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 Walter Crane (1814 – 1915),  The Song of Sixpence :  “ The Queen was in the parlor, eating 
bread and honey. ”  

 This chapter reviews the basic counting techniques that will be used throughout the 
book. An excellent reference for this material is [Rosen  2003 ].  

  CHAPTER 1 

Counting     

3
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4  COUNTING

   1.1    THE SUM AND PRODUCT RULES 

   

 SUM RULE 

 If the fi rst of two tasks can be performed in any of  n  1  ways and the second in 
any of  n  2  ways, and if these tasks cannot be performed at the same time, then 
there are  n  1    +    n  2  ways of performing either task. 

   Example 1.1.     The formula | N  1     ∪     N  2 |   =    n  1    +    n  2  is valid if 

  a)     Sets  N  1  and  N  2  contain  n  1    =   | N  1 | and  n  2    =   | N  2 | elements, respectively.  
  b)     The sets have no elements in common   N N1 2 0∩ = / .      

   

 GENERALIZED SUM RULE 

 If the  i th   of  m  tasks 1    ≤     i     ≤     m  can be performed in any of  n i   ways, and if these 
cannot be performed at the same time, then there are  n  1    +    n  2    +    ·  ·  ·    +    n m   ways 
of performing any of the  m  tasks. 

   Example 1.2.     The formula   ∪ �i
m

i mN n n n= = + + +1 1 2  is valid if 

  a)      m  sets  N  1 ,  N  2 ,  ·  ·  ·  ,  N m   contain  n  1    =   | N  1 |,  n  2    =   | N  2 |,  ·  ·  ·  ,  n m     =   | N m  | elements, 
respectively.  

  b)     No pair of (distinct) sets  N i   and  N j   (1    ≤     i     <     j     ≤     m ) has an element in common 
( pairwise disjoint sets )   N Ni j∩ = /0.      

 If the  m  sets  N  1 ,  N  2 ,  ·  ·  ·  ,  N m   are  not  pairwise disjoint, the sum  n  1    +    n  2    +    ·  ·  ·    +    n m   
overcounts the size of   ∪ i

m
iN=1 . The  principle of inclusion - exclusion , to be discussed 

in  §  1.8 , provides the corrections. 
   

 PRODUCT RULE 

 If a procedure is composed of two tasks, the fi rst can be performed in any of 
 n  1  ways and thereafter, the second task in any of  n  2  ways (perhaps depending 
on the outcome of the fi rst task), then the total procedure can be performed 
in any of  n  1     ×     n  2  ways.   
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 MATHEMATICAL INDUCTION  5

   

   Example 1.3.     A sequence of letters that reads the same forward and backward is a 
palindrome  1  ; for example,  ABADABA  is a palindrome and  ABADABADO  is not. 

  a)     The number of 5 -  or 6 - letter palindromes is (by the product rule) 26 3 .  
  b)     The number of 5 -  or 6 - letter palindromes that do  not  contain the letter  R  (by 

the product rule) is (by the product rule) 25 3 .  
  c)     The number of 5 -  or 6 - letter palindromes that do contain the letter  R  is 26 3     −    25 3 .  
  e)     The number of 5 -  or 6 - letter palindromes in which  no  letter is repeated (by 

the product rule) is (by the product rule) 26    ×    25    ×    24.      

 Jenny Craig and Weight Watchers should note the following palindrome (with 
spaces deleted) created by the distinguished topologist Professor Peter Hilton 
during World War II:

   DOC NOTE, I DISSENT. A FAST NEVER PREVENTS A FASTNESS, I DIET ON COD.    

   Example 1.4.     A  bit string  of length  n  is an  n  - tuple   x     =   ( x  0 ,  x  1 ,  ·  ·  ·  ,  x n    − 1 ) 
with  x i      ∈     Z  2    =   {0, 1} for 0    ≤     i     <     n . 

  a)     The number of bit strings of length  n  is (by the product rule) 2  n  .  
  b)     The number of bit strings of length  n     ≥    4 that start with  1100  is (by the 

product rule) 2  n  .  
  c)     The number of bit strings of length  n     ≥    4 that begin or end with  1  is (by the 

product rule) 2  n    − 2 .  
  d)     The number of bit strings of length  n     ≥    2 that begin or end with either  0  or  1  

is (by the sum  and  product rules) 4    ×    2  n    − 2 .  
  e)     The number of bit strings of length  n     ≥    2 in which the 4th or 8th bits is equal 

to 1 is (by the sum  and  product rules) 3    ×    2  n    − 2 .       

