
CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1
GettinG a Feel For the linden ScriptinG lanGuaGe
What is so compelling about Second Life? As Linden Lab Founder Philip Rosedale explained in an October 19,
2006 interview in The New York Times, in Second Life avatars can move around and do everything they do in the
real world, but without constraints such as the laws of physics: "When you are at Amazon.com [using current web
technology] you are actually there with 10,000 concurrent other people, but you cannot see them or talk to them,"
Rosedale said. "At Second Life, everything you experience is inherently experienced with others."

Much of the reason Rosedale can talk convincingly about shared experience is because of scripting in Second
Life. To be sure, Second Life is a place of great physical beauty: in a well-crafted SL environment, a feeling of mood
and cohesive appearance lend a level of credibility to the experience of existing and interacting in a specific and
sometimes unique context. But consider how sterile Second Life would be without scripting. Builders and artists
create beautiful vistas, but without interaction the world is static; little more than a fancy backdrop. Scripts give the
world life, they allow avatars to be more realistic, and they enhance the residents' ability to react to and interact
with each other and the environment, whether making love or making war, snorkeling, or just offering a cup of java
to a new friend.

This chapter covers essential elements of scripting and script structure. It is intended to be a guide, and may
be a review for you; if that's the case then skim it for nuggets that enhance your understanding. If you are new to
Second Life scripting or even programming in general, consider this chapter an introduction to the weird, wonderful
world of SL scripting and the Linden Scripting Language, LSL. If you don't understand something, don't worry! You
might find it easier to skip ahead and return here to get the details later.

throughout the book, you'll see references to the LSL wiki. there are actually several such wikis, of which
http://wiki.secondlife.com/wiki/LSL_Portal is the "official" one, and http://lslwiki.net is
one of many unofficial ones. typing out the full url is cumbersome and hard to read, so if you see a reference to
the wiki, you'll see only the keyword. For example, if you see, "you'll find more about the particle system on the
lSl wiki at llparticleSystem," it means http://wiki.secondlife.com/wiki/LlParticleSystem,
http://www.lslwiki.net/lslwiki/wakka.php?wakka=llParticleSystem or http://
rpgstats.com/wiki/index.php?title=LlParticleSystem. all of these wikis have search functions
and convenient indexes of topics.

in general, all examples in this book are available at the Scripting Your World headquarters (SYW hQ) in Second
Life at hennepin <38, 136, 108>* and on the internet at http://syw.fabulo.us. there are also several extras
that didn't get included in the book due to space limitations. enjoy browsing!

* Visit http://slurl.com/secondlife/Hennepin/38/138/108/ or simply search in-world for "SYWHQ."

NOTE

CHAPTER 1

4

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

scripting structure 101

A script is a Second Life asset, much like a notecard or any other Inventory item. When it is placed in a prim,
one of the building blocks of all simulated physical objects, it can control that prim's behavior, appearance,
and relationship with other prims it is linked with, allowing it to move; change shape, color, or texture; or
interact with the world.

a prim is the basic primitive building block of SL: things like cubes, spheres, and cylinders. an object is
a set of one or more linked prims. When you link the prims, the root prim is the one that was selected
last; the remaining prims are called children. the root prim acts as the main reference point for every
other prim in the object, such as the name of the object and where it attaches.

NOTE

Whether or not you've already begun exploring how to script, you've probably created a new object
and then clicked the New Script button. The result is that a script with no real functionality is added to
the prim's Content folder. Left-clicking on the script opens it in the in-world editor and you see the script
shown in Listing 1.1. It prints "Hello, Avatar!" to your chat window and then prints "Touched."
each time you click the object that's holding it.

listing 1.1: default new Script
default
{
 state_entry()
 {
 llSay(0, "Hello, Avatar!");
 }

 touch_start(integer total_number)
 {
 llSay(0, "Touched.");
 }
}

This simple script points out some elements of script structure. First of all, scripting in SL is done in
the Linden Scripting Language, usually referred to as LSL. It has a syntax similar to the common C or Java
programming languages, and is event-driven, meaning that the flow of the program is determined by events
such as receiving messages, collisions with other objects, or user actions. LSL has an explicit state model
and it models scripts as finite state machines, meaning that different classes of behaviors can be captured in
separate states, and there are explicit transitions between the states. The state model is described in more
detail in the section "States" later in this chapter. LSL has some unusual built-in data types, such as vectors
and quaternions, as well as a wide variety of functions for manipulating the simulation of the physical world,
for interacting with player avatars, and for communicating with the real world beyond SL .

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

5

CHAPTER 1

The following list describes a few of the key characteristics of an LSL script. If you're new to
programming, don't worry if it doesn't make much sense just yet; the rest of this chapter explains it all in
more detail. The section "An LSL Style Guide" ties things together again.

•	 All	statements	must	be	terminated	by	a	semicolon	(;).

•	 LSL	is	block-oriented,	where	blocks	of	associated	functionality	are	delimited	by	opening	and	closing	
curly	braces	({ block }).

•	 Variables	are	typed	and	declared	explicitly:	you	must	always specify exactly which type a variable is
going to be, such as string or integer.

•	 At	a	bare	minimum,	a	script	must	contain	the	default state, which must define at least one
event handler, a subroutine that handles inputs received in a program, such as messages from other
objects or avatars, or sensor signals.

•	 Scripts	may	contain	user-defined	functions	and	global	variables.

Listing 1.2 shows a rather more complete script, annotated to point out other structural features.
This script controls the flashing neon sign on the front of the Scripting Your World visitor center. Do not
be discouraged if you don't understand what is going on here! Although this script is relatively
complex, it is here to illustrate that you don't need to understand the details to see how a script is put
together.

This first discussion won't focus on the function of the neon sign, but rather on the structure
commonly seen in LSL scripts. A script contains four parts, generally in the following order:

•	 Constants	(colored	orange	in	Listing	1.2)

•	 Variables	(green)

•	 Functions	(purple)

•	 States, starting with default	(light	blue,	with	the	event	handlers	that	make	a	state	in	dark	blue)

While common convention uses this order for constants, variables, and user-defined functions,
they are permitted to occur in any order. They must all be defined before the default state, however.
Additionally, you are required to have the default state before any user-defined states.

Constants are values that are never expected to change during the script. Some constants are true for
all scripts, and part of the lSl standard, including PI (3.141592653), TRUE (1), and STATUS_PHYSICS
(which indicates whether the object is subject to the Second Life laws of physics). You can create named
constants for your script; examples might include TIMER_INTERVAL (a rate at which a timer should
fire), COMMS_CHANNEL (a numbered communications channel), or ACCESS_LIST
(a list of avatars with permission to use the object).

Variables, meanwhile, provide temporary storage for working values. examples might include the
name of the avatar who touched an object, counts of items seen, or the current position of an object.
the section "Variables" later in this chapter describes variables in more detail.

Functions are a mechanism for programmers to break their code up into smaller, more manageable
chunks that do specific subtasks. they increase readability of the code and allow the programmer to
reuse the same capability in multiple places. the section "user-defined Functions" describes functions
in more detail.

NOTE

CHAPTER 1

6

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

listing 1.2: Flipping textures by chat and by timer

// Texture Flipper for a neon sign

// Constants
integer TIMER_INTERVAL = 2; // timer interval
string NEON_OFF_TEXTURE = "bcf8cd82-f8eb-00c6-9d61-e610566f81c5";
string NEON_ON_TEXTURE = "6ee46522-5c60-c107-200b-ecb6e037293e";

// global variables
integer gOn = TRUE; // If the neon is burning
integer gSide = 0; // which side to flip
integer gListenChannel = 989; // control channel

// functions
fliptexture(string texture) {
 llSetTexture(texture, gSide);
}

usage(){
 llOwnerSay("Turn on by saying: /"+(string)gListenChannel+" sign-on");
 llOwnerSay("Turn off by saying: /"+(string)gListenChannel+" sign-off");
}

// states
default
{
 state_entry() {
 llSetTimerEvent(TIMER_INTERVAL);
 llListen(gListenChannel, "", llGetOwner(), "");
 }

 listen(integer channel, string name, key id, string msg) {
 if (msg == "sign-on") {
 fliptexture(NEON_ON_TEXTURE);
 gOn = TRUE;
 llSetTimerEvent(TIMER_INTERVAL); // start the timer
 } else if (msg == "sign-off") {
 fliptexture(NEON_OFF_TEXTURE); // start the timer
 gOn = FALSE;
 llSetTimerEvent(0.0);
 } else {
 usage();
 }
 }

 timer() {
 if (gOn){
 fliptexture(NEON_OFF_TEXTURE);
 gOn = FALSE;
 } else {
 fliptexture(NEON_ON_TEXTURE);
 gOn = TRUE;
 }
 }
}

commentS conStantS VariableS FunctionS StateS

eVent handlerS

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

7

CHAPTER 1

Two	forward	slashes	(//) indicate a comment. The slashes and the entire rest of the line are
completely ignored by SL. They remain part of the script but have no effect, so you can use them to add
a copyright notice or a description of what's going on in the script, or even to disable lines when you are
trying to debug a problem. Likewise, empty lines and extra spaces play no part in the execution of a script:
indentation helps readability but SL ignores it.

