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Plane Electromagnetic Waves

LEARNING OBJECTIVES

• Develop and understand the spatial and temporal relationships between electric and 
magnetic fi elds for propagating waves

• Relate the spatial and temporal relationships between electric and magnetic fi elds for 
polarized waves

• Use dielectric, magnetic, and conduction properties of a medium to modify plane 
wave fi eld properties

• Use the relative velocity between a source and receiver to fi nd the relativistically 
accurate frequency shift (Doppler Shift) of harmonic E&M waves

• Recognize the difference between group and phase velocity and relate them to the 
transmission of power and transfer of momentum

• Describe the properties of plane waves that are incident on a boundary between two 
media with differing permittivity, permeability, and conductivity

• Show how E&M pulses attenuate and disperse in common transmission materials 
such as copper, glass, and liquids

Chapter 1

INTRODUCTION

In the development of the solutions to Maxwell’s equations (see Intent of the Book), 
we have used the scalar electric potential, V(x, y, z, t), the magnetic vector potential, 
A
�
(x, y, z, t), and the Lorenz gauge to uncouple the differential equations and to write 

an equivalent pair of inhomogeneous partial differential equations (PDEs) for V and  
A
�
:
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2 Chapter 1 Plane Electromagnetic Waves

We have found that these PDEs can be solved independently to fi nd a particular 
solution in terms of the time-harmonic source electric charge density, ρ(x, y, z, t) = 
ρs(x
�
)ejωt, and the source current density, J

�
(x, y, z, t) = J

�
s(x
�

)ejωt, as
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The most general form of the solution is then a linear combination of the general 
solutions to the homogeneous PDEs (Equation 1.1 in which ρ = 0 and J

�
= 0) and 

Equation 1.2. Knowing the relationship between electric fi eld E
�
(x
�
, t) = E

�
S(x
�
)ejωt and 

magnetic fi eld, H
�
(x
�
, t) = H

�
S(x
�
)ejωt and the scalar electric and magnetic vector poten-

tials, we then develop an understanding of the behavior of those fi elds in a homo-
geneous material medium with electric permittivity, ε, electric conductivity, σ, and 
magnetic permeability, μ (where B

�
 = μH

�
 and D

�
 = εE
�
):
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These solutions satisfy the time-harmonic form of Maxwell’s equations
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so we are free to use these relationships where they are convenient. For example, if 
we use Equation 1.3a to fi nd H

�
S in source-free space, we may use Equation 1.4b (in 

the absence of current density, J
�

S) to fi nd E
�

S without having to fi nd Vs.

1.1 PROPAGATING PLANE WAVES

We begin by considering the propagation of a magnetic vector potential in a source-
free region of space:
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which is a linear combination of the two independent solutions to the homogeneous 
PDE 1.1b. Here, we have expressed the plane wave in terms of its motion along the 
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z-axis because we are at liberty to orient the Cartesian coordinates in a direction of 
our choice. By incrementing the time t in this expression from t′ to t′ + dt, we can 
follow a point of constant phase, (kzz − ωt) = constant, to see that the fi rst term 
represents the propagation of a wave in the z-direction (along the positive z-axis), 
with speed u dz dt kp z= = =ω με1  (also called the phase velocity). The second 
term in Equation 1.5 represents the propagation of a wave along the negative z-axis 
with the same phase velocity. To simplify our understanding of the wave propagation 
and the relative position of the resulting electric and magnetic fi elds, we will assume 
that the boundary conditions require the coeffi cient of the second term to be zero; 
that is, we will consider only propagation in the positive z-direction. Such a fi eld 
might, for example, be created by current sources in a region of space in which the 
electric current density is forced by boundary conditions to have a component only 
in the z-direction.

Relative Directions and Magnitudes of E
�

 and H
�

For the special case with Az
−(x, y) = 0, we can use Equation 1.3a to see that

 

� ��
H A

A
A

a a a

x y z
x y e

S S

z

z

x y z

jk zz

+ +

+

+

−

= ∇× = ∂
∂

∂
∂

∂
∂

( )

= ∂

1 1

0 0
1

μ μ

μ

ˆ ˆ ˆ

,

∂∂
− ∂

∂
− −

+

y
e a

x
e a

Ajk z
x

jk z
y

zz zˆ ˆ
1

μ
 (1.6a)

We can also use Equation 1.4b to see that
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We may now see that
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Conclusion

In this special case, the propagating electric fi eld intensity waves, magnetic 
fi eld intensity waves, and magnetic vector potential waves are all orthogonal to 
one another. We call such propagating waves transverse electric (TEz) and transverse 
magnetic (TMz) because they are moving in the z-direction, in phase with the 
magnetic vector potential. When both TE and TM waves occur in the same propa-
gation (as they do here), the waves are transverse electromagnetic and labeled TEMz 
waves.

Relative Magnitudes

We can also use the relationship kz = ω με  to compare the components of the 
electric and magnetic fi eld intensity for TEMz waves as
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The quantity η is called the intrinsic impedance of the medium because it is a func-
tion only of the permeability and permittivity of the medium. Some texts call this 
ratio, ZW, which they call the wave impedance, to remind us that the ratio of an 
electric fi eld intensity and magnetic fi eld intensity has units of ohms. Thus, this 
quantity is a measure of the impedance of the medium; the ratio is labeled Z0 in the 
case of waves propagating in a vacuum. In air or a vacuum, ε = ε0 ≈ (1/36π) × 10−9

F/m or (s/Ωm) and μ = μ0 = 4π × 10−7H/m or (Ωs/m) so η = Z0 ≈ 120π Ω = 377Ω. 
This is called the intrinsic impedance of free space.

Physical Meaning of the Propagating Wave Equations

Equations 1.6 give us the relative vector directions, phase, and magnitude of E
�
 and 

H
�
 relative to the magnetic vector potential, A

�
. Without some knowledge of how A

�
 

varies with x and y, we cannot take the partial derivatives. However, the x-direction 
is just as arbitrary as the z-direction, which we choose to be in the direction of 
propagation of A

�
. We can therefore choose the x-direction to be in the direction of 

the electric fi eld intensity vector, in which case, we write
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Here, we have chosen the component of H
�
 to satisfy the ratio condition required 

by Equation 1.8a.
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Assuming the coeffi cient in 1.9a is a real number, let us now diagram the 
propagating waves for the real part of the functions 1.9:

 Re , cos
� �
E Ex t k z t az x

+ +( )[ ] = −( )0 ω ˆ  (1.10a)

 Re , cos
� �
H x t k z t aE z y

+ +( )[ ] = ( ) −( )0 η ω ˆ  (1.10b)

A graph of these functions is shown in Figure 1.1 at time t = 0.
In Figure 1.1, we see that, at time t = 0, both the electric fi eld intensity and the 

magnetic fi eld intensity are distributed under a cosine curve envelope in space with 
a wavelength λ = 2π/kz and both envelopes are propagating along the positive z-axis 
with velocity u fp = =λ με1 .

In this fi gure, the x-axis direction has been chosen to lie in the direction of 
the electric fi eld, and Equations 1.7 thus require that the magnetic fi eld must lie in 
the y-direction. We may use the right-hand rule to see that E

�
 × H
�
 lies in the direction 

of A
�
 (the z-direction) at every point in space. Furthermore, the electric fi eld intensity 

and the magnetic fi eld intensity remain in phase with one another (both are a 
maximum at the same point in space and both are zero at the same point). For later 
values of time, both continue to point in their respective x- and y-directions so we 
say that they are linearly polarized. Finally, we note that the magnitude of the mag-
netic fi eld envelope H +

0 = E+
0/η, where E+

0 is the magnitude of the electric fi eld inten-
sity envelope and η μ ε=  is the intrinsic impedance of the medium in which the 
wave is propagating.

Propagation Direction

E
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H
+
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âx

ây

âz

E 
�

H 
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λ

z

(z, t)

(z, t)

Figure 1.1 Plot of the real parts of the electric and magnetic fi eld intensity as a function of position 
z, at time t = 0 when the x-axis is chosen to lie in the direction of the electric fi eld intensity vector.
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NOTE Some texts prefer to graph the magnetic fl ux density B
�
 = μH

�
 rather than 

the magnetic fi eld intensity

 B E E
E

uP
0 0 0

0+ + +
+

= = =μ ε
μ

με  (1.11)

because, in the special case when the propagating medium (e.g., air) has the same 
permeability and permittivity of free space, B+

0 = E+
0 /c, where c is the speed of light 

in a vacuum, 2.99792458 × 108 m/s. When the electric fi eld intensity of an electro-
magnetic wave remains in the same direction as it propagates in a medium, it is said 
to be linearly polarized. Of course, the relations above show that the magnetic fi eld 
intensity associated with the wave is also linearly polarized.

1.2 POLARIZED PLANE WAVES

An observer located along the z-axis at a position of maximum electric fi eld (i.e., at 
position z = nλ with n = an integer at t = 0) looking back in the −z direction (as 
shown in Figure 1.2a) would see the electric and magnetic fi eld intensity, as shown 
in Figure 1.2b.

