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Although anyone tackling this book should have some previous exposure to probability, this

chapter serves as a concise, convenient ‘‘refresher’’ summary of probability concepts that

are important later. Students who are confident of their abilities in this area may elect to skim

this chapter; those who feel weak on the subject should consult an introductory textbook, do all

of the problems provided, and also find other problems to do. All of the subsequent material in

the book depends heavily upon the basic concepts of probability.

It is worth mentioning early that we will be using a lot of probability, but not much

statistics. Most introductory textbooks are so oriented toward statistics that they leave a slanted

impression about probability. Students who have any confusion about the difference between

the two subjects may have trouble with this book. Very concisely: Statistics is about

interpreting data; probability is about representing uncertainty and/or variability. The two

subjects converge when comparing data to what could have been expected from hypothetical

assumptions. For example, hypothesis testing compares some numbers computed from data to

numbers from a table of a specified probability function, such as the Normal, F, or Chi-squared

distributions. The comparison tells whether the assumed hypothesis (corresponding to the

tabulated number) is reasonably consistent with the measured data. But that is not the use of
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probability theory that will come into play here, so we will have little use for those tabulated

distributions. Instead, we will need to understand the basic properties of random variables,

distributions, and parameters so that we can manipulate them to produce predictions. We will

have almost no use for the discrete uniform distribution (where permutations and combinations

are used), the Normal distribution, or most of the other distributions that have names.

1.1 Interpreting and Using Probabilities

Some people learn all of the notation, rules of manipulation, and formulas, but never really

‘‘get’’ probabilities. Unless they are told directly to calculate a probability, they would never

think of doing it on their own. So, although they may know how to calculate with them, they

lack a full understanding of why probabilities are useful. Many introductory textbooks

unintentionally contribute to the problem by using examples—cards, dice, colored balls,

and such—that have no relevance to ordinary life. This text strives to provide more realistic

examples that matter to engineers and managers. Obviously, we still have to begin with very

simple situations and gradually work up to full realism.

The most immediate and obvious use of probabilities is to quantify uncertainty. Some

people arevery uncomfortablewith uncertainty, preferring everything to be black or white, true or

false, one way or the other, with no ambiguity. But most people understand that reality is not so

simple—that sometimes people have to accept the fact that certainty cannot be achieved.

Probabilities provide a way to quantify the ‘‘shades of gray’’ between impossibility and certainty.

For what purpose? Generally speaking, the numbers in help to improve decision making.

When is uncertainty such an important factor that it demands quantitative treatment? Of

course, if there is little at stake, you can make any choice without fear of making a big mistake.

Or, if you have absolute certainty about the consequences of your actions, there is no need to

assess probabilities. But let’s face it—very few of the important decisions you make in life will

be blessed by complete and accurate information. Almost always, you will be forced to choose

with less information than you would like. On the other hand, if you have absolutely no

information to work with, there is not much you can do with probabilities. So, we can conclude

that probabilities are most useful when you need to make decisions about matters of importance

and you have only partial information with which to work. That description still covers an

enormous range of opportunities. In particular, engineers and managers deal with such issues

routinely, because they design and control complex systems.

If you have only two choices, and want to favor the more likely event (such as betting on the

winner in a two-team contest), there are ways—other than probabilities—to represent the

comparative likelihoods. In sports competitions, it is common to use point spreads. For example,

one team may be favored by three points, which means that (in someone’s judgment) the first team

is just as likely to score three more points than the second team’s total as it is to score less than that.

So, for purposes of betting, it is considered to be a fair bet when the weaker team is ‘‘given’’ an

extra three points. Handicaps and headstarts are similar notions for equalizing chances.

Another way to express uncertainty is to use odds. If the success and failure of a certain

outcome are equally likely, the odds would be 1:1 (spoken as ‘‘one to one’’). If the odds against

an outcome are given as 3:2 (spoken as ‘‘three to two’’), it means that a bet of two units should

win three units if the outcome is realized. That situation would reflect the fact or belief that the

outcome is less likely to succeed than it is to fail, so the payoff should be greater than the bet to

make the wager fair.

Althoughpoint spreadsandoddsarecommoningamblingsituations, theydonotservevery

well elsewhere. In a business situation, for example, you cannot equalize the competition by

handicapping the leader. Furthermore, you are commonly interested in more than winning

or losing, so the two-outcome range of possibilities is far too limited. Although it is true that odds
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can always be translated to probabilities and vice versa (you may want to figure out how),

probabilities are much easier to manipulate than odds when the situations grow complicated.

We usually speak of uncertainty as something describing the future—something that

we are unsure about because it has not yet happened. But there are other sources of uncertainty

that are also worth attention. Sometimes you need to answer questions about something that has

already occurred, but you do not know the result. For example, a business competitor may have

already taken some action that is hidden from you. Or perhaps you are in the process of

conducting investigations and do not have complete answers yet.

There is another use of probability that does not involve uncertainty at all: We may have

complete and accurate information about something, but that something is a set of values,

rather than a single value. That is, probabilities are useful in describing a particular measurable

property of individuals in the population. (Here, a population is any collection, not necessarily a

biological one.) For example, if we determine the year of birth of every student in the class and

then ask, ‘‘What year was the class born in?’’ we may not be able to answer with a single

number even though we have all of the information. To give a full answer, we would typically

have to specify a set of values—several years—and also the count of the number of students

born in each year. Those counts, or frequencies, are equivalent to probabilities when they are

normalized; that is, divided by the total number in the class. Hence, probabilities are useful in

describing the variation in the population, even when that variation is fully known. In this case,

the probability of any particular value corresponds to the fraction of the total population having

that value. You can use ordinary probability rules to manipulate these fractions and always

recover absolute numbers by multiplying the fractions by the total size of the population.

The greatest value from understanding probability comes from gaining a conceptual

framework and vocabulary for dealing with uncertainty and variation. Even if you lack

sufficient data to calculate anything, you can mentally weigh the factors better than people who

lack that understanding. Those who have learned the concepts well use them every day.

1.2 Sample Spaces and Events

We turn now to a more formal presentation of the concepts. An experiment is a well-understood

procedure or process whose outcome can be observed but is not known in advance with

certainty. Reread that sentence; there is a lot that is said and left unsaid in those few words. For

example, nothing is mentioned about being able to control anything. For this word and others

that are defined here, mentally compare the formal definition and the informal use of the same

word in ordinary language to be sure you understand the difference.

The set of all possible outcomes of an experiment is called the sample space. Whenever the

sample space consists of a countable number of outcomes, it is said to be discrete; otherwise, it is

continuous. An event is any subset of the sample space, including the empty, or null, set and the

entire sample space. When the result of the experiment becomes known, we would say that a

specified event has occurred if the observed outcome is contained in the subset which is the

event. The empty set is an event that can never occur; the entire sample space is an event that is

certain to occur. A set consisting of any single outcome is called an elementary event.

Of course, we want events to correspond to what you would ordinarily consider them to

be. Often the most natural way to specify them is to describe them in words. However, the

reason for defining them formally as sets is to establish a mathematical way to combine and

manipulate them. The basic algebra used to manipulate events is set theory. You need to know

all the rules to be able to express the real world events that we are going to model.

As a short reminder, the set theoretic union of two events produces another event. If

C ¼ A[B, we would say in words that event C had occurred if event A or event B (or both)

occurred. Similarly, the intersection of two events corresponds to the word and. The comple-

ment of any event is another event; we would say that A had occurred if A had not occurred. Two
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events are mutually exclusive if their intersection is the empty set, which can be thought of as

the impossible event. In other words, two events are mutually exclusive if they could not both

occur. There are several other basic rules of set theory that you should know (DeMorgan’s laws,

the distribution rules, and so forth); look them up if you need help in recalling them.

1.3 Probability

When the ‘‘probability of an event’’ is spoken of in everyday language, almost everyone has a

rough idea of what is meant. It is fortunate that this is so, because it would be quite difficult to

introduce the concept to someone who had never considered it before. There are at least three

distinct ways to approach the subject, none of which is wholly satisfying.

The first to appear, historically, was the frequency concept. If an experiment were to be

repeated many times, then the number of times that the event was observed to occur, divided by

the number of times that the experiment was conducted, would approach a number that was

defined to be the probability of the event. The ratio of the number of chances for success out of

the total number of possibilities is the concept with which most elementary treatments of

probability start. This definition proved to be somewhat limiting, however, because circum-

stances frequently prohibit the repetition of an experiment under precisely the same conditions,

even conceptually. Imagine trying to determine the probability of global annihilation from a

meteor collision.

To extend the notion of probability to a wider class of applications, a second approach

involving the idea of ‘‘subjective’’ probabilities emerged. According to this idea, the pro-

bability of an event need not relate to the frequency with which it would occur in an infinite

number of trials; it is just a measure of the degree of likelihood we believe the event to possess.

This definition covers even hypothetical events, but seems a bit too loose for engineering

applications. Different people could attach different probabilities to the same event.

Most modern texts use the third concept, which relies upon a purely axiomatic definition.

According to this notion, probabilities are just elements of an abstract mathematical system

obeying certain axioms. This notion is at once the most powerful and the most devoid of real-

world meaning. Of course, the axioms are not purely arbitrary; they were selected to be

consistent with the earlier concepts of probabilities and to provide them with all of the

properties everyone would agree they should have.

