-
sidered a failure. The initial fault was the computation of the incorrect memory range.

Banking systems fail when they do not safeguard funds. An example of failure is 
when a bank’s automatic teller machine (ATM) dispenses too much cash to a cus-
tomer. Several errors might lead to this failure. One error is that the machine counted 
out more bills than it should have. In this case the fault might be an incorrect com-
putation module, or a faulty currency sorting mechanism. A different error that 
can result in the same failure is that the bills were loaded incorrectly into the ATM. 
The fault was that the courier that loaded the machine put money in the wrong 
dispensaries, i.e. $20 bills were placed in the $5 storage location and vice versa. 

The last example illustrates how the same failure might result from different 
faults as shown in Figure 2.

 Another example is the failure of the fi rst Ariane 5 rocket from the European 
Space Agency. Flight 501 veered off its intended course, broke up and exploded 
shortly into the fl ight. The inertial reference system for the Ariane 5 was reused 
from the Ariane 4. The initial period of the fl ight the Ariane 5’s fl ight path took 
was different enough than Ariane 4 for the inertial reference system to encounter 

Figure 2 Multiple faults create the same error



errors in the horizontal velocity calculations. These errors resulted in the failure 
of the backup inertial reference system, followed by a failure of the active inertial 
reference system. The loss of inertial reference systems resulted in a large deviation 
from the desired fl ight path, which resulted in a mechanical failure that trig-
gered self-destruct circuitry. The fault in this case can be traced to a change in the 
requirements between Ariane 4 and Ariane 5 that enables for a more rapid buildup 
of horizontal velocities in Ariane 5. The error that resulted from the horizontal 
velocity increasing too rapidly resulted in the failure. [ESA96]

Failure Perception [Lap91][Kop97]

A fail-silent failure is one in which the failing unit either presents the correct result 
or no result at all. A crash failure is one where the unit stops after the fi rst fail-silent 
failure. When a crash failure is visible to the rest of the system, it is called a fail-stop 
failure. 

A set-top entertainment system computer fails quietly, without announcing 
to the world that it has failed. When it fails it just stops providing service. The 
computer in the Voyager spacecraft fails in a crash failure mode after it detects its 
fi rst failure, which is detected by the backup computer, which assumes primary 
control. [Tom88]

Failures can be categorized as either consistent or inconsistent. Consistency refers 
to whether the failure appears the same each time it is observed. Examining the 
failure occurs from the viewpoint of the user, the person or other system that is 
determining that the failing system did not conform to its specifi cations. Consistent 
failures are seen as the same kind of failure by all users or observers of a system. 
An example of failing consistently is reporting ‘1’ in response to all questions that 
the system is asked. 

Inconsistent failures are ones that appear different to different observers. These 
are sometimes called two-faced failures, malicious failures or Byzantine failures. 
These are the most diffi cult to isolate and correct because the failure is present-
ing multiple faces to the error detection, processing, and fault treatment phases of 
recovery. 

An example of an inconsistent failure is to respond with ‘1’ to questions asked 
by one peer and ‘2’ to questions from all other peers. Another example is when 
the failing system misroutes all network traffi c to a certain network address, and 
not to other network addresses. The observers of the system, the network peers, 
see one of two behaviors: either they see a complete absence of network traffi c, or 
they see a fl ood of network traffi c of which most of it is incorrect and should not 
have been received. This failure is inconsistent because the perception of whether 
the system is sending traffi c or not sending traffi c depends on which peer is the 
observer.

Inconsistent failures are very hard to detect and to correct because they appear 
different to each observer. In particular they might appear correct to the part that 
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would detect a failure and incorrect to all other parts of the system. To counter 
the risk of the failure appearing differently to different observers, fault tolerant 
design attempts to turn the potentially inconsistent failures into consistent failures. 
This is accomplished by creating boundaries around failing functionalities, and 
transforming all failures into fail-silent failures.

Fail-silent failures are the easiest type of failures to be tolerated because the 
observed failure is that the failing unit has stopped working. The reason for the 
failure is unclear, but the failing element is identifi ed and the failure is contained 
and is not spreading throughout the system.

Single Faults

Much of the fault tolerant design over the years has been created to handle only 
one error at a time. The assumption is that only one error will occur at a time and 
recovery from it has completed before another error occurs. A further assumption 
is that errors are independent of each other.