As a function of time, an observer at z = nλ would measure the electric fi eld 
intensity to be a maximum (in the x-direction) at time t = 0, as shown in Figure 1.2b, 
then observe it to decrease to zero by time t = (1/4)(λ/c), then observe it to further 
decrease to its maximum negative value by time t = (1/2)(λ/c), then increase back 
to zero by t = (3/4)(λ/c), then increase back to its maximum positive value by t = 
λ/c, and so forth in a cosinusoidal manner with time. The magnetic fi eld intensity 

Propagation Direction

E+
0

H+
0 â

y

â
x

â
z

E 
�

H 
�

λ
(z, t)

(z, t)

z = nl

Figure 1.2 (a) Observer at z = nλ (n = integer); 
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E+
0

H+
0

yâ

xâ

Figure 1.2 (b) electric and magnetic fi eld intensity components observed 
at time t = 0.

would be behaving in a similar manner except it would occur only in the y-direction, 
and its amplitude would be H+

0 = E+
0 /η.

More General Case

If we express the fi eld intensity in the general case (not choosing the x-axis to lie in 
the direction of the electric fi eld intensity), Equations 1.6a and 1.6b specify their 
components:
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where the components of E
�
 and H

�
 obey the relations 1.8a and 1.8b, E+

0,x = H+
0,y = η, 

and E+
0,y /H+

0,x = −η. In this case, we can draw the electric fi eld measured by the 
observer at position z = nλ (n = integer) at time t = 0 to be that shown in Figure 1.3.

As seen from a point z = nλ on the z-axis, the two components of electric fi eld 
would add vectorally to form a resultant vector E

�
+
0,R whose components would vary 

with time cosinusoidally. Thus, E
�

+
0,R would be seen as a linearly polarized fi eld at 

angle

âx

ây

q

E0,x
+

E0,y
+

E0,R
+
�

Figure 1.3 Components of the electric fi eld intensity observed at 
time t = 0 (components of the magnetic fi eld intensity are orthogonal to 
these components but are not shown).
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 θ = ( )− + +tan , ,
1

0 0E Ey x  (1.13)

with respect to the x-axis. We would say that the two components of the electric 
fi eld are in space quadrature with one another. While both of the measured com-
ponents change with time in a cosωt manner, the angle θ remains constant so the 
resultant polarized electric fi eld oscillates in amplitude with the same orientation 
with respect to the x-axis.

A simple way to picture the resultant of two components is to picture them as 
originating from two orthogonal sources such as the two dipole antennas shown in 
Figure 1.4.

Even More General Case

If the two dipole antennas that create the two space quadrature polarized electric 
fi eld intensities are displaced from one another along the z-axis by an amount z = 
λ/4, as shown in Figure 1.5 and are driven at the same frequency and in the same 
phase, the resulting electric fi eld intensities will be displaced from one another in 
phase by one quarter of a cycle. As seen by the observer at z = nλ, the second electric 
fi eld intensity (oriented in the y-direction) will be delayed in time from the fi rst 
(oriented in the x-direction) by t = (π/2)/ω.

The equivalent equation for the observed electric fi elds at point z is
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�E E Ez t e a e aS x y
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Propagation direction
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+
+
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+
+

+
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–
–

–
–

–
–
–
–

+

E  y(z,t)+

âz

âx

ây

Figure 1.4 Two electric fi eld intensities produced by orthogonal dipole antennas operating at the 
same frequency and with the same phase.
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If we plot these terms for z = nλ on a graph like that shown in Figure 1.3 for a 
sequence of times, we get the sequence shown in Figure 1.6.

We can see from the resultant vector in Figure 1.6 that E
�

R rotates in a counter-
clockwise manner about the origin, with radial frequency ω, and traces out the path 

Propagation direction

z  =  nl

Ex(z,t)

+
+
+
+

+
+

+
+

––
–

–
–
–
–

Ey(z,t)

âz

âx

l

l
4

ây

Figure 1.5 Polarized electric fi eld intensities in space and time quadrature.
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�
E0,x

E0,x

�
E0,x
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+
� E0,x

+

E0,x
+

–
+

+ +

+

âx

t = 0

sin p/4

sin p/4

cos p/4

cos p/4

p⁄4

âx âx

ây

ây ây

âx
ây

t = w

p⁄2t = w
3p⁄4t = w

Figure 1.6 Vector sum of the electric fi eld intensities produced by two sources, one of which lags 
the other by π/2.
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of an ellipse in time as the wave propagates along the z-axis. Such resultant elec-
tromagnetic waves are called right-hand elliptically polarized waves.

Similarly, we can see that, if the component of the electric fi eld intensity in the 
y-direction leads the component in the x-direction by t = (π/2)/ω, the result will be 
left-hand elliptically polarized waves.

1.3 DOPPLER SHIFT

Each evening, the news channel brings us the local Doppler radar map of weather 
in our area, the police track our automobile speed with Doppler laser refl ection, the 
universe is said to be expanding because we can observe and measure the “Red 
Shift” of stars, scientists use Mössbauer measurements to determine the magnetic 
fl ux density at a nucleus, and a trip to a NASCAR event is made more exciting by 
the change in pitch of a car engine as it zooms past us in the stands. A physician 
may take a Doppler angiogram movie of a beating heart, or an ultrasound technician 
may make pictures of a moving fetus in a womb. These events, as well as some 
troublesome problems such as the change in frequency of a mobile cell phone as 
measured by a base station, are caused by the motion of a source of waves relative 
to a receiver.

We can understand the phenomenon of Doppler shift by considering the change 
in waves produced by a stationary source of electromagnetic waves as it differs from 
a source in motion with constant velocity, as shown in Figure 1.7.

Suppose a source of electromagnetic waves (such as a quasar) produces TEMr 
waves, with period Δt0 between the crests of electric fi eld intensity. These waves 
move in the z-direction, with velocity c toward an observer at rest with respect to 
the source, as shown in the top sketch in Figure 1.7. The distance between the crests 
(the wavelength) is then λ0 = cΔt = cΔt0.

Now, let us view that same source of electromagnetic waves as it moves away 
from the observer at velocity, v. Because the source is moving with respect to the 
observer, there will be a change in the period of the source that follows time dilation, 
according to the special theory of relativity:

 Δ Δ
t

t

cv
=

−
0

2 21
 (1.16)

Now, the distance between crests of the electric fi eld intensity will be
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Because the speed of light, c, is the same for all observers,
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Equation 1.18 is the Doppler equation for the frequency of a moving source 
relative to a stationary observer. Equation 1.18 is often written in its series form

 f

f c c c

v v v

0

2

2

3

3
1

1

2

1

2
= − + − +⎡

⎣⎢
⎤
⎦⎥
�  (1.19)

because the velocity of the source is normally much less than the speed of light, so 
we can make a good approximation to the size of the Doppler shift by keeping only 
the fi rst two terms in Equation 1.19.

However, one theory of quasars is that they were expelled in the “Big Bang” 
at tremendous velocities; some close to the speed of light. For these sources of 
electromagnetic waves, we can write an expression for the relative shift in wave-
length as

 Z
c

c

v

v
= − = +( )

−( )
−λ λ

λ
0

0

1

1
1  (1.20)

Figure 1.7 Change in the frequency and wavelength of electromagnetic waves from a source at rest 
versus a source moving at velocity v relative to the observer. Here, the crest (highest intensity) of the 
transverse electric fi eld waves is shown as outward expanding circles about their source.
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The quantity Z has been measured for a number of stellar objects as listed in 
Table 1.1: Many astronomers have concluded that the consistency of measurements 
of relative wavelength shifts from several spectra (such as hydrogen and mercury) 
confi rms the Doppler effect to be responsible for the red shift of electromagnetic 
waves from stellar objects.

Intensity Dilemma

Suppose a quasar of radius r0 has a luminosity, I0, at its surface, as shown in Figure 
1.8.

Measurements show quasistellar object QSO 3C466 varies in brightness by a 
factor of 2 in 1 day (i.e., its radius must be less than 1 light-day ≈ 2.7 × 1013 m), its 
red shift gives a velocity of 0.90 c, and its luminosity is about I ≈ 1022 erg/s. If the 
object has been traveling at this speed since the Big Bang (≈π × 1017 s), by now it 

Table 1.1 Values of relative wavelength shift and corresponding value of velocity 
relative to the speed of light for several stellar objects

Stellar object Z v/c

Quasar QSO (0H471) 3.4 0.90
Quasar 4C (05.34) 2.88 0.88
AO 0235 + 164 (Mg at 2800 Å) 0.52392 0.398
AO 0235 + 164 (H at 21 cm) 0.52385 0.398
Galaxy with the largest Z 0.46 0.36

Moving source

Luminosity I0

= =

Luminosity I

I
I0

4pr0

4pD2

r0

D2

r0 Dn

Earth

2 2

Figure 1.8 Observed luminosity (power density) of electromagnetic waves from a quasistellar 
object at distance D.
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must be D ≈ 0.9 × 3 × 108 × 3.14 × 1017 m = 8.5 × 1025 m away from the center of 
the universe. Using its observed luminosity, we calculated that the luminosity at its 
surface (at a distant point in time) must have been at least I0 ≈ 1047 erg/s. The lumi-
nosity of our sun is about 1033 erg/s. How massive would a quasar have to be to 
produce an intensity 1014 times larger than that of our sun? Would not that mass 
have collapsed into a black hole?

