
CHAPTER 1

INTRODUCTION: WORKING AROUND
THE LIMITATIONS OF AI

At the dawn of the new millennium, there was much to marvel about in the
world of computing and technology. PCs, cell phones, and other digital devices
were everywhere and commonplace, enabling an unprecedented amount of dig-
ital processing and communication. The Internet had morphed, in a few short
years, from a communications medium known only to a chosen few, mostly in
academia and government, to a global repository of information exchange known
the world over. Global positioning systems (GPS) provided everyday car drivers
turn-by-turn instructions with an amazing degree of precision and accuracy. Dig-
itization proceeded at a feverish pace, and everything from music, to videos,
to the world’s books were transmitted as digitized bits over miles and miles of
networks, increasingly in a wireless fashion. Some would say a technology rev-
olution had taken place, resulting in an explosion of innovative applications and
ideas in the technology marketplace, unlike anything we had seen before.

Unfortunately, the trajectory of progress in artificial intelligence (AI) would
be much less dramatic, and many would argue, ultimately disappointing. Amid
the wild successes of the Internet and wireless communications, we would hear
far less talk about machines that could think and solve problems like humans. For
the most part, in recent years, AI has taken a back seat to Internet and wireless
applications. Indeed, after a speculative boom in the 1980s, a time in which many
of its far-out ideas did not pan out, and starting in the 1990s AI lost much of
its sex appeal and dazzle. Its image and reputation as a field of promise have
not recovered to this day. (It is interesting that the new overhyped application

Diagrammatic Reasoning in AI, by Robbie Nakatsu
Copyright © 2010 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



2 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

of today is nanotechnology, another field with outsized expectations that is also
likely to generate disappointing results out of alignment with public perceptions.)

It was not always so. There was once a time when AI was viewed as the wave
of the future, the field that would generate the most transformative computer sys-
tems known to humankind. Perhaps no figure in the history of AI represents this
promise better than Alan Turing, who in 1950 wrote the article titled “Computing
Machinery and Intelligence”1 in which he considered the question, Can machines
think? In this paper, Turing formulated his famous Turing Test, a test in which
a human interrogator poses questions to both a computer program and a real
person. The computer passes the test if the interrogator cannot tell whether the
responses come from the computer or the person. Turing was optimistic that we
would have such thinking machines in the near future:

The original question “Can Machines Think?” I believe to be too meaningless to
deserve discussion. Nevertheless, I believe that at the end of the century the use
of words and general educated opinion will have altered so much that one will be
able to speak of machines thinking without expecting to be contradicted.

As of 2009, we do not yet have machines that pass the Turing Test, let alone
machines that can think.

The huge chasm between public perception and actual accomplishment in
AI has only been exacerbated by science fiction and Hollywood. Many science
fiction writers, such as Jules Verne and, more recently, Isaac Asimov, have long
written about human-like thinking robots and have contributed to the fantasy, the
hope, and to some the fear of thinking machines. Perhaps the most iconic image
of our time belongs to HAL, the human-like supercomputer in Stanley Kubrick’s
1968 movie 2001: A Space Odyssey . HAL is not so much a robotic machine
with a human-like physical form but a machine with a super-human red eye. It
is capable of carrying on a natural conversation with other humans but can also
play chess and notably possesses superior visual recognition capabilities. In one
of the film’s most memorable sequences, HAL reads the quick-moving lips of
two of the crew members carrying on a conversation out of earshot.

The science fiction image of HAL can be contrasted to the real-life image
of Grace (which stands for Graduated Robot Attending Conference), an actual
robot that was created by researchers and was asked to perform at the 18th
annual conference for the American Association for Artificial Intelligence held
in 2002.2 Grace took the combined efforts of five educational and research institu-
tions to create. See Figure 1.1 for a photograph of Grace. The challenge presented
to Grace was to start at the entrance to the conference center, take the eleva-
tor to the registration desk, register for the conference, and then report to the
auditorium at a set time to deliver a speech.

How did Grace perform? Despite the thunderous applause that she received at
the conference, an observer familiar with the hopes and dreams of AI would have
been greatly disappointed. Throughout, she made a lot of mistakes. About 30 feet
into her assigned task, Grace began to misinterpret the spoken commands she was
getting. She bumped into walls, repeatedly stopped, or did nothing. In large part,



INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI 3

Figure 1.1. Grace the robot. (Reprinted with permission from Endnote 2.)

her poor performance was due to her limited voice-recognition capabilities. But
more fundamentally, Grace lacked that elusive and extremely hard-to-program
quality known as autonomy. Autonomy is the ability of a machine (or program)
to act on its own without constant supervision. “Take the elevator to the second
floor” is a command that most of us could easily execute without much effort and
without constant supervision. For a robotic machine to execute such a command
on its own would be a monumental and (at this point in time) impossibly difficult
task.

The image of HAL vs. that of Grace is a stark one and provides us with a
reality check. We are nowhere close to creating thinking machines, even by the
limited standards proposed by the Turing Test. If Grace represents the state of the
art, then we have a long way to go before we have designed a machine that even
remotely resembles a thinking machine—one that can converse with humans,
one that can recognize objects and act on them accordingly, one that possesses
the motor skills required to navigate through an unknown terrain, or one that
is capable of general problem-solving skills requiring only the commonsense
knowledge of a child.



4 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

Why is it so hard to create a machine that can think like a human? This is
a decades-old question that has plagued AI researchers from the very beginning
of the field. Part of the problem lies in understanding what is meant by artifi-
cial intelligence. Definitions such as “the art of creating machines that perform
functions that require intelligence when performed by people”3 raise more ques-
tions than they provide answers about what the field is about. Perhaps a better
definition is provided by Bellman: “[The automation of] activities that we asso-
ciate with human thinking, activities such as decision-making, problem solving,
learning.”4 But again this definition too is couched in ambiguity: What exactly
do we mean by human thinking?