Declarations of global constants and variables have script-wide scope; that is, the entire rest of
the script can use them. Most programmers are taught that global variables are evil, but in LSL there is
no other way to communicate information between states. Since most LSL scripts are fairly short, it's
relatively easy to keep track of these beasties, eliminating one of the major reasons that global variables
are discouraged in other languages. Although technically the LSL compiler does not distinguish between
user-defined constants and variables, the examples in this book name constants with all capital letters, and
global variables using mixed case beginning with the lowercase letter g.

Next you will notice a couple of code segments that seem to be major structural elements; these are
called fliptexture() and usage(), respectively. These are user-defined functions. Functions are
global in scope and available to all states, event handlers, and other user-defined functions in the same
script. Functions can return values with a return command. The "Functions" section in this chapter
provides	considerably	more	detail.	Linden	Library	functions	are	readily	identifiable,	as	they	(without	
exception) begin with the letters ll, as in llSetTimerEvent().

The last elements of a script are the states. A state is a functional description of how the script should
react to the world. For example, you could think of a car being in one of two states: when it is on the
engine is running, it is making noises, it can move, it can be driven. When it is off it is little more than a
hunk of metal; it is quiet, immobile, and cannot be driven. An LSL script represents an object's state of
being by describing how it should react to events in each situation. Every script must have at least the one
state, default, describing how it behaves, but you can define more states if it makes sense. An event is a
signal from the Second Life simulation that something has happened to the object, for example that it has
moved, been given money, or been touched by an avatar. When an event happens to a Second Life object,
each script in the object is told to run the matching event handler: As an example, when an avatar touches
an object, SL will run the touch_start(), touch(), and touch_end() event handlers in the active
state of each script in the object, if the active state has those handlers. LSL has defined a set number of
event	handlers.	(The	SYW	website	has	a	complete	list	of	event	handlers	and	how	they	are	used.)	The	
three event handlers in Listing 1.2, state_entry(), listen(), and timer(), execute in a finite
state machine managed by the simulator in which the object exists. More details on the state model are
presented in the section "States," as it is one of the more interesting aspects of LSL.

You may well ask, "So what does this script do?" It's really pretty simple. Whenever a couple of
seconds	tick	off	the	clock	(the	time	interval	defined	by	the	constant	TIMER_INTERVAL), the timer event
fires, and the texture on the front face of the object is replaced either with the "on" texture referenced by
the key in the string NEON_ON_TEXTURE or with the "off" texture, NEON_OFF_TEXTURE. The script
also	listens	for	input	by	anyone	who	knows	the	secret	channel	to	talk	to	the	object	(989,	declared	as	the	
variable gListenChannel). If the object hears anyone chat sign-off or sign-on on the secret
channel*,	it	will	activate	or	deactivate	the	sign.	Come	by	SYW	HQ	and	tell	our	sign	to	turn	off	(or	on,	as	
the case may be). Figure 1.1 shows the script in action. Chapter 3, "Communications," talks more about
channels and how to communicate with objects.

* When typing in the chat window, the channel number is preceded by a slash, as in /989 sign-off.

CHAPTER 1

8

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

Figure 1.1: texture-
flipping in action

on oFF

TYPES

A type	is	a	label	on	a	piece	of	data	that	tells	the	computer	(and	the	programmer)	something	about	what	
kind of data is being represented. Common data types include integers, floating-point numbers, and
alphanumeric	strings.	If	you	are	familiar	with	the	C	family	of	languages	(C,	C++,	C#,	Java,	and	JavaScript)	
you'll notice similarities between at least a few of them and LSL. Table 1.1 summarizes the valid LSL variable
types. Different data types have different constraints about what operations may be performed on them.
Operators in general are covered in the "Operators" section of this chapter, and some of the sections that
cover specific types also mention valid operations.

Because all variables in LSL are typed, type coercion is awkward. Most coercion must be done
manually with explicit casting, as in

integer i=5;
llOwnerSay((string)i);

In	many	cases,	LSL	does	the	"right	thing"	when	coercing	(implicit casting) types. Almost everything
can be successfully cast into a string, integers and floats are usually interchangeable, and other conversions
usually result in the null or zero-equivalent. The discussion later, in Table 1.7, of llList2<type>()
functions gives a good overview of what happens. Look on the Types page of the LSL wiki for an expanded
example of coercion.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

9

CHAPTER 1

table 1.1: lSl Variable tYpeS

data type uSage

integer Whole	number	in	the	range	–2,147,483,648	to	2,147,483,647.

float Decimal	number	in	the	range	1.175494351E-38	to	3.402823466E+38.

vector A three-dimensional structure in the form <x, y, z>, where each component is a float. Used to
describe values such as a position, a color, or a direction.

rotation
quaternion

A four-dimensional structure consisting of four floats, in the form <x, y, z, s>, that is the natural
way to represent rotations. Also known as a quaternion, the two type names are interchangeable.

key A	UUID	(specialized	string)	used	to	identify	something	in	SL , notably an agent, object, sound, texture,
other inventory item, or data-server request.

string A	sequence	of	characters,	limited	only	by	the	amount	of	free	memory	available	to	the	script	(although	
many functions have limits on the size they will accept or return).

list A heterogeneous collection of values of any of the other data types, for instance [1, "Hello",
4.5].

the value of a variable will never change unless your code reassigns it, either explicitly with = or
implicitly with an operator such as ++, which includes a reassignment:

a = "xyzzy";
b = a; // b is also "xyzzy"
a = "plugh"; // a is now "plugh" but b is still "xyzzy"!

this holds true for all types, including lists! in keeping with this immutability, all function
parameters are pass-by-value (meaning only the value is sent) in lSl.

NOTE

 inteGer
Integers	are	signed	(positive	or	negative)	32-bit	whole	numbers.	LSL	does	not	provide	any	of	the	common	
variations on integer types offered in most other languages. Integers are also used to represent a few
specific things in LSL:

•	 Channels are integer values used to communicate in "chat" between both objects and avatars.
See	the	section	"Talking	to	an	Object	(and	Having	It	Listen)"	in	Chapter	3	for	a	deeper	discussion	
of channels and their use.

•	 Booleans are implemented as integer types with either of the constant values: TRUE	(1)	or	FALSE	(0).

•	 Event counters are integer arguments to event handlers that indicate how many events are pending.
Inside such an event handler, the llDetected*() family of library functions can be used to
determine which avatars touched an object, which other objects collided with yours, or which
objects are nearby.

•	 Listen handles are returned by llListen() and enable code to have explicit control over the
listen	stream.	(Other	things	you	might	think	would	be	handles	are	actually	returned	as	keys.)	See	
Chapter 2, "Making Your Avatar Stand Up and Stand Out," for examples of llListen().

CHAPTER 1

10

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

•	 Bit patterns	(or	bit f ields) are single integers that represent a whole set of Boolean values at once.
Different bits can be combined to let you specify more than one option or fact at once. For
instance, in the llParticleSystem() library function, you can indicate that particles should
bounce and drift with the wind by combining the constant values PSYS_PART_BOUNCE_MASK
and PSYS_PART_WIND_MASK by saying

PSYS_PART_BOUNCE_MASK | PSYS_PART_WIND_MASK

 Float
A float	in	LSL	is	a	32-bit	floating-point	value	ranging	from	±1.401298464E–45	to	±3.402823466E+38.	
Floats can be written as numbers, such as 1.0 or 9.999, and they can be written in scientific notation, as in
1.234E–2	or	3.4E+38,	meaning	1.234	×	10−2	and	3.4	×	1038.

A float has a 24-bit signed mantissa	(the	number),	and	an	8-bit	signed	exponent. Thus for a float
1.2345E+23,	the	number	1.2345	is	the	mantissa,	and	23	is	the	exponent.

Because	one	bit	represents	the	sign	of	the	number	(positive	or	negative),	a	23-bit	mantissa	gives	a	
precision equivalent to approximately 7 decimal digits—more precisely log10(2

23). This means values are
rarely stored exactly. For example, if you do something like

float foo = 101.101101;

and print the result, it will report 101.101105, so you should expect some rounding inaccuracy. Even 10E6
×	10E6	isn't	10E12,	instead	printing	100000000376832.000000.	Often	more	disturbingly,	addition	or	
subtraction of two numbers of vastly different magnitudes might yield unexpected results, as the mantissa
can't hold all the significant digits.

When an operation yields a number that is too big to fit into a float, or when it yields something that
is	not	a	number	(such	as	1.0 / 0.0), your script will generate a run-time Math Error.