We will go with the formal axiomatic system, so that we can be rigorous in the

mathematics. We want to be able to calculate probabilities to assist in making good decisions.

At the same time, we want to bear in mind the real-world interpretation of probabilities as

measures of the likelihood of events in the world. The whole point of learning the mathematics

is to be able to use it in everyday life.

A probability is a function, P(.), mapping events onto real numbers, and satisfying

1. 0 � PðAÞ � 1, for any event A.

2. PðSÞ ¼ 1, where S is the whole sample space, or the ‘‘certain’’ event.

3. If A1, A2, A3 . . . are a set of pairwise mutually exclusive events (finite or infinite in

number), then PðA1 [A2 [A3 [ . . .Þ ¼ PðA1Þ þ PðA2Þ þ PðA3Þ þ . . . :

Although probabilities have a number of other properties well worth mentioning, these three

axioms are sufficient to derive the others.

These three axioms are not enough to determine uniquely the probability of any event.

For all but trivial sample spaces, there will exist an infinite number of ways to assign

probabilities to events while satisfying the three axioms. At this point, we are merely

establishing properties or rules required of any assignment of probabilities to events.
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Some of the additional basic laws of probability (which can be proved from the above

axioms) are

4. PðwÞ ¼ 0, where w is the empty set, or the impossible event. In words, an event that cannot

occur must be assigned a probability value of zero. Usually the converse is true also;

namely, if an event has a probability of zero then it cannot occur. However, that statement

is not always true. When there are an infinite number of outcomes in S, there are times

when possible (though extremely unlikely) events have a probability value of zero.

5. PðAÞ ¼ 1� PðAÞ. In words, the probability that an event does not occur is 1 minus the

probability that it does occur. Another way to look at it is that the probability of any event

plus the probability of its complement must sum to 1.

6. PðA[BÞ ¼ PðAÞ þ PðBÞ � PðA\BÞ, for any two events, A and B. This is the relation

that seems to give students trouble. The tendency is to want to add probabilities without

considering whether the events are mutually exclusive. When they are not—that is, when

there is some possibility for both A and B to occur—then you have to subtract off the

probability that they both occur.

7. PðAjBÞ ¼ PðA\BÞ=PðBÞ provided PðBÞ 6¼ 0. This ‘‘basic law’’ is, in reality, a defi-

nition of the conditional probability of an event, A, given that another event, B, has

occurred. The notation for this conditional probability is PðAjBÞ, (read as ‘‘the

probability of A given B’’).

Conditional probabilities are very important in modeling, and we will see a great

deal more of them. The notion of conditional probability conforms to the intuitive concept

of altering our estimate of the likelihood of an event as we acquire additional information.

That is, PðAjBÞ is the new probability of A after we know that B has occurred.

It is common in modeling applications to know PðAjBÞ directly but not to know

PðA\BÞ. For that reason, rule 7 often appears in the equivalent form shown in rule 8

below.

8. PðA\BÞ ¼ PðAjBÞPðBÞ. Conditional probabilities are useful only when the events

involved, A and B, have something to do with one another. If knowledge that B has

occurred has no bearing upon our estimate of the likelihood of A, we would say that the

two events are independent and write rule 9, shown next.

9. PðAjBÞ ¼ PðAÞ if and only if A and B are independent. This rule can be taken as the

formal definition of independence. Combining axioms 8 and 9, rule 10 immediately

follows.

10. PðA\BÞ ¼ PðAÞPðBÞ if, and only if, A and B are independent. Alternatively, rule 10

could be taken as the definition of independence and rule 9 would immediately follow.

Rules 7, 8, 9, and 10 are all closely related; you should see them as variations of the same

‘‘fact’’ about dependent events. You should also realize that you will rarely be given

numbers and asked to check the formulas to see whether dependence or independence

applies. Almost always, you will have to decide for yourself whether or not the events are

related, and then use the appropriate formula.

A set of events B1; B2; . . . ; Bn constitute a partition of the sample space S if they

are mutually exclusive and collectively exhaustive, that is,

Bi \Bj ¼ w for every pair i and j

and
B1 [B2 [B3 [ . . .[Bn ¼ S

In simple terms, a partition is just any way of grouping and listing all possible out-

comes such that no outcome appears in more than one group. When the experiment

1.3 Probability 5
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is performed, one and only one of the Bi will occur. It is easy to prove that with

rule 11.

11.
X

i

PðBiÞ ¼ 1 for any partition B1; B2; . . . ; Bn

12. PðAÞ ¼
X

i

PðAjBiÞPðBiÞ for any partition B1; B2; . . . ; Bn. This is one of the most

useful relationships in modeling applications. It is one expression of the so-called law of

total probability, which will be discussed in detail later in the chapter.

1.4 Random Variables

Although events may be directly assigned probabilities, more commonly the events are first

associated with real numbers, which are then in turn associated with probabilities. For example,

if the experiment involves observing the number of heads appearing when four coins are tossed,

it would be natural to associate the possible outcomes with the integers 0, 1, 2, 3, and 4. These

integers are not, in themselves, events, but the event corresponding to each value is obvious.

The function that assigns numbers to events is called a random variable. You can think of it as a

coding of the events, much like identification numbers that are used for convenience but do not

in any way alter the events themselves.

In most cases, the rule that provides the value in the range of the random variable to go

with each real-world event is so obvious that no special attention need be given to it. It is

important to realize, however, that values of random variables have probabilities associated

with them only because the values correspond to events that possess the probabilities directly.

Using random variables gives us an indirect way to refer to events.

It is interesting to note that a random variable is, technically speaking, neither random nor

a variable. It is conceptually convenient, however, to suppress all references to the real-world

events and to regard a random variable as an ordinary variable whose value is randomly

selected. In other words, once the random variable is well defined, we may speak of any value in

the range of the random variable as if it were actually the event. It makes sense, thereby, to speak

of the probability that a random variable, X, equals some particular number. (We really mean

the probability of the event having that code value.)

If the values in the range of a random variable are integers (or, more precisely, a countable

subset of the real numbers), the random variable is discrete. If the range consists of all values

over an interval of the real numbers, the random variable is continuous. A discrete random

variable could be either finite or infinite, depending on the number of values in the range. A

continuous random variable would always have an (uncountably) infinite number of possible

values, though the range could be bounded below, above, or both.

A word of caution is in order with respect to the use of the word ‘‘random.’’ Sometimes,

particularly in statistical applications, the word carries the connotation of equal likelihood. For

example, when we say, ‘‘Take a random sample,’’ we mean (among other things) that each

member of the sampled population should have an equal chance of being selected. In general,

however, the word ‘‘random’’ does not carry any such connotation.

1.5 Probability Distributions

Any rule that assigns probabilities to each of the possible values of a random variable is a

probability distribution. The term is used somewhat generally, because there are several

different ways to specify such a rule. More precise terms are used when a particular form is

intended. However it is described, the rule essentially tells you how the total probability value

of 1—that is, the amount of available probability for the entire range of possible values—is

spread over those values.

6 Chapter 1 n Probability Review
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For discrete random variables, the most obvious and commonly used method of specifying

the rule is to indicate the probability for each value separately. The function p(x), defined as

pðxÞ ¼ PðX ¼ xÞ
is called the probability distribution function, or pdf for short. (Note the different use of

uppercase and lowercase letters. Uppercase is used for names of random variables; lowercase is

used for values.) Although it is not essential, many people find it helpful to think of distributions

in graphical terms. A discrete pdf would look something like Figure 1.1.

The values along the horizontal axis of Figure 1.1 correspond to the possible values of the

random variable (which could extend to infinity in either or both directions), and the heights of

the bars indicate the values of the probabilities. The overall shape of the pdf is not important; it

could look like almost anything. The only necessary features are that the heights of the bars are

never negative and the sum of all of them add up to 1.

An alternative, equally sufficient method to specify a probability distribution is to give

the cumulative distribution function, or cdf for short, F(x), defined as

FðxÞ ¼ PðX � xÞ
A third choice would be the complementary cumulative distribution function, or ccdf for short,

G(x), defined as

GðxÞ ¼ PðX> xÞ
If any one of these—the pdf, cdf, or ccdf—is known, the others can be easily obtained in

obvious ways. For example,

FðxÞ ¼ 1� GðxÞ and pðxÞ ¼ FðxÞ � Fðx� 1Þ
Graphs of the cdf or ccdf have characteristic forms. The cdf ‘‘steps upward’’ from 0 to 1,

where the height of the step at x corresponds to the probability value at x. It can never step down

because that would imply a negative probability value, which is not allowed. So the cdf is a

monotonically nondecreasing function. The cdf for the pdf shown in Figure 1.1 would look like

Figure 1.2.

1 2 3 4 5 & F I G U R E 1 . 1 A typical pdf

54321

1.0

& F I G U R E 1 . 2 A typical cdf
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Similarly, the ccdf in Figure 1.3 ‘‘steps down’’ from 1 to 0 and must be a monotonically

nonincreasing function. Notice that, for any value of x, the cdf and ccdf sum to 1.

For continuous random variables, the situation is somewhat complicated by the fact that

range of possible values is uncountably infinite. It is not consistent with the axioms of

probability to allow each individual value to have positive probability. In fact, with the possible

exception of a countable number of points, each individual value must be assigned the

probability of zero! In contrast to the discrete case, a probability of zero does not necessarily

imply that the corresponding event is impossible; it could merely mean that any one particular

value is so unlikely, when considered next to the uncountably infinite set of alternatives, that the

probability must be negligibly small. Consequently, it is fruitless to speak of the probabilities of

particular values of random variables in the continuous case.