Another problem is that the definition seems to be a perpetually moving target.
There is an old adage in AI that a problem is an AI problem if it hasn’t been
solved yet. Once some AI function is successfully programmed, it is no longer
considered an AI program anymore. Unfortunately, such an attitude means that
we will always be disappointed and disillusioned because “real” AI topics will
be unattainable as researchers chase ever-more unpractical ideas about thinking
machines and human-like robots—the AI community’s version of chasing after
the Holy Grail. In the meantime, real and concrete accomplishments—in areas
such as expert systems, speech/voice recognition, Bayesian networks, neural net-
works, and other applications—will go underappreciated and even scorned by AI
researchers because they will be tainted as easily solvable problems that couldn’t
possibly be of real interest to AI.

Such thinking is misguided and damaging to the field of AI, both to its percep-
tion as a viable research area, as well as an area full of promising applications.
This book argues that we need to have a clear-sighted understanding of the cur-
rent limitations of AI and the difficulties of creating thinking machines. Rather
than bemoaning these limitations and simply giving up, or pursuing unrealistic AI
agendas to the exclusion of all others, we need to design AI systems, in particular
the user interface, to take into account these limitations and difficulties. Indeed,
we need to be more embracing of the shortcomings by finding workaround ways
to make AI systems more useful and usable given these inherent shortcomings.

THE DIFFICULTIES OF CREATING A THINKING MACHINE

One common view that explains the difficulty of creating a thinking machine is
that AI programs lack commonsense knowledge. Commonsense knowledge, as
opposed to specialized expert knowledge, refers to the things that most people can
do, often without conscious thought.5 In fact, when you ask people to explain
their commonsense reasoning, they are often at a loss to do so because such
knowledge has become so automatized that they lose conscious access it.

As an example, interpreting English sentences such as the following will hap-
pen automatically to an average reader of English:

Last night Mary and Jane went out to dinner. It was Mary’s birthday, so Jane paid
for dinner. When the check came, she offered to pick up the tab.



THE DIFFICULTIES OF CREATING A THINKING MACHINE 5

A reader of the above three sentences is likely to infer the following:

1. Yesterday was Mary’s birthday.
2. It is customary, according to culture and tradition, for the person having a

birthday to be treated for dinner.
3. She in the third sentence refers to Jane, not Mary.
4. A tab is the same thing as a check. To pick up the tab refers to paying the

bill.
5. The check came at the end of the dinner, not at the beginning.

When one considers all the knowledge that is required to interpret English
sentences, it is no wonder that we have been unable to create a reliable language
translation program. The irony is that even though a child early on learns to use
and understand thousands of words, no computer is capable of understanding
what those words mean and cannot even carry on a simple conversation. (The
Turing Test, it turns out, has been a tough nut to crack!) To create a language
translation program, say from French to English, a programmer might start by
creating a simple dictionary look-up program, mapping French words to English
words, and rearranging the words according to the laws of English grammar and
usage. In fact, that is just what early efforts at language translation programs
were. However, such a program is bound to generate a translation that is rife
with errors and awkward constructions. (The famous mistranslation of “the spirit
is willing, but the flesh is weak” into “the vodka is good, but the meat is rotten”
illustrates this point well.) One obvious problem is that the program does not
contain knowledge of all the idiomatic expressions of the English language. But
a bigger problem is that the program lacks a mental model∗ of the world being
discussed. A language translation program, unlike a human, makes no use of
models of the world to understand language and will thus easily become over-
whelmed by ambiguities and multiple meanings. Indeed, early efforts at creating
language translation programs failed miserably and disappointed AI researchers.6

What kinds of models might a language translation program contain? For one,
it might contain a knowledge structure known as a semantic network, a kind of
diagrammatic representation that is composed of nodes and links that interconnect
the nodes. Many kinds of semantic networks are possible. See Figure 1.2 for one
type of semantic network. In one simple form, the nodes are represented by
rectangles and can be anything from a physical object (such as a book, house,
tree) to a person (such as Abraham Lincoln, Mary, a waiter), to a concept (such
as happiness, religion, crime) or to an event (such as yesterday, Fourth of July,
the first day of school). The links interconnect two or more nodes and show the
relationship between the nodes (sometimes a verb or other piece of descriptive
text is added to describe the relationship). Figure 1.2 represents a simple semantic
network of the “Mary and Jane went out to dinner” scenario described earlier.

∗Mental models are discussed in Chapter 2.



6 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

Dinner

Yesterday

Tab

Jane

Birthday

occurred

Check
same as

Mary

went to

produces

had

is friend of

went to

Last night

occurred

same day as

Figure 1.2. A semantic network.

Animal
breathes
has skin

eats

Invertebrate
no backbone

Vertebrate
has backbone

Anthropod
has hard exoskeleton

has limbs

Crustacean
lives in water

Mammal
warm blooded

does not lay eggs
has legs

Fish
cold blooded

lays eggs
breathes through gills

Insect
has antennae

Bird
warm blooded

lays eggs
can fly

Human
walks upright

Horse
walks on 4 legs

Protozoa
single celled

Canary
sings

Penguin
cannot fly

Crab
has 10 legs

Figure 1.3. An inheritance hierarchy.

A second type of of model is an inheritance hierarchy that can represent a
taxonomy or classification scheme. See Figure 1.3 for an example of this type of
mode. In this hierarchy three pieces of information are represented:

• Units. The thing or object.
• Properties. Characteristics of the unit.
• Pointers. Class associations among the units.



THE DIFFICULTIES OF CREATING A THINKING MACHINE 7

In this example, knowledge about animals can be illustrated as a hierarchy of
nodes, represented as rectangles in the diagram. A node connected to another node
is either on the top (a superclass or parent node) or on the bottom (a subclass or a
child node). For example, the superclass animal is connected to two subclasses,
invertebrate and vertebrate. Under this scheme, subclasses inherit all properties
of their superclasses. (Properties are indicated below the class name in each of
the nodes in the figure.) For example, while canary inherits properties from bird,
vertebrate, and animal , it does not inherit properties from fish . Note also that
a particular unit on the hierarchy can override a property it inherits: Penguin
inherits the property can fly from its superclass bird , but it is overridden by the
property cannot fly .