Herman Weyl Solution?

Could it be that the observed shift in frequency is not a result of a Doppler shift but 
of some other mechanism? For example, in 1918, Hermann Weyl suggested that 
there might be a frequency shift of clocks that is proportional to their electromagnetic 
history (i.e., the magnetic fl ux they have enclosed, (BA), or equivalently, their elec-
tric potential, V, in a period of time, Δt: ΔfQuasar/f0 ≅ −Z/(Z + 1) = 0.47 = CHW/e(BA) 
or CHWc/e(VΔt). Thus, for a quasar at electric potential of 108 V (according to 
Schwartzman, the theoretical maximum that will not blow a quasar apart) for all of 
time (π × 1017 s), we would expect a dimensionless Herman Weyl constant, CHW, of 
about 10−43. If this were the explanation of the observed frequency shift, the quasars 
would not be traveling away at such a high velocity but would have had their fre-
quencies shifted by the Herman Weyl effect. Would it be possible to measure such 
a small constant in a laboratory? The author and others made such a measurement 
by using the Mössbauer effect and showed1 that the Herman Weyl coeffi cient (if it 
exists at all) is at most ±2 × 10−48. One of the beautiful aspects of science is that 
answers to phenomenon often lead to other unanswered questions. The issue of 
low intensity of light from quasars today remains unanswered to many scientists’ 
satisfaction.

We have seen that the Doppler shift adequately explains the frequency shift of 
electromagnetic waves with frequencies in the visible spectrum (1015 Hz), even for 
relative velocities that approach the speed of light, c = 3 × 108 m/s. We have also 
personally observed that the Doppler shift explains the modulation in audible fre-
quencies (102–105 Hz) for automobiles or trains traveling at relative velocities of 
103–105 m/s. The National Aeronautics and Space Administration (NASA) had a 
Doppler effect scare on a mission to Titan that almost resulted in mission failure.

The NASA Cassini Example

In 2005, NASA had a mission to Saturn’s moon, Titan, that used an orbiter named 
Cassini to receive communications from a probe named Huygens as it fell to the 
surface of Titan at a terminal velocity of 5.5 km/s.

Sample Calculation

The Doppler shift observed by Cassini was 38 kHz when it was directly overhead 
the falling Huygens probe. We can thus fi nd the base carrier frequency sent by the 
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probe by writing the Doppler equation in its series form f/f0 = [1 − v/c + (1/2)v2/c2 
− (1/2)v3/c3 + ....], or f/f0 ≈ [1 − v/c] if the velocity of the source is much less than 
the speed of light. Thus, the frequency shift Δf ≈ f − f0 = [1 − v/c] f0 − f0 = −(v/c)f0 
and for Δf = −38 kHz, f0 ≈ (3 × 108 m/s/5.5 × 103 m/s) (38 kHz) = 2.07 GHz.

NASA engineers solved the problem by launching the Huygens probe on the 
third (rather than the second) orbit about Saturn so that the Cassini receivers were 
moving nearly perpendicular to the probe decent (thus reducing the relative speed, 
v, to vcosθ between the transmitter and the receiver). This change in relative motion 
reduced the Doppler shift to the point that the Cassini receivers would not loose lock 
on the carrier frequency. Figure 1.9 shows the revised location of the Cassini Orbiter 
as it began to communicate with the Huygens Probe during its descent onto Titan.

PROBLEMS

1.1 With the aid of drawings, explain what happened to the frequency of the signals 
received by the Cassini orbiter as it moved to an angle θrevised relative to the 
path of the falling Huygens probe (assuming it was falling at its terminal 
velocity). Hint: The effect of time dilation is still valid when perpendicular 
relative motion is involved.

1.2 Calculate the Doppler shift of a 1.8 GHz cell phone due to its motion in a 
moving automobile at 70 mph if it is traveling (a) toward or (b) away from a 
Base Station.

The Mössbauer effect has been used to show that the Doppler shift also works 
for frequencies of 1019 Hz and for velocities as low as 10−5 m/s. The following 
section gives an example of the Mössbauer effect for 57Fe nuclei and shows that 
the Doppler shift is so precise that it can be used to explain high-Q nuclear 
linewidths.

Figure 1.9 Revised position of the Cassini 
Orbiter relative to the Huygens Probe during 
entry (and transmission of pictures) to minimize 
the relative component of velocity, v cos θ, 
between transmitter and receiver.
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The Mössbauer Effect Example

When 57Co captures an electron, it populates the 14.4125 keV excited state of 57Fe 
(with a 98 ns half-life or lifetime τ = 1.4 × 10−7 s), as shown in Figure 1.10.

The nuclear angular momentum quantum number of the excited state is 3/2 and 
that of the ground state is 1/2. Thus, in the absence of a magnetic fi eld intensity at 
the 57Fe nucleus, there are mono-energetic γ-rays emitted, with an energy of 
14.4125 keV.* Mössbauer showed that these γ-rays are predominantly emitted in a 
nearly recoilless fashion because the 57Fe nuclei are in a crystal lattice of mass M = 
NA × mFe absorbs the momentum of the outgoing γ-ray. The frequency of the emitted 
γ-rays is thus fγ = 14.4125 × 103 eV/4.13566727 × 10−15 eV = 3.484227 × 1018 Hz. 
When γ-rays of this frequency impinge upon 57Fe nuclei in a target material, as 
shown in Figure 1.11, they are often absorbed by those nuclei and later reemitted in 
a random direction. Thus, a detector behind the target will see a reduced number of 
γ-rays when there is absorption (at the resonant frequency).

By moving the source of nuclei (just like the quasar) away from the absorber 
at a velocity of v = 0.3 mm/s, we can Doppler shift their frequencies by a very small 
amount v/c = 0.3 mm/s/3 × 108 m/s = 10−12 (a vanishingly small amount compared 
with the frequency shift of a quasar), as shown in Figure 1.11.

As we see in Figure 1.12, this small Doppler shift is suffi cient to completely 
take the γ-rays out of resonance so that the detector sees less absorption (the count 
rate goes up). This is called a Mössbauer effect absorption spectrum.

If the absorber nuclei experience a magnetic fl ux density, B
�
, then the excited 

and ground states of the absorber split into energy levels according to the Zeeman 
effect, Ue = −μ

�
e ⋅ B
�

e, where μ
�

e is the nuclear magnetic moment of the nucleus in its 
excited state and Ug = −μ

�
g ⋅ B
�

g, where μ
�

g is the nuclear magnetic moment of the 
nucleus in its ground state. The effect of the splitting is shown schematically in 

57Co

57Fe

t = 270 day

t = 1.4 × 10–7 s14.4125 ± 0.02 keV

0.137 MeV

0

9% 91%

7/2

5/2–

3/2–

1/2–

Electron
capture

Figure 1.10 Nuclear energy levels of 
a 57Fe nucleus following its population 
from the electron capture of a 57Co 
nucleus (Table of Isotopes).

* The energy of the 98 ns 57Fe γ-ray is given here to 6 decimal places (our ability to measure it) but 
the nucleus knows this energy to about 15 decimal places as is shown below.
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Figure 1.11 Gamma ray emission and absorption scheme for recoilless 57Fe nuclei and a mecha-
nism for shifting their frequency by a Doppler velocity of the emitted nuclei.

Figure 1.12 14.4125 keV γ-ray counts detected as a function of the Doppler velocity of the source 
for a non-magnetic source and a non-magnetic absorber.
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Figure 1.13. Here, the splitting is greatly exaggerated as compared with the energy 
of the incident γ-rays.

Because the angular momentum of the incident γ-rays is 0 or ±1 �ω  (depending 
upon whether the photon is linearly, right, or left circularly polarized), the transition 
between an absorber −1/2 ground state to a +3/2 excited state (or a +1/2 ground state to 
a −3/2 excited state) is not possible; it is said to be a forbidden transition. Thus, there 
are only six different energies that the incident γ-rays can have that will be absorbed 
(as shown in the schematic of Figure 1.13). We would thus expect six different 
Doppler velocities for which Mössbauer absorption will occur. A typical absorption 
spectrum of a nonmagnetic 57Fe source with a magnetic 57Fe absorber is shown in 
Figure 1.14.