 Vector
Vectors are the currency of three-dimensional environments, and so are found throughout LSL code.
In addition, anything that can be expressed as a triplet of float values is expressed in a vector type.
If you were guessing about the kinds of concepts readily expressed by a set of three values, you'd probably
come up with positioning and color, but there are also others, shown in Table 1.2.

table 1.2: common uSeS For VectorS and What theY repreSent

Vector concept wHat Vector repreSentS

Position Meters.	Always	relative	to	some	base	positioning	(the	sim,	the	avatar,	or	the	root	prim).

Size Meters, sometimes also called scale.

Color Red, green, blue. Each component is interpreted in a range from 0.0 to 1.0; thus yellow is
vector yellow = <1.0, 1.0, 0.0>;

Direction Unitless.	It	is	usually	a	good	idea	to	normalize	directions	(see	llVecNorm()); since directions are
often multiplied with other values, non-unit direction vectors can have an unexpected proportional
effect on the results of such operations.

Velocity An offset from a position in meters traveled per second. You can also think of velocity as a
combination of direction and speed in meters per second.

Acceleration Meters per second squared.

Impulse Force	(mass	×	velocity).

Rotation Radians of yaw, pitch, and roll. Also known formally as the Euler form of a rotation.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

11

CHAPTER 1

The x, y, and z components of a vector are floats, and therefore it is slightly more efficient to write a
vector with float components—for instance, <0.0, -1.0, 123.0>—than with integer components.
Here are some examples of ways to access vectors, including the built-in constant ZERO_VECTOR for
<0.0,0.0,0.0>:

vector aVector = <1.0, 2.0, 3.0>;
float xPart = 1.0;
vector myVec = <xPart, 2.0, 3.0>;
float yPart = myVec.y;
float zPart = myVec.z;
myVec.y = 0.0;
vector zeroVec = ZERO_VECTOR;
llOwnerSay("The empty vector is "+(string)ZERO_VECTOR);

Vectors	may	be	operated	on	by	scalar	floats	(regular	numbers);	for	instance,	you	could	convert	the	
yellow color vector in Table 1.2 to use the Internet-standard component ranges of 0 to 255 with the
expression <1.0, 1.0, 0.0>*255.0. Vector pairs may be transformed through addition, subtraction,
vector dot product, and vector cross product. Table 1.3 shows the results of various operations on two
vectors:

vector a = <1.0, 2.0, 3.0>;
vector b = <-1.0, 10.0, 100.0>;

table 1.3: mathematical operationS on VectorS

operation Meaning Vector

+ Add a+b = < 0.0, 12.0, 103.0 >

- Subtract a-b = < 2.0, -8.0, -97.0>

* Vector dot product a*b = 319.0
(1 * -1) + (2 * 10) + (3 * 100)

% Vector cross product a%b = < 170.0, -103.0, 12.0 >
<(2 * 100) - (3 * 10),

(3 * -1) - (1 * 100),
(1 * 10) - (2 * -1) >

Coordinates in SL can be confusing. There are three coordinate systems in common use, and no
particular annotation about which is being used at any given time.

•	 Global coordinates. A location anywhere on the Second Life grid with a unique vector. While
not often used, every place on the grid has a single unique vector value when represented in global
coordinates. Useful functions that return global coordinates include llGetRegionCorner()
and llRequestSimulatorData().

•	 Region coordinates. A location that is relative to the southwest corner of the enclosing sim
(eastward	is	increasing	x, northward is increasing y, up is increasing z), so the southwest corner
of a sim at altitude 0 is <0.0, 0.0, 0.0>. The position or orientation of objects, when not
attached to other prims or the avatar, is usually expressed in terms of regional coordinates.

A region coordinate can be converted to a global coordinate by adding to it the region corner
of the simulator the coordinate is relative to:

vector currentGlobalPos = llGetRegionCorner() + llGetPos();

CHAPTER 1

12

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

•	 Local coordinates. A location relative to whatever the object is attached to. For an object in
a linkset, that means relative to the root prim. For an object attached to the avatar, that means
relative	to	the	avatar.	For	the	root	prim	of	the	linkset,	that	value	is	relative	to	the	sim	(and	therefore	
the	same	as	the	region	coordinates).	If	the	attachment	point	moves	(e.g.,	the	avatar	moves	or	the	
root prim rotates), the object will move relative to the attachment, even though local coordinates
do not change. For example, if an avatar moves her arm, her bracelet will stay attached to her wrist;
the bracelet is still the same distance from the wrist, but not in the same place in the region.

Useful functions on vectors include llVecMag(vector v), llVecNorm(vector v), and
llVecDist(vector v1, vector v2). llVecMag() calculates the magnitude, or length, of
a vector—it's Pythagoras in three dimensions. These functions are really useful when measuring the
distance between two objects, figuring out the strength of the wind or calculating the speed of an
object. llVecNorm() normalizes a vector, turning it into a vector that points in the same direction
but with a length of 1.0. The result can be multiplied by the magnitude to get the original vector back.
llVecNorm() is useful for calculating direction, since the result is the simplest form of the vector.
llVecDist(v1,v2) returns the distance between two vectors v1 and v2, and is equivalent to
llVecMag(v1-v2).

 rotation
There are two ways to represent rotations in LSL. The native rotation type is a quaternion, a four-
dimensional vector of which the first three dimensions are the axes of rotation and the fourth represents
the angle of rotation. quaternion and rotation can be used interchangeably in LSL, though
rotation is much more common.

Also used are Euler	rotations,	which	capture	yaw	(x),	pitch	(y),	and	roll	(z) as vector types rather
than as rotation types. The LSL Object Editor shows rotations in Euler notation. Euler notation in
the Object Editor uses degrees, while quaternions are represented in radians; a circle has 360 degrees or
TWO_PI	(6.283)	radians.

Euler vectors are often more convenient for human use, but quaternions are more straightforward
to combine and manipulate and do not exhibit the odd discontinuities that arise when using Euler
representation. For instance, in the SL build tools, small changes in object rotation can make sudden radical
changes	in	the	values	indicated.	Two	functions	convert	Euler	representations	into	quaternions	(and	vice	
versa): llEuler2Rot(vector eulerVec) and llRot2Euler(rotation quatRot). Many of
your scripts can probably get away with never explicitly thinking about the guts of quaternions:

// convert the degrees to radians, then convert that
// vector into a quaternion
rotation myQuatRot = llEuler2Rot(<45.0, 0.0, 0.0> * DEG_TO_RAD);
// convert the rotation back to a vector
// (the values will be in radians)
vector myEulerVec = llRot2Euler(myQuatRot);

The above code snippet converts the degrees to radians by multiplying the vector by DEG_TO_RAD.
Two other constants—ZERO_ROTATION and RAD_TO_DEG—are useful for rotations. These constants
are defined in Table 1.4.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

13

CHAPTER 1

table 1.4: conStantS uSeFul For manipulatinG rotationS

conStant Value deScription

ZERO_ROTATION <0.0, 0.0, 0.0, 1.0> A rotation constant representing a Euler angle of <0.0, 0.0, 0.0>.

DEG_TO_RAD 0.01745329238 A float constant that, when multiplied by an angle in degrees, gives the angle
in radians.

RAD_TO_DEG 57.29578 A float constant that, when multiplied by an angle in radians, gives the angle
in degrees.

You will find much more in-depth discussion and some examples for using rotations in Chapter 4,
"Making and Moving Objects."

 KeY
A key is a distinctly typed string holding the UUID for any of a variety of relatively long-lived SL entities.
A	UUID,	or	Universal	Unique	Identifier,	is	a	128-bit	number	assigned	to	any	asset	in	Second Life, including
avatars, objects, and notecards. It is represented as a string of hex numbers in the format "00000000-
0000-0000-0000-000000000000", as in "32ae0409-83d6-97f5-80ff-6bee5f322f14".
NULL_KEY is the all-zero key. A key uniquely identifies each and every long-lived item in Second Life.

In addition to the unsurprising use of keys to reference assets, keys are also used any time your script
needs to request information from a computer other than the one it is actually running on, for instance to
web servers or to the SL dataserver, to retrieve detailed information about SL assets. In these situations,
the script issues a request and receives an event when the response is waiting. This model is used to ask
not just about avatars using the llRequest*Data() functions, but also to do things like read the
contents of notecards with llGetNotecardLine(). Asynchronous interactions with the outside world
might include HTTP requests, llHTTPRequest(), and are identified with keys so that the responses
can be matched with the queries.

Numerous LSL functions involve the manipulation of keys. Some of the main ones are shown in
Table 1.5.

table 1.5: Sample FunctionS that uSe KeYS

Function naMe purpoSe

key llGetKey() Returns the key of the prim.

key llGetCreator() Returns the key of the creator of the prim.

key llGetOwner() Returns the key of the script owner.

key llDetectedKey() Returns the key of the sensed object.

string llKey2Name(key id) Returns the name of the object whose key is id.

key llGetOwnerKey(key id) Returns a key that is the owner of the object id.