   1.2    MATHEMATICAL INDUCTION 

 In the sections that follow, we defi ne various  couting functions , to include permuta-
tion, combinations, and so forth. Often, we need to answer the question,  “ In how 
many ways can  ·  ·  · ? ”  where  ·  ·  ·  describes some property. 

 GENERALIZED PRODUCT RULE 

 If a procedure is composed of  m  tasks, the fi rst can be performed in any of  n  1  
ways and the  i th task can be performed in any of  n i   ways (perhaps depending 
on the outcome of the fi rst  i  outcomes), then the total procedure can be per-
formed in any of  n  1     ×     n  2     ×     ·  ·  ·     ×     n m   ways. 

     1      From the Greek  palindromos , meaning  “ running backward. ”   
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6  COUNTING

 For example, various lotteries require the (hopeful) participant to choose  n  inte-
gers from 0 to 9, perhaps subject to some rules. What is the formula for the number 
of ways this can be done? Although no universal technique is available for solving 
such problems, mathematical induction may be successful to prove a formula, if the 
correct answer can be guessed. Several examples in this chapter will illustrate its 
usefulness. 

 Guiseppe Peano (1858 – 1932) studied mathematics at the University of Turin. He 
made many contributions to mathematics, and his most celebrated is the Peano 
axioms, which defi ne the natural numbers  Z    =   {0, 1,  ·  ·  ·  }, the letter  Z  derived from 
the German  zahlen  for numbers. Why the adjective  natural ? Are there unnatural 
numbers? Numbers describing quantity arise naturally when we count things. The 
Babylonians, Egyptians, and Romans advanced the idea of using symbols to repre-
sent quantities. The Roman number system used symbols — X for 10, I for 1, and V 
for 5, and then incorporated the  place value system  in which XIV was the represen-
tation of 14. 

 Peano defi ned the natural numbers axiomatically; his fi fth axiom 
 PA#5. A  predicate   2    P  defi ned on  n     ∈     Z  is true for  n     ∈     Z  if 

   —       P (0) is true — the  base case .  
   —      the implication  P ( n )    →     P ( n    +   1) is true for every  n     ≥    0 — the  inductive step .    

 This is referred to as the principle of mathematical induction. 

   Example 1.5.     Prove

    i n n n
i

n

=
∑ = +( ) ≤ < ∞

1

1
2

1 1     (1.1)    

  Solution (by mathematical induction).      P ( n ) is true for  n    =   1 because

    i
i=
∑ = = ×( )

1

1

1
1
2

1 2   

 Assume  P ( n ) is true; then equation  (1.1)  for ( n    +   1) gives

   i i n n n n

n n

i

n

i

n

=

+

=
∑ ∑= + +( ) = +( ) + +( )

= +( )( )
1

1

1
1

1
2

1 1

1
2

1 2

     

   1.3    FACTORIAL 

 The factorial of a non - negative integer  n  is

   2      A  predicate   P  on  Z  is a function defi ned on  Z  for which the value  P ( N ) is either true or false.  
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    n
n

n n n n
! =

=
× −( ) × −( ) × × × >

⎧
⎨
⎩

0 0

1 2 2 1 0

if

if�
    (1.2 a )  

which may be written as

    n n n n! ! != × −( ) > ≡1 0 0 1     (1.2 b )   

 The m - factorial of  n  is the product

    n

m

n n n n m m n

m n
m( ) =

=
× −( ) × −( ) × × − +( ) ≤ ≤

>

⎧
⎨
⎪

⎩⎪

1 0

1 2 1 1

0

if

if

if

�     (1.3 a )   

 We have the formula

    n
n

n m
m nm( ) =

−( )
≤ ≤!

