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The “new science of networks”—an emerging field of study that we abbreviate as
network science, is really quite old, having roots as far back as 1736. Essentially
the application of mathematical graph theory to problems in a variety of fields,
network science reemerged in the late 1990s as a “new science.” But graph theory
has been applied to practical problems since its inception in 1736, when Swiss math-
ematician Leonhard Euler solved the very real-world problem of how best to circum-
navigate the Bridges of Konigsberg, using graph theory.

Graph theorists spent the next 200 years in the backwaters of arcane mathematics.
But it is difficult to keep a good idea down for long. The mathematics of graphs
appeared again in the 1950s when the Hungarian and nomadic mathematician Paul
Erdos (1913-1996) reestablished graph theory (and created the branch known as dis-
crete mathematics) with papers on random graphs. Erdos’ colorful description of
mathematics as a machine for turning coffee into theorems preferred extended
visits with other mathematicians to owning his own home. Today, we use the
Erdos—Renyi (ER) random graph as a kind of benchmark—to compare with nonran-
dom graphs. The ER generative procedure for constructing a random graph marked a
second historical milestone in 1959-60 (see Table 1.1).

In the late 1960s and 1970s graph theory was used by social scientists to model
social networks and study the behavior of humans in groups. Stanley Milgram is cre-
dited with introducing the notion of a small-world network to the social science
community—igniting interest in studies of how network topology might influence
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TABLE 1.1 Historical Timeline of Significant Events

Date Who Contribution
1736 Euler Bridges of Konigsberg
1925 G. Yule Preferential attachment, Yule—Simon distribution
1927 Kermack, McKendrick First epidemic model
1951 Solomonoff, Rappaport Spread of infection in random networks
1955 Simon Power law observed in word analysis
1959 Gilbert First generative procedure for random graph
1960 Erdos, Renyi Random graphs
1967 Milgram Small-world experiment
1969 Bass Diffusion of innovation in populations—nonnetwork
model
1971 Fisher, Pry Diffusion by product substitution—nonnetwork
model
1972 Bollobas Complex graphs
1972 Bonacich Idea of influence in social networks leading to
influence diagrams
1973 Granovetter Job-seeking networks formed clusters with “weak
links” between them
1978 Pool, Kochen First theoretical examination of small worlds
1984 Kuramoto Synchronization of linear systems
1985 Bollobas Publishes book on “random graphs”
1988 Waxman First graph model of the Internet
1989 Bristor, Ryan “Buying networks” = application of network science
to model economic system
1990 Guare Coined phrase, “six degrees of separation” = name
of his Broadway play
1995 Molloy, Reed Generation of networks with arbitrary degree
sequence distribution
1996 Kretschmar, Morris Early application of network science to spread of
infectious disease = contagion driven by largest
connected component
1998 Holland Introduction of emergence in complex adaptive
systems
1998 Watts, Strogatz, Faloutsos, =~ Renewed interest in Milgram’s original work on small
Faloutsos worlds, examples of clustering; first generative
procedure for small world
1999 Faloutsos Power law observed in Internet
1999 Albert, Jeong, Barabasi Power law observed in WWW
1999 Dorogovtsev, Mendes Small-world properties
1999 Barabasi, Albert, Scale-free network model
1999 Dorogovtsev, Mendes, Exact solution to scale-free network degree sequence
Samukhim, Krapivsky
Redner
1999 Watts Explanation of “small-world dilemma”: high

clustering, low path length

(Continued)
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TABLE 1.1 Continued

Date Who Contribution
1999 Adamic Distance between .edu sites shown to be small-world
1999 Kleinberg, Kumar, Formalized model of WWW as “Webgraph”
Raghavan, Rajagopalan
Tomkins
1999 Walsh Difficulty of search in small worlds using local
properties
2000 Marchiori, Latora, Harmonic distance replaces path length: works for
disconnected networks
2000 Broder, Kumar, Maghoul, Full Webgraph map of the WWW
Raghavan, Rajagopalan
Stata, Tomkins, Wiener
2000 Kleinberg Shows O(n) search in small world using “Manhattan
distance”
2000 Albert, Jeong, Barabasi Scale-free networks are resilient if hubs are protected
(Internet’s “Achilles heel”)
2001 Yung Taxonomy of applications of small-world theory to:
SNA, collaboration, Internet, business, life sciences
2001 Pastor-Satorras, Claim no epidemic threshold in scale-free networks;
Vespignani Internet susceptible to SIS viruses
2001 Tadic, Adamic Use of local information can speed search on scale-
free networks
2002 Levene, Fenner, Loizou, Enhanced Webgraph model concluded structure of the
Wheeldon WWW couldn’t be explained by preferential
attachment alone
2002 Kleinfeld, Claims Milgram experiments not well founded: small-
world social network is an “urban myth”
2002 Wang, Chen, Barahona, Sync in small worlds equivalent to stability in coupled
Pecora, Liu, Hong, Choi system
Kim, Jost, Joy
2003 Wang, Chakrabarti, Wang, = Showed spread of epidemics determined by network’s
Faloutsos spectral radius, largest eigenvalue of connection
matrix
2003 Virtanen Complete survey of network science results up to 2003
2003 Strogatz Synchronization of crickets, heartbeats
2005 NRC Definition of network science
2006 Atay Synchronization in networks with degree sequence
distribution—application to networks
2007 Gabbay Consensus in influence networks—Ilinear and

nonlinear models

human behavior—and the reverse. The “small-world dilemma” was the subject of
vigorous study throughout this period. Why is it, social scientists asked, that
humans are able to connect to one another through an extremely small number of
intermediaries, even as the size of a population grows?
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Milgram’s famous “six degrees of separation” experiment suggested that the distance
between two people selected at random from the entire population of the United States is
approximately six intermediaries. In Milgram’s experiment, volunteers in Kansas and
Nebraska were asked to forward a letter to an unfamiliar target living in Cambridge
and Boston, Massachusetts. Not knowing the target person, recipients forwarded the
letter to an acquaintance closer to the target than themselves. Many of the letters were
lost, but of the ones that eventually reached their target addresses, the number of hops
along the chain of intermediaries ranged from 2 to 10, with an average of 5.2. Hence
the notion of a small world and six degrees of separation was born.

Network science took its third, and current step toward becoming a scientific disci-
pline of its own in the late 1990s when a number of scientists in other fields began to
use networks as models of physical and biological phenomena. In particular, the pioneer-
ing work of Duncan Watts, Steven Strogatz, and Albert-Laszlo Barabasi stimulated
renewed interest in mathematical analysis of networks as applied to the physical
world. Watts equated the structure of very sparse networks with small diameter (small
worlds) with a diverse number of phenomena such as phase transitions in materials, func-
tionality of biological organisms, and behavior of electrical power grids. How could a
simple graph model explain such diversity of real-world behaviors?