The Mössbauer absorption spectrum gives us a way to measure the magnetic 
fl ux density at absorber nuclei. The energy levels and the distribution of the intensity 
levels can be strongly dependent on the neighboring atoms to the absorber nuclei. 
In many cases, a Mössbauer absorption spectrum can give us qualitative and quan-
titative measures of the atomic structure of an otherwise unknown sample and they 
can give us the values of magnetic fi eld intensity and electric fi eld gradient at the 
nuclei of atoms (a subatomic effect we normally ignore in our macroscopic treatment 
of electromagnetic fi elds). This effect is the subject of a whole class of experimental 
studies.
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Figure 1.13 Energy splitting of the nuclear 
states of 57Fe absorber nuclei brought about by 
Zeeman energy shifts for nuclei with magnetic 
moment in magnetic fl ux density.
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Using the Doppler shift in the Heisenberg uncertainty principle, ΔE1/2Δt1/2 ≥ �/2 
gives (Δv1/2/c)(Eγ)Δt1/2 ≥ �/2 as the uncertainty for the Doppler velocity of the nuclear 
decay and absorption process. For a 14.4125 keV gamma ray with a half-life of 
98 ns, we fi nd Δv1/2 ≥ 0.07 mm/s for the source nuclei and the same for the absorber 
nuclei for an expected uncertainty (Half Width at Half Max [HWHM]) of any of the 
Mössbauer absorption peaks of 0.14 mm/s, which compares well with the absorption 
peaks in Figure 1.12 or 1.14.

Conclusion

The uncertainty in the Doppler velocity for a nuclear decay and absorption process 
is limited only by the Heisenberg uncertainty principle. We that conclude the absorb-
ing nuclei know the resonant energy of the emitted gamma rays at 3.5 × 1018 Hz to 
a precision of better than 10−13.

Unifi ed Field Theory Application

Gravitational Potential

The precision of the Mössbauer effect was one of its characteristics that permitted 
a measurement2 to verify Einstein’s principle of equivalence regarding gravitation 
and space-time. Einstein postulated that, in an enclosed elevator, it would be impos-
sible to distinguish between a force due to a gravitating body like the earth (which 
caused a weight on a scale) and that due to an upward accelerating elevator. Because 
acceleration gave the same result as a force, he said that it was equivalent to invoke 
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Figure 1.14 Mössbauer spectrum of a nonmagnetic 57Fe source and a magnetic 57Fe absorber.
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either a linear space-time with an additional force due to gravity or a curvature in 
space near a gravitating body with no additional gravitational forces. An experimen-
tal test of this equivalence was given by Eddington and Dyson, who observed an 
eclipse of May 29, 1919, on the islands of Sobral (off Brazil) and Principe (in the 
Gulf of Guinea). They observed the light from a star that passed behind the sun at 
the instant of eclipse to continue to be visible as a result of the apparent curvature 
of space around the sun by an angle of 1.8 s of arc.3 A simple explanation of the 
equivalence is that this would be the equivalent defl ection of a photon with effective 
mass mphoton = Ephoton/c2 = hf/c2 as it passed by the enormous mass of the sun (in this 
case, f is the frequency of visible light [∼1015 Hz]).

However, it was 40 years before a test of the time component of space-time 
curvature could be measured. This part of the principle of equivalence is often stated 
by the mnemonic that “lower clocks run slower.” This equivalence is observed by 
noting that an emitted photon (with very well-defi ned frequency) at a height, h, rela-
tive to an absorber (with a very well-defi ned absorption resonant frequency) at a 
lower point in a gravitational fi eld will experience an equivalent acceleration as a 
result of its effective mass by the force of gravity. This acceleration will cause the 
energy of the photon to increase as it “falls” through the distance h by ΔEphoton = 
meffectivegh = (hf/c2)gh. To the absorber nuclei below the source nuclei, the energy of 
the photon will thus appear to be greater than needed, so a Doppler shift in the same 
direction as that of the falling photon will be needed to achieve perfect resonance. 
To an external observer (who does not recognize gravitational forces), the frequency 
of the absorber nuclei appears to be running according to a slower clock than that 
which defi nes the frequency of the source nuclei.

Pound and Rebka placed an emitter of 14.4125 keV Fe57 γ-rays at the top of 
Harvard University’s Jefferson laboratory, h = 22.5 m above absorber nuclei at 
ground level. They also interchanged the location of source and absorber to see the 
effect of a photon that must “climb” the height h and therefore loose energy. 
Electronics and clocks today are so much more precise than they were in 1959 that 
we can observe that “lower clocks run slower” if they are only separated by a height 
difference of 1 cm! This makes the concept of a tabletop measure of the equivalence 
principle very realistic.

PROBLEM

1.3 a. Compute the shift in energy caused by the falling photon in the Pound and 
Rebka experiment and determine the Doppler shift required to achieve 
resonance.

b. Compute the precision needed to observe a Doppler shift of those photons 
as they fall through a distance of 1 cm.

Electrostatic Potential

Einstein tried in vain to unify gravitation and electromagnetic fi elds into a single 
theory in which no external forces would be needed to explain either. He called this 
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the unifi ed fi eld theory and regarded his failure to produce the theory the greatest 
failure of his life. Other theorists today are trying to produce the theory with only 
partial success. Unfortunately, there appears to be no effective charge on a photon 
because of its energy. Thus, there is no potential difference between photons that 
are emitted at a higher scalar electrostatic potential than their absorber nuclei. 
However, it should be possible to place a limit on the effective charge of a photon 
by making such a measurement.

PROBLEM

1.4 Assuming that we can arrange a source of 14.4125 keV Fe57 γ-rays at an 
electrostatic potential of 1 MV above the nuclei of an absorber, determine 
the upper limit on the effective charge on a photon if we have a 
Mössbauer apparatus capable of determining a Doppler shift to a precision of 
±0.001 mm/s.

1.4 PLANE WAVES IN A LOSSY MEDIUM

If a homogeneous medium has an electrical conductivity, σ, then currents can be 
induced by the electric fi eld intensity of a propagating wave, J

�
 = σE

�
. By using the 

time-harmonic form of fi eld quantities, E
�
(x
�
, t) = E

�
s(x
�
)ejωt and H

�
(x
�
, t) = H

�
s(x
�
)ejωt 

Maxwell’s equations become as shown below (Table 1.2).
In the time-harmonic form of Faraday’s and Ampere’s equations, we can take 

the curl of both sides to obtain

 

� � � � � �

�

� � � � ��
∇ × ∇ × = ∇⋅ ∇⋅( ) − ∇ = − ∇ × = − +( )E E E E Ej j jHS S S S SS

2 ωμ ωμ σ ωε

∇∇ + −( ) =2 2 0
� �
E EjS Sω με ωμσ

 (1.21)

and

Table 1.2 Maxwell’s equations for a homogeneous conducting medium in the absence of 
“free” charges and currents

Maxwell’s equation No “free” charges/currents Harmonic forma

∇
�
 × E
�
 = −∂B

�
/∂t ∇

�
 × E
�
 = −μ∂H

�
/∂t ∇

�
 × E
�

S = −jωμH
�

S

∇
�
 × H
�
 = J
�
 + ∂D
�
/∂t ∇

�
 × H
�
 = σE

�
 + ε∂E

�
/∂t ∇

�
 × H
�

S = σE
�

S + jωεE
�

S

∇
�
 · D
�
 = ρV ∇

�
 · E
�
 = 0 ∇

�
 · E
�

S = 0
∇
�
 · B
�
 = 0 ∇

�
 · H
�
 = 0 ∇

�
 · H
�

S = 0

a Math and physics books use the time convention e−iwt so the harmonic forms have different signs 
(j→∼i).
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(1.22)

Equations 1.21 and 1.22 are both of the vector Helmholtz form:
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∇ + = = −( )2 2 2 20 1E Ek k jS S with ω με σ ωε  (1.23)
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∇ + = = −( )2 2 2 20 1H Hk k jS S with ω με σ ωε  (1.24)

If the fi elds are written in terms of their Cartesian components, Equations 1.23 and 
1.24 represent six second-order, linear, homogeneous PDEs in a form we have 
already solved. The solutions for each of the xi components are
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with k
�
 = kâk. These answers are in the same form as our previous answers for TEMz 

waves propagating in the âk-direction, with the exception that k2 = ω2με(1 − jσ/ωε) 
is a complex number (if σ and ε are both real).†

It is traditional in Electrical Engineering to label the real and imaginary parts 
of the propagation number, k, as

 k j≡ −β α ,  (1.26)

where both β and α are real numbers. Squaring the number k and equating it to the 
material properties constants as above,

 k j j j j2 2 2 22= −( ) −( ) = −( ) − ( ) = ( ) − ( )β α β α β α αβ ω με ωμσ  (1.27)

Solving for the constants, we fi nd

α ω με σ ωε β ω με σ ωε2 2 2 2 2 22 1 1 2 1 1= ( ) + ( ) −⎡⎣ ⎤⎦ = ( ) + ( ) +⎡⎣ ⎤⎦and  (1.28)

† μ and ε arise in Equations 1.21 and 1.22 by making the homogeneous, macroscopic approximation 
that B

�
 = μH

�
 and D

�
 = εE
�
. Often, we will use these equations for a good, nonmagnetic conductor in 

which there is relatively little polarization due to the electric dipole character of the propagating 
medium (e.g., copper) so we may use μ ≈ μ0 and ε ≈ ε0 in that application. In that case, 
k2 ≈ ω2μ0ε0(1 − jσ/ωε0), and we can use a mathematical convenience of defi ning an effective 
εr,eff = (1 − jσ/ωε0), which takes into account the conductivity as if it were part of the permittivity 
constant. Two warnings for later analysis: (1) we multiplied and divided by ω in factoring out ω2 so 
we cannot consider εr,eff(0) without remembering that the correct term to consider is lim ,

ω

ωε ω
→

( )
0

r eff , and 

(2) D
�
 = ε0εr,eff(ω)E

�
 only insofar as the permittivity contains the conductivity (i.e., εr,eff(ω) is not 

expressing the alignment of polar molecules).
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k j= ( ) + ( ) +⎡⎣ ⎤⎦ − ( ) + ( ) −⎡⎣ ⎤⎦ω με σ ωε ω με σ ωε2 1 1 2 1 12 1 2 2 1 2
 (1.29)

1. For a non-conducting medium, σ = 0 in Equation 1.29, and k reduces to

 k = ω με non-conducting  (1.30a)

 as in the case of plane waves propagating in a pure dielectric medium.