A third type of model that might be included in a language translation pro-
gram might be a script, a well-known knowledge structure described by Schank
and Abelson.7 A script can be defined as a stereotyped sequence of events that
together define a well-known situation. The best-known example is the one for
going to a restaurant. A restaurant script might include the following sequence
of events:

1. Enter the restaurant.
2. Be greeted by the host, who seats you at a table and gives you a menu.
3. Read menu and decide what you want.
4. Order when the waiter comes.
5. Wait for food to come.
6. Eat when food comes.
7. Ask for the check.
8. Pay the check.
9. Exit the restaurant.

The advantage of having a set of scripts is that they can give an AI program
the ability to infer actions and predict what will happen in conventional situa-
tions.

It is a rather trivial matter to construct semantic networks, inheritance hier-
archies, and scripts for very simple situations and problem solving contexts.
However, to construct them for all of a typical human adult’s knowledge about
the world would be a colossal undertaking. Consider for example that if a typ-
ical adult knows thousands of words, each of those words would be linked to
hundreds of knowledge structures, which in turn are linked to hundreds of other
knowledge structures, and so on, resulting in a very intricate and elaborate net-
work. Moreover, these semantic networks are not static but typically change over
time as a person acquires experience and more knowledge about the world. A
more practical use of semantic networks, inheritance hierarchies, scripts, and
other knowledge structures would be to construct them for more well-defined
contexts and problem solving tasks.



8 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

Lack of Commonsense Reasoning

Several AI researchers have tackled the problem of understanding commonsense
reasoning. Among some of the components that are frequently brought forth as
essential components of commonsense reasoning are the following:8

• The ability to use different representations to describe the same situation.
• The ability to recognize when a problem solving method is failing.
• Self-reflection at a higher level.
• Efficient knowledge retrieval.

Let us look at each of the four issues and consider what is wrong with the
current generation of AI systems. Further, let us suggest some possible remedies
for these limitations. These four components of commonsense reasoning serve as
a framework for how to evaluate the effectiveness of an intelligent user interface.

The Ability to Use Multiple Representations. A conventional program is
built such that it approaches a problem in a single way. Such a program is likely
to be rigid and not very robust to changing assumptions and to different ways of
using the program. We need AI programs that are built to work around multiple
representations, so that when one representation fails, the program is easily able
to switch over to find an alternative. For a human problem solver to really com-
prehend a problem-solving situation, he or she must possess not only a set of rep-
resentations on the problem but also an ability to understand how they are related
to one another, a kind of integrated view of the set. Likewise, an AI program
should be able to understand how to process multiple representations effectively.

The topic of knowledge representation is a central one in AI, one that has
occupied the attention of AI researchers from the very beginning, and one that
remains a central challenge today. One goal of this book is to address how to
approach the topic of knowledge representation as refracted through the prism
of diagrammatic representations. In the chapters to follow, we look at many
different types of knowledge representation schemes, all of them represented dia-
grammatically. We investigate how to reason with and draw inferences on many
different kinds of graphical diagrams. Some examples include decision trees
and influence diagrams that help us make better decisions (Chapter 3), directed
graphs to aid us in understanding mechanisms of cause and effect (Chapter 3),
Venn diagrams that can be used to perform logic reasoning (Chapter 4), dia-
grams to represent the problem-solving strategies used in expert system (Chapter
6), model-based reasoning systems that can help us with fault diagnosis (see
Chapter 7), and Bayesian networks that perform probabilistic reasoning (or rea-
soning with inexact and imperfect data) (Chapter 8). Others have looked at neural
networks, scripts (briefly discussed earlier), frame-based representations, logic,
object-oriented approaches, and other techniques and formalisms for represent-
ing knowledge. Because the focus of this book is on reasoning with diagrams,
many of these additional knowledge representation techniques will not be covered
insofar as they do not deal with diagrammatic representations.



THE DIFFICULTIES OF CREATING A THINKING MACHINE 9

The Ability to Deal with Errors. Traditional AI user interfaces have long
been criticized for being extremely brittle—that is, they are programmed to
do only one specific thing, but when you try to push the system beyond what
it was programmed to do (i.e., beyond its bounds of ignorance), the system
will completely malfunction. Indeed, the AI landscape is littered with thousands
of highly specialized programs that can each do some well-circumscribed task:
diagnosing bacterial skin infections, playing chess, determining what drug to take
and in what dosage for patients with high cholesterol. Such programs can perform
their specific task very well, sometimes even surpassing the level of a human
expert. However, if even one underlying assumption is unmet, if one piece of data
is missing, or if some piece of evidence is not known with complete certainty,
the system will completely break down. Human problem solvers, by contrast,
degrade more gracefully when faced with uncertainty, incompleteness in data,
or noisy information. Moreover, human problem solvers are better equipped to
know when failure occurs and can employ adaptive strategies to deal with such
situations.

We need to do better job when designing our AI systems. In great part, the
ability to deal with error and failure can be vastly improved with a better user
interface, today this being primarily the graphical user interface. In general, we
need user interfaces that are flexible enough to process errors and uncertain
information. We deal with the subject of system flexibility at the end of this
chapter and throughout this book.

Self-Reflection at a Higher Level. A conventional program executes a pre-
programmed set of instructions but no attempt is ever made by the program to
stop and reflect on its own actions, even when it is pursuing a blind alley or
veering wildly off track. Such a program is badly in need of some kind of over-
all plan of attack, a model of how to approach a problem-solving situation. A
human problem solver often possesses higher-level strategies on how to approach
a problem. He or she will often need to stop and reflect on the current state of
the problem and decide whether a change of course is in order. Having strategic
knowledge and the ability to adapt in midstream are important characteristics of
effective problem solvers and decision makers.