On the other hand, it makes perfect sense to speak of the probability that the value will fall

within some interval. In particular, the cumulative distribution function, F(x), is well defined by

FðxÞ ¼ PðX � xÞ
Also, because the probability that X will exactly equal x may be zero, it can happen that

PðX � xÞ ¼ PðX< xÞ þ PðX¼ xÞ ¼ PðX< xÞ
In other words, sometimes in the continuous case no distinction between strong and weak

inequalities, or between open and closed intervals, need be made. Of course, the distinction

must be scrupulously maintained in the discrete case or in continuous cases where some

specific values have nonzero probability.

A typical continuous cdf will look something like Figure 1.4.

From the definition, it is apparent that F(x) must have the following properties:

0 � FðxÞ � 1 for all x

lim
x!�1

FðxÞ ¼ 0

lim
x!1

FðxÞ ¼ 1

54321

1.0

& F I G U R E 1 . 3 A typical ccdf

1.0

& F I G U R E 1 . 4 A typical
continuous cdf
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and

FðyÞ� FðxÞ for any y> x

In words, the function F(x) must be bounded between 0 and 1, must approach zero at the

left extremity of its range and one at the right extremity, and must be monotonically

nondecreasing. (Actually, the last three imply the first.) Conversely, any function having

these properties will qualify as a cumulative distribution function for some continuous

random variable. Notice that although the figure shows a continuously rising function (which

is typical), there is nothing to require that property; it could take sudden steps upward at some

points.

Given the cumulative distribution function, one can easily express the probability that the

random variable will assume a value within any specified region. For example,

Pða � X � bÞ ¼ PðX � bÞ � PðX � aÞ¼ FðbÞ � FðaÞ
The complementary cumulative distribution function, G(x), defined by

GðxÞ¼PðX> xÞ
or by

GðxÞ¼ 1� FðxÞ
would also serve to describe fully the distribution. A typical continuous ccdf, as shown in

Figure 1.5, would look like the cdf turned over.

The probability density function, f(x), is a function that, when integrated between a

and b, gives the probability that the random variable will assume a value between a and b.

That is,

Pða � X � bÞ¼
ðb

a

fðxÞdx

The relation between the density function and the distribution function is direct

FðxÞ¼
ðx

�1

fðyÞÞdy

and

fðxÞ¼ d

dx
FðxÞ

Although it may not seem to be the most natural way to describe a probability

distribution, the density function is used more often than the cumulative or complementary

cumulative distribution functions. In the case of a few distributions, only the density function

1.0

& F I G U R E 1 . 5 A typical
continuous ccdf
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can be expressed in closed form; the others must be expressed as integrals of the density

function. It is important, therefore, that you learn to think in terms of density functions. One of

the first things to get straight is that the value of the density function at some point is not a

probability. The only way to get a probability from a density function is to integrate it.

The appearance of a density function is often something like Figure 1.6.

Any density function will have the properties

ð1

�1

fðxÞdx ¼ 1

and

fðxÞ� 0 for all x

The first property is a direct consequence of the definition, but the second requires a brief

argument. If f(x) were negative at any point, then there would exist two points, a and b, such that

the integral of f(x) between a and b was negative. This would imply that

Pða � X � bÞ< 0

which is impossible because probabilities cannot be negative. Therefore f(x) must be non-

negative everywhere.

Any function f(x) having the two properties mentioned above will qualify as a probability

density function for some continuous random variable. Notice, in particular, that there is no

requirement that f(x) be bounded above. The second property sometimes leads students to the

mistaken presumption that f(x) cannot exceed 1. In fact, f(x) can be much greater than 1 over a

narrow range, provided only that the integral over any interval does not exceed 1. Notice also

that there is no requirement that f(x) be continuous. Functions that are discontinuous, or

abruptly ‘‘jump’’ from one value to another, can be integrated without difficulty, provided only

that the points of discontinuity are limited in number. The method, of course, is to separate the

interval that you want to integrate into a sequence of intervals over each of which the density

function is continuous.

Although, as already noted, it is important to keep in mind that f(x) is not a probability, it

is useful in many applications to be able to substitute something involving f(x) into expressions

as if it were a probability. A generally reliable device is to think of the notation f(x)dx as

representing the probability that the random variable equals x. The dx part of the expression can

be regarded as an interval of infinitesimal width, so the product of f(x) and dx is (roughly

speaking) an area under the curve, or a probability. The presence of dx will indicate that an

integration must be performed before an exact expression can be inferred.

Although the distinction between the discrete and continuous random variable cases is

important, there are occasions when it is convenient to have a unified terminology to cover both

cases. The letters pdf may be used to refer to either the probability distribution function, in the

discrete case, or the probability density function, in the continuous case. Similarly, the letters

1.0

& F I G U R E 1 . 6 A typical
density function

10 Chapter 1 n Probability Review



c01_1 10/31/2008 11

cdf will stand for the cumulative distribution function and ccdf for the complementary

cumulative distribution function, regardless of whether they are discrete or continuous.

1.6 Joint, Marginal, and Conditional Distributions

Whenever more than one random variable is involved in a single problem, there is a possibility

that they are related. If so, it would not be sufficient to describe the probability distribution of

each random variable in isolation; the relation between or among them must also be described.

There are two methods in common use.

Suppose that two random variables, X and Y, are involved. The joint cumulative

distribution function, or joint cdf, F(x, y), is defined by

Fðx; yÞ ¼ PðX � x; Y � yÞ
Here, the comma represents the same as the intersection of the events implied by the terms. In

words, F(x, y) is the probability that X takes on a value less than or equal to x and that Y takes on

a value less than or equal to y. The same definition will suffice whether the random variables are

both discrete, both continuous, or mixed. Conceptually, the basic idea is to extend the notion of

a cumulative distribution function to two dimensions. Obviously, the same basic idea can be

used to extend the notion to higher dimensions.

If both X and Y are discrete, the joint probability distribution function is defined by

pðx; yÞ ¼ PðX¼ x; Y¼ yÞ
If both are continuous, the joint probability density function is defined by

fðx; yÞ¼ q q
q x q y

Fðx; yÞ

The latter must be integrated twice in order to obtain a probability. In particular,

Pðr � X � s; t � Y � uÞ ¼
ðs

r

ðu

t

fðx; yÞdydx

Each of these is just a two-dimensional extension of the appropriate function for single random

variables, and can be extended to higher dimensions in the obvious way. The term ‘‘joint pdf’’

will describe either function.

E X A M P L E 1 . 1

When X and Yare discrete and there are only a small number

of possible values for each, it can be convenient to express

the joint pdf in a table. For example, Table 1.1 shows a

case where X can assume any of three values and Y can

assume any of four. You read the cell entry directly to get the

joint probability for any pair of values. For example,

PðX ¼ 1; Y ¼ 10Þ ¼ 0:2.

& T A B L E 1 . 1

A Joint pdf

Y ¼ 5 Y ¼ 10 Y ¼ 15 Y ¼ 20

X ¼ 1 0.1 0.2 0 0

X ¼ 2 0 0.25 0.25 0

X ¼ 3 0 0 0.1 0.1

1.6 Joint, Marginal, and Conditional Distributions 11
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Sometimes a joint pdf for two or more random variables is given, but you want to know

the pdf for just one of the random variables. That is, you might want to make a probability

statement about, say, X, without regard to the value of Y. When both X and Y are discrete, the

marginal probability distribution function of X is obtained from the joint pdf by

pðxÞ¼
X

y

pðx; yÞ

When both are continuous, the marginal probability density function of X is given by

fðxÞ¼
ð
y

fðx; yÞdy

A marginal pdf is just an ordinary pdf, with all of the usual properties and interpretations. The

word ‘‘marginal’’ merely conveys the information that it was obtained from a joint pdf.

If you have the joint pdf in the form of a table, as in Table 1.1, you get the marginal pdf by

summing over rows or columns. For example, if you want the marginal pdf of X, you would sum

across each of the three rows. In words, the probability that X takes on the value 1 is the sum of

the probabilities that X ¼ 1 and Y takes on any of its possible values. So, you just add across the

first row to find PðX¼ 1Þ ¼ 0:3.

By symmetry, the marginal pdf of Y is obtainable from the joint pdf of X and Y by

summing or integrating over all values of X. If more than two random variables are involved in a

joint pdf, the marginal pdf for any one can be found by summing or integrating over all values of

all random variables other than the one whose marginal pdf is sought. Although it is not often

used, the marginal cdf is, if anything, even easier to obtain from a joint cdf:

FðxÞ¼ lim
y!1

Fðx; yÞ

Dealing with the cdf also has the advantage of permitting a single expression to cover both the

discrete and continuous cases.

Independence of random variables is a property deriving from independence of the

events that the random variables represent. Two random variables are independent if for all x

and all y,

Fðx; yÞ¼ FðxÞFðyÞ
or, in terms of pdfs,

pðx; yÞ¼ pðxÞpðyÞ
for discrete random variables, and

fðx; yÞ¼ fðxÞfðyÞ
for continuous random variables. When the random variables are independent—but only

then—the joint distribution can be constructed from the marginals.