 While this is a common design principle in real life, many failures have occurred 
when this assumption has been invalid. 

To understand why this is a valuable assumption, consider Table 1.1. It shows the 
theoretical results that indicate how many redundant units are required to tolerate 
independent faults of three kinds: fail-silent, consistent and malicious (inconsistent). 
The type of failures tolerated infl uences the number of components required to 
tolerate failures. From this table, most designers will see that the most desirable 
situation is to have the failing unit fail silently, because that requires only two units 
to tolerate the failures. 

To gain perspective of the ramifi cations in Table 1.1, the computer control system 
in the Space Shuttle is designed to tolerate two simultaneous failures which must 
be consistent but need not be silent and, as a result, it has fi ve general purpose 
computers. [Skl76] A typical telephone switching system is designed to tolerate 
single failures. Many components are duplicated because two units are all that are 
required to tolerate single failures.

Table 1.1 Minimum number of components to tolerate failures [Kop97, p. 121]

MINIMUM NUMBER OF COMPONENTS 
TO TOLERATE FAILURES TYPE OF FAILURE

n + 1 Fail-silent failures

2n + 1 Consistent failures

3n + 1 Malicious failures



Examples of How Vocabulary Makes a Difference

When debugging failures it is very useful to determine what is the fault, what is the 
error and what is the failure. Here are a few examples. These also show that the 
terms, while specifi c, depend on the viewpoint and the depth of examination.

Consider the robotic arm failure presented above. Was the fault that the arm 
software rotated in the wrong direction, or was it the incorrect data that drove the 
state change? Knowing which the fault was helps us know what to fi x.

As another example, consider the Ariane 5 failure mentioned earlier. Was the 
fault that the specifi cation didn’t refl ect the expected fl ight path? Or was the fault 
that the reused component was insuffi ciently tested to detect the fault? Was the 
error that the incorrect specifi cation was used, or was the error that the fl ight path 
deviated from the Ariane 4 fl ight path? Identifying and correctly labeling faults and 
errors simplifi es the fault treatment.

Coverage

The coverage factor is an important metric of a system’s fault tolerance. Highly 
reliable and highly available systems strive for high coverage factors, 95 % or 
higher.

The coverage is the conditional probability that the system will recover automati-
cally within the required time interval given that an error has occurred.

Coverage � CondProb (successful automatic recovery within time | error has 
occurred)

In the Space Shuttle avionics nearly perfect coverage is attained in a complex of 
four off-the-shelf processors by comparing the output of simultaneous computations 
in each of the processors. Each Shuttle processor is equipped with a small amount 
of redundancy management hardware to manage the receipt of the values to be 
compared. Through the use of this hardware the processor can identify with cer-
tainty which of its peers computed an incorrect value. The coverage was increased 
to 100 % through the additional technique of placing a timer on the buses used to 
communicate between the processors. [Skl76]

Coverage can be computed from the probability associated with detection and 
recovery.

Coverage � Prob (successful error detection) � Prob (successful error recovery)

Obtaining the probabilities used to compute the coverage factor is diffi cult. 
Extensive stability testing and fault insertion testing are required to obtain these 
values.

 Coverage  9



Reliability

A system’s reliability is the probability that it will perform without deviations from 
agreed-upon behavior for a specifi c period of time. In other words, that there will 
be no failures during a specifi ed time.

The parameters used to describe reliability are Mean Time To Failure (MTTF) 
and Mean Time to Repair (MTTR). The Mean Time To Failure is the average time 
from start of operation until the time when the fi rst failure occurs. The Mean Time 
to Repair is a measure of the average time required to restore a failing component 
to operation. In the case of hardware this means the time to replace the faulty hard-
ware component in addition to the time to travel to the site to be able to perform 
the repair actions. The Mean Time Between Failures, or MTBF, is similar to MTTF 
but refl ects the time from the start of operation until the component is restored to 
operation after repair. MTBF is the sum of MTTF and MTTR. MTBF is used in 
situations where the system is repairable, and MTTF is used when it cannot be 
repaired. The start of operations for both MTTF and MTBF refers to when normal 
operations are resumed, either after initial startup or after recovery has completed. 
The reliability can be computed with the following equation.

reliability�
�

e MTTF
1





Failure rate is the inverse of MTTF. A commonly used measurement of failure 
rate is FITs, or Failures in Time. FITs are the number of failures in 1 � 109 hours.