We need AI programs that possess strategic knowledge and can reflect on
whether they are pursuing the right problem-solving methods. Strategic knowl-
edge is about understanding the methods used for problem solving and about
how those methods are ordered to reach a goal.9 Strategic knowledge and how
to diagrammatically represent such knowledge are addressed more extensively in
Chapter 6.

Efficient Knowledge Retrieval. The ability to retrieve relevant information
from a person’s vast storehouse of knowledge is, of course, an important function
for effective performance and problem solving. AI programs also need to do to
be able to do this effectively, so that it is relatively easy to get at the right
information quickly (an exhaustive and linear search through the memory, or



10 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

knowledge base, of an AI program will just not cut it). Moreover, knowledge
retrieval requires that AI programs can recognize patterns and features of a current
problem-solving context so that the program knows which problem context stored
in its knowledge base will best match the current context.

A number of knowledge representation schemes have been proposed to deal
with the knowledge retrieval problem. One popular method is known as case-
based reasoning. This type of system organizes knowledge into cases, which are
problem solving experiences used for inferring solutions to future problems. An
example of an application is a technical support system that provides help desk
operators guidance on how to troubleshoot a customer’s problems. For instance,
a customer calls a help desk to report a problem with her printer. She reports
that she is receiving error message 908, that her printer does nothing, and that
the orange light is flashing. A case-based reasoning system will search through
its database of historical cases to find the one that best matches the features of
the current problem. At times, there will not be a perfect match to an historical
case, so the system must know how to adapt the previous solution to fit the
current problem. In addition, a new case that does not perfectly match any of
the previous cases is added to the knowledge base of historical cases, so that a
case-based reasoning system adapts and grows over time as it acquires more and
more experiential knowledge.

This book investigates a variety of diagrammatic representations, one of whose
primary functions will be to serve as “organizational scaffolds”10 that enable
more efficient knowledge retrieval. Indeed, a very important function of diagrams
is to organize information more effectively so that it is easier to retrieve. For
example, one common and natural way to organize a lot of information is as a
hierarchy. These diagrams, whether hierarchy or some other form, can be part of
the user interface itself, enabling an end user to interact with the diagram to better
understand the system. Hence in addition to their role as efficient knowledge
retrievers, they will also serve in the role of helping us understand the components
of a system and their interrelationships—that is, the underlying mechanism of a
complex system.

Intractability

Another explanation for the difficulty of AI and the difficulty of creating thinking
machines is the intractability of many of its problems. These are problems that
are computationally difficult, if not impossible to solve, with currently known
algorithms. Whereas the problems of AI programs lacking commonsense reason-
ing concentrate on general problem-solving skills that almost everyone possesses
(even a child), intractable problems can involve more complex and specialized
problem-solving tasks (such as playing chess).

Early on in the history of AI, most research efforts were centered on very sim-
ple, toy problems, also known as microworlds, so that computational complexity
was not a primary concern. A good example is the blocks world, a domain that
consisted of a set of blocks (e.g., rectangular blocks, cones, balls, etc.) placed



THE DIFFICULTIES OF CREATING A THINKING MACHINE 11

A

B

D

C

12

12

9

4

5

3

Figure 1.4. Traveling salesman problem. What is the solution to this problem given four
cities, A, B, C, and D? Answer: One solution is ACDBA (28 miles).

on a tabletop. A typical task in this domain was to command a robotic arm to
rearrange the blocks in a certain way. For example, “place the cone on top of
the large block.” SHRDLU was a natural language program that allowed user
interaction with the blocks world.11 The user instructed SHRDLU to manipulate
the various objects in the blocks world. The program was computationally fea-
sible because the blocks world was so simple: The entire set of objects could
be described by perhaps 50 words, from nouns like block and cone to adjec-
tives like small and red . Unfortunately, researchers at the time failed to realize
that such simple toy problems would not scale up to more realistic and complex
problem-solving domains without becoming computationally intractable.

Intractability has had a great impact on the field of AI and computer science.
Many problems, to the consternation of many early AI prognosticators, have
turned out to be too difficult to solve, a turn of events that has greatly limited the
progress of AI. One classic example that illustrates the nature of intractability
is the well-known traveling salesman problem. In this problem, we are given n

cities, and for each pair of cities, the distance between the two cities. The problem
is to find the shortest round-trip route that visits each city once and returns to
the starting city. An example is given in Figure 1.4.

One way to solve this problem is simply by brute force search—that is, try
out every possible ordering of the cities and select the one with the minimum
total number of miles. This approach will work fine only when the problem
size is small but quickly becomes intractable. For n = 4, you would need to try
out 4! permutations or 24 possibilities.∗ In general, you would need to try out n!
permutations, for a problem size of n cities. The problem quickly grows in size as
n increases. For example, for n = 10 cities you would need to try out 3.6 million
permutations and for n = 20 cities, the time complexity of the problem grows to

∗In the case of 4 cities, there are 4 possible cities to be chosen as the first city. Once this city has
been selected, there are (n − 1) or 3 cities to choose from the remaining cities. Once this city has
been removed from the list, there are now (n − 2) or 2 cities. Hence, in general, for a problem of
size n there are n! or n(n − 1)(n − 2) · · · 1 permutations.



12 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

2.4 × 1018 permutations. Obviously, a brute force search strategy would quickly
bog down even the fastest computers of today for sufficiently large values of n.

How does one define intractability? One definition is that a problem is
intractable if the time required to solve the problem grows exponentially with
the size of the problem.12 By exponential time, mathematically we mean that
computation time T (n) is a function of problem size n and there exists a
constant c > 1 such that:

T (n) = O(cn)

Polynomial time functions, by contrast, are much more desirable in terms of time
complexity. Mathematically they can be written as:

T (n) = O(nk)

Examples of exponential time functions include 2n and 3n. Examples of polyno-
mial time functions include n (linear time), n2 (quadratic time), and n3 (cubic
time).