Strogatz studied the impact of network structure on complex adaptive systems in
physics as well as explaining why hearts beat in a regular synchronized pattern in
mammals, and why a certain species of firefly rhythmically chirps in unison without cen-
tralized control. It appeared that living organisms tend to synchronize their behavior
without global knowledge. In this book, we show that a deep understanding of how
and why network synchronization occurs in physical and biological systems also explains
the conditions for arriving at a consensus by a group of people, how best to conduct
product marketing campaigns, and how corporations rise to become a monopoly.
Synchronization is a byproduct of the structure of “living networks.”

Barabasi and students created another line of investigation with the invention of
scale-free networks—nonrandom networks with hubs. In a number of studies of
the structure of the Internet and WWW, Barabasi et al. discovered an emergent pro-
perty of the decentralized Internet—that it had emerged without central planning into
a structure consisting of a small number of extremely popular sites called hubs, and a
large number of “unpopular” sites with few links. Instead of being random, like an
ER (Erdos—Renyi) network, the Internet topology was very nonrandom. In fact,
the probability that a site has k links obeys a power law, which drops off quickly
for large k. Furthermore, they speculated that this was the result of a microrule
called preferential attachment—that the probability a site will obtain a new link is
directly proportional to the number of links it already has. Thus, the more links a
site has, the more it gets—the so-called “rich get richer” phenomenon.

Scale-free networks are extremely nonrandom. This discovery set the stage for a
plethora of publications in a diverse number of disciplines ranging from political
science to sociology, biology, and physics. Why do so many natural phenomena obey
the power law instead of the normal distribution or perhaps the exponential
distribution? Once again, the stage was set for deep inquiry into the structure of organiz-
ations, organisms, and physical matter to explain the questions raised by the power law.
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The current state of network science can best be described as “still evolving.” In its
modern form, it is approximately a decade old. Discoveries continue to be made on a
monthly basis, which means that this book will soon be out of date! Therefore, the
author has attempted to focus on the fundamentals—results that hopefully will
endure for decades—rather than delve into interesting but distracting diversions.

The purpose of this chapter is to define the emerging discipline called network
science and develop a historical timeline of key events leading up to the current
state of the field. We survey that past 270 years leading up to the current state of
the art, and end with a loose collection of “rules” for networks. We study the follow-
ing in detail:

1. Network science can be defined in many ways. We loosely define it as the
study of the theoretical foundations of network structure/dynamic behavior
and its application to many subfields. Network science is both theory and
application.

2. The history of network science is divided into three periods: (1) early pre—
network period (1736—1966), when network science was really the mathe-
matics of graphs; (2) a meso—network period (1967-1998), when network
science was not yet called “the new science of networks,” but in fact
applications of networks were emerging from the research literature; and
(3) the modern period (1998-present), when the pioneers of the current
definition of network science set forth the fundamentals and showed that the
fundamentals had meaning in the real world.

3. The key concepts or principles of network science are (at least) structure, dyna-
mism, bottom—up evolution, autonomy, topology, power, stability, and emer-
gence. Each of these are explained in detail in this chapter.

4. We give a new perspective on network science that links emergence of network
synchronization to stability of linear coupled systems. This perspective inte-
grates a number of concepts underlying applications like models of the
spread of epidemics, dynamics of various forms of network emergence, and
behaviors observed in disparate fields such as biology, physics, and marketing.
We claim the underlying behavior of these applications is nothing more than
special cases of the more general case of linear system stability; that is, the
spread of infections, consensus building in groups, stability of electric power
grids, and so on are applications of coupled linear system analysis. All of
these seemingly disparate behaviors can be explained and analyzed using the
tools of spectral analysis.

1.1 WHAT IS NETWORK SCIENCE?

The Committee on Network Science for Future Army Applications, commissioned by
the Board on Army Science and Technology in cooperation with the National Research
Council of the National Academies, defines network science in a number of ways, and
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at a number of levels of detail (National Research Council, 2005). Perhaps the simplest
and most direct definition given by the NRC is “organized knowledge of networks
based on their study using the scientific method.” This definition is meant to distinguish
network science from the various technologies that use it—for example, to separate the
underlying science of networks from technologies such as the Internet.

But network science is not yet mature enough to be separated from its technological
roots. The Committee discovered that each subfield using network science had a different
working definition. Communication engineers think of networks as systems of routers
and switches; sociologists think of networks as influence diagrams representing the
social interactions among humans; marketing business people think of networks as popu-
lations of buyers; and the physicist thinks of networks as models of phase transition,
magnetism, and so on. Biologists use the network metaphor to understand epidemics,
genetics, and metabolic systems within cells, and power engineers think of electrical
power grids. Network science appears to be in the eye of the beholder with different
nomenclature, different vocabulary, and different methods of analysis in each field.

Perhaps it is easier to define what a network is, than what network science is. In
this respect, the concept of a network is more universal, even though the terminology
is not. The Committee describes a network “by its structure (e.g., nodes and links),
and its behavior (what the network ‘does’ as a result of the interactions among the
nodes and links).” It goes on to say, “a network is always a representation or
model of observable reality, not that reality, itself.” Networks are graphs that rep-
resent something real.

The operational definition above identifies two key ingredients of network science:
(1) it is the study of the structure of a collection of nodes and links that represent
something real, and (2) it is the study of the dynamic behavior of the aggregation
of nodes and links. It asks, “What happens over time as a network evolves, and
why does it happen?” The most significant results of network science seem to corre-
late form with function and structure with behavior. Currently, the behaviors of great-
est interest are in physical, biological, and social systems. Nodes might be humans,
molecules, genes, routers, transformers (in power grids), Web pages, or research pub-
lications. Links might be friendships, contagions, synapses, cables, Internet links, or
bibliographical citations. In this sense, network science is an abstraction of reality—
not the reality, itself. However, if the abstraction can explain the behavior of a real
system, then network science is not only highly interesting but useful as well.

The structure portion of a network is easily modeled by graph theory. Specifically,
the network itself can be defined in terms of a set, G = {N, L, f}, where N is a set of
nodes, L a set of links, and f: N x N a mapping function that defines the structure
of G—how nodes are connected to each other through links. The mapping function
contains enough information to draw the graph on a planar piece of paper using dots
as nodes and lines as links. But the set G is inadequate to define the second part of a
network—its dynamic behavior.

