
 Introduction to JavaScript
 Like many technologies that have enjoyed success and sticking power, JavaScript has taken
on new purpose and relevance since its creation many years ago. It ’ s no longer correct to say that
JavaScript is just a scripting language or even just for the web. In fact, JavaScript is one of the few
truly multi - vendor, multi - platform, and multi - purpose programming languages in use today. It
holds this status not just because it happened to be the language that was designed for browser
scripting but also because it ’ s an extremely flexible, expressive, and forgiving language that both
amateurs and professional developers alike can appreciate. Certainly one could say it ’ s thanks to
the web that we have such an interesting and powerful way to build applications, but it ’ s thanks
to JavaScript that we have such an interesting and powerful web.

 This book will serve as a detailed reference for all things JavaScript. This includes, of course, all the
language basics but also virtually everything to do with its core objects, features, and limitations.
You ’ ll examine advanced topics too, such as how JavaScript can be applied to provide specific
interactivity or features inside a web page, how to use it to manipulate the structure of web
documents, and how to interact with other web technologies like Flash, Silverlight, CSS, and even
offline storage.

 This chapter will provide an overview of the language and how it fits into the spectrum of web
technologies. It ’ ll provide some insight as to how someone typically learns the language and will
explain both the history and current role of JavaScript amidst the cloud of competing browsers and
interpreters. Finally, I ’ ll introduce a simple web - based application using JavaScript and explain
how it all fits together.

 JavaScript History
 Beginning its life as a decidedly curious enhancement to Netscape called Mocha (an homage to
Java), JavaScript was intended for sparing use to add minor enhancements to the behavior of web
pages, primarily to web forms. Netscape and Sun Microsystems evidently believed that this new
dimensionality of the web could not, or should not, be addressed in the already complex
declarative syntax of HTML. Instead, a scripting language was born that would continue to breathe
life into the Internet for over a decade.

CH001.indd 1CH001.indd 1 6/25/09 7:53:13 PM6/25/09 7:53:13 PM

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: Introduction to JavaScript

2

 Before its full release, the name was changed to LiveScript and later to JavaScript . In March 1996, Netscape
2.0 was released to the world with the first official version the language. By August of the same year,
Microsoft had released Internet Explorer 3.0 with a similar feature called JScript (but with some minor
improvements). Over the coming years, the two companies would move virtually neck and neck with
enhancements to the language. By June 1997, the international standards body Ecma approved a
submission by Netscape to standardize the language. This standardized version of the language would
be known as ECMAScript (ECMA - 262) and was revised four times between 1997 and 2009. To this day
there is some confusion in the developer community as to how “ JavaScript, ” “ ECMAScript, ” and
 “ JScript ” differ. The simple answer is that ECMAScript refers to the published and standardized version
of the language, and JavaScript and JScript are dialects (or implementations) of that standard. Still, like
other genericized brands that came before it such as Kleenex, Frisbee, Q - Tip, and Band - Aid, the
JavaScript name stuck and probably always will.

 Few programming languages have been as misunderstood as JavaScript. The root cause probably begins
with the misleading name. JavaScript has very little to do with Java the language or even the Java
Applet, another popular platform for web development in the early days. Compared to either, JavaScript
was much smaller, simpler, and more purpose - built. Developers who wanted to use some of the more
powerful features of Java in their JavaScript applications, such as class - based inheritance, were quickly
confronted with these differences. In the years that followed the initial launch, the mood toward browser
scripting swung wildly from enthusiasm to total distrust but recently to a place of high regard and rapid
adoption. In the intervening years, a lot was added to the core language, and implicit cooperation
between warring vendors like Microsoft and Mozilla allowed developers to write more to a single
standard for the most part, irrespective of which browser people might be using.

 Of course, JavaScript is no longer limited for use inside web pages. After being Ecma standardized, it
was implemented as the scripting language of many other technologies like Flash, Adobe Acrobat,
Microsoft .NET, and even as a way to write desktop widgets. In fact, the Ecma standard has undergone
so many revisions in such a short period that the browser vendors no longer try to keep up, nor do they
all agree what direction it ’ s headed. While there are now many flavors of the language in a number of
contexts, this book approaches the language from a position of practical use primarily as a way to script
web pages. We have documented, as thoroughly as possible, where the core language leaves off and
uniqueness of the browser picks up. In the appendices at the end of this book, you will find a detailed
reference of the core language, how this maps to the Ecma standard, and also many of the browser
extensions that have been added by individual vendors like Microsoft and Mozilla.

 Looking Ahead to ES5 and Harmony
 In 2007, the atmosphere of cooperation and collaboration among the biggest players in the browser space
(Mozilla, Microsoft, Adobe, Google, and Opera) began to erode as architects put forth a proposal for ES4
(Edition 4) of the ECMAScript standard. This would be the most dramatic update to the standard in its
history, introducing some radical features such as class - based inheritance, namespaces, and iterators.
Participants from Microsoft strongly opposed both the nature of the changes as well as the manner in
which the debate was unfolding. Whatever the truth of the matter, one thing was clear: For a
technological standard that had become in essence a shared property of the Internet, there was not
enough consensus to move it forward. There would not be enough adoption of this new standard for it
to be a viable technology.

CH001.indd 2CH001.indd 2 6/25/09 7:53:14 PM6/25/09 7:53:14 PM

Chapter 1: Introduction to JavaScript

3

 Instead of throwing more energy behind a process that wasn ’ t working, a second group was formed,
primarily consisting of Microsoft and Yahoo! members, that worked in parallel to come up with a more
modest revision to the standard addressing some immediate needs that were not as contentious. This
standard would be known as ES3.1 (Edition 3.1) and then later renamed to ES5. This was initially
intended to be a halfway marker between what was appearing in the ES4 document and what was
already implemented in ES3. This has been described by some as more of a bugfix than a major update
to the standard.