Independence of random variables is an extremely important concept. Not only must

you know how to manipulate the functions in the presence or absence of the property, but you

also must judge whether the property can be reasonably assumed to hold in real-life

situations. Because the mathematical definition may not be sufficiently revealing by itself

to allow the student to grasp the concept at an intuitive level, a bit of further discussion seems

warranted. When we say that the joint distribution can be obtained simply by multiplying the

marginals, we are admitting that the joint distribution contains no more information than is

already contained in the separate descriptions of the random variables. In other words, there

is no need to account for the influence that one of the random variables might exert upon

12 Chapter 1 n Probability Review
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another. This would be true if, and only if, no such influence exists. Although the definition of

independence of random variables is very similar in appearance to the definition of

independence of events, it is actually a much stronger requirement. In order for X and Y

to be independent, it is necessary that every event associated with X be independent of every

event associated with Y.

The method of expressing joint pdfs or cdfs is just one of the ways to describe a

relationship between two random variables. The other method is based on the idea of fixing a

value for one and describing the subsequent distribution for the other. If both are discrete, the

conditional probability distribution function of X given y (a particular value of the random

variable Y) is defined by:

pðxjyÞ¼PðX¼ xjY¼ yÞ
In pðxjyÞ, x is the argument of the function and y can be regarded as a parameter. In other words,

we may insert various values of x into the function to get the probability that the random

variable equals x, but this probability will be contingent upon the value of y. Through its

definition as a conditional probability, the conditional pdf is easily related to the joint pdf by the

expression

pðxjyÞ¼ pðx; yÞ
pðyÞ provided pðyÞ 6¼ 0

An analogous function exists for continuous random variables, but cannot be defined

directly in terms of a conditional probability. The conditional probability density function of X

given Y is most simply defined in terms of the joint density function

fðxjyÞ¼ fðx; yÞ
fðyÞ provided fðyÞ 6¼ 0

This function must be integrated with respect to x in order to yield a probability; the y simply

acts as a parameter.

The conditional pdf of X given Y reduces to the marginal pdf if, and only if, X and Yare

independent. In notation,

pðxjyÞ¼ pðxÞ for all x; y

or

fðxjyÞ¼ fðxÞ for all x; y

if, and only if, X and Y are independent. These expressions are entirely consistent with our

earlier discussion of independence. If knowledge of the value of Y contributes nothing to a

probability statement involving X, it must be that X and Y are unrelated.

Whenever a conditional distribution and one marginal distribution is given, the other

marginal can be obtained. The procedure is first to obtain the joint distribution and then use that

to get the desired marginal. In the discrete case, the expressions would be

pðx; yÞ¼ pðxjyÞpðyÞ
pðxÞ¼

X
y

pðx; yÞ

Therefore,

pðxÞ¼
X

y

pðxjyÞpðyÞ

1.6 Joint, Marginal, and Conditional Distributions 13
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The analogous formula in the continuous case would be

fðxÞ¼
ð
y

fðxjyÞfðyÞdy

Both of these expressions are very useful in modeling applications.

1.7 Expectation

To describe a random variable completely requires a probability distribution in one of its

various forms. If we were to require, however, a single number that best ‘‘summarized’’ the

information contained in the distribution, we would almost certainly want to specify the

‘‘center’’ of the distribution. There are several ways to define ‘‘center,’’ but the most useful is

the expectation.

The expectation of a random variable X, denoted E(X), is defined by:

EðXÞ¼
X1
�1

xpðxÞ when X is discrete

and

EðXÞ¼
ð1

�1

xfðxÞdx when X is continuous:

The same quantity may be called the expected value of X (although this term is quite

misleading), the mean of the distribution, or the first moment of the distribution of X. All of

these terms refer to the same thing. However, it should not be confused with an arithmetic

average or a sample mean. The latter are statistical entities; we would compute them from data.

An expectation is calculated from, and is an attribute of, a probability distribution. It can be

regarded as a weighted average of the values of X, in which each possible value is weighted by

the probability of its occurrence.

Although E(X) is often called the expected value of X, one should be on guard against

‘‘expecting’’ E(X) to occur as the value of X. Indeed, when X is discrete, E(X) might not even

be a possible value of X. It is true that if the experiment for which X is defined were to be

repeated independently many times and the observed values of X were collected and averaged,

then this average would be ‘‘close’’ to E(X), in a certain probabilistic sense. However, this fact

is a theorem of statistics (one form of the Law of Large Numbers) and has little significance for

any single trial.

Typically in decision making, when one is forced to rank the options by some preference,

the expectation is the value that is compared. One can easily criticize that approach, because the

center of the distribution (or any other single value, for that matter) is a poor representation of

the full range of possibilities. However, it is usually the most practical approach, and it can be

justified at least to the extent that the expectation weights the outcomes ‘‘fairly.’’

One of the reasons that the expectation is so useful as a measure of centrality is that it has a

number of very convenient properties. For any random variable X and any constants a and b,

EðaXÞ¼ aEðXÞ
and

EðXþ bÞ¼EðXÞ þ b

14 Chapter 1 n Probability Review
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In words, both multiplicative and additive constants can be ‘‘pulled out’’ of the expectation. For

any two random variables X and Y,

EðXþ YÞ¼EðXÞ þ EðYÞ

In words, the expected value of a sum is the sum of the expected values. The same relation can

be extended to sums of more than two random variables and will hold whether or not the

random variables are independent. The fact that sums ‘‘separate’’ and constants ‘‘pull out’’ of

expressions in the obvious ways without any complications imply that the expectation is a

linear operator. It is always linear, with no additional requirements on the random variables.

(The same cannot be said for variances or other moments.)

Whenever X and Yare independent, the expected value of a product of random variables

will decompose; that is,

EðXYÞ¼EðXÞEðYÞ

but this relation does not generally hold when the random variables are dependent. We will

come to the more general case shortly.

Another convenience associated with using the expectation is the fact that the expect-

ation of an arbitrary function of a random variable is easily expressed. Let h(X) be any function

of X. Then if X is discrete,

EðhðXÞÞ¼
X

x

hðxÞpðxÞ

and if X is continuous,

EðhðXÞÞ¼
ð
x

hðxÞfðxÞdx

In other words, h(x) merely replaces x in the definition of E(X). These expressions are not a new

definition or an obvious fact, but are derived by considering a random variable Y ¼ hðXÞ and

relating the distribution of Y to the distribution of X.

A concept used repeatedly in the book is that of conditional expectation. Formally, the

conditional expectation of a random variable X given the value of a related random variable Yis

defined by

EðXjyÞ¼
X

x

xpðxjyÞ when X is discrete

and

EðXjyÞ¼
ð
x

xfðxjyÞdx when X is continuous:

The conditional expectation of X given y can be combined with the distribution of Y to

yield the unconditional expectation of X. In notation,

EðXÞ ¼
X

y

EðXjyÞpðyÞ when X is discrete

and

EðXÞ¼
ð
y

EðXjyÞfðyÞdy when X is continuous:

1.7 Expectation 15
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A concise way to express both of these is

EðXÞ¼E½EðXjyÞ�
but this form does not suggest how useful the relation is as a technique for formulating an

expression for E(X). The other forms suggest that the expectation of X can be thought of as a

weighted average of the conditional expectations of X given y, taken over all possible

conditions y, with each possible EðXjyÞ weighted according to the probability of occurrence.

We will discuss this relation further in Section 1.9, ‘‘The Law of Total Probability,’’ page 18.

1.8 Variance and Other Moments

After you know something about the central location of a distribution, most commonly

expressed as an expectation, the next most valuable summary information would be about the

spread or dispersal of the values that the random variable takes on. You could use the range (the

interval between the highest and lowest value) if it is finite, or any of several other ways to

measure the spread. But the most common measure is the variance, or its square root, the

standard deviation. Computing it involves what may seem to be a nasty calculation, but the

properties justify the definition.

The nth moment of a random variable is defined as the expectation of the nth power of the

random variable. Since Xn is just a special case of a function of X, the nth moment can be

expressed as

EðXnÞ¼
X

x

xnpðxÞ when X is discrete

and

EðXnÞ¼
ð
x

xnfðxÞdx when X is continuous:

The first moment is, of course, the expectation. The nth central moment or the nth moment

about the mean is defined as

Eð½X� EðXÞ�nÞ¼
X

x

½x� EðXÞ�npðxÞ when X is discrete

and

Eð½X� EðXÞ�nÞ¼
ð
x

½x� EðXÞ�nfðxÞdx when X is continuous:

In words, it is the expectation of the nth power of the random variable after it has been ‘‘shifted’’

by subtracting the expectation.

After the expectation, the next most important single number used to summarize

distributions is the second moment about the mean, more commonly known as the variance.

Denoting the variance of X by V(X),

VðXÞ¼
X

x

½x� EðXÞ�2pðxÞ when X is discrete

and

VðXÞ¼
ð
x

½x� EðXÞ�2fðxÞdx when X is continuous:
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In both the discrete and continuous case, the variance can be shown to equal the second moment

minus the expectation squared. That is,

VðXÞ ¼ E½X2� � EðXÞ2

This form is often more convenient to use in algebraic manipulations. Of course, if you have

the expectation, it is easy to convert between the variance and the second moment in either

direction.