Note that there is no built-in function to look up the key for a named avatar who is not online.
 However, there are a number of ways to get this information through services, such as
llRequestAgentData().

CHAPTER 1

14

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

 StrinG
Strings are sequences of letters, numerals, and other characters, collected as a single value. You can specify
a	constant	string	in	LSL	by	surrounding	the	sequence	of	characters	you	want	with	double	quotes	("). You
can	include	a	double-quote	symbol	in	a	string	by	prefixing	it	with	a	backslash	(\). Similarly, you can include
a backslash with \\, a sequence of four spaces with \t, and a newline with \n. Table 1.6 shows the set of
string-manipulation functions provided by LSL.

String indexes are zero-based, ranges are always inclusive of the start and end index, and negative
indexes	indicate	counting	positions	backwards	from	the	end	of	the	string	(–1 is the last character of the
string). Consider this example:

string test = "Hello world! ";
llGetSubString(test,0,0); // "H"
llGetSubString(test,0,-1); // "Hello world! "
llGetSubString(test, -6,-2); // "world"

String values, like all other LSL values, are immutable; that is, no function will modify the original string.
Rather, functions return brand-new strings that contain transformed versions. For example, the variable
test in the following snippet does not change when a word is inserted into the string:

string test = "Hello world! ";
string x = llInsertString(test, 6, "cruel ");
// x = "Hello cruel world! ", test is unchanged

table 1.6: FunctionS that manipulate StrinGS

Function naMe purpoSe

integer llStringLength(string s) Gets the length of a string.

string llToLower(string s) Converts a string to lowercase.

string llToUpper(string s) Converts a string to uppercase.

integer llSubStringIndex(string s,
string pattern)

Finds the integer position of a string in another string.

string llGetSubString(string s,
integer start, integer end)

Extracts a part of a string; returns the part.

string llDeleteSubString(string s,
integer start, integer end)

Returns a copy of the original minus the specified part.

string llInsertString(string s,
integer pos, string snippet)

Inserts a string snippet into a string starting at the specified position.

string llStringTrim(string s,
integer trimType)

Trims leading and/or trailing whitespace from a string. Trim types are
STRING_TRIM_HEAD for the leading spaces, STRING_TRIM_
TAIL for the trailing spaces, and STRING_TRIM for both leading
and trailing spaces.

string llEscapeURL(string url) Returns the string that is the URL-escaped version of url
(replacing	spaces	with	%20, etc).

string llUnescapeURL(string url) Returns the string that is the URL unescaped version of url
(replacing	%20 with spaces, etc).

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

15

CHAPTER 1

 liSt
Lists in LSL are collections of values of any other types. Lists are heterogeneous: they may contain any
mixture of values of any type except other lists. This makes it important to keep track of what is stored
in your lists to avoid getting into trouble, but you can type-check elements at runtime if you need to. For
instance, the following code extracts elements from a list:

list mylist = [1, 2.3, "w00t", <1.0, 0.0, 0.0>];
integer count = llList2Integer(mylist, 0);
float value = llList2Float(mylist, 1);
string exclamation = llList2String(mylist, 2);
vector color = llList2Vector(mylist, 3);

To access the individual elements, use the llList2<type>() functions, shown in Table 1.7.

You can use llGetListEntryType() to find out the type of the element. For example,
llList2Float(list src, integer index); returns the float value at the specified index in
the list. Thus Listing 1.3 prints 4.000000 when the object is touched. Note that it is implicitly casting the
original integer value into a float.

table 1.7: FunctionS that extract indiVidual liSt elementS

Function naMe purpoSe

string llList2String(list l,
integer index)

Returns a string element. All other types are appropriately coerced
into a string.

integer llList2Integer(list l,
integer index)

Returns an integer element. If the element is not coercible to an
integer, it will return 0.

float llList2Float(list l,
integer index)

Returns a float element. If the element is not coercible to a float, it
will return 0.0.

key llList2Key(list l,
integer index)

Returns a key element. If the element is a regular string, it is returned
unchanged. Other non-key elements return NULL_KEY.

vector llList2Vector(list l,
integer index)

Returns a vector element. If the element is not coercible to a vector,
it will return ZERO_VECTOR.

rotation llList2Rot(list l,
integer index)

Returns a rotation element. If the element is not coercible to a rota-
tion, it will return ZERO_ROTATION.

integer llGetListEntryType(list l,
integer index)

Gets the type of entry of an element in the list. Returns an integer
constant TYPE_INTEGER, TYPE_FLOAT, TYPE_STRING, TYPE_
KEY, TYPE_VECTOR, TYPE_ROTATION, or TYPE_INVALID.
Invalid occurs when the index was out of range.

listing 1.3: coercing an element of a list into a Float
list gMyNumList=[1,2,3,4,5];
default
{
 touch_start(integer total_number) {
 float f = llList2Float(gMyNumList,3);
 llOwnerSay((string)f);
 }
}

The upside of heterogeneous lists in the LSL context is that you can imitate associative arrays	(for	
instance, dictionaries or reference tables) with careful searches. If you keep your lists well-structured, you're
very likely to know your list contents and their types very well, even when the contents are a mixed bag. The
first element in a list is at index 0, and negative indexes reference elements counting backwards from the end
of the list, with –1	indicating	the	last	one.	Table	1.8	shows	some	of	the	basic	list-manipulation	functions.

CHAPTER 1

16

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

table 1.8: Some core FunctionS to manipulate liStS

Function naMe purpoSe

integer llGetListLength(list l) Gets the number of elements in a list.

integer llListFindList(list l,
list test)

Returns the index of the first instance of test in l, or –1 if it
isn't found.

list llList2List(list l,
integer start, integer end)

Returns the portion of a list, with the specified elements
(similar	to	substring).

list llDeleteSubList(list l,
integer start, integer end)

Removes a portion of a list, returns the list minus the specified
elements.

list llListInsertList(list dest,
list snippet, integer pos)

Inserts a list into a list. If pos is longer than the length of dest, it
appends the snippet to the dest.

list llListReplaceList(list dest,
list snippet, integer start,
integer end)

Replaces a part of a list with another list. If the snippet is longer than
the end-start, then it serves to insert elements too.

float llListStatistics(integer
operation, list input)

Performs statistical operations, such as min, max, and standard
deviation, on a list composed of integers and floats. The operation
takes one of ten LIST_STAT_* constants, which are described fully
on the SYW website.

You can use + and += as concatenation operators:

list a = [1,2];
a = a + [3]; // a now contains [1, 2, 3]
a += [4]; // a now contains [1, 2, 3, 4]

While you can't make nested lists, you can insert a list into another:

list myL = ["a", "b"];
list myLL = llListInsertList(myL,[1,2,3,4],1);
// myLL contains [a, 1, 2, 3, 4, b]

Perhaps the most interesting set of string functions deals with converting back and forth
between lists and strings, listed in Table 1.9. For example, the function llDumpList2String()
concatenates the items in a list into a string with a delimiter character sequence separating the list
items; llDumpList2String([1,2,3,4,5], "--") prints "1--2--3--4--5". The function
llList2CSV() is a specialized version, using only commas as separators.

table 1.9: FunctionS that conVert liStS to StrinGS

Function naMe purpoSe
string llDumpList2String(list source,

string delimiter)
Turns a list into a string, with the delimiter between items.

list llParseString2List(string s,
list delimiters, list spaces)

Turns a string into a list, splitting at delimiters and spaces,
keeping spaces. Consecutive delimiters are treated as
one delimiter. Listing 1.4 shows an example of how to use this
function.

list llParseStringKeepNulls(string s,
list delimiters, list spaces)

Turns a string into a list; consecutive delimiters are treated
separately.

list llCSV2List(string csvString) Converts	comma-separated	values	(CSVs)	to	a	list.	For	instance,	
if csvString is a string "1,2,3" then the list will be [1, 2, 3].

string llList2CSV(list l) Converts a list to a string containing comma-separated
values	(CSVs).