 These two groups attempted to coordinate their efforts such that changes made in ES3.1 would be
carried forward to ES4. However, as a result of fundamental differences of opinion, it became clear
that this was not going to happen and that there was too little common ground. Again, progress
was at a standstill. Already, Adobe had adopted ES4 in the latest version of their engine for Flash and
Flex development (ActionScript 3). Now it looked as though there was no future for ES4 as it was
currently described.

 Finally, it was decided that the two groups had to come together with more modest ambitions so that
everyone could move forward. This new and completely separate project would be known as
ECMAScript Harmony and would retain little of what was originally planned for ES4. Although a
published draft became available in early 2009, it will probably be years before developers can rely on
the features of ES5 in most browsers.

 Stages of a JavaScript Developer
 Despite the current popularity of JavaScript in the browser, it ’ s actually very difficult to find developers
who understand it well. This is true in any job market, whether it be the Bay Area, the deeply digital tech
sector of Vancouver, or even the highly professional New York developer community. This is
fundamentally because the interconnectedness between JavaScript and related technologies (CSS,
HTML, and the browser) creates deep complexities that only an enthusiast can fully master. It ’ s also
because a thorough understanding of server technologies and transport formats like XML, JSON, and
SOAP is often required. Rarely will you see a job posting for a “ JavaScript ” expert but instead for a
multi - discipline developer experienced in JavaScript as well as many other technologies. As a result,
some developers are choosing to become adept at one or more of the popular JavaScript frameworks such
as jQuery , Dojo , Prototype , or Mootools . These are very practical ways to approach browser scripting, and
I highly recommend learning one, but these frameworks are by nature minimalistic. They are not
particularly forgiving if you lack an understanding of CSS, Object Orientation, or interacting with the
document object model.

 If you ’ re new to the language, you ’ re probably overwhelmed with the number of resources available for
learning it. You may have read some other books or even tried your hand at some basic scripting. It ’ s
possible to rapidly accelerate your mastery of both JavaScript and browser scripting in general by
familiarizing yourself with the fundamentals. If you already know another programming language and
can become proficient with the four or so basic concepts in the language, you can say goodbye to months
of gradual discovery and terrible code and jump right into the really fun stuff. John Resig of jQuery and
Mozilla fame was one of the first to describe a common development path for new coders when learning

CH001.indd 3CH001.indd 3 6/25/09 7:53:15 PM6/25/09 7:53:15 PM

Chapter 1: Introduction to JavaScript

4

the language (http://www.slideshare.net/jeresig/building-a-javascript-library). It goes
something like this:

 Object references are everywhere: Most useful operations involve passing references to very
large objects like the DOM (Document Object Model) or an element on the page or a function.
The DOM itself is a very large hierarchical collection of object and element references that can be
manipulated as easily as setting a property.

 You can make your own objects and namespaces: Indeed, one of the first things developers
realize is that JavaScript is OO (Object Oriented) programming. While they may not fully
understand all the OO features available to them, they begin by making some basic APIs that
follow very elementary OO principals.

 Object prototypes let you create OO classes: Once coders understand that they can create
instances of objects and functions to build pseudo - classes, someone points out the prototype
constructor to them and somewhere in the learners ’ brains a light goes off. They begin building
elaborate class - based APIs for every imaginable purpose but begin hitting roadblocks related to
scope and maintaining object references between pieces of their programs.

 Closures are God: As Resig pointed out in his now - famous talk, at this stage coders generally
discover how closures can help solve some of the problems encountered in stage 3 when
building complex interconnected APIs. They may not, however, fully understand the minefield
that closures are. Memory leaks, difficult - to - follow scope chains, and spaghetti code are
coexistent with a coder’s first attempts at closures.

 Real - World JavaScript
 As was touched on already, the JavaScript language (most often referred to by its ECMA name,
 ECMAScript) crops up all over the place – – not just in web pages. It also takes surprisingly different
forms depending on where it ’ s used. To provide a complete context for the landscape of ECMAScript
use, here are some examples of these uses.

 In the Browser
 Browser - based development is certainly the original and predominant platform for JavaScript. JavaScript
can be executed in the context of a web page or even in the form of a browser plug - in in the case of
Firefox plugins. Web developers certainly have a lot to contend with. First and foremost, they ’ ve got to
decide which browsers and platforms make up their audience. If they ’ re developing sites for desktop
browsers, at least three targets should be tested: Internet Explorer, Firefox, and Safari. They ’ ll also want
to test all of the most popular versions of these browsers (which usually doesn ’ t mean the latest version).
For most purposes, the core language of JavaScript differs little among the latest versions of these, and
thankfully they function much the same way whether they ’ re running on a Mac or PC. Where it gets a
little complicated is if they want to include mobile platforms as well, cell phones and gaming consoles in
particular. A lot of cell phones use the Opera browser platform, as does the Nintendo Wii browser.
Blackberry phones use their own proprietary browser and JavaScript engine, and Apple ’ s iPhone uses a
trimmed down version of Safari.