A side-by-side comparison of polynomial time functions versus exponential
time function is given in Table 1.1.14 In the table, the functions express execution
times in terms of microseconds. The interesting thing to observe here is the
extremely rapid growth rates of the exponential time functions, compared to the
polynomial time functions. It is quickly evident that polynomial time functions
are much more desirable than exponential time functions. As Gary and Johnson
state, “Most exponential time algorithms are merely variations on exhaustive
search, whereas polynomial time algorithms generally are made possible only

Table 1.1. Comparison of several polynomial and exponential time complexity
functions. Adapted from Endnote 13

Size n

Time complexity function 10 20 30 40 50 60

n .00001 .00002 .00003 .00005 .00005 .00006
second second second second second second

n2 .0001 .0004 .0009 .0016 .0025 .0036
second second second second second second

n3 .001 .008 .027 .064 .125 .216
second second second second second second

n5 .1 3.2 24.3 1.7 5.2 13.0
second seconds seconds minutes minutes minutes

2n .001 1.0 17.9 12.7 35.7 366
second second minutes days years centuries

3n .059 58 6.5 3855 2 × 108 1.3 × 1013

second minutes years centuries centuries centuries



EXPLANATORY POWER OF INTELLIGENT SYSTEMS 13

through the gain of some deeper insight into the structure of a problem. There
is wide agreement that a problem has not been ‘well-solved’ until a polynomial
time algorithm is known for it.”14 (It is worthwhile to note that using dynamic
programming, a mathematical method for solving problems with a sequential
decision structure, the traveling salesman problem can be solved in time O(n2 ∗
2n). Although still exponential, it is better than O(n!)).

It is beyond the scope of this book to identify and address the problem of
intractability. The theory of NP-completeness,15 which is not addressed in this
book, was developed for this purpose and is discussed in many standard texts
covering AI algorithms. We do not deal with issues of intractability any further in
this book. Certainly, diagrammatic approaches may be used to better understand
the structure of a problem and suggest ways to develop heuristics, or rules of
thumb, to make some of these problems more manageable, by suggesting good-
enough solutions, but not necessarily optimal solutions. In Chapter 7, we employ
model-based reasoning, a technique that starts with a diagrammatic model of
some kind and reasons from this model to help us solve an intractable problem.
Hence diagrammatic methods may help us better understand intractable problems
as well as provide insight as to how to find work-around solutions.

EXPLANATORY POWER OF INTELLIGENT SYSTEMS

It is obvious that there are huge difficulties that need to be overcome before
AI programs resemble thinking machines. Many of these obstacles will remain
insurmountable for the foreseeable future at least, despite all the best efforts of
AI researchers and the business community to create more robust AI programs.
Breakthroughs in areas such as computer vision, language understanding, and
machine learning as well as better AI algorithms to deal with intractability will all
contribute to the progress of AI, and hopefully narrow the gap that exists between
the clunky programs and robots of today and the AI programs of tomorrow. It
is not the goal of this book to address what needs to be done to bridge this
gap and create machines and programs that can more closely resemble human
thinking. Rather, this book turns its attention to what will increasingly become an
important and central component of AI systems: the user interface, in particular
the graphical user interface, which will increasingly use diagrams and various
other graphical representations to aid in system understanding.

As AI technologies become more widely used in the future, the graphical user
interface is likely to take on a more prominent role. There are at least two reasons
for this prediction. First, given the limitations of AI systems—and the unlikeli-
hood of their being resolved in the near future—there will be a more urgent need
to create user interfaces that are better able to cope with an AI system’s weak
spots. As discussed earlier, AI systems that are rigid dialogues are unable to deal
gracefully with their lack of commonsense reasoning—such as, their inability to
process uncertain and incomplete data and their inability to retrieve knowledge
efficiently. A user interface that can, at least in part, deal with these weaknesses



14 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

is far more likely to be effective and accepted by the user community. Second,
the AI systems of the future are likely to tackle increasingly complex tasks, capa-
ble of solving problems in domains as diverse as medical diagnosis, computer
design/configuration, and loan portfolio analysis, just to name a few examples. If
users are to trust and accept the advice and recommendations that these systems
generate, the user interface will need to be able to comfortably explain itself.

What do we mean by a system that can explain itself? It is useful at this point
to limit our discussion to advice-giving systems that provide recommendations
on how to solve problems or help us make the right decisions. Hereafter, such
systems are referred to as intelligent systems. Such intelligent systems are said to
be endowed with explanatory power when they are capable of explaining their
own actions through a user interface.16 Two system characteristics are relevant to
understanding explanatory power: transparency or the ability to see the under-
lying mechanism of the system so that it is not a black box and flexibility or the
ability of the user interface to adapt to a wide variety of end-user interactions so
that it is not a rigid dialogue but an open-ended interaction that allows the user
to explore and understand the system more fully. While system transparency is
a quality related to the informational content of the system itself—that is, infor-
mation that helps us understand a system’s actions—flexibility is more related to
the nature of the end-user interaction with the system. More flexibility in the user
interface can lead to more transparency—having a more open-ended interaction
can enable a user to seek out more ways to better understand the system. By
the same token, having a more restrictive interface can impair a user’s ability to
seek out more transparency, even it does already exist. Hence flexibility is treated
as a separate quality of the user interface that exists independently of interface
transparency.