The llParseString2List() is particularly useful because it converts a string's elements to a list
of strings. Listing 1.4 shows an example of how you would call it to break a string into separate items and
then print them to the chat window.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

17

CHAPTER 1

listing 1.4: llParseString2List() example
default
{
 touch_start(integer total_number) {
 list l = llParseString2List ("The answer to Life, the Universe"➥

+ " and Everything is 42", [" "], []);
 integer i;
 integer len = llGetListLength(l);
 for (i = 0; i < len; i++){
 llOwnerSay("item==>"+ llList2String(l, i));
 }
 }
}

While not totally symmetrical to llDumpList2String(), it still produces useful results:

[8:31] Object: item==>The
[8:31] Object: item==>answer
[8:31] Object: item==>to
[8:31] Object: item==>Life,
[8:31] Object: item==>the
[8:31] Object: item==>Universe
[8:31] Object: item==>and
[8:31] Object: item==>Everything
[8:31] Object: item==>is
[8:31] Object: item==>42

if a list came from parsing a string using llParseString2List(), be aware that using
llList2<type>() won't work. instead you have to use an explicit cast, indicating that you want to
change the type as in (sometype)llList2String(). the following snippet shows an example:

list components = llParseString2List(message,["|"],[]);
float gAngle = (float)llList2String(components,0);
vector gPosition = (vector)llList2String(components,1);

WARNING

You can imitate objects or compound structures by using a strided list, wherein the series of
contained objects is repeated in a nonvarying sequence. The stride indicates how many elements are in
each compound structure. Listing 1.5 creates a strided list, with a stride of 2, populating it with a string
representation of the color name paired with the LSL vector of RGB values representing that color. It prints
all the color names that occur between elements 2 and 4 of the list, namely green and blue.

listing 1.5: Small Strided-list example
list COLORS = ["red", <1., 0., 0.>, "green", <0., 1., 0.>,
 "blue", <0., 0., 1.>, "yellow", <1., 1., 0.>,
 "purple", <1., 0., 1.>, "cyan", <1., 0., 1.>];
integer STRIDE = 2;
default
{
 touch_start(integer total_number) {
 list keys = llList2ListStrided(COLORS, 2, 4, STRIDE);
 llOwnerSay(llDumpList2String(keys, ", "));
 }
}

CHAPTER 1

18

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

There are some provisions for manipulating strided lists in LSL, including sorting and extracting elements
such as keys, shown in Table 1.10. However, you will still need to have a few more utility functions. Put Listing
1.6 on your "save for later" pile—create the script and store it in your Inventory folder under Scripts. It
contains a group of utility functions that enable the fetching, update, and deletion of a specific record.

table 1.10: FunctionS that manipulate Strided liStS

Function naMe purpoSe
list llList2ListStrided(list src,

integer start, integer end,
integer stride)

Returns a list of all the entries whose index is a multiple of stride,
in the range of start to end inclusive.

list llListSort(list l,
integer stride,
integer ascending)

Sorts	a	list	ascending	(TRUE)	or	descending	(FALSE), in blocks of
length stride. Works unreliably for heterogeneous lists.

list llListRandomize(list l,
integer stride)

Randomizes a list in blocks of length stride.

listing 1.6: managing records in a Strided list
list gColors = ["red", <1.0, 0.0, 0.0>,
 "green", <0.0, 1.0, 0.0>,
 "blue", <0.0, 0.0, 1.0>];
integer STRIDE = 2;

integer getPosition(integer recordNumber)
{
 return recordNumber * STRIDE;
}
list getRecord(integer recordNumber)
{
 integer pos = getPosition(recordNumber);
 if (pos < (llGetListLength(gColors) + STRIDE - 1))
 return llList2List(gColors, pos, pos + STRIDE - 1);
 else
 return [];
}
deleteRecord(integer recordNumber)
{
 integer pos = getPosition(recordNumber);
 if (pos < (llGetListLength(gColors) + STRIDE - 1)) {
 gColors = llDeleteSubList(gColors, pos, pos + STRIDE - 1);
 }
}
updateRecord(integer recordNumber, list newRecord)
{
 integer pos = getPosition(recordNumber);
 if (pos < (llGetListLength(gColors) + STRIDE - 1)) {
 gColors = llListReplaceList(gColors, newRecord, pos,
 pos + STRIDE - 1);
 }
}
default
{
 // embed some test code in a touch_start event handler
 // get record # 2
 touch_start(integer total_number) {
 integer i = 0;
 list l = getRecord(2);
 llOwnerSay(llDumpList2String(l, " + "));
 }
}

VARIABLES

Variables provide a place to store temporary working values. Variables can be both global and local. Global
variables are available to everything in the script, while local variables are available only to the block they
were defined in. A variable name must start with an ASCII letter or an underscore. Numerals may be part
of a variable name after the first character, and non-ASCII letters, while allowed, are ignored. Thus, valid
declarations include the following:

integer x;
integer y1;
integer _z;
integer thisIs_ALongComplicatedVariable_42;
integer enumerator;
integer _enumerator;
integer énumérateur; // same as numrateur

However, you can not also declare an integer numrateur because LSL ignores the é, and
thus thinks the name has previously been declared in scope; that is, numrateur is the same variable as
énumérateur.

Global	variables	(and	constants)	must	be	defined	before	the	default state, as shown in the
following code:

integer gFoo = 42;
default
{
 on_rez(integer start_param) {
 llOwnerSay("gFoo is "+(string)gFoo);
 }
}

Variables can not be	defined	directly	inside	states	(they	must	appear	inside	blocks,	functions,	or	event	
handlers). Thus, a slight rearrangement of the preceding code will generate a syntax error:

default
{
 integer gFoo = 42;
 on_rez(integer start_param) {
 llOwnerSay("gFoo is "+(string)gFoo);
 }
}

Local variables must always be declared within the scope	(enclosing	curly	braces)	of	a	function	or	event	
handler but needn't be declared before the first executable statement. Just declare it prior to its first use
and you'll be fine. Consider the following example:

foo() {
 integer bar = 0;
 llOwnerSay("bar is "+(string)bar);
 integer baz = 0;
 llOwnerSay("baz is "+(string)baz);
}

CHAPTER 1

20

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

Using a local variable before it has been declared will generate the error "Name not defined in scope."
Variables are scoped to the closest enclosing code block. Variables are not accessible outside this scope.
After the function foo() returns, the variables bar and baz are unavailable. Thus, in the following code
snippet the variable baz is not available outside the else branch of the if (gBoolean) test:

integer gBoolean = TRUE;
foo() {
 string bar = "Ford Prefect";
 if (gBoolean) {
 string bar = "Slarty Bartfast";
 llOwnerSay(bar);
 } else {
 string baz = "Zaphod Beeblebrox";
 llOwnerSay(baz);
 }
}

The snippet also demonstrates that you can shadow a variable from an outer code block with a redefinition
of the same name. The innermost wins; that's why in this code example, llOwnerSay(bar) will always
tell you "Slarty Bartfast" and ignore poor "Ford Prefect."

It is also useful to know that global variables can be set to the value returned by a function, but they
can not be intialized to the value of a function. Similarly, LSL does not allow any code evaluation outside
blocks, generating a syntax error for the following snippet:

float gHalfPi = PI/2;
default
{
}

FLOW CONTROL

Flow control is the process of directing the computer through your program in ways other than simply
executing each line one after the other. If you have some experience with other computer languages, LSL
flow control will come naturally to you, as most of the familiar constructs are here.

Conditionals are represented with if...else statements: they allow the conditional execution of code
depending on the value of the expression following the word if:

•	 if (condition) trueBranch

•	 if (condition) trueBranch else falseBranch

The	branches	can	be	single	statements;	block	statements	(enclosed	in	braces,	{block}); or null
statements	(empty	or	just	a	semicolon	";"). There is no LSL equivalent to the switch or case
statements found in many other languages.

LSL provides a standard set of loop statements as well: for, do...while, and while:

•	 do { loop } while (condition);

•	 for (initializer; condition; increment) { loop }

•	 while (condition) { loop }

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

21

CHAPTER 1

Loop statements may also be single statements, block statements, or the empty statement ";".
Loops may not declare variables in the initializer. That is, the following snippet is not allowed:

for (integer i=0; i<10; i++) {
 // loop
}

You can declare variables inside a loop block:

integer i;
for (i=0; i<10; i++) {
 float f=3.0;
 llOwnerSay((string)i+". "+(string)f);
}

A do...while loop is slightly faster than a while or for loop, and also requires fewer bytes of
memory.

The flow statement state is described in the "States" section later in this chapter. return is used
to return a value from a function, described in the section "User-Defined Functions." jump is just like the
goto statement of many other languages, allowing direct jumping around the code of your script, and
should generally be avoided. It is not uncommon in LSL for jump to be used to break out of loops:

integer i;
integer bigNumber = 1000;
for (i=0; i<bigNumber; i++) {
 if (weFoundOurNumber(i)) {
 jump doneWithIt;
 }
}
@doneWithIt;
llOwnerSay("Done after "+(string)i+"steps");

OPERATORS

Mathematical	operators	are	the	usual	suspects	(arithmetic,	comparison,	and	assignment),	with	
approximately the same precedence as you'd expect, such as multiplication and division before addition
and subtraction. The exclamation point, !,	denotes	negation	(returns	TRUE for a FALSE value and vice
versa). The tilde, ~, is the bitwise complement, flipping each bit of the integer it is applied to. The plus sign,
+, can be used for a variety of things, including addition, string concatenation, and list appending.

unlike in most modern computer languages, boolean operators in lSl do not "short-circuit" the
calculation of an expression. if you were expecting short-circuiting, your code can have unexpected
inefficiencies or broken logic.