2. For a weakly conducting medium in which x = (σ/ωε) << 1, we can use 
a series expansion of the square root terms in Equation 1.29 [1 + x2]

1
/2 = 

[1 + (1/2)x2 − (1 · 1/2 · 4)x4 + (1 · 1 · 3/2 · 4 · 6)x6 − ...] to see

 k j≈ −[ ]ω με σ ωε1 2 weakly conducting  (1.30b)

3. For a strongly conducting medium in which x = (σ/ωε) >> 1, we can see

 k j≈ −( )[ ]ω με σ ωε1 2 strongly conducting  (1.30c)

Orienting the Cartesian coordinates such that the z-axis lies in the direction of âk,
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The constant α in the loss term in Equation 1.31 depends on the relative value of x 
= (σ/ωε) to 1. This quantity is often referred to as the static loss tangent:

 tanδ σ ωεS =  (1.32)

NOTE The phase velocity of electromagnetic waves in each of these media is up 

= ω/β. Thus, u cp r= ε  for a nonconducting medium, but u cp r= ( )ε ωε σ2  
for a strongly conducting medium.

Complex Permittivity

When an electric fi eld is applied to a dielectric material, it orients molecules with 
electric dipoles in proportion to the size of the electric fi eld. If the applied fi eld 
oscillates in time (e.g., in an electromagnetic wave), the dipole orientation will try 
to follow the direction of the applied fi eld. However, the polar molecules being 
oriented have a mass m that leads to an inertia of the molecule so that it cannot 
exactly follow the driving frequency in time so that it sometimes lags and can even 
become completely out of phase with the driving fi eld. Furthermore, the dipoles that 
oscillate in an external fi eld may lose energy to their neighbors with a damping 
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coeffi cient, b, through friction. The result is a set of N per unit volume dipoles that 
are driven, damped, harmonic oscillators. In Chapter 5, we show how they produce 
a relative complex permittivity:

 �ε α ε
ω ω ω

ε εr r r
N m

j b m
j

e
= +

−( ) +
= ′ − ′′1

2
0

0
2 2

,  (1.33)

where ω0 is a resonant frequency of the polar molecules. The tilde over εr reminds 
us that the permittivity can be a complex quantity at high frequencies. At very high 
frequencies, the model permits a displacement of a negative plasma of electronic 
charge relative to its positive atomic cores; at high frequencies, the model includes 
the additional displacement of ionic charge in individual atoms; at lower frequencies, 
the traditional orientation of polar molecules give rise to additional permittivity; and, 
at low frequencies, in conductors and semiconductors, the driving electric fi eld can 
also displace free electric charges relative to holes in the material to give a complex 
permittivity that takes into account the conductivity of the material in the form εr,eff 
= (1 − jσ/ωε0), as stated in a previous footnote. The additional effects lead to a 
behavior that is similar to the orientation of the polar molecules, but the resonances 
are at different frequencies so that
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 (1.34)

Some texts prefer to write

 � �ε ω χ ωr e( ) = + ( )1  (1.35)

where χ̃e is the electric susceptibility,

 �χ ω χ ω χ ωe e ej( ) = ′( ) − ′′( )  (1.36)

Many scientists and engineers (e.g., Kramers-Kronig, Debye, Clausius-Mosotti) 
have contributed to this fi eld so it is a subdiscipline in its own right. Real materials 
have their own individual characteristics that do not fi t a single characteristic set of 
variations, but each typically has a real and an imaginary part that vary with fre-
quency. The loss mechanisms depend on the ratio of the imaginary and real parts 
so the alternating electric loss tangent is defi ned as

 tanδ ε εa = ′′ ′  (1.37)

For materials with conductivity and dielectric losses, the effective electric loss 
tangent is

 tan tan tanδ δ δ σ ωε ε εe S a= + = ′ + ′′ ′  (1.38)
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Figure 1.15 Real and imaginary parts of the electric permittivity as a function of frequency for a 
model dielectric.

We shall hold discussion of the detailed mechanisms that lead to the characteristic 
resonances in Figure 1.15 to Chapter 5.

Complex Permeability

The macroscopic permeability of many materials classifi ed as diamagnetic, para-
magnetic, or antiferromagnetic is nearly the same as free space, μ0 ≡ 4π × 10−7 H/m 
or (Ωs/m). Ferromagnetic and ferrimagnetic materials can exhibit much higher per-
meabilities (sometimes 106 times higher) than that of free space. The magnetic 
dipoles in these materials can be driven in frequency by the magnetic fi eld compo-
nents in an electromagnetic wave, but, as in the case of the electric dipoles, they 
have mass and inertia so that they lag behind or are even out of phase with the 
driving fi elds. These materials also tend to be lossy, as is seen by their magnetic 
hysteresis, and the combined effect of dipoles being driven with losses leads to a 
complex permeability:

 �μ ω μ ω μ ω( ) = ′ ( ) − ′′ ( )j  (1.39)

Like the case of electric dipoles, the size of the losses depends on the ratio of 
the complex part of the permeability to the real part, so the alternating magnetic 
loss tangent is defi ned as

 tanδ μ μm = ′′ ′  (1.40)

These effects are especially important to the class of ceramic materials called 
Ferrites that are typically oxides of the metals lithium, magnesium, iron, nickel, zinc, 
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cadmium, or some of the rare earths. Especially at microwave frequencies, single 
crystals of these materials exhibit anisotropic magnetic properties and large resis-
tances (they are good insulators), which lead to lower ohmic losses. Ferrites thus 
appeal to the microwave circuit designer who can incorporate them into devices with 
resonant characteristics that yield large amplifi cation in preferred directions (espe-
cially appealing in antenna design) and can even exhibit preferences for left- or 
right-hand circularly polarized waves. The science and engineering of ferrites are 
also the subject of an entire subdiscipline of electrical engineering. It is typical, 
however, that our homogeneous material approximation fails (B

�
 ≠ μH
�
), and we must 

write B
�
 = μ
�

H
�
 as a tensor operation. This treatment is beyond the scope of this book 

and will be reserved for an advanced treatment of electromagnetic theory.

Phase Shifts

One of the most important properties of lossy media is that they cause the magnetic 
fi eld intensity wave propagation to be out of phase with the electric fi eld intensity 
wave propagation. We can see how this arises by putting the exponential decay 
forms of fi elds (Equation 1.31) into the time-harmonic form of Faraday’s law:
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where we have chosen the x-axis to lie in the E
�

0 direction, so that

 E j a j Hx y0 0− −( ) = −α β ωμˆ
�

or  (1.43)
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The real term in Equation 1.44 shows that part of E
�

0 is in phase with (and perpen-
dicular to) H

�
0. The imaginary term in Equation 1.44 shows that the other part of E

�
0 

is perpendicular and leads H
�

0 by π/2.

Conclusions

1. In a conductor, H
�
(x, y, z, t) and E

�
(x, y, z, t) are perpendicular to one another, 

but E
�
(x
�
, t) leads H

�
(x
�
, t) by a phase angle:

 ϕ α β= ( )−tan 1  (1.45)

2. In a conductor, the relative magnitude of the H
�
(x, y, z, t) and E

�
(x, y, z, t) 

fi elds is
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 For nonconducting materials, we have previously found (Equation 1.30a) 
that α = 0 and β ω με=  so that ϕ = 0 and E Hx y = μ ε , as we previously 
found in Equation 1.9.

For weakly conducting materials, we have found (1.30b) that 
β α ω με σ ωε− ≈ − ( )[ ]j j1 2  so that ϕ = tan−1(σ/2ωε) and E Hx y ≈ μ ε , 
where the term in the parentheses is small. Thus, there is a small phase shift 
of the electric fi eld intensity to the magnetic fi eld intensity, but the magnitude 
is about the same as it was for a nonconductor.

For strongly conducting materials, we have found (Equation 1.30c) that 
β α ω με σ ωε− ≈ −( )[ ]j j1 2  so that ϕ = tan−11/1 = π/4 rad = 45˚ and 

 E Hx y = + = ( )ωμ α β μ ε σ ωε2 2 , where the term in the parenthe-
ses is much larger than 1. Thus, there is a phase shift of 45˚ and a decrease 
in the electric fi eld intensity (relative to the magnetic fi eld intensity) over 
that of a nonconductor.