System Transparency

How can we render an intelligent system more visible for inspection so that
its internal mechanism is no longer a black box? System transparency involves
providing users with information about how a system functions. In general, as
typical users of computers and technology, we are often plagued by a computer’s
lack of transparency. We usually aren’t bothered by this state of affairs until the
system malfunctions or when we wish to use a system in a novel or nonroutine
way. If this is the case, we may yearn for some kind of deeper system under-
standing that will help us cope with the error or novelty. Most times, we receive
no information at all regarding what a system is doing. If we are fortunate enough
to get any message at all, it will oftentimes make no sense to us, or will not con-
tribute to a deeper understanding of the system. For example, suppose an unusual
error message pops up on your computer screen: “Buffer overflow. Please restart
computer.” What does the message mean? What is a buffer? What was the cause
of the error? And what does restarting the computer do to resolve the problem?
Unless there is system transparency, we are relegated to the role of passive user,
unable to do anything but blindly accept the system’s recommended action.



EXPLANATORY POWER OF INTELLIGENT SYSTEMS 15

To provide system transparency, a number of questions could conceivably be
asked by a user and answered by an intelligent system:

• How did you reach that conclusion?
• Why did <such and such> an event occur?
• What if I tried <such and such>?
• Why not <such and such>?

It would be a very difficult task indeed to devise a system that could answer all
these questions in a satisfactory manner, even for a relatively simple domain.
Questions of the last type (Why not?), in particular, are notoriously difficult
to answer because they require an anticipation of alternative hypotheses. One
approach would be to create a database of questions and their corresponding
answers, a kind of FAQs (frequently asked questions) for the situation at hand.
A problem with this approach is that a system designer would need to anticipate
all questions and their responses beforehand. Yet it is highly unlikely that all the
relevant questions will be thought out ahead of time. Furthermore, the responses
to the questions would be canned text, or prefabricated responses, which would
ignore context and contain no model of system behavior. This approach, while
certainly better than having no explanations at all, is limited in effectiveness
and cannot scale up to more complex domains or anticipate future scenarios,
particularly novel situations that have not been encountered before.

A second possibility, one that may provide more flexibility than an enumer-
ation of questions and answers, and one that can provide a more expansive and
global view of a system, is to provide the end-user with a conceptual model of the
domain. A good conceptual model can provide one with a deeper understanding
of a system. The conceptual model may, for example, contain a description of
the components of a system, how they are interconnected to one another and how
they may causally interact to produce outputs. A conceptual model is typically
rendered as a graphical diagram of some kind. One simple example is given in
Figure 1.5, which portrays the causal chain of events that causes a car to move.
It is based on the following description of how an internal combustion engine
moves an automobile forward:

In an internal combustion engine, gasoline is ignited by a spark plug, causing a
small explosion, which generates work. The work pushes a piston, which in turn
drives a crankshaft connected to an axle. The axle is connected to wheels, which
turn to drive the automobile forward.

We will address the topic of conceptual models and causal models more fully in
Chapter 2. Then, in Chapter 3, we will look at a wide range of diagrams, and
attempt to provide a classification of their different forms, by how they are used,
and what they are suitable for. There are many possible ways for promoting deep
understanding with a diagram of some kind.



16 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

Spark
plugs fire

Work
generated

Automobile
moves
forward

Battery
good

Gasoline
ignites

Gasoline
in tank

Piston
moves

Crankshaft
moves

Axles are
turned

Wheels
move

Figure 1.5. Causal model of how a car moves.

For now, we note that a good conceptual model can facilitate system
understanding—for example, an understanding of mechanisms of cause and
effect. By possessing such an understanding, a user is better equipped to deal
with system errors and problems. Moreover, a good conceptual model can
predict the effects of our actions. Without a conceptual model, a user must
operate by rote, blindly accepting a system’s recommendations.

System Flexibility

The careful selection of features of the user interface may also enhance its
explanatory power. A highly flexible system may encourage exploration and
experimentation, which means that users will more likely seek out explanations
and deeper meanings in the system recommendations. A rigid interface, by con-
trast, discourages them from seeking out more information because the effort to
do so would be too great and not worth it. Moreover, highly flexible systems
can adapt to different problem-solving contexts and to different informational
needs. Let us look at, specifically, six desirable user interface characteristics17

that may lead to greater system flexibility: (1) natural mappings, (2) feedback,
(3) recoverability, (4) granularity, (5) ability to handle errors, and (6) multiple
representations to the same knowledge.

Natural Mappings. The term natural mappings refers to the ability to represent
the user’s domain so that it maps as closely as possible to his or her mental model.
In his book The Design of Everyday Things , Donald Norman18 provides a number
of examples of everyday objects that are easy and natural to use. One reason that
these objects are so easy to figure out is that they possess a natural mapping that
is visible and intuitive enough to understand. For example, when we look at a
knob, we assume that it is for turning and adjusting something (e.g., the flame
on a stove). Likewise we assume a slot is for inserting things, a switch turns
something on or off, and a handle on a cabinet door is used to pull it open. In



EXPLANATORY POWER OF INTELLIGENT SYSTEMS 17

these examples, the physical appearance of the object, by itself, naturally suggests
to us what its purpose is, and how it is to be used.

We should expect the same for intelligent user interfaces. For example, a text-
based, question-and-answer dialogue may be the primary vehicle for entering
inputs and displaying outputs. Such an interface would work well enough if all
we wanted to do was enter inputs and have an intelligent system display a rec-
ommendation. However, the rigidity of the question-and-answer format may not
be a natural way to foster explanation-seeking behaviors. For more flexibility, a
graphical user interface could allow users to perform actions directly on a graph-
ical diagram of the domain. Such an interface could facilitate a more naturalistic
interaction with the system. Throughout this book, we will look at a number of
diagrammatic user interfaces and consider how they may be used to support a
more naturalistic dialogue with the user.

Feedback. The ability to send back information about what action has been
performed and what has been accomplished is feedback . It is a well-established
principle in user interface design, and for good reason: Without feedback, a user
may wonder whether anything has happened yet. Feedback is missing in all too
many systems. For example, we often experience the frustration of receiving no
feedback when we click on a button in a web page to perform some kind of
action (such as downloading software) and nothing happens. Sometimes we end
up repeating the mouse-click, and the operation, to our dismay, is performed
twice. Or we refresh the web page, thinking erroneously that the web page is
stuck.