!
0     (1.3 b )   

 Table  1.1  gives the values of  n ! for  3    n    =   1(1)14.   
  Stirling ’ s Formula  (1730). Since  n ! increases very rapidly with  n , it is necessary to 

have a simple formula for large  n . A derivation of the following asymptotic formula

    n n e n
n n! ≈ → ∞

+ −2
1
2π     (1.4 a )  

is given in [Feller  1957 , pp. 50 – 53]. The meaning of the    ≈    in equation  (1.4 a )  is

    1
2

1
2

=
→∞ + −

lim
!

n n n

n

n eπ
    (1.4 b )   

 The following correction to equation  (1.4 b )  is in [Feller  1957 , p. 64].

    n n e n
n n

n n! ≈ → ∞
+ − + −

2
1
2

1
12

1

360 3π     (1.4 c )   

 Table  1.2  compares  n ! and the approximation in equation  (1.4 a )  for  n    =   1(1)12.    

  TABLE 1.1.    n! for n   =   1(1)14 

   n     n!     n     n!     n     n!     n     n!     n     n!  

     0    1    1    1    2    2    3    6    4    24  
     5    120    6    720    7    5   040    8    40   320    9    362   880  
  10    3   628   800    11    39   916   800    12    479   001   700    13    6   227   020   800    14    87   178   291   200  

   3      The table maker ’ s notation  n    =   1(1)12 indicates the table contains entries for the parameter values  n    =   1 
increasing in steps of 1 until  n    =   14.  
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8  COUNTING

   1.4    BINOMIAL COEFFICIENTS 

 The binomial coeffi cient sometimes displayed as   n

m
⎛
⎝⎜

⎞
⎠⎟

 and sometimes as  C ( n ,  m ) is 
defi ned for  n     ≥    0 by

    
n

m

n
m n m

m n⎛
⎝⎜

⎞
⎠⎟

= −( )
≤ ≤⎧

⎨
⎪

⎩⎪

!
! !

if

otherwise

0

0
    (1.5)   

 If  n     ≥    0 and 0    ≤     m     ≤     n , the negative binomial coeffi cient is defi ned by

    
−⎛

⎝⎜
⎞
⎠⎟

= − − −( ) − −( ) − − −( )( ) = −( )
+ −⎛

⎝⎜
⎞
⎠⎟

n

m
n n n n m

m

n m

m
m1 2 1

1
1�

!
    (1.6)   

 Table  1.3  lists the binomial coeffi cients   
n

m
⎛
⎝⎜

⎞
⎠⎟

 for  m    =   0(1) n  and  n    =   0(0)10.   

 In addition to his many contributions to mathematics, Blaise Pascal (1623 – 1662) 
invented the  Pascaline , which is a digital calculator using 10 - toothed gears to speed 
on arithmetic. Pascal observed an important recurrence connecting the entries in 
Table  1.3  and providing a natural way to extend it. 

   Theorem 1.1   (Pascal ’ s triangle).       
n

m

n

m

n

m
⎛
⎝⎜

⎞
⎠⎟

+
+

⎛
⎝⎜

⎞
⎠⎟

=
+
+

⎛
⎝⎜

⎞
⎠⎟1

1

1  for 0    ≤     m     ≤     n .  

  Proof.     First, write

   
n

m
n

m n m
m
n

n

m
⎛
⎝⎜

⎞
⎠⎟

=
−( )

= +
+

+
+

⎛
⎝⎜

⎞
⎠⎟

!
! !

1
1

1

1
 

  TABLE 1.2.    Comparison of  n ! and Stirling, Approximation [Equation (1.4 a )] for 
 n    =   1(1)12 

   n     n!     Equation  (1.4 a )      % Error  

     1    1    0.922137    7.786299  
     2    2    1.919004    4.049782  
     3    6    5.836210    2.729840  
     4    24    23.506175    2.057604  
     5    120    118.019168    1.650693  
     6    720    710.078185    1.378030  
     7    5   040    4   980.395832    1.182622  
     8    40   320      39   902.395453    1.035726  
     9    362   880    359   536.872842    0.921276  
  10    3   628   800    3   598   695.618741    0.829596  
  11    39   916   800    39   615   625.050577    0.754507  
  12    479   001   600    475   687   486.472776    0.691879  
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n

m
n

m n m
n m
n

n

m+
⎛
⎝⎜

⎞
⎠⎟

= +( )
− +( )

= −
+

+
+

⎛
⎝⎜

⎞
⎠⎟1

1
1 1

1

1
!

! !   