The dynamic portion of a network is defined by a set of microrules governing the
behavior of nodes and links. These rules are given at the microlevel, to distinguish
them from macrolevel behaviors of networks. Specifically, microlevel rules dictate
the behavior of links and nodes, and macrolevel rules dictate the emergence of
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global properties of a network. For example, preferential attachment—Ilinks are
attracted to nodes with a lot of links, already—is a microrule, whereas the power
law describing the degree sequence distribution of a network is a macrolevel rule.
As network scientists, we are concerned mainly with understanding macrolevel
properties by studying microrules—and sometimes the reverse.

A complete definition of network G must include both structural and behavioral
information. For example, G(t) = {N(z), L(z), f(r)} is a set-theoretic definition of
network G with a dynamic dimension—G(¢) is a function of time ¢ and the
number, values, and mappings of nodes and links as they change with time. The
actual behaviors of G(¢) are expressed algorithmically, typically in the form of a com-
puter algorithm. In this book we use programming language Java to express micro-
rules. Taken together, a compact definition of a network with its structural and
behavioral elements is presented below.

Definition of Network

G(t) = {N@),L(1),f(t) : IO}
where, t = time, simulated or real
N = nodes, also known as vertices or “actors”
L = links, also known as edges
SN x N = mapping function that connects nodepairs, yielding topology
J = algorithm for describing behaviors of nodes and links versus time

We can now propose a rigorous definition of network science as the study of net-
works, including their structure and behaviors:

Definition of Network Science  Network science, or the science of networks, is the
study of the theoretical foundations of network structure/dynamic behavior and the
application of networks to many subfields. Currently known subfields include
social network analysis (SNA), collaboration networks (bibliographic citations,
product marketing, online social networks), synthetic emergent systems (power
grids, the Internet), physical science systems (phase transition, percolation theory,
Ising theory), and life science systems (epidemics, metabolic processes, genetics).’

It should be clear from this definition that network science is essentially the science of
systems. In addition, because networks often model complex systems, it is closely
associated with the older field of complex adaptive systems. In fact, network
science incorporates ideas from complex adaptive systems (emergence), chaos

"Ernst Ising (1900—1998) proposed the model of phase transition from paramagnetic to ferromagnetic state
that bears his name. At some point, enough atoms align in the same direction to create a magnet in iron.
This is the result of transition from a state of predominantly random polarity (atoms cancel one another) to a
state of minimum energy or predominantly aligned atoms, hence producing an overall magnetic effect.
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theory (synchronization), and mean-field theory (physics). Network science is a
crossroad of sorts, pulling together ideas from its sister disciplines.

1.2 A BRIEF HISTORY OF NETWORK SCIENCE

Network science has been around for a long time, especially if graph theory is con-
sidered its genesis (see Table 1.1). But network science is more than graph theory,
because of its dynamic aspect and application to a number of other disciplines. In
general, network science has roots in graph theory, social network analysis, control
theory, and more recently, the physical and biological sciences. In a sense,
network science is the result of convergence of many other fields.

From a distance, it appears that network science has undergone (at least) two major
transitions: from mathematical theory to applications of graphs, and from applications
to a collection of generalizations about “things that are connected.” Accordingly, we
divide the brief history of network science into three periods: (1) early pre—network
period (1736—1966), when network science was really the mathematics of graphs; (2)
the meso—network period (1967—1998), when network science was not yet called
“the new science of networks,” but in fact applications of networks emerged from
the research literature; and (3) the modern period (1998 —present), when the pioneers
of the current definition of network science set forth the fundamentals and showed
that the fundamentals had meaning in the real world. In the modern period, advocates
of network science began to demonstrate the universality of network science as they
applied it to diverse fields that seemingly had no relationship to one another.

1.2.1 The Pre—Network Period (1736-1966)

The first known application of network science was Euler’s treatment of the Bridges
of Konigsberg (Euler, 1736). It is significant because it established graph theory and
showed that abstractions of reality can indeed be useful for solving problems in the
real world. In one stroke, Euler defined the static structure of a physical system in
terms of abstract mathematical objects called vertices (nodes) and edges (links).
Logically reasoning on the abstract level, he showed that it was impossible for the
citizens of Konigsberg to parade through town and return without crossing one of
its seven bridges at least twice.

Seven Bridges of Konigsberg Problem Konigsberg, Germany—aka Kaliningrad,
Russia—is a city with part of its landmass on an island in the middle of the river
Preger, and another part separated by a fork in the river. Seven bridges allow its citi-
zens to get from any of its four landmasses to any other. Four bridges connect the
banks of the river to the island; two bridges cross the forks of the river, and one
bridge connects the island to the landmass located between the forks. The city
fathers called on Leonhard Euler to tell them whether it was possible to parade
throughout the entire city of five landmasses and cross each bridge only once. The
solution to this problem is given in Chapter 2.
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Leonhard Euler was a prodigious mathematician. It took the Swiss authorities 48
years after his death to publish his entire works. He remains the father of graph
theory, today, and his legacy is the theoretical basis for the structural part of
network science.

Mathematicians have added thousands of graph theory results since Euler laid the
foundation more than 270 years ago. Graph theory has been extremely useful in com-
puter science and electrical engineering, as well as a number of other applied disci-
plines. But as far as network science is concerned, the next major step came in 1925
when Yule first observed preferential attachment in evolution (Yule, 1925). Yule’s
work seems to have little to do with network science, but his idea would resurface
in the 1990s as an explanation for the evolution of the Internet and WWW (World
Wide Web). Preferential attachment explains why scale-free networks exist in
natural and synthetic systems.

Preferential attachment is a simple emergent behavior observed in a number of dis-
ciplines. In the context of networks, it states that a network grows by adding nodes
and links—not randomly, but by preference. Suppose that a network starts with
three nodes connected by a single link between two of the three nodepairs. Now
suppose that new nodes are added at regular time intervals; that is, let the network
grow through a systematic process of connecting one node at a time to existing
nodes. How should the new nodes be linked to existing nodes? Random attachment
is one algorithm we might use: selecting an existing node at random and connecting it
to the new node by adding a new link between the nodepair.

An alternative (and Darwinian) algorithm is as follows. Connect the new node to
an existing node with probability proportional to the number of links already con-
nected to the existing node. The number of links connecting a node is called its
degree. This rule says to give preference to nodes with high degree. Thus, a new
node is more likely to be connected to an existing node containing two links than
to nodes with only one link. The new node will prefer being connected to the
node with the higher degree.

Preferential attachment describes an emergent process—that is, a process that
results in a network topology that is not apparent by examination of the local algor-
ithm, or microrule. It is not at all obvious that the result of repeated application of
preferential attachment will result in a network with a degree sequence distribution
that follows a power law. This realization would come 70 years later, when A.-L.
Barabasi and R. Albert showed how to create a scale-free network by repeated appli-
cation of preferential attachment.