NOTE

CHAPTER 1

22

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

Table 1.11 shows the operators, in approximate order of precedence. Empty cells will generate a
compiler error with a type mismatch. Lists and strings are not in this table because they only support the
addition operators + and +=, indicating concatenation. Note specifically that lists may not be compared
with any operator, while strings can be compared with only == and !=	(but	they	compare	only	list	length,
not list contents). Table 1.12 lists the math-related library functions.

there have been reports of unexpected (and unexplainable) precedence calculations in the expression
parser, so use parentheses liberally.

WARNING

table 1.11. operatorS and their SemanticS For diFFerent tYpeS

operator integer (and boolean) Float Vector rotation

. Dot Dot

! Not

~ Bitwise complement Bitwise complement

++ -- Increment, decrement Increment, decrement

* / % Multiply, divide, modulus Multiply, divide,
modulus

Dot product, N/A,
cross product

Addition,
subtraction, N/A

+ - Add, subtract Add, subtract Add, subtract Legal, but
semantically unlikely

<< >> Left / right shift

< <= > >= Less than, less than or equal
to, greater than, greater than
or equal to

Less than, less than
or equal to, greater
than, greater than or
equal to

== != Comparison equal,
comparison not equal

Comparison equal,
comparison not equal

& ^ | Bitwise AND, XOR, OR

|| && Comparison OR, AND

= += -= *= /= %= Assignment, with above
semantics

Assignment Assignment Assignment

table 1.12: lSl math FunctionS

Function beHaVior

integer llAbs(integer val) Returns an integer that is the positive version of the value val.

float llFabs(float val) Returns a float that is the positive version of val.

integer llRound(float val) Returns an integer that is val rounded to the closest integer. 0.0 to 0.499
are rounded down; 0.5 to 0.999 are rounded up.

integer llCeil(float val) Returns the closest integer larger than val.

integer llFloor(float val) Returns the closest integer smaller than val.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

23

CHAPTER 1

Function beHaVior

float llFrand(float max) Returns a float that is a pseudorandom number in the range [0.0, max) or
(max , 0.0] if max is negative. That is, it might return 0.0 or any number up
to but not including max.

float llSqrt(float val) Returns a float that is the square root of val. Triggers a Math Error for
imaginary	results	(val < 0.0).

float llLog(float val) Returns a float that is the natural logarithm of val. If val <= 0 it
returns 0.0 instead.

float llLog10(float val) Returns a float that is the base-10 logarithm of val. If val <= 0 it
returns zero instead.

float llPow(float base,
float exp)

Returns a float that is base raised to the power exp.

integer llModPow(integer base,
integer exp, integer mod)

Returns an integer that is base raised to the power exp, modulo mod:
(baseexp)% mod). Causes the script to sleep for 1.0 seconds.

float llSin(float theta) Returns a float that is the sine of theta	(in	radians).

float llAsin(float val) Returns	a	float	(theta, in radians) that is the inverse sine in radians of
val; that is, sin(theta)=val. val must fall in the range [–1.0, 1.0].

float llCos(float theta) Returns a float that is the cosine of theta	(in	radians).

float llAcos(float val) Returns	a	float	(theta, in radians) that is the inverse cosine of val; that is,
cos(theta)=val. val must fall in the range [–1.0, 1.0].

float llTan(float theta) Returns a float that is the tangent of theta	(in	radians).

float llAtan2(float y,
float x)

Returns	a	float	(theta, in radians) that is the arctangent of x, y. Similar to
tan(theta)=y/x, except it utilizes the signs of x and y to determine
the quadrant. Returns zero if x and y are zero.

FUNCTIONS

A function is a portion of code that performs a specific task. LSL supports two kinds of functions: built-in
functions that are provided by Linden Lab, and user-defined functions that exist inside your scripts.

LSL	includes	a	large	number	of	built-in	functions	that	extend	the	language	(such	as	the	ones	
you've already seen for math and list-manipulation functions). Built-in functions are readily identifiable
as they always begin with the letters ll. Thus, you can tell immediately that llSetTexture() and
llOwnerSay() are not user-defined functions. This book describes most of these Linden Library
functions along with examples of how to use many of them.

User-defined functions are blocks of code that help modularize your code and improve readability.
If you need to do the same thing more than once in your script, there's a good chance that code should
be put into a function. User-defined functions must be defined before the default state. Functions are
global in scope, and are available to all states, event handlers, and other user-defined functions in the same
script	(but	not	other	scripts	in	an	object).	An	example	of	the	general	form	a	function	takes	is	shown	in	
Listing 1.7.

CHAPTER 1

24

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

commentS conStantS VariableS tYpeS librarY
FunctionS

KeYWordS Function
nameS

listing 1.7: Function Form

// say something a few times
// return how many times message is said
integer saySomeTimes (string message) {
 integer count = 1 + (integer) llFrand(5.0); // up to 5 times
 integer i;
 for (i=0; i<count; i++) {
 llOwnerSay(message);
 }
 return count;
}

This function prints the string passed into it, message, between one and five times to the owner's
chat window.

A	function	has	a	name	(saySomeTimes in Listing 1.7) and can have any number of parameters, each
with	a	declared	type	(message is a string). A function with no parameters is just declared as its name
with an open/close parenthesis pair, as in foo(). Only parameter values are passed into the function, and
the	original	value	(in	the	caller's	scope)	is	guaranteed	to	be	unchanged.	There	is	no	concept	of	pass-by-
reference in LSL. If you have large data structures, it's probably best to keep them as global variables rather
than passing them as parameters into functions, because the entire data structure will be copied—this
process takes time and memory.

Variables	defined	inside	the	function	(count and i) have scope only inside the function block: nothing
outside the function can see the variables. Be careful about naming your variables, especially if you use
similar names in different scopes. It is remarkably easy to get confused about which variable is which when
you reuse names.

If a function has a return type, it can return a single value of that type using the return
statement. Functions that don't return a value should simply not declare a return type. The function
saySomeTimes() in Listing 1.7 returns an integer of the number of times it chatted the message.

If you look back at Listing 1.2, you'll see the definition of the listen() event handler follows exactly
the same form. In fact, an event handler is just a special function that is called by SL when certain events
occur. Event handlers must be one of the event names known to SL, must be declared to have the correct
type	parameters	(but	you	may	choose	the	names	of	the	parameters!),	and	may	not	return	values.	The	
SYW website lists all the events, and there is more detail in the "Events" section of this chapter.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

25

CHAPTER 1EVENTS AND EVENT HANDLERS

LSL is an event-driven language. This behavior is a major discriminating feature between LSL and many
other languages. Essentially, the script's flow is determined by events such as receiving messages from other
objects or avatars, or receiving sensor signals. Functionally, events are messages that are sent by a Second
Life server to the scripts active in that sim. Event messages can be received by defining the matching event
handlers	in	the	state(s)	of	your	scripts.	Nothing happens in a script without event handlers: even the passing
of time is marked by the delivery of timer events. Some events cannot happen without the matching event
handler	active	somewhere	in	the	object	(in	at	least	one	of	its	prims).	For	instance,	if	an	object	doesn't	have	
a script with a money() event handler, avatars cannot pay that object.

Many library functions have effects that take relatively long periods of time to accomplish. Rather
than blocking	(stopping	execution),	LSL	uses	asynchronous communications: your script fires off a request
that something happen, and it is notified with an event when the request is satisfied. This pattern is used
any	time	your	script	makes	a	call	to	a	library	function	that	cannot	be	handled	locally	by	the	host	sim	(for	
instance, the function llHTTPRequest() and the http_response() event handler), when physical
simulation	effects	aren't	going	to	be	instantaneous	(llTarget() and at_target()). You could also
think	of	repeating	events	(llSensorRepeat() and sensor())	or	even	listeners	(llListen()
and listen()) as following the same model: make a request and get responses later. This model of
asynchronous execution allows your script to keep functioning, handling other events and interactions
without stopping to wait for long-term requests to happen.

As	events	occur,	applicable	ones	(those	that	have	handlers	defined	on	the	current	state)	are	queued	
for execution by the script in the order they were raised. You should be aware of several important
constraints on the delivery of event messages to handlers:

•	 By	default,	events	are	delivered	to	a	script	no	more	frequently	than	every	0.1	second.	You	can	adjust	
this with llMinEventDelay(float seconds) but it can not be less than 0.05 second.

•	 A	maximum	of	64	events	can	be	queued	on	a	script—any	additional	events	will	be	silently	
discarded!

•	 Queued	events	are	silently	discarded	when	a	script	transitions	between	states.

The combination of these factors means that if you have code that expects to get events rapidly and
takes	a	relatively	long	time	to	execute	(including	artificial	delays!),	you	may	run	the	risk	of	missing	events.	As	
an	example,	sending	an	IM	(which	delays	the	script	by	2	seconds)	in	response	to	collide	events	(which	can	
happen as often as every 0.1 second) is probably asking for trouble.