The decay and phase shift for a strongly conducting medium are shown in Figure 
1.16.

Examples

Describe the character of electromagnetic propagation in copper, seawater, and 
distilled water if σ and εr are given as shown in Table 1.3.

Propagation direction

Ex(z,t)

z

Hy(z,t)

âz

âx

l

ây

Figure 1.16 Propagation of the electric fi eld intensity and magnetic fi eld intensity of an electro-
magnetic wave in a strongly conducting material.
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We have seen from Equation 1.30b and 1.30c that

β α ω με σ ωε− ≈ −[ ]j j1 2 weakly conducting

β α ω με σ ωε− ≈ −( )[ ]j j1 2 strongly conducting

and that tan δs = σ/ωε is the deciding criterion. Choosing the criteria to be 10±2,

 tan δ α β η ϕ

 <0.01 μ ε σ 2  ω με  μ ε  tan−1σ/2ωε

 >100 ωσμ 2  ωσμ 2  μ ε σ ωε  45˚

These criteria lead to a skin depth, δ, magnitude of Ex to Hy, ηeff, relative phase angle 
of E
�
 to H
�
, ϕ, and phase velocity, up, of each material based on its material conduc-

tivity, as shown in Table 1.4.

Table 1.3 Properties* of selected materials

Material σ (S/m) εr ε″/ε′ μr μ″/μ′

Copper 5.8 × 107 1 0 1 0
Cast iron 1.0 × 106 1 0 60 *
Seawater 4 72 4 1 0
Ferrite (Fe2O3) 1.3 × 10−3 1 0 1000 *
Distilled water 2.0 × 10−4 80 4 × 10−2 1 0
Glass 10−12 7 2 × 10−2 1 0
Resin (FR4) 10−15 4.0 2 × 10−3 1 0

* Qualifi cations: Values vary with measurement temperature (typically room temperature), purity, and 
frequency (typically <10 GHz) of E&M wave. Relative losses of ferromagnetic materials are 
calculated in Chapter 4.

Table 1.4 Electromagnetic wave properties in various propagating materials

Material δ ηeff (V/A) ϕ up (m/s)

Copper at 60 Hz 0.85 cm 2.9 × 10−6 45˚ 3.2
Copper at 100 MHz 6.6 × 10−3 cm 3.7 × 10−3 45˚ 4153
Seawater at 60 Hz 32.5 m 10.1 × 10−3 45˚ 1.7 × 108

Seawater at 100 MHz 2.5 cm 14.1 39.3˚ 7.8 × 107

Distilled water at 60 Hz 4590 m 0.49 44.9˚ 5.5 × 105

Distilled water at 
100 MHz

240 m 19.9 0.013˚ 5.7 × 107



28 Chapter 1 Plane Electromagnetic Waves

1.5 DISPERSION AND GROUP VELOCITY

Thus far, we have dealt primarily with monochromatic waves with a defi nite fre-
quency, ω0, and the real part of a wave number, β0 = 2π/λ0, with the possibility that 
there will be an imaginary part, α0 that causes waves to decay with propagation 
distance. We found that these waves have a phase velocity, u cp r= ( )ε  for a 
nonconducting medium and u cp r= ( )ε ω ε σ2 0  for a strongly conducting 
medium. Thus, waves of defi nite frequency, ω0, decay in amplitude with propagation 
distance, as shown in Figure 1.16, and move with phase velocity less than the speed 
of light, c, in a vacuum but they do not disperse.

Spread of Frequency Components for a Shaped Pulse

In most applications, electromagnetic waves are produced with a fi nite spread of 
frequencies or wavelengths because of the fi nite duration of a pulse, for example, 
in the packet shaping of a pulse of light for a fi ber-optic transmission line. We can 
examine the Fourier transform for the packet in time to see the spread of frequencies. 
If the medium is dispersive (i.e., it is strongly conducting and has a complex permit-
tivity or a complex permeability), the phase velocity of an individual frequency 
component of the wave will not be the same as those for other frequency components 
of the wave. In this case, high-frequency components will travel at different phase 
velocities than low-frequency components, and the pulse will disperse in space and 
time.

We will begin this characterization by examining the frequency spread of a 
shaped pulse. We will then examine the group velocity of the pulse through the 
different phase velocities of its frequency components. Finally, we will characterize 
the shape of the pulse as it propagates in a dispersive medium.

Frequency Spread of a Shaped Pulse

For simplicity, let us consider the propagation of an amplitude-modulated signal 
consisting of a carrier frequency signal (of frequency, ω0) that is modulated by a 
pulse having a Gaussian distribution shape with time. At z = 0, the relative electric 
fi eld would behave as

 
� �
E Et t e t T0 0 0

22
0
2

, cos ,( ) = −ω  (1.47)

where T0 is a measure of the width of the pulse.
The relative electric fi eld intensity given by Equation 1.47 is shown in Figure 

1.17. Also shown in this fi gure is the Gaussian envelope (in green).
The energy of the pulse is proportional to the square of the electric fi eld intensity 

as
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2

, cos( ) = − ω  (1.48)
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The relative electric fi eld intensity squared is shown (in red) in Figure 1.18. The 
envelope is another Gaussian distribution (in green).

Note that the half width of the Gaussian envelope shown in Figure 1.18 occurs 
at time t2 = T 2

0 ln 0.5 so the half width at half maximum (HWHM) is

 Δt T1 2 00 693= .  (1.49)

Example

The envelope in these fi gures relative to the carrier frequency is greatly exaggerated 
for a typical pulse application. For example, a typical optical pulse might have 2T0 
≈ 10−10 s and λ0 = 300 nm (f0 = 1015 Hz) for ultraviolet (UV) light in a fi ber-optic 
cable; thus, n = c(2T0)/λ0 ≈ 105 cycles under the full width at half maximum (FWHM) 
of curve 1-18 (vs. ≈6 shown).

The Phasor electric fi eld intensity is thus the real part of E(0, t) = E0e−t2/2T
2
0 ejω0t 

whose Fourier transform is

–3 –2 –1 0 1 2 3

E
(0

,t)
 E

0

t/T0

�
�

–3 –2 –1 0 1 2 3

E
 (

0,
t)

 2    
E

0 
 2

t/T0

2Δt1/2

�
�

Figure 1.17 Electric fi eld intensity ⎥E
�
(0, t)⎥/⎥E

�
0⎥ as a function of reduced time, t/T0, for a Gaussian 

modulated pulse.

Figure 1.18 Square of the relative transverse electric fi eld intensity, ⎥E
�
(0, t)⎥2/⎥E

�
0⎥2, as a function 

of reduced time, t/T0, for a Gaussian modulated pulse.
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which can be written
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Conclusion

The Fourier transform of a Gaussian modulated electric fi eld intensity oscillating at 
carrier frequency ω0 in time is another Gaussian in frequency space centered about 
ω = ω0; that is, modulating the pure electromagnetic wave with a single carrier 
frequency with a Gaussian envelope yields an electromagnetic wave with a distribu-
tion of frequencies (also in a Gaussian fashion) about the carrier frequency.

If we express the relative energy of this electric fi eld intensity in frequency 
space as proportional to

 �E E T e T2
0
2

0
20 0

2
0
2

, ,( )ω π ω ω( ) = − −  (1.53)

and we can plot the energy spectrum, as shown in Figure 1.19.
We can see that the energy spectrum falls to 0.5 for ω ω= ±0 00 693. T ; that is,

 Δω1 2 00 693= . T  (1.54)

It is interesting to note that the product of Equations 1.49 and 1.54 yields

 Δ Δt1 2 1 2 0 693ω = .  (1.55)

We can multiply Equation 1.55 through by � and compare this result with that of 
the Heisenberg Uncertainty principle:

E
(0

,w
) 2    

E
0(

0,
w

0)
 2  

~
~

2Δw 1/2

w 0 w
Figure 1.19 Relative energy spectrum, ⎥E

∼
(0,ω)⎥2/⎥E

∼
(0,ω0)⎥2, of a Gaussian modulated pulse of a 

pure electromagnetic wave, with carrier frequency ω0 as a function of frequency ω.
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 Δ Δt1 2 1 2 0 500� �ω ≥ .  (1.56)

to see that the uncertainty principle is a mathematical statement about the shape of 
pulses and their Fourier transforms; that is, for Gaussian modulated pulses, the 
uncertainty in time (HWHM of the energy spectrum) times the uncertainty in fre-
quency (HWHM in energy divided by �) is a constant (0.693).

Example

For the example above, with λ0 = 300 nm, ω0 = 2π × 1015 Hz, and 
Δt T1 2 0

100 693 0 69310 2= = −. . s , Δω1/2 = 1.66 × 1010 s−1 and Δω1/2/ω0 = 2.65

× 10−6.
We can conclude that a Gaussian-modulated electromagnetic wave will have 

components of frequency about the carrier frequency in a Gaussian distribution and 
that the width of the pulse in time will govern the width of the pulse in frequency 
space, according to Equation 1.55. For long pulses in time the width of the fre-
quency, Gaussian will be very narrow; we can even take the lim Δt1/2 → ∞ to see 
that the Gaussian will become a delta function (i.e., only one frequency at ω0). 
However, for very short pulses of an electromagnetic wave in time, we can see from 
Equation 1.55 that the frequency distribution will be very broad; that is, there will 
be a broad distribution of frequency components in the resulting frequency Gaussian.