In 1927 another seemingly unrelated discovery occurred when Kermack and
McKendrick published the first mathematical model of the spread of an infection
in a biological population (Kermack, 1927). The Kermack—McKendrick epidemic
model is a nonnetwork model, but it set the stage for two important innovations to
come: (1) it explained the spread of a contagion along (social) links connecting (indi-
vidual) nodes, and (2) it coincidentally described new-product adoption—diffusion
of technology—and how product information spreads like an infectious disease
throughout a social network. The first innovation is important because the
Kermack—McKendrick epidemic model leads to the discovery of the laws of virus
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spreading in networks such as the Internet. In fact, we show that rate of spreading and
persistence of an infection is determined completely by a network’s topological struc-
ture as well as the infectiousness of the contagion. Thus some networks are more
prone to epidemics than are others. Furthermore, understanding the relationship
between network topology and the spread of an infection tells us how best to stop
the spread.

The second significance of the Kermack—McKendrick model is its application to
marketing of new products in the business world. The spread of information (adver-
tising or “buzz”) in a social network is much like the spread of an epidemic. What
property of a network accelerates or retards this virus-like spread? In this case,
merchandisers want to know how to increase infectiousness.

Solomonoff and Rappaport were the first to apply the ideas of epidemics to
networks (Solomonoff, 1951). Thus the connection was made over 50 years ago
(i.e., around the mid-1950s), but the relationship between network topology and
infectiousness would have to wait for a more recent advance. Solomonoff
and Rappaport assumed that the network was random. Today we know that
random networks rarely exist in the real world—and when it comes to social
networks, randomness is far from reality. Furthermore, we now know that the
structure of a nonrandom network can have a dramatic impact on its function.

In fact, the idea of nonrandomness as a factor in behavior and the connection
between preferential attachment and nonrandom distributions occurred to Simon in
1955 (Simon, 1955). Simon was aware of Yule’s work on preferential attachment
and the distribution of species among plants genera. Simon’s observations confirm
the validity of the power law in natural and synthetic systems: namely, that the dis-
tribution of word frequencies in documents, distribution of number of papers pub-
lished by scientists, distribution of cities by population, distribution of wealth, and
distribution of species among genera all obey a power law (Mitzenmacher, (2004).
The evidence supporting nonrandomness in real-world phenomenon was mounting
long before it was observed in networks. But the connection between nonrandomness
in systems and graph theory was yet to be discovered.

By the midtwentieth century science reasoned that nature could be modeled as a
random process and therefore as a random graph. What were the properties of
random graphs that made them good models? Gilbert showed how to build a
random graph by first constructing a complete graph and then deleting randomly
selected links until reaching the desired number of links (Gilbert, 1959). But his cum-
bersome algorithm was quickly surpassed by the elegant and widely promoted algor-
ithm of Erdos and Renyi (Erdos, 1960). The Erdos—Renyi (ER) algorithm is used
today because of its simplicity. A network with n nodes is constructed by inserting
a link between randomly selected nodepairs. The process is repeated until m links
have been inserted.

The ER algorithm is not perfect—it can leave some nodes isolated, and unless it is
slightly modified, it can insert duplicate and loop links into the network. But it has
become the standard method of generating a random network by computer. The
Gilbert and ER algorithms were the first generative methods of network creation.
Many more methods have since been proposed, and in fact, we propose a dozen
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more in this book. Today, computer algorithms exist to generate a network of any
prescribed topology, with any number of nodes and links; see Chapter 7.

By the very late 1960s network science did not exist, but its seeds were planted in
disconnected and seemingly unrelated disciplines. It would take several more decades
of scattered research in disparate disciplines before convergence to what we now
know of as the science of networks.

1.2.2 The Meso—Network Period (1967-1998)

A stunning experiment performed in 1967 propelled network science from pure graph
theory into scientific inquiry. The famous “six degrees of separation” experiment of
Stanley Milgram seemed innocent enough, but in retrospect, it marked a turning
point. Stanley Milgram invited human subjects from Kansas and Nebraska to partici-
pate in a “communications project” to “better understand social contact in American
society.” The experiment required them to send a folder across the country to a target
person defined by the experimenters. Subjects were told to perform the following four
steps (Yung, 2001):

1. Add your name to the roster at the bottom of this sheet, so that the next person
who receives this letter will know whom it came from.

2. Detach one postcard, fill it out, and return it to Harvard University. No stamp is
necessary. It allows us to keep track of the progress of the folder as it moves
toward the target person.

3. If you know the target person on a personal basis, mail this folder directly to
him/her. Do this only if you have previously met the target person and
know each other on a first-name basis.

4. If you do not know the target person on a personal basis, do not try to contact
him/her directly. Instead, mail this folder (postcards and all) to a personal
acquaintance who is more likely than you to know the target person. You
may send the folder on to a friend, relative, or acquaintance, but it must be
someone you know on a first-name basis.

Subjects had 24 hours to forward their folder and received only a certificate of
appreciation for their efforts. Most folders never made it. But folders that reached
their target did so in far fewer steps than expected. Out of millions of people,
folders passed through only a handful of intermediaries before reaching their intended
destination. This winnowing of paths through a large population was evidence of the
small-world effect, and the social network underlying Milgram’s experiment is now
known as a small-world network. The number of intermediaries averaged 5.2.

How could a stranger connect with another stranger in fewer than six steps?
Milgram had to conclude that the fabric of society formed a nonrandom network.
Instead of randomly bouncing from person to person, folders made a beeline to
their destinations—and yet, the path they followed was not planned out ahead of
time, nor was there any assurance that a chain of intermediaries existed between
sender and receiver.
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Assuming that each person knows 500 other people, on average, the odds of reach-
ing the target person is approximately 1 in 200,000, and the number of intermediaries
should have been many times larger than 6 hops, if paths taken by successful folders
were truly random. Instead, successful folders reached their target in an average of 5.2
steps, or hops, from the originating person to the target person. The distance traveled
in graph theory terms was 5 or 6 hops because five or six people handled a folder.

Milgram’s experiment inspired a Broadway play and movie by John Guare called
Six Degrees of Separation: A Play (Guare, 1990). The terminology took root, and the
idea of small-world social networks blossomed, leading to purposeful creation of
many other social networks. The “Kevin Bacon game” created by Brett Tjaden of
the University of Virginia is one such example.” This network links actors that
have appeared in the same movie together. The distance between Kevin Bacon and
any other actor is equal to the number of hops from the node representing Kevin
Bacon to any other node representing another actor.