Similarly, the LSL function llSleep(float seconds) pauses script execution for the specif ied
number of seconds without leaving the current event handler, similar to the way that many LSL functions
introduce artif icial delays. In both cases, there is a potential problem if your script is likely to handle lots
of events.

Some events are delivered to a script only if the script has made the appropriate request. For
instance, a listen() event handler is never called unless another handler in the same state has called
llListen(). The SYW website has a list of all the LSL event handlers, the functions required to enable
the event, and the Second Life situation that results in that raised event. And, of course, there are lots of
examples throughout the book.

CHAPTER 1

26

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

STATES

Second Life models scripts as event-driven finite state machines similar to paradigms often used to run
hardware. Wikipedia defines an event-driven finite state machine as "a model of behavior composed of a
finite number of states, transitions between those states, and actions"* where actions occur as a result of
the observation of externally defined events. This sort of model is often used in real-world applications
where entirely predictable behavior is required, especially when programs are interacting directly with
hardware	or	external	events	(think	automotive	electronics,	traffic	signals,	and	avionics).

This model is certainly apt for SL because many LSL scripts control virtual simulations of real-world
mechanisms. Perhaps more importantly, it is useful as a simulator language because of how gracefully such
programs scale under simulator load: under conditions of high "simulator lag," slowed event delivery might
hurt performance, but nothing ought to break outright.

LSL scripts must implement at least the default state: indeed, many only use the default state,
either exhibiting behavior that requires simple event-driven programming, or using global variables in place
of states. A script will always be in exactly one state. All script execution occurs in the context of the
current state, and in the current event. States are defined in an LSL script as sets of event handlers, labeled
with the key words default or state statename.

Second Life calls two special event handlers, state_entry() and state_exit(), when your
script changes states.

state_entry() { }

this event handler is invoked on any state transition and in the default state when a script first runs or
after it has been reset. this event is not triggered every time the object is rezzed. the SYW website
provides additional documentation.

EVENT DEFINITION

state_exit() { }

this event handler is invoked when the state command is used to transition to another state, before
the new state is entered. it is not invoked by llResetScript(). the SYW website provides
additional documentation.

EVENT DEFINITION

* http://en.wikipedia.org/wiki/Finite_state_machine

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

27

CHAPTER 1

A script transitions between states using a state newStateName statement. Note that transition
statements	are	not	allowed	inside	user	functions.	Listing	1.8	shows	a	complete	script	that	does	nothing	until	
touched, and then transitions to the exploding state and back to the default state. Figure 1.2 shows how
the script execution passes through the states and event handlers.

listing 1.8: example State transitions
default {
 touch_end(integer count) {
 state exploding;
 }
 state_exit() {
 llOwnerSay("The fuse has been lit.");
 }
}
state exploding {
 state_entry() {
 llOwnerSay("Boom!");
 state default;
 }
 state_exit() {
 llOwnerSay("Ash is now falling.");
 }
}

Figure 1.2:
State transitions
for listing 1.9

"The fuse has been lit." "Boom!"

"Ash is now falling."

default

state_exit

touch state_exit

exploding

state_entry

touch_end

A state transition will invoke the state_exit()	event	on	the	way	out	(still	in	the	context	of	the	
origin state), allow it to run to completion, and then run the state_entry() event on the new state. In
Listing 1.9 each state announces something as it is about to exit.

don't try state transitions from within a state_exit() event handler: it probably will not do what
you hope for, and at the time of this writing it can result in some moderately bad (and varying) script
behavior.

additionally, avoid putting code after the command to transition states. it won't be executed, as
shown in the following snippet:

touch_end(integer n) {
 state exploding;
 llOwnerSay("I will never be executed!");
}

WARNING

CHAPTER 1

28

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

Any queued events, like touches or messages, that haven't been serviced yet are silently discarded
during state transitions. Also, anything that was set up for delayed or repeated event handlers is invalidated:
all in-progress listens, timers, sensors, and data server queries will need to be reopened. Global variable
values survive state transitions, as well as granted permissions, taken controls, and XML-RPC channels.

 When to uSe multiple StateS (or not!)
Multiple states are good when you want to strongly separate different modes of a scripted object.
Consider a highly configurable object like a vendor kiosk: you really don't want people making purchases
from the vendor while you are reconfiguring it. Even simple objects like a door or an elevator might
best	be	represented	with	multiple	states	(open versus closed, and idle versus carrying passengers versus
responding to a call, respectively). On the other hand, if you have a script where two states have a great
deal	of	repeated	code	(event	handlers)	that	cannot	be	abstracted	out	to	functions,	it	may	be	simpler	to	
collapse those two states together with a global variable. For instance, the default state from the texture-
flipping script in Listing 1.2 could have been split into two using default as the "off" state and lit as the
"on" state and eliminating the gOn variable, as shown in Listing 1.9.

listing 1.9: neon texture Flipper as multiple States
// Insert variables and appropriate functions from Listing 1.2
default
{
 state_entry() {
 fliptexture(NEON_OFF_TEXTURE);
 llSetTimerEvent(TIMER_INTERVAL);
 }
 timer() {
 state lit;
 }
}
state lit
{
 state_entry() {
 fliptexture(NEON_ON_TEXTURE);
 }
 timer() {
 state default;
 }
}

This snippet only sets the timer in the default state. Timers are special in that they are the
only event requests not discarded when a script changes state. It would do no harm to re-invoke
llSetTimerEvent() in its state_entry(). The SYW website discusses this in detail.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

29

CHAPTER 1MANAGING SCRIPTED OBJECTS

The mechanics of dealing with scripted objects can be challenging at times. Scripts, after all, lend behavior
to inanimate objects—and if your scripts aren't exactly right, misbehavior! Not to worry, though: while
Second Life doesn't offer the sorts of software development and debugging tools that professional
programmers have come to expect for serious work, there are techniques and tools that can help. For
instance, Chapter 14, "Dealing with Problems," is all about finding and fixing problems. The SYW website
features	a	compendium	of	resources	for	getting	(and	offering!)	scripting	help,	as	well	as	a	survey	of	external	
LSL scripting tools. Furthermore, there are a few specific tips you may find useful as you start writing
more-complicated scripts. Just keep in mind that bugs happen to everyone—be prepared for them and
you'll be just fine.

 loSinG moVinG objectS
Normally you edit a prim or an object, create a script, and then edit the script. You can stop editing the prim
and	keep	editing	the	script	(assuming	you	leave	the	script	window	open).	If	the	selected	prim	goes	flying	out	
of range into the sky, you will not be able to save changes until it is back in range. This is a pain when you lose
track	of	the	object	(say,	by	rotating	it	to	somewhere	completely	unexpected).	There	are	some	easy	fixes	to	
this problem: copy and paste the text of the old script into a new one, keep a copy in an out-of-world editor,
or create a timer() event that returns the object to its original position, as in Listing 1.10.

listing 1.10: using a timer to reset an object's position and orientation
vector gInitialPosition;
rotation gInitialOrientation;

default
{
 state_entry() {
 gInitialPosition = llGetPos();
 gInitialOrientation = llGetRot();
 llOwnerSay("Pos:"+(string)gInitialPosition);
 llOwnerSay("Rot:"+(string)gInitialOrientation);
 }
 touch_start(integer n) {
 llOwnerSay("Doing experimental stuff");
 // add your experiment here
 llSetTimerEvent(10);
 }
 timer() {
 llSetPos(gInitialPosition);
 llSetRot(gInitialOrientation);
 llSetTimerEvent(0);
 }
}

CHAPTER 1

30

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

When the script starts the state_entry() event handler, it uses the functions llGetPos()
and llGetRot()	to	find	the	position	and	rotation	of	the	object	and	cache	them.	(These	functions	are	
described in Chapter 4.) When the user touches the object, the touch_start() handler runs the
experimental code, and, before exiting, sets up a timer event with llSetTimerEvent(). Magically, 10
seconds later when the timer() event triggers, the object is moved back to its original position using
llSetPos() and llSetRot(). Note that llSetPos() is limited to moves of 10m or less; Chapter 2
shows how to move the object farther.

llSetTimerEvent(float timerInterval)

cause a timer() event to be triggered once every timerInterval seconds. a value of 0.0 stops
further timer events.

timerInterval — any positive nonzero value.

DEFINITION

timer() { }

this event handler is invoked when triggered at periodic intervals specified by the parameter to
llSetTimerEvent(float interval). only one timer can be active in the state at one time.
the SYW website provides additional documentation.