The variance, being defined as a weighted average of the squared deviations from the

expectation, is a measure of the spread, or dispersion, of a probability distribution. One of the

objections to its use for this purpose is that the units are not those of X but of X2. The standard

deviation, defined as the square root of the variance, overcomes this objection. We conven-

tionally use a lowercase sigma for standard deviations, so the definition would be

sX¼
ffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p
It is usually a little easier to work with variances than with standard deviations (just because

they avoid the square root), but there are certainly times when the standard deviation is more

meaningful. Either is a simple one-to-one transformation of the other, so they both convey the

same information.

Sometimes we may want to express the relative amount of variation in a random

variable, rather than an absolute measure. For example, suppose we had two random variables

X and Y, which are measured on different scales (say meters and kilograms), and we wanted to

say which was more variable than the other. It would make no sense to compare the variances or

even the standard deviations, because the dimensional units (meters and kilograms) are not

consistent.

One way to express a relative measure of variability is the coefficient of variation, defined

as the ratio of the standard deviation to the mean,

CX¼
sX

EðXÞ
This is a dimensionless value because the units in the numerator and denominator cancel out. A

value close to zero would mean that the standard deviation is much less than the mean, and a

value greater than one (or less than�1) would mean that the standard deviation is more than the

mean. The standard deviation is always positive, but the mean could be negative, so the

coefficient of variation could take on a negative value. However, the interpretation of relative

variation would be same.

The properties of variances, standard deviations, and coefficients of variation are not so

obvious as those of expectations. Whereas the behavior of expectations conforms to what

intuition would suggest, considerable care must be exercised in dealing with the others. The

rules for dealing with multiplicative and additive constants are

VðaXÞ ¼ a2VðXÞ
and

VðXþ bÞ¼VðXÞ
In words, a multiplicative constant can be ‘‘pulled out’’ of a variance, but must be squared; an

additive constant can be ‘‘dropped out.’’ When considering a sum of random variables, the

variance of the sum will be the sum of the variances, if the random variables are independent.

For two independent random variables X and Y,

VðXþ YÞ¼VðXÞ þ VðYÞ

1.8 Variance and Other Moments 17
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On the other hand, if the random variables are dependent, this relation will not generally hold.

The correct expression for the general case requires another definition.

Given two random variables X and Y, the covariance of X and Y is defined by

COVðX; YÞ¼Eð½X� EðXÞ�½Y� EðYÞ�Þ
but this expression can be shown to equal

COVðX; YÞ¼EðXYÞ � EðXÞEðYÞ
It will be recalled that when X and Yare independent, EðXYÞ¼EðXÞEðYÞ, so the covariance

of independent random variables is zero. The converse does not always hold; that is, the mere

knowledge that the covariance of random variables is zero would not be enough for one to

conclude that they are independent. Indeed, examples can be constructed of dependent random

variables for which the covariance equals zero. On the other hand, a nonzero covariance

definitely implies a relationship between the random variables, so the covariance is used as a

(somewhat imperfect) measure of the degree of dependence. Another related measure of

dependence is the correlation coefficient between X and Y, usually denoted by r, (lowercase

Greek letter rho), which is defined as

r¼ COVðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞVðYÞ

p
Returning to the variance of a sum of random variables, the general equation for two

random variables is

VðXþ YÞ¼VðXÞ þ VðYÞ þ 2COVðX; YÞ

1.9 The Law of Total Probability

There is an extremely useful equation relating conditional probabilities, sometimes called

the law of total probability. We will also refer to the concept as ‘‘conditioning,’’ because it is

a common way to develop expressions that are helpful in computations of either proba-

bilities or expected values. That is, when we are faced with the need to find a complicated

probability or expectation, we ‘‘condition’’ on some other random variable to simplify the

task. This is a very important idea—it is probably not exaggerating to call it the key idea in

stochastic processes—so you should be sure that you understand what is going on. It will

not be enough to remember a formula, because the notation will change with the circum-

stances. You must understand the idea and adapt the notation to whatever situation you are

in when you need to use it.

You have already seen it in one form, back in relation 12 on page 6. It was

PðAÞ¼
X

i

PðAjBiÞPðBiÞ for any partition B1; B2; . . . ; Bn

Another form, expressed in terms of discrete random variables, would be

PðX ¼ xÞ¼
X

y

PðX ¼ xjY ¼ yÞPðY ¼ yÞ

or, with shortened notation,

pðxÞ¼
X

y

pðxjyÞpðyÞ

The same relation for continuous random variables would be

fðxÞ¼
ð
y

fðxjyÞfðyÞdy
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Both of these expressions also appeared earlier in the chapter. There can be a lot of variations in

the way the law appears, but they are all based on the same idea.

E X A M P L E 1 . 2

Here is the thinking you go through: Suppose, to take a

concrete example, that we need to find the probability of

some event A. Suppose further that the situation is too

complicated to know P(A) directly, but we could know

the probability of A if we knew which of a number of

possible conditions held. That is, we know the conditional

probabilities PðAjBiÞ for a set of mutually exclusive,

collectively exhaustive conditions, Bi. It would make some

sense to ‘‘average’’ these various possible values for the

probability of A. But if the conditions Bi, are not all equally

likely, the various PðAjBiÞ should not be given equal weight

in the average; each should be weighted according to the

probability that the condition Bi does in fact hold, or P(Bi).

This logic produces relation 12.

Another way to see the relation is to imagine breaking the event down into a set of

alternative possibilities, as shown in Figure 1.7. (This is something like a decision tree.)

Assuming that we have some way to get the separate conditional probabilities, all we have to do

is to weight the branches by the probabilities that the separate conditions hold—the P(Bi). Of

course, the related Bi events must be such that one and only one of them will hold, which

corresponds exactly to the requirement that they form a partition.

The reason that the conditioning argument is so useful in the context of stochastic

processes is that the events we condition upon—the events indicated by Bi—are events that

happen sometime before A in the progress of time. For example, we can often say something

about the probability of A if we know what happened just before.

A very similar idea can be used to find expected values. You have seen some expressions of

the idea under conditional expectations, but let’s frame the issue in more intuitive terms here. Faced

with the problem of expressing E(X), for some random variable X, one might try to find another

random variable, Y, whose distribution is known or can be found, and which has the property that

when the value of Yis specified, the expectation of X is easy to obtain. Usually, however, our use of

the concept will be such that the conditional expectation may be known directly.

E X A M P L E 1 . 3

For example, suppose that we are interested in an inventory

problem and X represents the number of units of some

product sold during a specified period. If Y represents the

number of customers who purchase some number of units

during the period, and if the expectation of the number of

units purchased is the same for each customer, say 3.6 units,

P(A)

P(A|B1)

P(A|B2)

P(A|B3)

P(A|Bn)

P(Bn)

•

•

•

P(B1)

P(B2)

P(B3)

& F I G U R E 1 . 7 Decomposing an event
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then the conditional expectation of the number of units sold

given that the number of customers is y would be 3.6y, for

any y. That is, we obtain

EðXjyÞ ¼ 3:6y

without having to use the conditional probability

distribution pðXjyÞ. The details of the logic involved

are probably unnecessary, but just to verify rigorously

that the result is correct, we may argue as follows: The

number of units sold, X, is the sum of the amounts sold

to each individual customer. If the number of cus-

tomers is specified to be y, then X will consist of the

sum of y random variables. The expectation of a sum

is the sum of the expectations; if each of these is the

same, namely 3.6, the sum of y of them is 3.6y.

Once we have the conditional expectations, we put them together in the obvious way,

namely, by taking a weighted sum, where the weights are the probabilities for the respective

values of y. In notation, this expression is

EðXÞ¼
X

y

EðXjyÞpðyÞ

which is the expression shown earlier for conditional expectations.

Again, in the context of stochastic processes, the typical use of the conditioning argument

is to condition on events at some prior time. You will see the idea applied numerous times over

the next few chapters.

1.10 Discrete Probability Distributions

There is an infinite variety of functions that satisfy the requirements to be probability

distributions. Only a few occur so commonly that they have been given names. In statistical

applications, you will almost always find yourself using named distributions (for example,

Normal, Student’s t, F), but in real-world modeling applications you will more frequently

construct distributions that are unnamed. Here we will mention just a few of the most

commonly used distributions.

The Discrete Uniform Distribution

When a random variable X has only a finite number of possible values, each of which can occur

with equal likelihood, the distribution is called discrete uniform. Without serious loss of

generality, we may assume that the range of X is x ¼ 1; 2; . . . ; N; in which case the probability

distribution function is

pðxÞ¼ 1

N
for x¼ 1; 2; . . . ; N

When X has this range, the mean and variance are

EðXÞ¼ Nþ 1

2

and

VðXÞ¼ N2 � 1

12

Of course, a shift or scaling of the range of X will have a corresponding effect upon the pdf,

mean, and variance. In any case, the pdf is just 1 divided by the total number of possible values,

for each value, and the expectation falls at the midpoint of the range.
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Although it has many uses, the discrete uniform distribution is not so important as it is

frequently thought to be by beginners in probability. Elementary textbooks often give so much

emphasis to combinatorial probability—using permutations and combinations to count the

number of ways that events could occur and using these counts (together with the assumption of

equal likelihood) to form probabilities—that it is easy to develop a concept of probability

theory that is limited to this one special case. It is important to realize that the discrete uniform

distribution is just one of many useful distributions.