Milgram concluded that the social world is much smaller than the “real world”
because it took only 6 hops to link a pair of strangers, regardless of where they
lived. He called this the small-world problem. Many decades later Watts and
Strogatz would rejuvenate interest in small-world networks and introduce it to phy-
sicists and biologists. Their technical analysis of large sparse networks rigorously
defined small worlds as networks with relatively short distances (hops) between
node pairs chosen at random, even as the size of the network grows. Specifically,
the diameter of a network increases as In(n) while its size increases by O(n),
where n is number of nodes.

The small-world idea is related to the “weak ties” theory of Granovetter, who pos-
tulated that social networks contain both strong (direct) and weak ties (long-distance
connections) that bind society together (Granovetter, 1973). In a cleverly titled paper,
“The strength of weak ties,” Granovetter suggests that social networks are held
together by strong connections between friends and family members, as well as
weaker, long-distance connections among casual acquaintances. This explains why
it is possible to span a large sparse network in a small number of hops. The links
of a social network are like freeways and streets—freeways have few intersections
(nodes) and allow you to travel long distances without stopping. City streets, on
the other hand, allow you to pinpoint a single person or house within a dense neigh-
borhood. Freeways (weak ties) get you to a local neighborhood quickly, while streets
(strong ties) zero in on a specific person or house.

White identified biases in Milgram’s experiment and suggested modifications that
lead to an average of seven intermediaries (White, 1970). Hunter and Shotland
modeled the experiment as a Markov process to determine average distances
between groups (Hunter, 1974). Pool and Kochen provided the earliest known theor-
etical analysis of small-world networks in 1978 (Pool, 1978). The flurry of publi-
cations stimulated by Milgram’s experiment dropped off precipitously after 1978,
only to be rejuvenated two decades later (Kleinfeld, 2002).

This game is available at http://www.cs.virginia.edu/oracle/.
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Meanwhile, pioneering work began in soon-to-be-related disciplines: Bass, Fisher,
and Pry model new-product adoptions as the propagation of an infectious disease
(Bass, 1969, 2001; Norton, 1987). This work extended the Kermack—McKendrick
epidemic model to the new field of marketing and prepared the way for network-
based product diffusion models. These models have proved to be powerful tools
for the business of marketing. But do the epidemic models work when applied to
social networks? We show that technological diffusion (adoption of new products)
obeys the Bass and Fisher—Pry equations for a single product and random
network. We also show that a monopoly arises from a random population because
of preferential attachment. However, we discover that the Bass/Fisher—Pry model
has limitations when modeling competition among products in a multiproduct
network. These results have not been reported elsewhere.

In the social sciences, graph theory was being used to explain a number of other
social interaction phenomena. Bonacich was perhaps the first social scientist to realize
that influence in a social network could be mathematically represented using the con-
nection matrix of the network (Bonacich, 1972). The nodes represent individuals, and
weights on directed links represent the degree of influence one individual has on
another.® If person A influences the decision of person B, and person B influences
the decision of person C, and so on, what is the overall effect on group consensus?
Will a chain of influences propagate through a network and eventually settle down
to a common value? Bonacich claimed that consensus would eventually be
reached, and proposed that the consensus be computed by raising the weighted con-
nection matrix to the nth power, where n is the number of nodes in the network. As it
turns out, influence spreading in a social network is not as simple as Bonacich’s
model suggests, but Bonacich initiated a line of research that continues, today.

Marketing gurus note that highly connected people are superspreaders—people
who accelerate the spread of buzz—new-product information, simply because they
are highly connected (Rosen, 2000). But social scientists have long known of the
power of the middleperson or intermediary—actors who connect other actors. If
the only way actor A can communicate with actor C is by going through actor B,
then B has power over A and C. Thus, social scientists define betweenness as the
number of paths that must run through an actor to connect with other actors. So, in
addition to connectedness, an actor derives influence by serving as an intermediary.
Does betweenness give an actor more influence than connectedness? This is the ques-
tion we address in the study of influence networks. See Chapter 10.

Influence spreading—whether it is for marketing a product, spreading a disease, or
achieving consensus in a group—is a form of signal propagation. The signal travels
along links and affects nodes in some way. For example, the value of a node might be
the average over the value of adjacent nodes. In a Kirchhoff network, the value of a
node is equal to the difference between the sum of values from input and output links.
Regardless of the local microrule for assigning values to nodes, the concept of signals
flowing through networks appears to be an underlying mechanism common to epide-
miology, synchronicity, influence, and consensus in groups.

3Weights are fractions: 0 < weight < 1.
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More rigorously, a network can be regarded as a coupled system. The system is
composed of nodes that take on values called stafes, and links that establish the
inputs and outputs to nodes. The state of the network is the union of the states of
all of its nodes. Signals (values) propagate along links, from node to node, and
alter the node’s states. If we plot the change in state versus time, we might observe
oscillations, dampening, or convergence to a certain state—the so-called fixed
point—and remain there, forever. Under what conditions does a network oscillate
or converge? This is a universal question, which we address in Chapters 10 and 12.

We show that spread of epidemics, synchronization of biological systems, consen-
sus in a social network, and diffusion of new products are all different forms of syn-
chronization in a network. A network is said to sync when the value of its nodes reach
a fixed point—a value that ceases to change once reached. We answer the question
“What properties or conditions are necessary and sufficient for a network to sync?”
The answer leads to a general theory of stability in networks.

Kuramoto provided a mathematical basis for studying synchronization in coupled
linear systems (Kuramoto, 1984). His work would influence Strogatz a decade later,
and have a major impact on the convergence between network science and control
theory. For example, Kuramoto’s work led Strogatz to observe automatic synchroni-
zation in small-world networks. Strogatz claimed that synchronization is simply a
property of all small worlds (Strogatz, 2003). This turns out to be false, but it stimu-
lated further study into network models of various biological systems that automati-
cally synchronize. Now we know that other conditions must exist in networks for
them to sync.

By 1998, the fundamentals of network science had been established, but the
explosive interest in application of the fundamentals to real-world systems was yet
to come. The rapid rise of the Internet beginning in the early 1990s provided an incen-
tive for a new generation of researchers looking to formalize the human-created, but
highly decentralized, Internet phenomena. Waxman proposed a static graph theory
model of the Internet in 1988 (Waxman, 1988). We call such networks Webgraphs,
because they use graph theory to understand the World Wide Web (WWW). It
would take another decade before researchers would make the connection between
graph theory and the dynamic growth of the Internet and WWW. But once they did,
network science came of age.