❑

❑

❑

❑

CH001.indd 4CH001.indd 4 6/25/09 7:53:15 PM6/25/09 7:53:15 PM

Chapter 1: Introduction to JavaScript

5

3.5 3.209

Performance Comparison - Safari
Desktop vs. iPhone

100,000
iterations

10,000
divisions

10,000
sin(x) calls

10,000
string

allocations

10,000
function

calls

0.413
0.709

0.777 0.904

3

2.5

2

1.5S
ec

on
ds

1

0.5

0
0.041 0.005 0.009 0.01 0.01

iMac iPhone

Figure 1-1

 One of the key considerations when writing JavaScript for mobile platforms is the abysmal performance
offered by these devices, as illustrated by the graph in Figure 1 - 1. In these cases, it becomes even more
important to use best practices for high - performance code. Many of these are described in Chapter 25.

 When used in a browser, JavaScript is considered an interpreted language . This sets it apart from other
programming languages such as C++, a compiled language . When a browser downloads a page with
JavaScript embedded, it receives the original source code of the script. It then passes the script to a
program called an interpreter, which converts it to machine code on the fly. The browser does this every
time it loads the page and does not attempt to cache or validate the program before it is executed. Errors
are passed on to the user as they occur. The advantage for the developer is that it is a very lightweight
way to write applications and the main debugging environment is the browser itself. The disadvantage
is that all your source code is visible to anyone that wants to see it. Also, because it is interpreted on the
fly, not compiled to machine code first, JavaScript is not suitable for writing CPU - intensive applications
like a 3D game or Autocad program, mainly because it won ’ t be fast enough.

 Server - Side JavaScript
 Although the development context is different, JavaScript has also been implemented many times over
as a server - side scripting language , often to generate web pages. This was first done by Netscape as part of
their Enterprise Server 3.0 product in the form of a feature called LiveWire . That was in 1996. Today there
are many server - side frameworks implementing JavaScript. Some of these use open source interpreters
such as Rhino or SpiderMonkey . Microsoft uses their interpreter (called JScript) in both their browser and
their development runtime .NET . Even the now - obsolete ASP framework from Microsoft had JScript as

CH001.indd 5CH001.indd 5 6/25/09 7:53:16 PM6/25/09 7:53:16 PM

Chapter 1: Introduction to JavaScript

6

an available language. Today, very few people choose JScript when writing applications in .NET, but it
lives on in products from other vendors:

 Name Javascript Engine More Information

 AppJet Rhino http://www.appjet.com/

 Aptana Jaxer SpiderMonkey http://www.aptana.com/jaxer/

 ASP JScript From Microsoft (Now Obsolete)

 ASP.NET JScript.NET http://msdn2.microsoft.com/en-
us/library/ms974588.aspx

 Cocoon Flowscript Rhino http://cocoon.apache.org/2.1/
userdocs/flow/api.html

 Helma Object Publisher Rhino http://www.helma.org/

 jsext SpiderMonkey http://www.jsext.net/

 JSP Caucho Resin Servlet
Runner V2

 From Sun Microsystems (Now Obsolete)

 JSSP Rhino http://jssp.de/

 Junction Rhino http://code.google.com/p/trimpath/

 mod_js SpiderMonkey http://modjs.org/

 OpenMocha Helma http://openmocha.org/openmocha/

 Phobos Rhino https://phobos.dev.java.net/

 Rhino in Spring Rhino http://rhinoinspring
.sourceforge.net/

 Rhinola Rhino http://mod-gcj.sf.net/rhinola
.html

 Server Side JavaScript Rhino http://www.bluishcoder.co
.nz/2006/05/server-side-
javascript.html

 10gen 10gen Proprietary http://www.10gen.com/

 Torino Rhino http://torino.sourceforge.net/

 Whitebeam SpiderMonkey http://www.whitebeam.org/

 wxJavaScript SpiderMonkey http://www.wxjavascript.net/

CH001.indd 6CH001.indd 6 6/25/09 7:53:16 PM6/25/09 7:53:16 PM

Chapter 1: Introduction to JavaScript

7

 ActionScript and Flash
 Introduced in Macromedia Flash Player 5, ActionScript was an improvement on a scripting
feature introduced into Flash much earlier. The idea was simply to allow developers to apply custom
movements and behaviors based on user input. It was a full implementation of ECMAScript V1 and
allowed for both procedural and object oriented development styles. Around the time Adobe acquired
Macromedia, ActionScript 2.0 was released, which implemented ECMAScript working draft V4. It was
anticipated that the browser vendors would eventually follow - suit and implement this version also.
Unfortunately, subsequent political disputes between Microsoft and the Mozilla Foundation severely
reduced the likelihood that this version would ever be adopted universally, making Adobe one of the
few vendors likely to ever implement this particular branch of the language. Today, ActionScript is
implemented in both Flash and Flex and has a huge following of professional developers.

 Adobe Integrated Runtime (AIR)
 Adobe Integrated Runtime (AIR) is a relatively new offering from Adobe, but is already an important
fixture in the programming landscape. It offers cross - platform write - once, run anywhere desktop
development with a special focus on ease of integration with web services. Developers can write
applications in Flex or in HTML with JavaScript that can be compiled to run on OSX, Windows, or Linux
desktops. The HTML / JavaScript implementation is achieved by repackaging a custom version of
Webkit (Safari) with some API extensions to add features like online/offline detection, permanent SQLite
storage, and multimedia support.

 In Other Adobe Products
 Adobe has also implemented JavaScript as the language used to script and customize products such as
Dreamweaver (for making plugins), Acrobat (for customizing interfaces), and InDesign.

 Desktop Widgets
 With the popularization of Apple Dashboard widgets, Konfabulator widgets from Yahoo, and
Microsoft Gadgets for Vista, it ’ s now clear that JavaScript is the language of choice for desktop and
dashboard - type gadgets. A widget can be an egg timer, a news reader, or even a simple game. In each of
these cases, widgets can be generally constructed using a combination of JavaScript, CSS, HTML, and/
or XML. Depending on the platform, they may have some limited access to system resources (like the
file system), but generally they run in the context of a very small webpage. Apple Dashboard widgets
have the added capability of using Canvas (graphical) elements because they are rendered using Safari ’ s
browser engine WebKit.