The Bernoulli Distribution

If a random variable must assume one of two values (usually, but not always 0 or 1), it is said to

be a Bernoulli random variable. The corresponding experiment, which has only two possible

outcomes, is called a Bernoulli trial. Usually the outcome that is mapped by the random

variable onto the value 1 is called a success and the other is called a failure. The distribution is

given by

pð1Þ¼ p

and

pð0Þ¼ 1� p or q

where p is the only parameter of the distribution, often referred to as the ‘‘probability of

success.’’ (Note that the p on the left is a pdf, while the p on the right is a parameter.) The mean

of a Bernoulli defined on 0 and 1 is p. The variance is pq.

The distribution may seem so trivial as to be undeserving of special attention. Although it

is true that direct applications are limited, it turns out that a number of more important

distributions can be derived from considering a sequence of independent Bernoulli trials. We

will return to this subject after we see some more distributions.

The Binomial Distribution

Let X be a discrete random variable defined over the range x ¼ 0; 1; 2; . . . ; n. If

pðxÞ¼
�

n

x

�
pxð1� pÞn�x

then we say that X has a binomial distribution with parameters n and p, where n is a positive

integer and 0 � p � 1. The notation �
n

x

�

refers to the so-called binomial coefficient defined by�
n

x

�
¼ n!

x!ðn� xÞ!
A binomially distributed random variable usually can be thought of as counting the

number of successes in a sequence of n independent Bernoulli trials, where the probability of

success on any trial is p. Tables of binomial coefficients and the binomial distribution are

readily available.

The expectation, or mean number of successes, for a binomial is np. The variance is

npð1� pÞ.
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The Poisson Distribution

Let X be a discrete variable defined over the range x ¼ 0; 1; 2; . . . ; 1. If

pðxÞ ¼ lxe�l

x!
for x ¼ 0; 1; 2; . . .

then we say that X has a Poisson distribution with parameter l, where l must be positive. The

Poisson distribution has a number of convenient properties that contribute to its usefulness in

modeling. The expectation and variance are equal to one another, and are given simply by the

parameter of the distribution:

EðXÞ¼VðXÞ¼ l

The distribution is reproductive; that is, the sum of independent Poisson distributed

random variables will be another Poisson distributed random variable. The parameter of

the sum random variable will be just the sum of the parameters of the constituent random

variables.

One of the common usages of the Poisson distribution is as an approximation to the

binomial distribution when the number of trials (n) becomes large while the probability of

occurrence (p) becomes small. All that is required for the approximation is to give the two

distributions the same expectation. That is, let l ¼ np.

Another common use of the Poisson distribution is to describe the number of events

occurring within some period of time. In this context, it is the usual practice to use lt as the

parameter of the distribution, where t is interpreted as the length of the period and l is now the

mean ‘‘rate’’ at which events occur. The Poisson process and its properties will be discussed in

some detail in Chapter 6.

The Geometric Distribution

There are two common versions of the geometric distribution. If X is defined over the range

x ¼ 1; 2 . . . ; 1 and has the pdf

pðxÞ¼ pð1� pÞx�1
for x¼ 1; 2; 3; . . . ; 1

where 0 � p � 1, we would say that X has the geometric distribution beginning at 1. If it is

defined over the range x ¼ 0; 1 . . . ; 1 (that is, starting at zero rather than 1)

and

pðxÞ¼ pð1� pÞx for x¼ 0; 1; 2 . . . ; 1

we would say that X has the geometric distribution beginning at zero. It is apparent that one

version is just a shifted version of the other, and that other shifts could be made without altering

the form of the distribution. Both of these versions appear in applications and are easily

confused.

The expectations and variance for the geometric distribution beginning at 1 are,

respectively,

EðXÞ¼ 1

p

and

VðXÞ¼ 1� p

p2

When the distribution begins at zero, the variance is the same, but the expectation is ð1� pÞ=p.
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A possible interpretation of X, when it begins at 1, is as the number of trials in a sequence

of independent Bernoulli trials that will occur before the first success is observed. More

precisely, it is the number of the trial on which the first success occurs. If X begins at zero, it

could be thought of as counting the number of failures before the first success. In either case, X

counts trials, so the geometric distribution is often regarded as a waiting-time distribution. One

should not confuse this interpretation of the geometric distribution with that of the binomial

distribution. The latter fixes the number of trials and counts successes.

The Negative Binomial Distribution

Let X be a discrete random variable defined over the range x¼ k; kþ 1; . . . ; 1. We would say

that X follows a negative binomial distribution if

pðxÞ¼
�

x� 1

k� 1

�
pkð1� pÞx�k

for x ¼ k; kþ 1; . . . ; 1

where k is an integer >1 and 0 � p � 1 Another name for the same distribution is the

Pascal distribution. When k¼ 1, the distribution reduces to the geometric. The expectation

and variance are

EðXÞ¼ k

p

and

VðXÞ¼ kð1� pÞ
p2

The explanation for this distribution just extends that of the geometric. X represents the

number of the trial, in a sequence of independent Bernoulli trials, on which the kth success

occurs. Thus the negative binomial distribution is another waiting-time distribution. Thinking

of X in this way suggests that the waiting time for the kth success ought to be the sum of k

waiting times for the one success. Because the trials are independent, this logic is valid. It is a

fact that the sum of k independent geometrically distributed random variables will yield a

random variable whose distribution is negative binomial with parameter k.

Sometimes the negative binomial distribution is used without any waiting-time inter-

pretation, but simply because the parameters can be adjusted so as to fit a set of data. In this case,

it may be desirable to have the range of X begin at zero, rather than k. If so, the appropriate pdf

would be

ðxÞ¼
�

kþ x� 1

x

�
pkð1� pÞ for x¼ 0; 1; 2; . . . ; 1

The variance would be the same, but the expectation would be kð1� pÞ=p.

1.11 Continuous Probability Distributions

The Continuous Uniform Distribution

When a continuous random variable X is restricted to a finite range a � x � b and is such that

‘‘no value is any more likely than any other,’’ then X would be appropriately described by the

continuous uniform distribution. It is the obvious analog of the discrete uniform distribution,

which restricted the random variable to a finite number of equally likely values. The

1.11 Continuous Probability Distributions 23



c01_1 10/31/2008 24

description, ‘‘no value more likely than any other,’’ is somewhat loose, because, of course, the

probability of any one value for a continuous random variable is zero. A better, although less

intuitive, description would be, ‘‘the probability that x falls within any interval in the range of X

depends only on the width of the interval and not on its location.’’

In any case, the distribution is rigorously defined by its probability density function:

fðxÞ¼ 1

b� a
for a � x � b

The expectation is at the midpoint of the range,

EðXÞ¼ aþ b

2

and the variance is

VðXÞ¼ ðb� aÞ2

12

The Normal Distribution

Easily the most important continuous probability distribution, the normal distribution has been

useful in countless applications involving every conceivable discipline. The usefulness is due

in part to the fact that the distribution has a number of properties that make it easy to deal with

mathematically. More importantly, however, the distribution happens to describe quite

accurately the random variables associated with a wide variety of experiments.

The range of a normally distributed random variable consists of all real numbers. The

probability density function is defined by the equation

fðxÞ¼ 1

s
ffiffiffiffiffiffi
2p
p e�

ðx�mÞ2

2s2 for �1 � x � 1

where the parameter m is unrestricted and the parameter s is positive.

The two parameters m and s used to specify the distribution happen to correspond to the

mean and standard deviation, respectively, of the random variable. Any linear transformation

of a normally distributed random variable is also normally distributed. That is, if X is normal

with mean m and variance s2, and if Y¼ aXþ b, then Y is normally distributed with mean

EðYÞ¼ amþ b

and with variance

VðYÞ¼ a2s2

The significance of these facts is that every normal distribution, whatever the values of

the parameters, can be represented in terms of the standard normal distribution, which has a

mean of zero and variance of 1. The linear transformation required to convert a normally

distributed random variable X with mean m and variance s2 to the standard normal random

variable Z is

Z¼ X� m

s

The density function of the standard normal random variable is just

fðzÞ¼ 1ffiffiffiffiffiffi
2p
p e

�z2

2
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Unfortunately, an integral of the density function cannot be evaluated by ordinary

methods of calculus, so there is no closed form expression for it, other than as an integral of the

density function. However, extensive tables of the cumulative distribution function are

available. Once you become familiar with the tables, virtually any desired probability can

be evaluated with little trouble.

The normal distribution is reproductive; that is, the sum of two or more normally

distributed random variables is itself normally distributed. The mean of the sum is, as always,

the sum of the means. The variance of the sum is the sum of the variances, provided that the

random variables are independent. Even if they are not, the variance of the sum can be

expressed in terms of the variances and covariances of the constituents.

An even more remarkable result is established by the famous central limit theorem,

which states that (under certain broad conditions) the sum of a large number of independent

arbitrarily distributed random variables will be (approximately) normally distributed. Since

quite frequently a random variable of interest may be conceptualized as being composed of a

large number of independent random effects, the central limit theorem explains why the normal

distribution appears so often in real-life applications. It also provides justification for assuming

that certain random variables are normally distributed.