1.2.3 The Modern Period (1998—-Present)

Networks have static and dynamic properties. Static graph properties such as dia-
meter, average path length, connection matrix, and cluster coefficient provide a
means for classification of the network. The degree sequence distribution of a
network, for example, is a histogram of percentage of nodes with degree d
versus d. A random network has a degree sequence distribution that obeys a bino-
mial distribution, and a scale-free network’s degree sequence obeys a power law.
A small-world network has relatively small diameter and average path length, and
a scale-free network has hubs. These are various ways of classifying networks on
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the basis of their structure. But classification according to static structure is
not enough.

Networks also have dynamic properties such as fixed points when they sync, and
preferences for linking nodes together when preferential attachment is operational.
Dynamic networks evolve. Starting at some initial state, a dynamic network may tran-
sition to a second, third, fourth, and higher state until either cycling back or reaching a
final state—its fixed point. The evolution from initial state to some future state is a
form of emergence. Therefore, networks that reach a fixed point are different from
networks that oscillate, forever. In this way we can classify networks according to
dynamic properties.

Network science is the study of both static and dynamic properties of networks. In
this book we focus on emergence as a method of understanding and characterizing
the dynamic part of network science. We further divide the emergent approach
into two parts: the part that alters the topology of a network (e.g., preferential attach-
ment) and the part that alters the state of a network (e.g., synchronization). We show
that a network of any desired structure can be generated as a fixed point of an emer-
gent process whereby links are rewired until the desired topology emerges. In the final
chapters we show that stability emerges out of chaos in networks with certain initial
conditions and certain static properties.

Holland defines emergence in general terms as “much coming from little”
(Holland, 1998). This is precisely what happens when a network evolves. A series
of microlevel changes accumulate over time, until a macrolevel change in the
network is realized. Emergence means that a major change in global properties
comes from many small changes at the local level. Emergence plays a major role
in the modern interpretation of network science. In a sense, it completes the puzzle
of what defines the field.

Watts and Strogatz rekindled interest in small-world networks by showing the uni-
versality—and utility—of the small-world model (Watts, 1998; 1999a; 1999b). They
proposed a simple emergence process—called a generative procedure—for con-
structing a small-world network. The idea is simple but brilliant: initially constructing
a graph with regular structure. Next, apply rewiring to every link with probability p,
such that p#m links are randomized (redirected to a randomly selected node).
Parameter p is the rewiring probability, and m is the number of links in the original
regular graph.

The Watts—Strogatz generative procedure is tunable—increasing p also increases
the randomness of the small world. This means we can produce a network with any
desired level of randomness—entropy, if you will—by adjusting rewiring probability
p—a low rewiring probability generates a nonrandom structure, and a high prob-
ability generates a random structure. The algorithm is an example of the first kind
of emergence—evolving the structure, not the state, of the network.

A Watts—Strogatz network falls between a random network and nonrandom
network. At a certain rewiring probability called the crossover point (also length
scale), the network transitions from mostly structured to mostly random network.
Typically, the crossover point is very small—on the order of p* = 2-3%. Watts
and Strogatz attached a meaning to the crossover, suggesting that it corresponds to
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phase transition in materials (change in state from liquid to solid, magnetism, etc.).
Thus, the crossover point is also known as the phase transition threshold.

Small worlds were no longer restricted to social networks as in the Milgram exper-
iment after Watts and Strogatz showed how to generate an arbitrarily small world
network. Moreover, small-world networks were observed in both natural and
synthetic systems, which suggested that they might somehow be universal models.
What does a database of film actors, the electric power grid of the western United
States, and the neural network of the nematode worm C. elegans (Caenorhabditis
elegans) have in common? They are all small worlds. This had to be more than a
coincidence.

The small world was not the only classification of networks that seemed universal.
The year 1999 was full of discoveries: M. Faloutsos, P. Faloutsos, and C. Faloutsos
observed a power law in their graph models of the Internet, and Albert, Jeong, and
Barabasi obtained similar results for the WWW (Faloutsos, 1999; Albert, 1999).
Small worlds had characteristic short path length, but power-law networks had
hubs—nodes with extremely high degree. Barabasi and students found that the
degree sequence distribution of many synthetic and natural networks followed a
power law. A network that follows a power-law distribution means that it has a
hub, and many other nodes with many fewer links than the average. This lopsided
preference for hubs seemed counter to nature, which typically follows a normal dis-
tribution. The trouble was that researchers were discovering too many systems struc-
tured according to the power law to ignore.

Barabasi and Albert generalized the concept of nonrandom networks with hubs and
provided a generative procedure for producing scale-free networks (Barabasi, 1999).
The name came from observing that a function f(x) scales if f(ax) = d'f(x), which is
what a power law does. Therefore, if the degree sequence distribution obeys the power
law, i(x) = x~9, then it is clear that h(ax) = (ax)~? = (a~ ?)h(x) = a'h(x). The important
contribution, however, isn’t the name, but the observation that scale-free networks exhibit
a sharp decline in frequency of nodes with degree d, as d increases.

Realization of the importance of small-world and scale-free networks created a
feeding frenzy among mathematicians, physicists, and social scientists from 1999
through 2002. Dorogovtsev, Mendes, Samukhim, Krapivsky, and Redner derived
an exact formula for the power law of a purely scale-free network and showed that
it describes many biological systems (Dorogovtsev, 2000; 2002a; 2002b; 2003).
Kleinberg, Kumar, Raghavan, Rajagopalan, and Tomkins suggest the term
Webgraph to describe network models of the WWW (Kleinberg, 1999). Broder,
Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins, and Wiener were the
first to fully map the WWW as a Webgraph and discover its structure. It isn’t
random. Kleinberg gives a formal explanation for Milgram’s experiment based on
the “Manhattan distance” between source and target nodes. The “Manhattan dis-
tance” is defined as the number of blocks, traversed along streets in Manhattan,
New York, between source and destination intersections. Kleinberg showed that it
takes only O(n) steps to navigate such a small world (Kleinberg, 2002a).

By the end of this flurry of discovery, the basics of network science were firmly in
place. But what are these models good for? If scale-free and small-world topologies
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are as universal as the mathematicians and physicists claimed, then it should be easy
to find examples in natural and synthetic systems. Furthermore, if scale-free and
small-world topologies have profound meaning, we should be able to derive gener-
alizations or universal truths from the theory. In fact, this is what happened.