 Complementary Technologies
 In the world of browser scripting in particular is a set of complementary technologies that developers
must understand. In this book, I will refer to these a great deal and you will develop a thorough
understanding of how they fit into the development stack and how developers can use them in their
applications to build powerful interfaces.

CH001.indd 7CH001.indd 7 6/25/09 7:53:17 PM6/25/09 7:53:17 PM

Chapter 1: Introduction to JavaScript

8

 Hypertext Markup Language (HTML)
 The declarative document markup language that makes up a web page interacts extensively with
JavaScript. Script allows us to make the page dynamic by writing new contents, and modifying existing
contents. You can interact with HTML by treating it as a big string and working with all the words and
symbols that make it up (as in the second example below), or by using the DOM (Document Object
Model) to manipulate the page in a hierarchical object - based way. Using HTML, you can tell the browser
to execute a block of script inline with the page using the following syntax:

 < html >
 < head >
 < script type=”text/javascript” >
 // This JavaScript block will execute first
 < /script >
 < /head >
 < body >
 < script type=”text/javascript” >
 // This block will execute second
 < /script >

 < h1 > Hello World < /h1 >

 < script type=”text/javascript” >
 // This block will execute last
 < /script >
 < /body >
 < /html >

 You can also use JavaScript to generate HTML by simply writing it to the page:

 < html >
 < body >
 < script >
 document.write(“ < h1 > Hello world! < /h1 > ”);
 < /script >
 < /body >
 < /html >

 Cascading Style Sheets (CSS)
 CSS describes the color, size, position, and shape of most things on a web page. CSS documents can
statically describe the look and feel of a document, but these attributes can also be changed after the
page has loaded. There is an in - depth object model available to script developers who wish to use it to
dynamically modify these attributes on the fly. By manipulating the style of an element with script, you
can animate its size or position, have it move in front of or behind other elements, or make it fade away
to nothing.

 In the following example, you change the color of the document by modifying the background color CSS
attribute of the document object (it ’ s ok if you don ’ t understand this yet).

CH001.indd 8CH001.indd 8 6/25/09 7:53:17 PM6/25/09 7:53:17 PM

Chapter 1: Introduction to JavaScript

9

 < html >
 < body >
 < script type=”text/javascript” >
 document.body.style.backgroundColor = ‘green’;
 < /script >
 < /body >
 < /html >

 You can see this rendered in Internet Explorer in Figure 1 - 2.

Figure 1-2

 The Browser Object Model (BOM)
 JavaScript in a browser is essentially a group of object models relating to specific areas of functionality
within the browser. One of these is known as the BOM (Browser Object Model), which represents the
browser itself. The browser object can be accessed by referencing the top - level object window . From here
you can access things such as the document object, the frames collection, the browser history, the status
bar, and so on. In large part, what you find in the BOM depends on what browser you are operating in.
However, the main pieces can be seen in Figure 1 - 3.

CH001.indd 9CH001.indd 9 6/25/09 7:53:17 PM6/25/09 7:53:17 PM

Chapter 1: Introduction to JavaScript

10

 The Browser Object Model consists of the following sub - components:

 The document object: Represents the document object of the current page.

 The frames collection: Provides array of the frames within the current page.

 The history object: Contains the history list of the browser.

 The location object: Holds the current URL that the browser is displaying.

 The navigator object: Has information about the browser itself, like the version number, and
browser engine.

 The Document Object Model (DOM)
 By far the most important object of all the available object models in a browser is the document . The
document gives access to all the elements on a page as a hierarchical collection of nodes. It also contains
some meta information about the page itself such as title and URL and gives access to some short - hand
collections of common elements like forms, links, and < a > tags (anchors). The document object can be
accessed from any part of a JavaScript application from window.document , or simply document .

 The DOM is a very large object but some of the most common top - level properties can be found as
follows. A more complete reference with full browser support information is in Appendix F.

❑

❑

❑

❑

❑

Document Property Description

body Returns a reference to the <body> container of the current page,
containing all the HTML on the page.

cookie Gives read and write access the cookies accessible by this page.

forms[] An array of all the forms on the page, including all the form fields
within them.

links[] An array of all the hyperlinks on the page.

location Gets and sets the location, or current URL, of the window object.

title The title of the document (defined in the <title> tag).

Window

history object location navigator objectframes collectiondocument object

Figure 1-3

 You ’ ll look at this in more detail later, but for now it ’ s enough to know that the document is a
representation of the current page, is dynamic (can be modified via JavaScript calls), and is not exactly
the same between browser engines. For example, Internet Explorer document object contains methods

CH001.indd 10CH001.indd 10 6/25/09 7:53:18 PM6/25/09 7:53:18 PM

Chapter 1: Introduction to JavaScript

11

and properties not available in WebKit ’ s, and vice - versa. Over time, the object models have evolved
considerably too. The first DOM (supported in Netscape 2 and Internet Explorer 3) supported only a
small fraction of what is available today. In Appendix F you can find detailed browser support data with
version information to assist you.

 When to Use JavaScript
 Sometimes it ’ s useful to consider the “ big picture ” when looking at a new technology. Once you
understand that, you can begin to anticipate the answers to other questions that might come up. One of
those “ big picture ” questions for JavaScript is what can it do and what can it not do . After all, it is a
scripting language and running inside a browser (usually) – – we know there must be limits to its power.