If the medium in which the pulse is propagating has a dispersive character, that 
is, the phase velocity depends positively on the frequency of the wave, then the 
Gaussian distribution will spread out as the wave propagates because the higher 
frequency components will move with a higher velocity from the lower frequency 
components. Almost all media exhibit this property so it is called normal dispersion. 
In rare cases, the Gaussian distribution will narrow as the wave propagates because 
the higher frequency components move with a lower velocity for the lower fre-
quency components. Pulses that exhibit this property in a medium are said to have 
anomalous dispersion. In either case, we need to defi ne a new velocity of propaga-
tion of the group of wave components that constitute a pulse, which we will call ug, 
the group velocity.

Group Velocity

As mentioned above, we found that electromagnetic waves traveling in a medium 
have a phase velocity, u cp r= ε  if the medium is nonconducting and 

u cp r= ( )ε ω ε σ2 0  if the medium is strongly conducting. We have also shown 
that information pulses shaped by a Gaussian envelope in time are described as a 
Gaussian distribution of frequencies. As shown in Figure 1.15, dielectrics generally 
exhibit decreasing permittivity with frequency (ignoring the resonances, which are 
discussed in Chapter 5) so the higher frequency components of those pulses will 
travel with higher phase velocity and the amplitude of each Fourier component will 
decay as e ez z− −=α μ ε σ 2, where σ is very small so they will separate in time (i.e., 
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they will disperse) but will not decay very much with distance. In good conductors, 
we observed in Table 1.4 that phase velocity is frequency dependent, and, in addi-

tion, the Fourier components will decay in amplitude, with z as e ez z− −=α μ ε ωσ2 2, 
where σ is relatively large so the frequency components will move with different 
phase velocities (i.e., they will disperse) and they will decay rapidly with distance.

We thus need a new velocity to defi ne the “average” velocity of a group of 
plane wave components with different frequencies. To simplify our understanding 
of the new defi nition, we will begin with only two plane waves with different fre-
quencies ω + Δω/2 and ω − Δω/2 that differ in frequency by a small amount, Δω, 
and we will take the limit as Δω → 0. We will then extend the argument to include 
additional different frequencies (always taking the limit as Δω → 0) and thereby 
build up a continuum of frequencies in a pulse.

Figure 1.20 shows the linear combination of two plane waves of equal amplitude 
but slightly different frequencies, ω + Δω/2 and ω − Δω/2, in time. We have seen 
that the real part of the propagation constant, β, also depends on frequency in any 
conductor (good or bad) so there will be a corresponding β + Δβ/2 and β − Δβ/2 for 
each of the two waves.

The mathematical sum of the two electric fi eld waves is given by the linear 
combination
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 (1.57)

NOTE In Equation 1.57, we have assumed that the two waves are decaying with 
z by the same decay constant, α. In a rigorous treatment, we would have to take this 
into account for strong conductors by considering two different values of α but 
would eventually take the limit as the two values of α approached one another and 
the outcome would be the same.

If the two waves have equal amplitude, E
�

0(z), then the real part of Equation 
1.57 may be written as

–3 –2 –1 0 1 2 3

Figure 1.20 Sum of two plane waves with equal amplitude but different base frequency ω by Δω.
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and, by using the mathematical identity for the product of cosines,

 Re , cos cos
� ��
E Ex t z e z t z ttotal

z( ) = ( ) −( ) −( )−2 0
α β ω β ωΔ Δ  (1.58)

Assuming Δω << ω, the term cos(Δβz − Δωt) in Equation 1.58 describes the enve-
lope of the base plane wave shown in Figure 1.19. The velocity of the envelope is 
called the “group velocity,” ug. We can fi nd the velocity of the envelope by consider-
ing a point of constant envelope amplitude, (Δβz − Δωt) = constant, and then take 
the derivative with respect to time to obtain ug = dz/dt = Δω/Δβ, and, taking the limit 
as Δω → 0,

 u
dz

dt d d

d

d
g

avg

= = = =
→

lim
Δ

Δ
Δω

ω
β β ω

ω
β0

1
 (1.59)

The group velocity, ug, of the waves is thus the derivative of the ω versus β 
curve evaluated at the point ω. The group velocity is in contrast to the phase velocity 
of the waves, up, which is just the ratio of ω to β.

If the group velocity of two waves that are infi nitesimally close in frequency 
is less than the phase velocity, we call the propagation and the dispersion normal. 
If the group velocity of the two waves equals the phase velocity, there will be no 
difference in their speed and there will be no dispersion. If the group velocity is 
greater than the phase velocity, the propagation and dispersion are said to be 
anomalous.
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Anomalous disppersion

 (1.60)

Shape of the Pulse

For the pulse modulated by a Gaussian distribution above, a relatively long pulse 
will produce a relatively narrow frequency band. By comparison, β will be a slowly 
varying function of ω so we can expand β in a Taylor’s series about the carrier 
frequency ω0 and keep only the fi rst three terms:

 β ω β ω ω ω β
ω

ω ω β
ωω ω

( ) ≈ ( ) + −( ) + −( )0 0 0
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d
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d

d
 (1.61)

Substituting this approximation into the inverse Fourier transform,
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If we now employ Equation 1.53 Ẽ2(0,ω) = πE2
0T

2
0e
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2

0 in Equation 1.63, we 
obtain
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Taking the terms that are independent of ω′ out of the integral, we get
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Now, if we let
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z
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 and S z T= ′′β 0  (1.68)
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Equation 1.66 or 1.69 may be interpreted as a plane propagating in the z-direction 
at the carrier frequency modifi ed by a pulse envelope:

 Envelope = − −( )e t t T0
2

0
2 2σ σ  (1.70a)

where

 σ = +1 0j S T  (1.70b)

at z = 0, t0 = 0 and S = 0 so we can see that Equation 1.70 reduces to Equation 1.48, 
our initial Gaussian-shaped pulse. As the pulse propagates to some positive value 
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of z, Equation 1.70 shows that the initial pulse is decreasing in amplitude, 
changing in phase, and becoming broader. The envelope of the pulse is shown in 
Figure 1.21.

In Figure 1.21, we can interpret the horizontal axis as corresponding either to 
the width of the pulse in physical space along the z-axis or to the width of the pulse 
in time. The height is the amplitude of the envelope that constrains the electric fi eld 
oscillating at the carrier frequency. We can see from Figure 1.21 that the amplitude 
is quickly dying with propagation distance (or time) and that the pulse width is 
slowly increasing with propagation distance (or time).

For a plane wave propagating in a uniform material medium, we can defi ne a 
phase refractive index, n, for the phase velocity relative to the speed of light in a 
vacuum by

 u c np ω ω β ω
0

0 0= ( ) =  (1.71a)

and a group refractive index, N, by

 u d d c Ng ω ωω β β
0 0

1= ( ) = ′ =  (1.71b)

If we expand n as a Taylor series in frequency about ω0, we can write n ≈ n(ω0) 
+ (ω − ω0)dn/dω and, using (ω/2π)λ0 = c, we can see
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so that
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 (1.72b)

and thus

 N n dn d= − λ λ0 0  (1.72c)
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Figure 1.21 Amplitude of the Gaussian-shaped 
pulse envelope for a carrier wave propagating along 
the z-axis and centered at z0 = 0, z1 = T0/β″, and z2 = 
2T0/β″ for corresponding times t0 = 0, t1 = (β′/β″)T0, 
and t2 = 2(β′/β″)T0.
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We can also fi nd S = β″z/T0 in terms of the index of refraction by taking another 

derivative of 
d

d c
n

dn

d

β
ω

λ
λ

= −⎛
⎝⎜

⎞
⎠⎟

1
0

0

; ′′ = ⎛
⎝

⎞
⎠ = −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

β
ω

β
ω λ

λ
λ

λ
ω

d

d

d

d

d

d c
n

dn

d

d

d0
0

0

01
 or

 S T c D z= ( )0 2π λ  (1.73)

where Dλ is called the dispersion coeffi cient.
The group refractive index, the phase refractive index, and the dispersion coef-

fi cient for fused silica are shown plotted in Figure 1.22.
Note that for a nonmagnetic medium, the phase index of refraction is the same 

as the square root of the relative permittivity εr. From Figure 1.20, we can see that 
the group refractive index (the relative velocity of a pulse envelope) is constant for 
visible wavelengths above 1000 nm but depends on wavelength below 1000 nm 
(visible light is between 400 and 700 nm).
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Figure 1.22 Group refractive index, N, phase refractive index, n, and dispersion coeffi cient, Dλ, for 
fused silica as a function of wavelength.
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PROBLEM

1.5 Suppose we pulse shape a 3 × 1014 Hz carrier frequency with a Gaussian envelope 
with T0 = 10−10 s at 1 GHz and put it into a fused silica transmission line.

a. How many peaks of the electric fi eld intensity vector are under the FWHM 
of the Gaussian envelope?

b. What is the physical distance between two pulses near the insertion 
point?

c. How far can pulses propagate until their envelope amplitudes overlap by 
more than 50%?