Albert, Jeong, and Barabasi observed that scale-free networks were extremely resi-
lient against random attacks, but extremely vulnerable to systematic attacks on hubs
(Albert, 2000). This makes sense—a random attack will most likely strike and destroy
a node with only a few links, because a scale-free network has many such nodes. On
the contrary, since hubs are rare, it is unlikely that a hub is attacked. But a hub has
many links, and so its demise damages a large percentage of the network. Let p,
be the fraction of damaged nodes that dismantles the network. When p, is high,
the network is resilient, because many nodes must be knocked out to dismantle the
network. When it is low, the network is vulnerable. In simulations, Albert et al.
found threshold values of p. = 28% for random networks versus nearly 99% for
scale-free networks under random attacks; that is, a random network dismantles
when an average of 28% of its nodes are damaged. But the tables are turned when
hubs are systematically attacked—only 18% of the nodes need to be attacked to dis-
mantle a scale-free network. Thus, a scale-free network is more vulnerable than a
random network when its hubs are targeted.

The experiment of Albert et al. raises a question we answer in this book: What is
the meaning of resiliency (risk) in a network? We extend the results of Albert et al.
and assign a risk property to any arbitrary network, based on the value of nodes, their
degree, and the risk formula: R = T« Vx C, where R is risk, T is threat probability,
V is vulnerability probability, and C is consequence or damage. We show that any
network can be optimally protected from dismantling if target-hardening resources
are deployed to nodes and links according to an algorithm proposed by Al-Mannai
and Lewis (Al-Mannai, 2007). The Al-Mannai—Lewis algorithm protects high-value
hubs first and lower-valued nodes last.

In related work, Pastor-Satorras and Vespignani observed that populations forming
a scale-free network have no minimum epidemic threshold that prevents an infectious
disease from recurring (Pastor-Satorras, 2001). Once an infection enters a network, it
rises and falls repeatedly. Persistent epidemics are real—they occur in human net-
works as well as on the Internet. If the Internet is a scale-free network, then what
is to prevent persistent viruses from infecting the Internet, permanently?

Wang and coworkers showed the initial claim of Pastor-Satorrus to be generally
false (Wang, 2003a). Instead, persistence of an infection is determined not by the net-
work’s degree sequence but by its spectral radius, which is defined as the largest non-
trivial eigenvalue of a network’s connection matrix. Therefore, network topology
determines its susceptibility to epidemics, but not because it is scale-free. This pro-
found result has significant implications for fighting both kinds of viruses—Internet
and human. It also has implications for the product marketer.

The network model of systems is proving to have a profound impact on understand-
ing resiliency, risk, epidemics, and social interactions among people in groups. It is
also proving to be revolutionary in understanding chaotic behavior of coupled linear
systems. Wang, Chen, Barahona, Pecora, Liu, Hong, Choi, Jost, Joy, and others
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applied linear systems analysis to arbitrary networks and showed that the stability of
any network is a function of its topology (Wang, 2002a, 2002b, 2002c; Barahona,
2002; Liu, 2002, 2003, 2004a, 2004b; Hong, 2002; Jost, 2002). We extend these
results to several classes of networks—the Atay network, a kind of dynamic
network studied by Atay, which uses a local averaging algorithm to compute the
state of nodes (Atay, 2006), and a new class of networks called Kirchhoff networks,
which attempt to stabilize the value of its nodes by maintaining Kirchhoff’s first law.

Emergence of fixed-point solutions (synchronization) in a dynamic network has
become a powerful and general tool for understanding a number of natural phenom-
ena. Strogatz claimed that the beating of a human’s heart, the chirping of crickets, and
other biological systems naturally sync because they are small-worlds (Strogatz,
2003). But we show that network synchronization has little to do with small-world
topology, and everything to do with the Laplacian of the connection matrix, and
the length of circuits within the network. We examine stability of Atay networks,
which have applications in marketing, as well as understanding the chirping of crick-
ets, and show that sync is a property of emergent networks that contain triangle-
shaped subgraphs. As it turns out, small-world networks have an abundance of
triangular subgraphs! Moreover, a network can be synchronized, by adding a triangu-
lar subgraph to one of its nodes.

The picture is more complex for Kirchhoff networks—defined as directed-flow
networks where the state of every node is the sum of the values of incoming links
minus the sum of values of outgoing links. Kirchhoff networks are abstractions of
electrical power grids, electromechanical feedback systems, air traffic routes, and
so on. Hence, it is important that they not blow up—but instead, stabilize quickly
after a disruption or sudden change in the value of one or more nodes. Curiously,
Kirchhoff networks exhibit wildly chaotic behavior followed by sudden synchroniza-
tion when the lengths of circuits within the network are relatively prime numbers.
This has important applications to the design of self-stabilizing power grids, self-
correcting transportations systems, and perhaps self-repairing biological systems.

A similar question of stability leading to synchronization—or not—can be
observed in social networks. Consider a group of people attempting to arrive at a con-
sensus (Gabbay, 2007). Each member of the group starts with an initial position, and
attempts to influence his or her neighbor’s position by exerting a positive or negative
influence on nearest neighbors. Influence spreads like an epidemic, but rather than
infecting or not, the influence sways the position of adjacent nodes. For example,
each node of the social network might be adjusted to equal the average value of
its neighbors.

Propagation of influence in a network is much like propagation of a signal in a
coupled linear system. If the network is a kind of Atay network, nodes take on a
value in the interval [—1, + 1], representing disagreement or agreement, or some frac-
tion in between. As influence spreads, each node value changes. If all nodes reach the
same value, after some period of time, we say that the network has reached a consen-
sus. If nodes never reach a consensus, we say that the network diverges.

The question we address is, “Under what conditions will an influence network
arrive at a consensus?” This problem is related to the more general problem of
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under what conditions will an arbitrary network synchronize. We show that consen-
sus is reached when the influence network’s largest nontrivial state matrix eigenvalue
is bounded by one, and there are no conflicts in the network. Curiously, the most
influential node in the network is the one less influenced by other nodes.

Network science has achieved more recent results in the field of marketing, and
understanding competition among corporations. We show that preferential attachment
in a simple random network obeys the Bass and Fisher—Pry equations, but techno-
logical diffusion is more complex in multiproduct, multicompetitor networks.
Simple models of preferential attachment, value proposition, early-stage or late-
stage market, and combinations of these competition models lead to monopolies in
general, and oligopolies under certain conditions. Specifically, we show that it is
possible for niche players to coexist with a monopoly, under most assumptions.
This is an area of research still ripe for more investigation.

For more details and in-depth analysis of historical events in the brief history of
network science, the reader is advised to study several excellent surveys of
network science. Virtanen surveys the complete field prior to 2003 (Virtanen,
2003). The thesis by Voon Joe Yung gives a nonmathematical introduction and
includes a copy of the Milgram experiment folder (Yung, 2001). The numerous
papers by Mark Newman and Duncan Watts provide compact tutorials on the funda-
mentals of small worlds (Watts, 1999a; Newman, 2000b).