Feedback is critical in intelligent systems. It may give us comfort that we are
on the right track; it may guide us toward system understanding; it may help in
building system trust. For maximum effectiveness, feedback should be provided
immediately, and whenever there is a change in system state.

Recoverability. Recoverability is the ability to back out of changes made to
the system. This capability may encourage a user to explore and experiment with
a system, without having to start all over again when an error is made. There are
many possible ways to build recoverability into an interface. As users of today’s
most popular software products today, we are familiar with many of them: a
back button, undo facilities, history lists of the most recent actions performed,
hypertext links that enable a user to jump directly to a relevant portion of a
problem-solving situation.∗

Another approach to promoting exploratory behaviors is to create special
modes of operation. For example, a protected mode might be created in which
user actions are shielded from harmful consequences. A user could turn on pro-
tected mode and system commands are simulated without actually affecting the

∗A good example of software that has these features is TurboTax. The software allows you to jump
to a specific portion of your tax return—such us your deductions—so that you do not have to search
sequentially through every portion of your tax return if you are interested in seeing and modifying
only one portion of it.



18 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

data.19 Another possibility is control blocking. This means that a portion, or
subset, of a system’s functions is made inaccessible to the user to prevent their
accidental usage. These and other techniques can be used to encourage sys-
tem exploration: Users are freer to actively experiment with a system’s features,
without fear of destroying data, or producing irreparable damage to the system.

Granularity. The ability to display different levels of detail depending on the
situation the user is currently in is granularity. Especially in complex systems
composed of multiple components, this capability is very useful in addressing
the cognitive limitations of a user. Such a user can become overwhelmed by the
enormous amount of information required to understand the system. An interface
that supports granularity may be one that allows the creation of multileveled,
hierarchic descriptions of a system. A user can drill down the branches of the
hierarchy to obtain more detail, or go up the branches to obtain a higher-level
view. An interface endowed with granularity would enable a user to change the
level of detail frequently and with ease during a user session.

Ability to Handle Errors. As discussed previously, traditional AI programs
are unable to handle errors well. In such programs, the user is required to enter
a set of inputs in a prescribed sequence, and there may be no tolerance for
uncertainty in the data, or missing data. A flexible system might possess the
following desirable characteristics:

• We should be allowed to enter data in any order, and the system recom-
mendation should not be affected by the order (invariance to data entry
order).

• We should be able to enter incomplete data, and the system should make its
best guess as to what the system recommendation should be given what it
does know (ability to process incomplete information).

• We should be able to attach certainty factors∗ to our data inputs if we are
uncertain about the accuracy of the data (e.g., we may have an imprecise
test result, or we may have a data sensor that is not 100% accurate); the
system will accordingly adapt its recommendation (ability to process noisy
data).

• We should be able to perform sensitivity analysis on the data, to test how
robust a system recommendation is to a range of values (ability to test for
the robustness of the system recommendation).

Beyond these specific measures and recommendations, it is important for design-
ers of intelligent systems to design for error. Having such a design philosophy

∗A certainty factor expresses how certain we are about the data inputs. There are different methods
used to assign certainty factors and process them. For now, we may think of a certainty factor as
being in the range from 0 (completely uncertain) to 1.0 (completely certain). We will have more to
say about certainty factors in Chapter 8.



THE FUTURE OF AI: TOWARD INTERACTIVE DIAGRAMS 19

will predispose designers to the idea that people will misuse intelligent sys-
tems, misconstrue its features, and sometimes get lost when using these systems.
Designers aware of these human tendencies can plan for them ahead of time and
alleviate their adverse consequences. This could make all the difference in terms
of whether these systems are ultimately embraced or not by the user community.

Better still, it is highly recommended to perform extensive end-user testing
before systems are implemented and deployed to the larger user population. One
goal of such testing would be to come up with a list of errors that users commonly
make. Having knowledge of the most common types of errors could be used to
redesign the user interface so that committing errors does not result in complete
system breakdown. This important step, regrettably, is all too often neglected and
ignored in the development of intelligent systems.

Multiple Representations to the Same Knowledge. Because different tasks
and different users may have different requirements for using knowledge, a sys-
tem that enables multiple representations to the same knowledge would permit
greater flexibility. We have already identified the ability to use multiple represen-
tations as a component of commonsense reasoning and have noted that this book
will address many types of diagrammatic representations. We will see through-
out this book how these graphical representations can be employed to support
different kinds of users and different kinds of tasks.

THE FUTURE OF AI: TOWARD INTERACTIVE DIAGRAMS

We began the chapter by observing the huge discrepancy that exists between
the futuristic thinking robots so vividly portrayed in science fiction and the
current reality of limited AI machines and programs that can solve only well-
circumscribed tasks. We further noted that this has been the cause of disillusion-
ment and disappointment to many in the field who got caught up in the hype
and excitement of robots and thinking machines. However, such an unrealistic
outlook on the future of AI downplays the real and concrete achievements that
have occurred in the past decades since AI was born in the 1950s. Here are just
a few notable success stories:

• The chess program Deep Blue, created by IBM, defeated Gary Kasparov
in 1997 (the program was capable of evaluating some 200 million board
positions per second).

• Neural networks are now capable of recognizing speech, albeit in well-
structured domains with limited vocabularies.

• Expert system technology has been successfully implemented in many busi-
ness organizations and has resulted in higher productivity and better and
more consistent decision making, not to mention that it has shed consid-
erable light on the nature of expertise and how humans solve problems in
complex domains.



20 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

• NASA sent autonomous vehicles (rovers) into space to act as robots that
could perform on-site geological investigations on Mars.