 Let ’ s start with the types of things it can do :

 Dynamically draw boxes, images, and text on the page: Using Dynamic HTML and the DOM,
you can arbitrarily style and animate these types of objects on a webpage.

 Open and close windows: You can spawn new browser windows and communicate with them
to some degree. You can also create simulated windows using DHTML and even provide drag
and drop support for them like real windows that would appear elsewhere on the desktop.

 Animate on - screen contents: You can create multiple, simultaneous, threaded animations using
DHTML, the DOM, and JavaScript timers.

 Modify the document: You can create elements, text, and images, or you can delete or modify
existing ones.

 Communicate with the server: Using Ajax and similar techniques, you can asynchronously
send messages back and forth between the server and the client without forcing the page to
re - load.

 Talk to Java, Flash, Silverlight objects: You can even communicate with other types of media
embedded on the page to control the behavior of Flash and Silverlight movies or interface with
Java Applets.

 Snoop on the user; record what they do: Yes, it ’ s even possible (however nefarious) to record
everything your website users are doing on a page, their mouse movements, keystrokes, and so
on, and study it later. There are benign uses for this data, too (for example web analytics).

 Read the mouse/keyboard: You can keep detailed track of what the user is doing with the
keyboard and mouse in order to create extremely rich and interactive web applications.

 Save data offline for later: You can put information in semi - permanent storage on the user ’ s
computer so that the next time they come to our page and want access to it, they can have it.

 Create free - form graphic elements: Using complementary technologies like Canvas elements,
Scalable Vector Graphics, and Flash, you can put free - form elements on a page and even change
them on the fly.

 Create accessible web pages: A common misconception is that it is not possible to have an
accessible web page for people with disabilities and still use JavaScript. Most web users with
disabilities are using browsers that do support JavaScript. Given a bit of care and attention, you
can make sure your pages are easy for them to use.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH001.indd 11CH001.indd 11 6/25/09 7:53:19 PM6/25/09 7:53:19 PM

Chapter 1: Introduction to JavaScript

12

 Things you can ’ t do with JavaScript in a browser:

 Manipulate files on the file system: A script cannot arbitrarily open and read files on a user ’ s
hard drive.

 Talk directly to hardware: You can ’ t write a program that interacts directly with game
controllers or other external hardware.

 Read freely from memory: You can ’ t access anything in the computer’s memory beyond its
immediate stack of local variables and what ’ s in the object model.

 Perform general networking: Without using a plugin, you can ’ t open sockets or perform
general networking tasks beyond what is possible via a simple HTTP request.

 Interact with the desktop: JavaScript cannot be used to open or close windows or programs on
the users ’ desktops, unless they are browser windows.

 Open windows that are too small: As a result of unwholesome techniques employed by online
advertisers in the past, there are tight restrictions on the sizes and positions of windows that can
be opened by JavaScript calls.

 Set the value of FileUpload fields: Owing to security restrictions, you can ’ t set the value of
FileUpload form fields.

 Provide access to rich media without the use of plugins: Although I previously stated you
could create free - form graphic elements on the fly, this is only partly true. It ’ s true when users
have the necessary plugins available (i.e.: Flash). Otherwise, you would not be able to play a
sound or movie file or do rich graphics on the page.

 The simple answer to when you should use JavaScript is that you should use it whenever you deem that
nobody in your audience is harmed (through compatibility problems, accessibility, or performance) and
indeed most people will benefit. While this is a decidedly cryptic response, the truth is that there is a lot you
can do with JavaScript to make applications easier, faster, and more enjoyable for everybody. Provided
you are using the least - harm philosophy in your development, aim high – – your users will thank you!

 Major JavaScript Engines
 The feature inside a browser that interprets all the JavaScript on a page is called the JavaScript Engine .
This is different from the feature inside a browser that renders HTML and CSS, which is known as the
 Layout Engine . There are nearly as many engines as there are browser vendors. This has been the source
of a lot of confusion over the years because more often than not, it is less important to a developer which
browser someone is using than it is what JavaScript or Layout engine they are using.

 Generally speaking, JavaScript engines implement a single or sometimes multiple versions of the
ECMAScript standard. With few exceptions, most modern engines are compliant up to edition 3 of this
standard. However, all the major vendors (Microsoft, Mozilla, WebKit) have developed custom
extensions to the language and to the object models which are in varying stages of support in competing
engines despite the fact that they are not part of the “ official ” standard.

 In some cases (for example, in the case of Mozilla ’ s Rhino and SpiderMonkey engines), the code
implementing JavaScript is modular and can be used by third parties outside of a browser. This has

❑

❑

❑

❑

❑

❑

❑

❑

CH001.indd 12CH001.indd 12 6/25/09 7:53:19 PM6/25/09 7:53:19 PM

Chapter 1: Introduction to JavaScript

13

resulted in a massive propagation of JavaScript - supported scripting tools using some common platform
 – – so it has become more important than ever to keep track of which engines support which features of
the language and how they compare to one another.

 Following is a list of major JavaScript engines.

Engine Vendor Description

Rhino Mozilla An open source JavaScript implementation written in Java.
Supports up to v1.7 of Mozilla’s JavaScript. http://www.mozilla
.org/rhino/

SpiderMonkey Mozilla The first-ever JavaScript engine, still in use today in Mozilla-based
browsers (Netscape 6+ and Firefox 1+). Written in C++, it is
embedded in many 3rd party applications, much like Rhino and
JavaScriptCore. Most recent versions include the ground-breaking
TraceMonkey features supporting on-the-fly byte-code compilation
and optimization of code for improved performance.