Reliability Examples

Mars Landers

The Mars Exploratory Rovers, Spirit and Opportunity, had a design duration of 
90 days. The reliability of these two Mars explorers has been so good that they 
lasted more than 1000 days. However, note that this refers only to complete system 
failures. There have been partial failures requiring workarounds or fault treatment, 
such as fi nding a way to keep the Mars Rover Sprit operating on only fi ve of its six 
wheels. [NASA04][NASA06].

Airplane Navigation System

Many modern airplanes rely extensively on computers to control critical systems. 
While the aircraft is in the air, the navigational computers must operate failure-free. 
On a fl ight from Chicago to Los Angeles, the navigation system must be failure-free 
for between four and fi ve hours. The MTTF during the operational phase of the 
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system must be greater than fi ve hours; if it were less the fl ight crew could expect 
at least one failure on their fl ight. If the navigational system fails while the airplane 
is at the gate on the ground, repairs can return it to operational status before its 
next fl ight. Before or after a fl ight it is still a failure, but it might not be considered 
into the system’s reliability computations. The MTTR must be low because airlines 
require their planes to be highly available in order to maximize their return on 
investment.

Measuring Reliability

There are two primary methods of determining the reliability of a system. The fi rst 
is to watch the system for a long time and calculate the probability of failure at the 
end of the time. The other is to predict the number of faults and from that number 
to predict the probability of failures (both numbers of failures and durations). 
Software Reliability Engineering focuses on measuring and predicting reliability.

Availability

A system’s availability is the percentage of time that it is able to perform its designed 
function. Uptime is when the system is available, downtime is when it is not. A common 
way to express availability is in terms of a number of nines, as indicated in Table 1.2.

Availability is computed as:

availability�
�

MTTF
MTTF MTTR
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Table 1.2 Availability as a number of nines

EXPRESSION
MINUTES PER YEAR 
OF DOWNTIME

100 % 0

Three 9s 99.9 % 525.6

Four 9s 99.99 % 52.56

Four 9s and a 5 99.995 % 26.28

Five 9s 99.999 % 5.256

Six 9s 99.9999 % 0.5256

100 % 0



Availability and Reliability are two concepts that are easy to get confused. 
Availability is concerned with what percentage of time the system can perform its 
function. Reliability is concerned with the probability that the system will perform 
failure-free for a specifi ed period of time. 

Availability Examples

The 4ESS™ Switch from Alcatel-Lucent had an explicit requirement when it was 
designed in the 1970s of two hours of downtime every 40 years. This equates to an 
unavailability of three minutes per year, which is slightly better than fi ve 9s. The 
5ESS® Switch from Alcatel-Lucent has achieved six 9’s of availability for a number 
of years.

Dependability

Dependability is a measure of a system’s trustworthiness to be relied upon to 
perform the desired function. The attributes of dependability are reliability, avail-
ability, safety and security. Safety refers to the non-occurrence of catastrophic 
failures, whose consequences are much greater than the potential benefi t. Security 
refers to the unauthorized access or unauthorized handling of information. Since 
dependability includes both reliability and availability, the correctness of the result 
is important. [Lap91]

Hardware Reliability

Unlike software, hardware faults can be analyzed statistically based upon behavior 
and occurrence and also the physics of materials. The reliability of hardware has 
been studied for a long time, and covered in great depth. Hardware reliability 
includes the study of the physics and the materials, as well as the way things wear 
out. There is an array of technical conferences and journals that address this topic, 
such as the International Reliability Physics Symposium and the Electronic Compo-
nents Technology Conference and IEEE journals Device and Materials Reliability, 
Advanced Packaging and Solid State Circuits.

Reliability Engineering and Analysis

Software Reliability Engineering is the practice of monitoring and managing 
the reliability of a system. By collecting fault, error, and failure statistics during 
development, testing, and fi eld operation, monitoring and managing the parameters 
of reliability and availability is possible. The Handbook of Software Reliability 
Engineering [Lyu96] contains a number of articles on topics related to Software 
Reliability Engineering.
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A widely used technique is Reliability Growth Modeling, which graphs the 
cumulative number of faults corrected versus time. Prediction methods calculate 
the cumulative number of faults expected, which enables comparison with the 
measured results. This, in turn, enables the determination of the number of faults 
remaining in the system.

Markov modeling of systems (including software components) is another tech-
nique useful for predicting the reliability of a system. These models enable analysis 
of redundancy techniques and prediction of MTTF. 