All these applications illustrate a few key commonalities about what makes an
AI program successful. First, they deal with well-defined domains, as opposed
to tackling general problem solving. This is an important point, because all these
programs focus their efforts on resolving one specific problem, not creating a
machine that can do everything a human can. Second, they recognize the lim-
itations of AI, but nonetheless manage to work around them. Their successes
are highly attributable to having a well-grounded understanding of the practical
issues involved in implementing AI programs and machines. A central tenet of
this book is that the designers of the next generation of AI programs will require a
good grasp of the difficulties of AI to find work-around solutions. In this chapter,
we have discussed two frameworks for dealing with the difficulties of intelligent
systems.

The first framework explores an AI program’s lack of commonsense reasoning.
We looked specifically at four constituents of commonsense reasoning—namely,
the use of multiple representations, the ability to deal with failure, self-reflection,
and knowledge retrieval. Intelligent systems in the future will increasingly need
to be able to deal with these four problem areas if they are to have any chance
of solving complex problems in realistic settings.

The second framework explores the concept of explanatory power, or the abil-
ity of a system to explain itself. The focus of the discussion here turned squarely
on the user interface, which will increasingly assume a central role in AI systems.
We looked specifically at two characteristics of the user interface: transparency
and flexibility. Intelligent user interfaces of the future that are endowed with these
characteristics are more likely to be embraced and accepted because users are
more likely to understand and, therefore, trust their recommendations. Moreover,
these systems will be able to handle a greater variety of problems and degrade
more gracefully when faced with errors and uncertainty. AI systems, in general,
have long been regarded as inflexible and poorly adaptable in dealing with new
situations.

One solution to these limitations is to develop some kind of diagram or graph-
ical model that serves as the central part of the user interface, the primary means
by which an end-user will interact with a system. A diagram is defined as a
graphic representation that shows how something works or makes something
easier to understand. This book focuses not only static diagrams, such as the
type that might exist in the pages of a book, but also on dynamic diagrams
that can be part of an intelligent user interface. An end-user can explore and
manipulate these more dynamic diagrams in a variety of ways.

In the chapters that follow we investigate a wide variety of diagrams that can
be used in intelligent user interfaces. One important characteristic of the diagram-
matic interfaces that we will explore is that they are meant to serve in an advisory
capacity to human decision making and problem solving. This is an important
point to underscore, because these systems are not meant to replace the human,



ENDNOTES 21

contrary to futuristic AI notions of robots and programs working autonomously,
on their own without any kind of supervision. Indeed, the user remains firmly
behind the steering wheel, in the decision making loop, throughout. The belief
here is that a collaboration between human and machine is much more effective
than either one working alone, and that each party brings different capabilities to
the table. In effect, this means that a human user need not blindly accept an intelli-
gent system’s recommendations and conclusions, but can actively question, probe,
and try to understand rationales underlying system actions. It is the interactive
diagram that will make the partnership between human and machine possible.

ENDNOTES

1. Alan M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950),
433–460.

2. Curtis Gillespie, “Charmed by Six Feet of Circuitry,” New York Times , Aug. 8, 2002.
Photo by Rick MacWilliam. Reprinted with permission from Edmonton Journal.

3. Raymond Kurzweil, The Age of Intelligent Machines . Cambridge, MA: MIT Press,
1990.

4. Richard E. Bellman, An Introduction to Artificial Intelligence: Can Computers Think?
San Francisco, CA: Boyd & Fraser, 1978.

5. Marvin Minsky, “Commonsense-Based Interfaces,” Communications of the ACM 43,
no. 8 (Aug. 2000), 67–73.

6. Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid . New York:
Vintage Books, 1979.

7. Roger C. Schank and Robert P. Abelson, Scripts, Plans, Goals, and Understanding .
Hillsdale, NJ: L. Erlbaum Associates, 1977.

8. See Minsky, pp. 69–70, for a discussion of some of the components of commonsense
reasoning.

9. William J. Clancey, “The Epistemology of a Rule-Based Expert System—A Frame-
work for Explanation,” Artificial Intelligence 20 (1983), 215–251.

10. The phrase organizational scaffold is from Bower, 41. He remarked: “a hierarchy
is an extremely familiar and efficient organizational scaffold.” Gordon H. Bower,
“Organizational Factors in memory,” Cognitive Psychology 1 (1970), 18–46.

11. Terry Winograd, “Understanding Natural Language,” Cognitive Psychology 3, no. 1
(1971), 1–191.

12. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach , 2nd ed.
Upper Saddle River, NJ: Prentice Hall, 2003.

13. Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness . New York: W.H. Freeman, 1979.

14. Ibid., p. 8.

15. For a good introduction to the theory of NP-completeness see Garey and Johnson.
See also S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceed-
ings New York: ACM of the 3rd Annual ACM Symposium on Theory of Computing .



22 INTRODUCTION: WORKING AROUND THE LIMITATIONS OF AI

New York: ACM, (1971), pp. 151–158; and R. M. Karp, “Reducibility Among Com-
binatorial Problems, in Complexity of Computer Computations . New York: Plenum
Press, 1972, pp. 85–103.

16. For more details on explanatory power see Robbie T. Nakatsu, “Explanatory Power of
Intelligent Systems,” in Intelligent Decision-Making Support Systems: Foundations,
Applications and Challenges. London: Springer, 2006, pp. 123–143.

17. The framework for these interface characteristics is borrowed and adapted from Mar-
ilyn Stelzner and Michael D. Williams, “The Evolution of Interface Requirements for
Expert Systems,” in Expert Systems: The User Interface. Ablex Pub. Corp.: Norwood,
NJ, 1988, pp. 285–305.

18. Donald A.Norman, The Design of Everyday Things . New York: Basic Books, 2002,
pp. 1–9.

19. A. P. Jagodzinski, Theoretical Basis for the Representation of On-Line Computer
Systems to Naı̈ve Users, International Journal of Man-Machine Studies , 18, no. 3
(1983), 215–252.