JavaScriptCore Webkit Open source and originally derived from KDE’s JavaScript engine.
It’s currently used in the Webkit browser engine which is
implemented in Apple’s Safari (superceded by SquirrelFish Extreme
in 2008), Adobe AIR, iCab 4+, Konqueror, and Flock among others.
Also used in the OSX operating system for some scripting features,
and in Dreamweaver CS4 to provide in-IDE testing of JavaScript.

SquirrelFish Webkit An incremental rewrite of JavaScriptCore to be implemented in
most new versions of Webkit-based browsers including Safari.
http://trac.webkit.org/wiki/SquirrelFish

JScript Microsoft A component of Microsoft’s Trident layout engine and used in all
versions of Internet Explorer after 3.0. Also used as a component in
Windows, ASP, and the .NET programming framework.

Tamarin Adobe A free (GPL, LGPL, and MPL) ECMAScript engine used in Flash
v9.0 and up. Implements the Adobe language known as
ActionScript, which is primarily an implementation of ECMAScript.

V8 Google An open-source (BSD) ECMAScript engine used in Google’s
Chrome browser (which is based on WebKit). http://code
.google.com/p/v8/

Elektra Opera The proprietary layout and JavaScript engine used by the Opera
browser versions 4-6.

Presto Opera The proprietary layout and JavaScript engine used more recent
versions of Opera (7.0+). This engine is also implemented on many
of the mobile and platform devices that support Opera, such as
Nintendo Wii, and Nintendo DS. Adobe’s Dreamweaver (up to CS4)
uses Presto.

CH001.indd 13CH001.indd 13 6/25/09 7:53:19 PM6/25/09 7:53:19 PM

Chapter 1: Introduction to JavaScript

14

 ECMAScript Support by Engine
 ECMAScript is the Ecma International specification that describes the JavaScript language. Strictly
speaking, browsers implement ECMAScript, the standard, not JavaScript, a Sun trademark licensed by
Mozilla and the name of Mozilla ’ s engine.

 There have been four revisions to the original ECMA 262 draft, all at different stages of adoption:

 Edition Published Differences to the Previous Edition

 1 June 1997 n/a

 2 June 1998 Editorial changes to keep the specification fully aligned
with ISO/IEC 16262 international standard.

 3 December 1999 Added regular expressions, better string handling, new
control statements, try/catch exception handling, tighter
definition of errors, formatting for numeric output and
other enhancements.

 3.1 (Now 5) Work in progress AKA “ Harmony. ” More modest syntactic changes than
revision 4. Class - based inheritance.

 4 Work in progress Multiple new concepts and language features. Has been
since superseded, oddly enough, by the newer v3.1.

 ECMAScript Support corresponds to different Engine versions as follows:

 ECMAScript Edition Mozilla JavaScript Edition Microsoft JScript Version

 1st Edition 1.3 (Netscape 4.06 - 4.7x, October
1998)

 3.0 (IE 4.0, Oct 1997)

 2nd Edition 1.3 (Netscape 4.06 - 4.7x, October
1998)

 3.0 (IE 4.0, Oct 1997)

 3rd Edition 1.5 (Netscape 6) 5.5 (IE 5.5, July 2000)

 3.1 Edition (Now 5.0 Edition) Unknown Possibly 5.9 (Predictive)

 4.0 Edition 2.0 (In progress and in question) Probably never, unless 3.1
becomes 4.0

CH001.indd 14CH001.indd 14 6/25/09 7:53:20 PM6/25/09 7:53:20 PM

Chapter 1: Introduction to JavaScript

15

 General Equivalence
 If you follow the changes introduced in JavaScript engines over time, you can compare browsers
generally in terms of JavaScript object model equivalencies and support of the ECMA standard. If you
are to infer anything from the chart that follows, it might be that years of cooperation by browser
vendors has begun to break down in recent times. Rapid evolution of the Firefox browser in particular
has made it hard for the others to keep pace. With the recent introduction of the ECMAScript 3.1 draft,
you may see less rapid innovation in the future in lieu of cooperation, at least in terms of object models
and APIs, if not in other aspects of the engine such as performance.

 JavaScript
Ver.

 JScript
Ver.

 ECMA
Ed.

 IE Ver. Netscape
Ver.

 Firefox
Ver.

 Opera
Ver.

 Safari
Ver.

 Chrome

 1.0 1.0 Pre 3.0 2.0 n/a n/a ? n/a

 1.1 2.0 Pre n/a 3.0 n/a n/a ? n/a

 1.2 3.0 Pre 4.0 4.0 - 4.05 n/a n/a ? n/a

 1.3 3.0 1 and 2 4.0 4.06 - 4.7 n/a n/a ? n/a

 1.3 4.0 1 and 2 n/a n/a n/a n/a ? n/a

 1.4 5.0 - 5.1 1 and 2 5.0 - 5.01 Server only n/a n/a ? n/a

 1.5 5.5 3 5.5 6.0 1.0 6.0 - 9.0 ? 1.0

 1.5 5.6 3 6.0 6.0 1.0 6.0 - 9.0 ? 1.0

 1.5 5.7 3 7.0 6.0 1.0 6.0 - 9.0 ? 1.0

 1.5 5.8 3 8.0 6.0 1.0 6.0 - 9.0 ? 1.0

 1.6 n/a 3 n/a 7.0 1.5 n/a ? n/a

 1.7 n/a 3 n/a 8.0 2.0 n/a 3.0 n/a

 1.8 n/a 3 n/a n/a 3.0 n/a n/a n/a

 1.9 n/a 3 n/a n/a 3.1 n/a n/a n/a

 Performance in JavaScript Engines
 Comparing JavaScript engines is a dodgy business. The choice of operating system and exactly what
kind of test is run can greatly influence results. Still, you can learn something from benchmarks, if only
that browsers are getting faster. In Figure 1 - 4 are the results of the SunSpider benchmark tool on a
number of recent browsers.