The Negative Exponential Distribution

Let X be a continuous random variable defined over the range 0 to 1. If

fðxÞ¼ le�lx for x� 0

where the parameter l is positive, we say that X has the negative exponential distribution or,

sometimes, just the exponential distribution. The cumulative distribution function has, in this

case, a convenient expression

FðxÞ ¼ 1� e�lx

The complementary cumulative distribution function is even simpler:

GðxÞ¼ e�lx

The expectation of a negative exponentially distributed random variable is the reciprocal

of the parameter

EðXÞ¼ 1

l

and the variance is the square of the same value

VðXÞ¼ 1

l2

The negative exponential distribution is used extensively to describe random variables

corresponding to durations. In other words, it is a waiting time distribution. It has a number of

useful properties, but since these are explored fully in Chapter 6, no further discussion need be

included here.

The Erlang-k Distribution

A continuous random variable defined over the range x� 0 is Erlang-k distributed if its density

function is of the form

fðxÞ¼ lkxk�1

ðk� 1Þ! e�lx for x� 0
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where the parameter l is positive and k is an integer �1. When k¼ 1 the density function

reduces to that of a negative exponential distribution, so the Erlang-k distribution can be

thought of as a generalization of the negative exponential. In fact, if we had k independent

negative exponential random variables, each with the parameter l, then the sum of these

random variables would be Erlang-k distributed with parameters l and k. If each of the negative

exponential random variables is a waiting time, the Erlang-K random variable can be thought of

as the time until the kth event.

The expectation is most easily found as the sum of the expectations of the negative

exponential random variables

EðXÞ¼EðX1 þ X2 þ . . .þ XkÞ

EðXÞ¼E
1

l
þ 1

l
þ . . .þ 1

l

� �

EðXÞ¼ k

l

and the variance is found by a similar argument

VðXÞ¼ k

l2

In addition to its use as a waiting time for the kth event, the Erlang-k distribution is often

considered as a candidate to fit empirical data in queueing, reliability, inventory, and replace-

ment applications. In this case, k has no physical interpretation; it is just a parameter that may

be adjusted to obtain a better fit.

There are many other distributions that are not summarized here: the hypergeometric,

student’s t, Chi-square, Raleigh, Pearson, Beta, and Gamma, to name a few. All of them have

practical uses, but this chapter has focused on just those that will come up in later chapters of

this book. You may want to make a table of them for your own reference.

1.12 Where Do Distributions Come From?

The common distributions—the ones that have names—are used often because they are

relatively simple and fit certain situations. In most cases, they were derived from assumptions

(rather than from statistical observations). For example, when you assume that every outcome

in a finite sample space has equal likelihood, you get the uniform distribution. When the

assumption of equal likelihood makes sense, you can use the uniform distribution. In other

circumstances, other assumptions and therefore other distributions fit the situation better. To

become a good modeler, you have to learn which assumptions go with which distributions, so

that you can make logical selections. All other things being equal, you would like to pick a

distribution that is easy to work with—one that has only a few parameters, that has a convenient

functional form, and that has desirable properties. However, you cannot pick an easy one if the

required assumptions do not fit the situation.

If you do not know very much about a particular random phenomenon, one would

ordinarily attempt to acquire data representing a large number of independent samples of the

random variable one has in mind. Sometimes, of course, the acquisition of adequate data may

be economically infeasible or even physically impossible. In these cases, there may exist

theoretical justification for believing that a certain distribution family is appropriate. For

example, if the phenomenon can be thought of as the number of successes in a sequence of

independent Bernoulli trials, a binomial distribution would be appropriate; if it can be thought
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of as consisting of the sum of a large number of independent random variables, the central limit

theorem would suggest the normal distribution. On other occasions, the choice of distribution is

influenced by a need for particular mathematical properties.

Preferably, however, one would like to have real-world data to provide assurance that

the distribution selected really does describe the real-world phenomenon. Because it is

difficult to see any pattern in a raw list of values, one would ordinarily plot a histogram as a

first step in identifying an appropriate distribution. The next step, that of selecting one or

more candidate distribution types, requires a familiarity with the characteristics of various

distribution families. In particular, one has to know what ‘‘shapes’’ a pdf is capable of

assuming, in order to decide whether there is any hope of adjusting the parameters to get a pdf

that looks like the histogram. A Guide to Probability Theory and Some of Its Applications, by

C.L. Derman et al. (referenced on page 29) provides especially good descriptions of all of the

distribution types summarized only briefly here, as well as a number of others that have not

even been mentioned. It also provides guidance on how to fit each distribution to particular

data, and gives examples.

Once a distribution type is at least tentatively selected, the next problem is to set values

for the parameters that fix the distribution within the family. Unless other external factors

intervene, one would usually use the data to estimate, in the formal statistical sense, values for

the parameters. In a few cases, the statistics to use are obvious. For example, the parameter l in

a Poisson distribution is estimated by the sample mean, and m and s2 in a normal distribution

are estimated by the sample mean and sample variance, respectively. In other cases, however,

the appropriate statistic is not so obvious. The Derman et al. book also is useful in providing this

kind of information.

After the parameters are adjusted so as to provide the best fit to the data that a

selected distribution type can provide, one is still left with the question of whether the fit is

good enough. In other words, you should validate your model by checking the goodness of

fit. As a bare minimum, you could graph the precise pdf over the histogram (using vertical

scales that permit comparison), and observe the discrepancies. A more formal procedure

would be to perform any of several available statistical tests for goodness of fit. The chi-

square and the Kolmogorov-Smirnov goodness-of-fit tests are probably the best known.

Descriptions of these two tests can be found in almost all intermediate-level statistics

textbooks.

One of the basic points to bear in mind about statistical goodness-of-fit testing is that the

null hypothesis assumes that the candidate distribution is correct. Only if the discrepancies

between the data and the candidate distribution are significantly large will the test cause you

to reject the candidate. In other words, the test is, by its very nature, biased in favor of

whatever distribution you have selected to test. The mere fact that the test does not reject the

distribution should not be taken as strong evidence that the selected distribution is correct.

Others might have selected different distributions and come up with just as much con-

firmation that their choices were correct. This is particularly likely to occur when the data

base is small.

The word to describe the capability of a statistical test to detect that a null hypothesis is

false is power. Other factors being equal, a greater amount of data will make for a more

powerful test. To obtain a very powerful test, however, may require truly enormous quantities of

data—orders of magnitude greater than would be required for good hypothesis tests about

parameters. It is easy to see why this is so if you think about how many total observations are

required to provide enough information about the ‘‘tails’’ of a distribution to ensure that you

have obtained a proper fit.

As a final philosophical point, it is well to keep in mind that no amount of data can

confirm absolutely that you have selected the correct distribution. Ultimately, (and this is

the main point of this discussion) there is no escape from having to make assumptions. On
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the other hand, remember that there is no need for a model to be perfect. It only has to be

adequate to be useful.

1.13 The Binomial Process

There is a very simple stochastic process that we can begin our study with. It is really too simple

to do very much with, but it relates several of the discrete distributions to one another and may

help to set the stage for more practical extensions.

We obtain the process by assuming we have a continuing sequence of independent

Bernoulli trials. That is, on any one trial we have only two possible outcomes, called success

and failure. We can get that random variable from any sample space by considering any event

and its complement. For example, we could say that something happens (success) or it does

not (failure). Then we imagine repeating the same experiment and keeping a running total

of the number of successes. We could graph the results from any sequence on a chart like that

in Figure 1.8. Each time there is a success, the count steps up by one; for each failure, the

count remains level. (In Figure 1.8, we had three failures followed by two successes, and so

forth.)

We call this sequence a binomial process, not to be confused with a binomial

distribution. Of course, there is a connection. If, in advance of observing a binomial process,

we specify some fixed number of trials we are going to run, n, and ask for the distribution of

the total number of successes we will experience, that random variable will have a binomial

distribution. (Go back and read the definition if you do not see why.) But we could also look at

the binomial process in some other ways to get different random variables with different

distributions. If we start the process and ask for the number of trials until the first success, we

get a geometrically distributed random variable. (Again, make sure you understand why.) Or,

if we want to reach a certain number of successes, say k, and ask how many trials that will

take, we get a negative binomial random variable. We can even get Poisson or normal random

variables if p is small and n is large. The distribution you get depends upon what question you

are asking, even though the underlying process—the sequence of independent Bernoulli

trials—is the same.

The binomial process is an elementary example of a stochastic process. It tracks the

(uncertain) progress of a variable over time. Although it is useful for some simple things, it is

limited by two constraints: the trials must be independent, and we can only increment the

variable by one (or zero) unit for each time step. By the end of the next chapter, we will be able

to fully escape from both of those constraints and have a much more useful class of stochastic

processes.

C
ou

nt
 o

f 
su

cc
es

se
s

Count of trials

& F I G U R E 1 . 8 A binomial process

28 Chapter 1 n Probability Review



c01_1 10/31/2008 29

1.14 Recommended Reading

If any of the topics mentioned in this chapter seems hazy, or if you would just feel more

confident about proceeding if you work some problems, you should by all means devote some

time to an elementary textbook on probability. There are many fine ones available. Unfortu-

nately for the purposes of this book, the orientation of many beginning texts leans toward

statistical, as opposed to modeling, applications. Also, the more recent textbooks tend to be

encyclopedic in coverage, rather than concisely focused on the most important introductory

topics. However, any of the older books by Clarke (1), Cramer (2), Drake (4), or Meyer (10),

should serve the purpose adequately. If one does not suit your taste, feel free to select another.