1.3 GENERAL PRINCIPLES

The “modern period” is defined by the convergence—commencing in the late
1990s—of several complementary and interrelated fields—with more yet to come.
Graph theory, social network analysis, epidemic modeling, market competition mod-
eling, and synchronization of physical and biological systems are all different aspects
of network science. In fact, it may be too early to make generalizations or identify
principles of network science. At some risk of being shortsighted, the author
makes the following observations:

Characteristics of Network Science in the Modern Period

1. Structure. Networks have structure—they are not random collections of nodes
and links. For example, the structures of electrical power grids, online social
networks, and the nervous system of the C. elegans nematodes are not
random, but instead have a distinct format or topology. This suggests that func-
tion follows form—many real-world phenomena behave the way they do
because of their network structure.

2. Emergence. A network property is emergent if it changes by a factor of 10 as a
consequence of a dynamic network achieving stability. In other words, emer-
gence is a network synchronization issue—stable networks transition from one
state to another until they reach a fixed point, and stay there. The fixed point is a
new configuration for the network with corresponding order-of-magnitude
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change in a certain property. For example, on the Internet, a group of teenagers
will form a social clique 10 times larger than expected from purely random
behavior, because the clique is formed by preferential attachment; the top
1% of Americans make 10 times more money than the average American;
the popularity of a few movie stars is 10 times greater than the popularity of
the average movie star; and the largest cities in the world are relatively rare,
and are 10 times larger than the average city. In each of these examples, the
“hub property” or concentration is a consequence of some instability
working its way through the network as the network achieves a new fixed
point. This is the impetus behind online social networks that begin with
nothing, and end up with millions of subscribers. However, it is not always
clear what ingredients go into online social networking to cause explosive
growth. Likewise, it is not always obvious what motivation causes an order-
of-magnitude change in a network’s property.

. Dynamism. Network science is concerned with both structure and dynamic

behavior of networks. Dynamic behavior is often the result of emergence or
a series of small evolutionary steps leading to a fixed-point final state of the
system. The Internet, many biological systems, some physical systems, and
most social systems are growing and changing networks. One must understand
their dynamic properties in order to fully understand these systems. Analysis of
only their static structure, such as degree sequence, is not sufficient to under-
stand the network. For example, network synchronization, such as in the
case of chirping crickets, is a consequence of the dynamism of each cricket,
as well as the structure (triangular subgraphs) of the social network of crickets.

. Autonomy. A network forms by the autonomous and spontaneous action of

independent nodes that “volunteer” to come together (link), rather than
through central control or central planning. Structure and function arise out
of chaos, more as a result of serendipity than determinism. Examples are for-
mation of large conglomerates from the merger of small companies; emergence
of large cities from small communities; and formation of global telecommuni-
cation systems from linking of many smaller, local, independent operators. The
initial configuration of a network may be premeditated, but over time, the
network either “decays” with the onset of some form of entropy, or adapts
and changes via the absorption of energy. For example, a highway system
will either decay and fall into disrepair, or improve and grow through the
expenditure of effort to repair, extend, increase its capacity, and so on.

. Bottom—Up Evolution. Networks grow from the bottom or local level up to the

top or global level. They are not designed and implemented from the top down.
This can also be regarded as a form of distributed control where network evol-
ution is a consequence of local rules being applied locally without any centra-
lized control. Even if the initial structure of a network is the result of a
premeditated design, networks evolve and change as a consequence of their
dynamism. Examples of “unplanned systems” are formation of the Internet
from local networks, formation of the electrical power grid from local utilities,
and formation of highway systems from local roads and animal trails.
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6. Topology. The architecture or topology of a network is a property that emerges
over time as a consequence of distributed—and often subtle—forces or auton-
omous behaviors of its nodes. A network is dynamic if its topology or other
properties change as a function of time. Thus, topology (structure) is a conse-
quence of Darwinian forces that shape the network. For example, scale-free
networks (networks with dominant hubs) emerge from the force of “preferen-
tial attachment” (economics), unintended consequences (regulatory law), such
as the vulnerability of electrical power grids as a consequence of government
deregulation, or “hidden order” of decentralized infrastructures emerging
from complex adaptive systems such as the rise of the Internet, formation
of metropolitan civilizations, or creation of monopolies like the Microsoft
Corporation.

7. Power. The power of a node is proportional to its degree (number of links con-
necting it to the network) influence (link values); and betweenness or close-
ness; the power of a network is proportional to the number and strength of
its nodes and links. For example, Metcalf’s law states that the power of a
network is proportional to the square of the number of nodes it contains
[e.g., the maximum number of links that a network with n nodes can contain
is n(n—1)/2, which is approximately n*]. The influence a person exerts on a
group is proportional to the position, number, and power of colleagues the
person has within the group, such as the person’s connectivity. The power of
a corporation, within an industry or market, is proportional to the number
of customers (links) that it has, or its intermediary position within the
industry. Power is a subtle but important organizing principle in most net-
works, but it is often called something else, such as influence, signal strength,
or infection rate.

8. Stability. A dynamic network is stable if the rate of change in the state of its
nodes/links or its topology either diminishes as time passes or is bounded
by dampened oscillations within finite limits. For example, the regular and
rhythmic beating of an animal’s heart is controlled by a stable network of
nerves that regulate the pacemaker, the loss of a power plant in the electrical
power grid stabilizes quickly by switching from one source to another
without disruption in supply, or the loss of a coworker causes short-term real-
location of responsibility without organizational failure.

This book approaches the subject of network science from the topology perspective,
first, and then the dynamic or emergent viewpoint, second. Does topology follow
function, or the reverse? Does a dynamic network behave and function in a certain
way because of its topology, or does it derive its topology from its function? The fol-
lowing chapters provide a lot of evidence to support the “form follows function” per-
spective. Sparse small-world networks appear to model human social networks,
because humans have limited capacity to know a large number of other humans.
Scale-free networks appear to model economic constructs such as the Internet and
monopolies within industrial segments, because preferential attachment is essentially
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the law of increasing returns of economics. Networks tend to be structured in such a
way that synchronization is more likely than chaos, simply because unstable systems
cannot survive in nature.

It seems logical, then, to approach the field of network science from the ground up.
First, we review the basics of graphs. This will require definitions and terminology
(see Chapters 2 and 3). Then, the generative procedures for producing random,
small-world, scale-free, and arbitrary networks of any topology are provided and
studied in Chapters 4—7. Chapter 8 extends epidemiology to the network, Chapter
9 begins the development of a unified theory of network stability, Chapter 10
applies this theory to social network analysis and group consensus, and Chapters
11-13 explore applications in greater detail. Many more chapters remain to be
written, hopefully by the reader!