CH001.indd 15CH001.indd 15 6/25/09 7:53:20 PM6/25/09 7:53:20 PM

Chapter 1: Introduction to JavaScript

16

 What we are seeing in the browser engines lately is new emphasis on the raw performance of the
JavaScript interpreter – – something not considered a major issue before. This is the natural outcome of
an increasing reliance on JavaScript - rich web applications. They are achieving this in part by treating the
interpreter as a compiler of sorts and running highly sophisticated analysis on the code to generate
the most concise byte - code possible. The result is an interpreted JavaScript application with performance
approaching that of native compiled code.

 In Figure 1 - 5 you can see how Safari (WebKit) JavaScript performance has improved lately.

35000

SunSpider JavaScript Performance

30000

25000

20000

15000

10000

5000

0
Chrome
Beta 1

Safari 4.0 Firefox
3.1 (no
tracing)

Firefox
3.0.1

Safari
3.1.2

Opera
9.5.2

IE8 Beta
2

IE7

Time (ms) - Smaller is better

Figure 1-4

70

60

50

40

30

20

10

0
Webkit 3.0 Webkit 3.1 Squirrelfish

Safari Performance Benchmark Score

Squirrelfish
Extreme

Score (Higher is Better)

Figure 1-5

CH001.indd 16CH001.indd 16 6/25/09 7:53:21 PM6/25/09 7:53:21 PM

Chapter 1: Introduction to JavaScript

17

 Basic Development Tools
 All that you need to develop JavaScript applications is a text editor and a web browser. Here you ’ ll find
some useful recommendations for each, but if all you have is Windows Notepad and Internet Explorer,
you can easily write and test the examples in this book.

 Choosing a Text Editor
 Some people prefer to work within the black box of a WYSIWYG (What You See Is What You Get) editor
like Visual Studio when it is in design mode or Dreamweaver design mode. Microsoft FrontPage also
provides this functionality. I strongly warn against getting comfy with this type of tool, because it
generally does not accurately predict browser behavior and because you will need to spend most of your
time looking at the actual code anyway. However, both Visual Studio and Dreamweaver are fine choices
if you use only the text editing features. If you don ’ t want to shell out for these programs (and your
employer will not), here are some alternatives:

 Aptana (http://www.aptana.com): An Eclipse - based IDE with built - in Intellisense for help
remembering those pesky method and property names, as well as a CSS helper for styling
pages. There is a full free version, which is the one that most people use. For less than $100, you
can upgrade to the pro version, which also has some support for debugging JavaScript
applications right inside the IDE. Mac , Windows , Linux .

 Microsoft Visual Web Developer Express Edition (http://www.microsoft.com/express/
webdevelopment/): A full - featured IDE based on Visual Studio and tailor made for web
development. The especially useful thing about this one is you can configure it to debug your
JavaScript code outside of a browser. If you can ’ t afford Visual Studio but like those products,
definitely consider this one. Windows .

 Notepad++ (http://notepad-plus.sourceforge.net): Is an open source and free text
editor intended for use as an IDE. Although fairly bare bones with no intellisense, it has
excellent syntax highlighting and can even synchronize your project with a remote FTP or SSH
server via an extensive plugin library. Windows.

 Textmate (http://macromates.com/): Called the “ missing editor ” for OSX, Textmate is the
IDE of choice for developers on the Mac. Although at first glance this looks just like a text editor,
as you dig in you will find a world of useful macros and snippets to assist you. This is not a free
product but costs only about $50. Mac.

 The Web Server
 Although not required, it may be helpful down the road if you are developing with the context of a web
server on your machine, if your pages are simple static HTML with some JavaScript (and no Ajax), this is
not required. Simply point your browser to the page on your computer by using the file:/// directive in

❑

❑

❑

❑

CH001.indd 17CH001.indd 17 6/25/09 7:53:22 PM6/25/09 7:53:22 PM

Chapter 1: Introduction to JavaScript

18

the address bar. If you are running Internet Explorer, you may get a security warning prompt, as in
Figure 1 - 6. When running JavaScript off the file system in IE, you are running in a different security
sandbox with tighter restrictions on active content. You can change your browser settings or just allow
the content on that page by clicking the button and choosing Allow Blocked Content.

 Ultimately, you ’ re going to want to set up a web server on your computer to do proper testing of Ajax
RPCs. On Windows you can set up the free Internet Information Services (IIS) server by first installing it
from the Control Panel Add/Remove Programs. You should be able to put HTML documents in
 C:\inetpub\wwwroot\ and view them in your browser by surfing http://localhost .

 On OSX is a built - in Apache web server that can be activated from the System Preferences application by
clicking Sharing and selecting Web Sharing.

Figure 1-6

 The Test Browser
 Once you ’ ve got your IDE and your web server set up (if indeed you want to have a web server), make
sure you ’ ve got a good cross - section of browsers to test with. The latest numbers (November 2008) report
that Internet Explorer, Firefox, and Safari should be on your list for testing. These provide good coverage
of the marketplace, and if your code runs in these, they will most likely run in newer versions of Opera,
Netscape, and Google Chrome.

CH001.indd 18CH001.indd 18 6/25/09 7:53:22 PM6/25/09 7:53:22 PM

Chapter 1: Introduction to JavaScript

19

 On Windows, Internet Explorer comes pre - installed. You can choose to upgrade to the latest version or
leave it the way it came. You should then also download Firefox from http://www.getfirefox.com
and Safari from http://www.apple.com/safari/ . Google Chrome can be downloaded at
 http://chrome.google.com and Opera from http://www.opera.com .