Markov models are constructed by defi ning the possible system states. Transitions 
between the states are defi ned and are assigned a probability factor. The probabil-
ity indicates the likelihood that the transition will occur. An important aspect of 
the model is that the probability of a state transition depends only on the current 
state; history is not considered. Figure 3 shows a simple Markov model for a duplex 
system in which either system may fail with probability λ and be restored to service 
with probability µ and a coverage factor c. The failure rate, (λ), is the inverse of the 
MTTF, and the repair rate (µ) is the inverse of MTTR.

Unavailability c� � � ��( ) ,1
2

2
2

λ
µ

λ
µ

µ λ






Performance

Performance and reliability are two closely related concepts. Is the system’s reliability 
a performance requirement, or is the performance of a system a reliability require-
ment? An example of a performance requirement is that the application performs 
failure-free for three days. An example of a requirement for reliability is that the 
system supports 300 000 transactions per hour with a graceful degradation above 
this level of traffi c, see Figure 4. If a working system does not meet these require-
ments it has failed.

Figure 3 Simple duplex system Markov model
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The last requirement mentioned, that the system support 300 000 transactions 
per hour with a graceful degradation above this level, is an example of a require-
ment to deal with the situation that the workload exceeds the design requirements. 
For example, how will the system behave if the workload is more than the 300 000 
transactions per hour for which it was designed, for instance 500 000 transactions 
per hour? The system’s architects and designers must be prepared for these situations 
as well.

Failures of either of these example requirements are performance failures. The 
failures can be complete, meaning that the system has totally failed, and is therefore 
totally unavailable. Performance failures can also be partial. The system might not 
gracefully degrade when the workload is greater than 300 000 transactions per 
hour. Alternatively, the system might not be fully available for service because it is 
working to recover from a failure. When the fault tolerance elements are working 
to detect and process errors and failures, the system may not be operating at the 
desired level of performance.

Clear performance requirements must be specifi ed. The requirements must state 
how the system is to behave when too many requests for service are received. When 
the arriving requests for service exceed the amount that the system can handle it is 
said to be overloaded or in overload. 

Some example failures related to system performance are these:

Too many requests for service arriving at the system can lead to failures when the 
system does not handle the requests in a way that conforms to the specifi cation. 

■

Figure 4 Performance or reliability requirements?

Figure 5 Possible system behaviors
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For example, the overloaded system might stop working, or become saturated 
with reduced throughput, or might not return to acceptable levels after the 
load returns to normal levels. See the three examples in Figure 5.

The system might not be able to handle the expected volume of service requests, 
which is clearly a failure to achieve the specifi cations, Figure 6.

The capacity of a system represents a tradeoff between the system’s cost and its 
dependability under load. In a study of the US public switched telephone network, 
although overload, or performance errors, accounted for only six per cent of the 
outages, they comprised nearly fi fty per cent of the lost customer access to the 
network [Kuh 97].

Since failures are the result of faults, a well designed fault tolerant system will 
be able to both process the required level of requests and gracefully handle excess 
workload. We can think of the fault as either the system not including the techniques 
required to handle the arriving workload or the excess number of arriving requests. 
The former is avoided by clear specifi cations of desired behavior and designing and 
building to meet those specifi cations. The fault of an excess number of arriving re-
quests manifests itself as an error that must be handled by the system. Techniques to 

■

Figure 6 Failing to meet requirements
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Figure 7 Idealized versus measured load



gracefully handle these situations are found in Chapter 7, Error Mitigation Patterns. 
Some example situations from the telephone network that can cause extreme load 
to be offered to the system include: mass call-ins, such as for concert tickets or 
voting on shows such as American Idol. The arriving load can also easily exceed the 
design specifi cations during periods of natural disasters when people are calling to 
check on friends and family in the affected areas.

Long experience in the telephone network has shown the characteristic curve 
of system response seen in Figure 7. As the offered load increases, the system 
performance follows it to a point beyond which the system runs into internal conges-
tion issues and can no longer handle the offered load. The total handled load begins 
to fall at this point. The internal delays arise primarily from the time spent fi nding 
idle resources, queuing and dequeuing requests. A fault tolerant system should be 
able to ride through this workload saturation without failing. As the workload 
decreases the system should follow its same performance curve and continue to 
process the workload, without any periods of unavailability.
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