EVENT DEFINITION

A simple experiment to try would be to replace the commented line in the touch_start() event
handler with the following snippet:

vector newPos = gInitialPosition + <1,1,1>;
llSetPos(newPos);

 multiple ScriptS
A Second Life prim may contain any number of running scripts in its inventory and, of course, SL objects
are often made from multiple prims. The result is that a complex scripted object can have many scripts
cooperating to produce the object's behavior. Many scripters develop a suite of small, focused scripts
to accomplish different tasks, rather like programmers in other languages often build libraries of utility
functions. For example, you might develop a comfy pillow that has three scripts—one for sitting, one for
changing textures, and one that is a sound trigger for some mood music if an avatar is sensed nearby. A
suite of scripts like this can be combined to form new behaviors.

This modularity also makes it easier to debug, maintain, and reuse; store them in the Scripts section of
your Inventory folder. Best of all, smaller scripts are more stable. Each script executes within its own block
of memory, and can not accidentally write into the memory of other scripts or the protected simulator
memory; this protection makes it much harder for your scripts to crash the simulator!

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

31

CHAPTER 1

Multiple scripts on the same object run in parallel, as close to simultaneously as the sim server can
manage, and are fired in no defined order. Each script can be in a different state, making for interesting
possibilities. In Chapter 3 you'll see how to synchronize behavior among the scripts.

 reSettinG ScriptS
Scripts reset to default values when they are placed in another object. However, if a scripted object is
in your possession and you rez it or transfer ownership, the script is not reset. Scripted objects do not
"instinctively" reset when transferred, and thus either an explicit reset or careful handling of the change of
ownership is often required. llResetScript() forces a reset of the script, restarting it from scratch.
All global variables are set to their defaults, all pending events are cleared, the default state becomes
active, and its state_entry() is triggered. When writing and debugging the script, you can achieve an
identical effect by clicking Reset in the script editor.

llResetScript()

resets the script completely, restarting it from scratch. this approach is a good way to catch
ownership transfers. it does not correct persistent prim features such as sit text, a sit target, or
floating text.

DEFINITION

Certain persistent features of an object are not reset with llResetScript(), including floating
text and sit targets; these must be explicitly deleted. Every script that maintains state must take care to
reset when transferred, either by detecting transfers or resetting when rezzed. Our scripts do the latter by
catching the on_rez() event, as shown in the following snippet. If you don't reset the script or double-
check who the owner is, for example, a chatting script would still listen to the original owner.

default
{
 on_rez(integer start_param) {
 llResetScript();
 }
}

on_rez(integer startParam) { }

this event handler is invoked when an object is rezzed into the world from inventory or by another
script. the SYW website provides additional documentation.

startParam — the parameter the prim starts with; zero for an object rezzed from inventory,
and any value if rezzed by another script.

EVENT DEFINITION

CHAPTER 1

32

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

You can also keep track of the expected owner in a global variable, and reset or adapt the script only
when the owner changes:

key gOwner;
default
{
 state_entry() {
 gOwner = llGetOwner();
 }
 on_rez(integer p) {
 if (gOwner != llGetOwner()) {
 llResetScript();
 }
 }
}

this book contains scripts that use llResetScript() in many different places depending on specific
needs. it's usually needed in an on_rez() event handler; however, one place to never use it is in the
state_entry() handler—it will result in infinite recursion.

WARNING

Two LSL functions allow one script to control the state of another script in the same prim:
llSetScriptState(string statename, integer run), which causes a state transition in
the current script to the named state, and llResetOtherScript(string scriptname), which
resets the named script.

AN LSL STYLE GUIDE

"Any fool can write code that a computer can understand. Good programmers
write code that humans can understand."

—martin Fowler et al, Refactoring: Improving the Design of Existing Code

Effective programming in LSL requires that developers use a disciplined practice for applying formatting and
convention to their scripts. These guidelines are not as rigid as the rules required by the language compiler,
but nonetheless are critical to creating maintainable code. The most critical aspect of a style is that you
apply it consistently to the code you write. We are attempting to make a guideline, not a rigid coding style,
and thus point out things that must be followed to make it compile and things that should be followed to
make your scripts readable. The SYW website describes a variety of tools you can use outside of SL to
help you script, but the principles are important no matter how you write your scripts.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

33

CHAPTER 1

 cleanlineSS
The most important practice in effective programming is to generate readable code. Readable code is
easier to debug, understand, and maintain. A short snippet that is poorly formatted may be decipherable
later, but a longer program will not be. If you pay attention to your coding style early on, it will quickly
become second nature.

Here is a list of specific suggestions:

•	 Bracketing: You must always enclose blocks in curly braces. It is a good idea to always use braces,
even for single statements. Opening braces for functions and states should start on the line after
the declaration. Otherwise, place the brace on the same line as the control block.

•	 Indentation: On the line immediately following an open brace, you should add one indentation,
usually four spaces. Remove an indentation on the line after a close brace.

the two most important guidelines are indentation and bracketing. this code, for example, is not
properly indented:

default{state_entry(){ llSay(0, "Hello, Avatar!"); } touch_
start(integer total_number) { llSay(0, "Touched."); }}

if you look closely, you'll see that it's the same as listing 1.1—which was much more readable!

NOTE

•	 Line wrap:	You	should	manually	separate	lines	longer	than	80	characters.

•	 Coding styles: In general, don't mix coding styles. When editing code you didn't create, keep the
existing	style	(or	change	the	style	throughout).

•	 Function length: Try to keep functions short and focused. A good rule is that a function longer than a
screen height should be refactored into multiple functions.

•	 Comments: Use comments to explain what you are doing; however, avoid excessive inline
comments: well-written code should explain itself. Do, however, describe what each function does
in a comment near the top of the definition.

•	 Variable naming:

•	 Variable	names	must	always	start	with	a	letter	or	underscore.

•	 Don't	abbreviate.	Since	case	matters	(x is not the same as X), longer names will cause
significantly less confusion.

•	 Global	variables	should	begin	with	a	lower	case	g; for example, gSelected.

•	 Variables	used	as	constants	should	be	in	all	caps,	and	words	should	be	separated	by	underscores,	
like this: OWNER_KEY.

•	 You	should	use	camel	case	(lowercase	first	letter,	and	then	capitalize	each	word)	for	variable	
names, such as this: myCountingVariable.

CHAPTER 1

34

 Scripting
Structure 101

 typeS

 VariableS

 Flow
control

 operatorS

 FunctionS

 eVentS
and eVent
HandlerS

 StateS

 Managing
Scripted
objectS

 an lSl
Style guide

 SuMMary

•	 Function naming:

•	 Function	names	must	also	start	with	a	letter,	and	usually	are	camel	case,	with	each	word	
capitalized similarly to the Linden Library functions like doSomethingInteresting().

•	 Linden	Lab	uses	the	prefix	ll for built-in functions, such as llGetScriptName(), so don't
use this syntax for your own code—it is considered very bad form. Look for llPizza() on
the LSL wiki; it has a short discussion of user functions masquerading as Linden Library functions.

•	 If	you	are	creating	functions	that	belong	to	a	family,	and	you	are	likely	to	reuse	them	regularly,	
you should define a consistent naming convention across the family. LSL does not have an explicit
"library" concept, but if you stick to one convention, you will find it easier to maintain a collection
of reusable code for your projects.

to conserve space, the scripts in this book don't follow all the rules all the time, especially for
comments. the prose around the listings should be sufficient explanation.

NOTE

 modularitY
LSL doesn't offer any tools for writing and maintaining modular or especially reusable scripts, however, here
are some tricks:

•	 Write	and	edit	your	code	outside	Second Life, only pulling it in for testing, integration into builds,
and deployment. Not only does this approach allow you to use superior editors, but it gives you
access to revision-control systems and code generators and transformers—see the SYW website
for more.

•	 Package	separable	parts	as	different	scripts	in	the	same	object.	This	can	keep	the	individual	pieces	
smaller if the parts don't require close coordination.

•	 Use	worker scripts	to	do	slow	(artificially	delayed)	tasks,	or	jobs	that	require	one	script	per	avatar.	
This will usually require a "brain" script that instructs a set of subsidiary scripts what to do, so they
can act in concert so that the brain isn't delayed while waiting for something to happen.

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIcEs

35

CHAPTER 1SUMMARY

This chapter should have given you a good understanding of the LSL language and the basics of how to use
it to manipulate Second Life functions. You should be aware that LSL is an evolving language; Linden Lab
is fixing bugs and adding new capabilities all the time. That means you may run into something that isn't
working the way you expect. Before it drives you up a tree, check the Second Life website of formal issues:
http://jira.secondlife.com. The SYW website also has tips that can help get you out of a jam.

Most of the rest of this book is devoted to making effective use of LSL and the library to accomplish
interesting things in SL. After you've absorbed some of the ideas elsewhere in the book, come back and
re-read this chapter. Even for us, the authors, re-reading has been beneficial. We wrote this chapter, then
spent several weeks doing heavy-duty scripting before the editors were ready for us to make a second pass
on Chapter 1. Our re-read was enlightening, helping us understand certain things better or in a different
way than we did when we first wrote the text. Take it from us: there are lots of things that will make much
more sense on later perusal.

And now, on to the fun stuff !