 On Mac, you ’ ll want to download Firefox from the same location, and, of course, Safari comes
pre - installed. For testing Internet Explorer, we suggest you run copies inside a Windows VMWare or
Parallels image right on your desktop.

 In Chapter 21, I ’ ll talk more about tools that can assist you in debugging your applications inside a
browser. For now, just make sure you can load a test page on your computer using whatever browser
you have handy at least by using the file:// technique mentioned earlier.

 Your First JavaScript Application
 This chapter provides a lot of background on the history and role that JavaScript plays in development,
but no introduction on a programming language would be complete without one bare - bones example.
Remember that all the examples in this book can be found online at http://wroxjavascript.com .

 There are several ways to augment a web page with JavaScript. One is to use the HTML tag < script > to
indicate a portion of the page for script. This is known as a script block . When a browser spots a script
block in a page, it does not draw its contents to the page. Instead, it “ parses ” its contents as a script block
in the order that it appears . Generally speaking, if there are two script blocks on a page, the top one will
execute first. You are allowed to put script blocks in the < head > area of the page and also in the < body >
area. Blocks in the header execute before ones in the body.

 I ’ ll talk more about < script > tags in Chapter 3 because there are a few more things you should know
about them. For now, take a look at the HTML page that follows with some in - line JavaScript code.

 < html >
 < body >
 < h1 > Hello World! < /h1 >
 < script type=”text/javascript” >
 var today = new Date();
 document.write(“ < p > Today is: “ + today.toString() + “ < /p > ”);
 < /script >
 < /body >
 < /html >

CH001.indd 19CH001.indd 19 6/25/09 7:53:23 PM6/25/09 7:53:23 PM

Chapter 1: Introduction to JavaScript

20

 If you were to write this to a text file, save it to your hard drive, and load it in your browser, Figure 1 - 7 is
what you would likely see:

Figure 1-7

 Let ’ s take a look at the contents quickly to see what is happening.

 Breaking it Down
 I positioned the script block below the < h1 > heading tag, so the browser executed it after it had rendered
what came before it. The script block itself was ignored by the HTML layout engine, and its contents
were passed on to the JavaScript engine within the browser. Looking at the first line of code:

var today = new Date();

 What you see here is known as a statement . Every line of code in JavaScript is called a statement, in fact.
To be precise, you should know that you can put many statements on a line of code, as long as they are
separated by a semicolon. For legibility I have put each statement here on a separate line and have also
used generous indentation – – something done purely for cosmetic reasons.

 Getting back to this particular line of code, I ’ ve used the var statement to declare a variable. I ’ ll go into
this in more detail in Chapter 2. For now it ’ s enough to know that I declared a variable and assigned a
value to it – – a new instance of the global Date object. It just so happens that in JavaScript, when you
create a date and do not say specifically which date , it automatically becomes today ’ s date and time. This
is what I ’ ve done here.

CH001.indd 20CH001.indd 20 6/25/09 7:53:23 PM6/25/09 7:53:23 PM

Chapter 1: Introduction to JavaScript

21

 Moving on to the next statement in our block:

document.write(“ < p > Today is: “ + today.toString() + “ < /p > ”);

 Earlier in this chapter I spoke a bit about the DOM (Document Object Model). The document referred to
here is, in effect, the page that you see. There happens to be a method on this object called write() ,
which allows us to append some text to it. This text may or may not contain HTML tags. In my case,
I create a paragraph tag in the text I output, and I also output the value of my variable.

 By using the plus + operator, you can easily concatenate multiple strings together. Here, the three strings
are “ < p > Today is: ” whatever is output by today.toString() , and “ < /p > ” . The JavaScript engine
evaluates this operation before passing it on to document.write and outputting it to the page.

 That ’ s all there is to this particular program. After the engine encounters the closing < /script > tag, it
passes any result on to the layout engine and carries on rendering the remainder of the page.

 Summary
 By now, you know a lot about how JavaScript got to the place it is today and what you can achieve with
it. You have learned that:

 JavaScript evolved gradually from a fairly primitive Netscape scripting extension to a
sophisticated tool supported across the industry. The language continues to progress and
change, and the shape it will take in the future is not entirely certain.

 ECMAScript, the standard that JavaScript is based on, has been implemented outside of the
browser in many different technologies, including Microsoft ’ s .NET, Adobe Flex and Flash, and
even on the desktop.

 Along with HTML, CSS, and others, JavaScript is just one piece in a sophisticated stack of
technologies that work together. The differences in these technologies among browsers make
JavaScript development challenging at times.

 No compiler is required to develop applications. Scripts are developed in a text editor and tested
directly in the browser, making development more accessible.

 You were introduced to a basic stack of tools required to do development, including an IDE or
text editor, a web server (needed for Ajax development in particular), and a browser test
environment.

 Script blocks containing JavaScript code are executed generally in the order they appear in a
web page.

 You were exposed to a basic “ Hello World ” type application that made use of script blocks,
variables, and the document object.

 In Chapter 2, I ’ ll dig into how the JavaScript language fits into the browser context. I ’ ll get more into the
concept of the Document Object Model, explain the < script > tag, and talk about how and when
JavaScript gets executed in a web page.

❑

❑

❑

❑

❑

❑

❑

CH001.indd 21CH001.indd 21 6/25/09 7:53:24 PM6/25/09 7:53:24 PM

CH001.indd 22CH001.indd 22 6/25/09 7:53:24 PM6/25/09 7:53:24 PM