These older books are out of print, but can be found in the library. Feller’s two volumes, (5) and

(6), are classics familiar to everyone seriously interested in probability. Even beginners can find

much of interest in them. The first volume deals with discrete distributions; the second, with

continuous distributions. If you want to buy an inexpensive book, some of the Dover

paperbacks (7), (8), and (12) are reprints of excellent older textbooks.

1. Clarke, B., and R. Disney, Probability and Random Processes for Engineers and

Scientists. Wiley, New York, 1970.

2. Cramer, H., The Elements of Probability Theory and Some of Its Applications. Wiley,

New York, 1955.

3. Derman, C., L. J. Gleser, and I. Olkin, A Guide to Probability Theory and Application.

Holt, Rinehart, and Winston, New York, 1973.

4. Drake, A. W., Fundamentals of Applied Probability Theory. McGraw-Hill, New York,

1967.

5. Feller, W., An Introduction to Probability Theory and Its Applications, vol. I, 2nd ed.

Wiley, New York, 1957.

6. Feller, W., An Introduction to Probability Theory and Its Applications, vol. II. Wiley,

New York, 1966.

7. Freund, John E., Introduction to Probability. Dover, New York, 1973.

8. Goldberg, Samuel, Probability: An Introduction. Dover, New York, 1960.

9. Hsu, Hwei, Probability, Random Variables, and Random Processes. Schaum’s Outlines,

McGraw-Hill, New York, 1997.

10. Meyer, P. L., Introductory Probability and Statistical Applications, Addison-Wesley,

Reading, MA, 1965.

11. Parzen, Emanuel, Modern Probability Theory and Its Applications. Wiley. New York,

1960.

12. Pfeiffer, Paul E., Concepts of Probability Theory. Dover, New York, 1978.

13. Ross, Sheldon M., A First Course in Probability. Macmillan, New York, 1976.

Chapter 1 Problems

Note: This chapter is a review of material you should
have learned before. The following problems are designed
to test your understanding of basic probability concepts
and rules and to help you assess your readiness for the course.
If any of them give you trouble, you should immediately
begin remedial work, using some more complete introductory
probability textbook.

Sets and Basic Rules of Probability

1. Imagine an experiment in which one student is selected
at random from among all currently enrolled students in this
university. Let A be the event that the selected student is
classified as enrolled in engineering (one of the engineering
schools), and let B be the event that the same selected student is
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currently enrolled in this class. Express in set notation the
following events,

a. The student is not in engineering.

b. The student is in engineering and in this class.

c. The student is not in engineering but is in this class.

d. The student is not in engineering and is not in this class.

e. The student is either in engineering or is in this class.

f. The student is either in engineering or in this class, but
not both.

2. A new television show has been prepared, but has not yet
been broadcast. Let A be the event that, after the first appear-
ance, it gets good reviews by critics. Let B be the event that it is
popular with the public. Let C be the event that it is liked by
advertisers. Express in set notation the following events.

a. The show is liked by critics, the public, and advertisers.

b. Critics do not like the show, but it is popular with the
public and advertisers.

c. Critics and advertisers like the show, but the public does
not care for it.

d. None of the three target audiences likes the show.

3. Suppose there are five horses in a horse race. Describe
three different sample spaces for the outcomes of the race,
depending upon your interest:

a. You bet on a single horse and care whether you win or
lose.

b. You care which of the five horses wins.

c. You care about which horses come in first, second, and
third.

4. Suppose that an experiment has five possible outcomes,
which are denoted {1, 2, 3, 4, 5}. Let A be the event {1, 2, 3}
and let B be the event {3, 4, 5}. (Notice that we did not say that
the five outcomes are equally likely; the probability
distributions could be anything.) For each of the following
relations, tell whether it could possibly hold. If it could, give a
numerical example using a probability distribution of your
own choice; if it could not, explain why not (what rule is
violated).

a. PðAÞ¼PðBÞ
b. PðAÞ¼ 2PðBÞ
c. PðAÞ¼ 1� PðBÞ
d. PðAÞþPðBÞ> 1

e. PðAÞ � PðBÞ < 0

f. PðAÞ � PðBÞ> 1

5. The sample space of a particular experiment is given by
S ¼ f0; 1; 2; 3; 4; 5g. Let three events be defined as A ¼ f0;
1; 2g; B ¼ f0; 2; 4g, and C ¼ f1; 3; 5g. Assume that the
probabilities of A, B, and C are given, but no further information
is available. (Note, in particular, that we are not assuming equal
likelihood for the elementary outcomes.) Express the proba-
bilities of as many of the following events as you can.

a. A\B

b. B[C

c. A

d. B\C

e. ðA\BÞ [C

6. Prove relation 4 on page 5 using only the axioms 1, 2, and
3, and the rules of set theory. (This is just an exercise in set
theory, not a complicated proof.)

7. Prove relation 5 on page 5 using only the axioms 1, 2, and
3, and the rules of set theory. (This is just an exercise in set
theory, not a complicated proof.)

Joint and Conditional Probabilities
and Independence

8. For each of the following pairs of events, categorize them
as independent or dependent and explain your choice.

a. Rain today, rain tomorrow.

b. Rain today, rain one month from today.

c. Rain one year ago today, rain today.

d. Receiving the grade of A in an introductory probability
course; receiving grade of A in this course (same
person).

e. Receiving the grade of A in freshman-level physics;
receiving same grade in this course.

9. If two events are known to be mutually exclusive, could
they also be independent? Could they be dependent? If they are
known to be independent, could they also be mutually exclu-
sive? Could they be not mutually exclusive? If they are not
mutually exclusive, could they be independent? Could they be
dependent? If they are not independent, could they be mutually
exclusive? Is is possible that dependent events could be not
mutually exclusive? (Some of these questions are actually the
same question, expressed in different words. The questions are
meant to help you get the distinctions straight in your mind.)

10. If A, B, and C are events, and we know that the pair A
and B are independent, and that B and C are independent, can we
conclude that A and C are independent?

11. A graduating senior seeking a job has interviews with
two companies. After the interviews, he estimates that his
chance of getting an offer from the first company is 0.6. He
thinks he has a 0.5 chance with the second company, and that the
probability that at least one will reject him is 0.8. What is the
probability that he gets at least one offer?

12. About 10 percent of the population is left-handed. Of
those who are right-handed, about 40 percent own dogs. If you
were to select a person at random, what is the joint probability
that the chosen person is a right-handed and does not own a dog?

13. If A and B are two events, with neither being empty sets
or the entire sample space, prove that if PðAjBÞ>PðAÞ then
PðBjAÞ < PðBÞ.

Distributions

14. Here is a table giving the joint distribution of two
random variables X and Y.

What is the conditional probability PfY ¼ 6jX ¼ 2g?

XY 1 2 3 4 5

2 0.10 0.05 0.15 0.10 0.10

4 0.04 0.02 0.06 0.04 0.04

6 0.04 0.02 0.06 0.06 0.02

8 0.02 0.01 0.03 0 0.04
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15. Using the same joint distribution as shown above, are X
and Y independent? (Give a yes or no answer, and explain why
or why not.)

16. Using the same joint distribution as shown above, give
the marginal distribution of Y.

17. Using the same joint distribution as shown above, what
is the covariance of X and Y?

18. Suppose that the density function of a continuous
random variable is fðxÞ ¼ 2x, for values of x in the range [1,
a] and fðxÞ ¼ 0 elsewhere. What is the value of a?

19. Suppose that two random variables, X and Y, have
a joint density function given by f(x, y) and by checking
we find that fðx; yÞ 6¼ fðxÞfðyÞ. That is, the two are not in-
dependent. Some of the calculated moments are: EðXÞ ¼
10; EðYÞ ¼ 8; VðXÞ ¼ 9; VðYÞ ¼ 4; EðXYÞ ¼ 84. What is
the expectation of the random variable W ¼ Xþ Yþ 4?

20. Using the same information as the previous problem,
what is the variance of the random variable W?

21. Using the same information as the previous problem,
what is the correlation coefficient of X and Y?

Common Distributions

22. In a sequence of 10 independent Bernoulli trials, where
the probability of success is 0.4, what is the expected number of
failures? (Variance?)

23. If a Bernoulli random variable X is defined so that
success is given the value 10 and failure is given the value 5, and
PðsuccessÞ ¼ 0:6, what is the expected value of X?

24. The geometric distribution describes, among other
things, the waiting time until the first success in a sequence
of independent Bernoulli trials. What distribution gives the
corresponding waiting time to first success in continuous time?

25. If X is a Poisson distributed random variable with a
mean of 3, and Yis another Poisson distributed random variable
with a mean of 2, and the two are independent, what is the
variance of the sum Xþ Y?

26. If X is a random variable having a binomial distribution
with n ¼ 20 and p ¼ 0:4, and Y is a transformed version of X,
where Y ¼ 2Xþ 3, what is the expected value of Y?

Optional

27. See if you can figure out the rules that convert odds to
probabilities and vice versa. For example, if you are given odds
of 5:1, what should that mean in terms of probabilities? And if
you are told that the probability of winning a bet is 0.25, what
should the odds be? Assume that the odds reflect fair payout
(rather than distorted values that leave some profit for the people
handling the bet).

28. If you found problem 27 to be easy, you may want to try
to express the odds equivalents of the rules of probabilities. For
example, how do you combine the odds for two mutually
exclusive events to get the odds of the union? (From doing
this, you will learn why probabilities are so much nicer to deal
with than odds.)
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