1.6 POWER AND ENERGY PROPAGATION

In 1884, the English physicist John H. Poynting developed the theory of power 
transmission in electromagnetic waves through the use of the cross product of the 
electric fi eld intensity and magnetic fi eld intensity, which for a TEM wave, is in the 
direction of propagation. The label for the quantity varies with author (sometimes 
expressed as S

�
), but we shall use the script letter P

�
 in Poynting’s honor:

 � � �
P = ×E H  (1.74)

INTERPRETATION We can see that P
�
 is in the direction of propagation with the 

help of Figure 1.23 by using the right-hand rule to fi nd E
�
 × H
�
. We may use Maxwell’s 

equations from Table 1.2 to fi nd the magnitude of P
�
.

Direction of power propagation

E(z,t)

E+

H(z,t)

âz

âx

l

ây

z = nl

�

�

0

H+
0

Figure 1.23 Direction of P
�

 relative to the electric fi eld intensity and magnetic fi eld intensity.
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In Cartesian coordinates, we can show by brute force that

 
� � �� � �� � �
∇⋅ ×( ) = ⋅ ∇ ×( ) − ⋅ ∇ ×( )E E EH H H  (1.75)

One of our fundamental theorems is that the choice of coordinate system cannot 
infl uence the outcome of a physical principle, so we can assert that Equation 1.75 
is valid in any coordinate system.

Thus,

 
� � � �� � � �
∇⋅ ×( ) = ⋅ − ∂ ∂( ) − ⋅ + ∂ ∂( )E E DH H B Jt t ,  (1.76)

and, by using the constitutive relations B
�
 = μH

�
, D
�
 = εE
�
, and J

�
 = σE

�
 for a linear, 

isotropic medium,

 
� � � � � �� � �
∇⋅ ×( ) = −

∂
∂

⋅⎛
⎝

⎞
⎠ − ⋅( ) −

∂
∂

⋅⎛
⎝

⎞
⎠E E E E EH H H

t t
μ σ ε1

2

1

2
 (1.77)

If we now use the Divergence Theorem to integrate Equation 1.77 over a surface 
S that surrounds volume V,

� � �
	 E E EH Hd

t
d x d x

tS V V V
×( )⋅ = −

∂
∂

⎛
⎝

⎞
⎠ − −

∂
∂∫ ∫∫∫ ∫∫∫ ∫∫σ μ σ ε1

2

1

2
2 3 32 2∫∫⎛

⎝
⎞
⎠d x3  (1.78)

In Equation 1.78, we can recognize the terms μH2/2 and εE2/2 as the energy density 
of an electromagnetic fi eld. In addition, we can recognize the term σE2 = J2/σ 
= I2/σA2, where I/A is the current per unit area (the current density) so we can express 

− ( )( ) = − ( ) = −∫∫∫ ∫1 2 3 2 2σ ρA A d x A dx RI I I
V L

 as the energy loss due to current, 

I, in a resistor, R, formed by the conducting material in volume V.
We can see that the left-hand side of Equation 1.78 is the integral of the 

Poynting vector, P
�
, over the surface, S, that encloses the volume V. The right-hand 

side of Equation 1.78 is the negative time rate of change of energy (in the electric 
fi eld, the magnetic fi eld, and the ohmic conductor) in the volume V. Time rate of 
change is power so Equation 1.78 states in words

“The energy fl owing out of volume V through its surface S, is the integral over the 
surface S of the Poynting vector.”

We can thus interpret the Poynting vector, P
�
, as the instantaneous power per 

unit area fl owing across a surface. The units of P
�
 should thus be Watts per unit area, 

as we can confi rm by E
�
 × H
�
, which would be in (V/m)(A/m).

Time Average Power Density

Figure 1.23 shows that P
�
 is a time-dependent quantity for the special case of TEM 

waves propagating in a lossless medium. In the case of a lossy medium, we have 
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seen from Figure 1.16 that there is a phase shift between the magnetic fi eld intensity 
and electric fi eld intensity, and Equation 1.43 showed that, in the general case of 
TEM waves with no fi nite boundary conditions (in otherwise free space), E

�
 and H

�
 

are related by the complex propagation constant k̃ = β − jα as (β − jα)âk × E
�

0 
= ωμH

�
0 or

 
� � �

�H j a aE Ek k0 0 01= −( )[ ] × = ( ) ×β α ωμ ηˆ ˆ  (1.79)

where

 � �η ωμ β α η θη≡ −( ) =j e j  (1.80)

is a complex quantity (signifi ed by the tilde) called the complex intrinsic 
impedance.

To evaluate P
�
, we can express the electric and magnetic fi eld intensity as

� �
E E E Ez t z e a e e a eS

j t
x

z j z t
x

z, Re Re cos( ) = ( )[ ] = [ ] =− −( ) −ω α β ω α
0 0 ββ ωz t−( )ˆ ˆ

and

�
� �H z t e e e a a eE Ez j z t j

y y
z, Re cos( ) = ( )⎡⎣ ⎤⎦ = ( )− −( ) − −

0 0η ηα β ω θ αη ββ ω θηz t− −( )ˆ ˆ

to write the Poynting vector as

 
�

� �� �
P z t e z t z t aE H E z

z, cos cos( ) = × = ( ) −( ) − −( )−
0
2 2η β ω β ω θα

η  (1.81)

or with a mathematical identity for the cosine

 
�

�P z t e z t aE z
z, cos cos( ) = ( ) ( ) + − −( )[ ]−

0
2 2 1 2 2 2η θ β ω θα

η η ˆ  (1.82)

We can see that this quantity varies with time with a frequency 2ω = 4π/T so, if we 
take the time average, evaluated at a particular point z, by averaging over an integer 
number of n cycles,

 
�

�PAvg
znT

znT e z t a dE= ( ) ( ) ( ) + − −( )[ ]−∫1 1 2 2 20
2 2

0
η θ β ω θα

η ηcos cos ttˆ  (1.83)

or

 
�

� �PAvg
z

zE e a W m= ( ) ( )−
0
2 2 22 η θα

ηcos  (1.84)

NOTE Equation 1.84 is equivalent to

 
� � �
PAvg E H= ( ) ×[ ]1 2 Re .*  (1.85)
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PROBLEM

1.6 Compute E
�
 × H
�
* for E&M fi elds in a lossy medium to show that Equations 

1.84 and 1.85 yield the same values.

1.7 MOMENTUM PROPAGATION

We can see that an electromagnetic fi eld in the form of light has momentum by 
observing the effect of radiation pressure on a balanced vane that has a silver refl ect-
ing surface on one side and a black absorbing surface on the other. Such a device 
is called a Crooke’s radiometer and is shown in Figure 1.24.

Normally, the rotation of the vane is explained by the photon concept of light 
in which photons are merely absorbed by the black surface, while photons are 
refl ected by the silver surface. It is argued that the momentum change for the 
absorbed photon is thus half as much as the momentum change for the refl ected 
photon and thus greater pressure is applied to the silver side of the vane than to the 
black side. Unless the glass bulb is highly evacuated, the molecules on the dark 
surface cause heating of the residual gas in the bulb, which in turn exerts a greater 
pressure on the black surface, causing the vane to turn in the wrong direction.

Electromagnetic pressure was predicted by James Maxwell in 1899 and dem-
onstrated experimentally by Peter Lebedev. NASA has even proposed to use the 
pressure of sunlight to accelerate a solar sail-ship fi tted with a huge silver sail. A 
variation of the space sail has been proposed in the form of a magnetic sail (magsail) 
which would cause a superconducting current loop to be oriented normal to charged 
particles in the solar wind to impart momentum and thus accelerate the spacecraft 
in the direction of the wind.

Some scientists, including Lord Kelvin and Helmholtz in 1871, have proposed4 
a “radio-panspermia theory” that radiation pressure could be the propulsion system 

Figure 1.24 Crooke’s radiometer.
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that transported spores and bacteria through interstellar space to populate the fi rst 
life forms on earth.5

ENDNOTES

1. E. G. Harris, Paul G. Huray, F. E. Obenshain, J. O. Thompson, and R. A. Villecco, “Experimental 
Test of Weyl’s Gauge-Invariant Geometry,” Physical Review D 7, no. 8 (April 1973): 15.

2. R. V. Pound, and G. A. Rebka Jr., “Gravitational Red-Shift in Nuclear Resonance,” Physical Review 
Letters 3, no. 9 (1959): 439–41.

3. Hans C. Ohanian, Gravitation and Spacetime (New York: W. W. Norton, 1976).
4. S. Arrhenius, “The Propagation of Life in Space,” Die Umschau 7 (1903): 481.
5. A website on the Panspermia theory can be found at http://www.panspermia.org/.
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