 Next, adding gives 

   n

m

n

m

n

m
⎛
⎝⎜

⎞
⎠⎟

+
+

⎛
⎝⎜

⎞
⎠⎟

=
+
+

⎛
⎝⎜

⎞
⎠⎟1

1

1
  

  �
    

 Pascal ’ s observation led Isaac Newton (1642 – 1727) to discover the following 
theorem. 

   Theorem 1.2 (the binomial theorem).     If 0    ≤     n     <     ∞ , then

    x y x y
n

m
n m n m

m

n

+( ) = ⎛
⎝⎜

⎞
⎠⎟

−

=
∑

0
    (1.7)    

  Proof.     Using Pascal ’ s triangle 

    

x y
n

m
x y

n

m

n

m
m n m

m

n
m n m

m

−

=

−

=

⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

+
−
−

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

∑
0 0

1 1

1

nn

m n m

m

n
m n my x y

n

m
x x y

n

m

∑

∑=
−⎛

⎝⎜
⎞
⎠⎟

+
−
−

⎛
⎝⎜

⎞
⎠⎟

− −

=

−
− − − −( )1

0

1
1 1 11 1

1mm

n

n n

n

y x y y x y
x y

=
− −

∑
= +( ) + +( )
= +( )

1
1 1

.     �    

 The analysis of many hashing protocols will involve expressions involving the bino-
mial coeffi cients. A few useful identities are provided in the Appendix. A more 

  TABLE 1.3.    Binomial Coeffi cients   n

m
⎛
⎝⎜

⎞
⎠⎟

 with  m    =   0(1) n  and  n    =   0(1)10 

    m     →   

    ↓  n      0     1     2     3     4     5     6     7     8     9     10  

     0    1                                          
     1    1    1                                      
     2    1    2    1                                  
     3    1    3    3    1                              
     4    1    4    6    4    1                          
     5    1    5    10    10    5    1                      
     6    1    6    15    20    15    6    1                  
     7    1    7    21    35    35    21    7    1              
     8    1    8    28    56    70    56    28    8    1          
     9    1    9    36    84    126    126    84    36    9    1      
  10    1    10    45    120    210    252    210    120    45    10    1  
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10  COUNTING

extensive collection may be found in [Gould  1972 ]. Incidentally, a mathematician 
could make a living just proving binomial coeffi cient identities. A search on Google 
on July 9, 2007 for binomial coeffi cients yielded 37,200 hits.  

   1.5    MULTINOMIAL COEFFICIENTS 

 We shall show in  §  1.6  that the binomial coeffi cient   
n

m
⎛
⎝⎜

⎞
⎠⎟

 may be interpreted as 

   •      The number of subsets of size  m  chosen from a universe  U  of size  n .  
   •      The number of ways of selecting a sample of  m  elements (objects) from a uni-

verse  U  of size  n .    

 However, instead of only selecting a sample consisting of one kind from a universe 
of size  n , we can partition the elements of  U  into  k  subsets  M  0 ,  M  1 ,  ·  ·  ·  ,  M k    − 1  of sizes 
 m  0 ,  m  1 ,  ·  ·  ·  ,  m k    − 1 , where

   m i k n m m mi k≥ ≤ < = + + + −0 0 0 1 1�   

 The  multinomial coeffi cient  is an extension of the binomial coeffi cient defi ned by

    
m

m m m
n

m m mk k0 1 1 0 1 1� �− −

⎛
⎝⎜

⎞
⎠⎟

= !
! ! !

    (1.8)   

 The analog of the binomial theorem is

  Theorem 1.3 (the multinomial theorem).     If 0    ≤     n     <     ∞ , then

    x x x x
m

m m m
k

n
i
m

ki

k

m m m
m

i

k
i

0 1 1
0 1 10

1

0 1 1

+ + +( ) = ⎛
⎝⎜

⎞
⎠⎟−

−=

−

≥

∏
−

�
��, , ,

00 0
0 1 1

≤ ≤
= + + + −

∑
i k

n m m mk�

    (1.9)    

  Proof.     By induction on  k .    �     

   1.6    PERMUTATIONS 

 An m - permutation from the universe  U  of  n  elements is an ordered sample   x     =   
( x  0 ,  x  1 ,  ·  ·  ·  ,  x m    − 1 ) whose elements { x i  } are in  U . 

 There are different fl avors of permutations, as follows: 

    Permutations Without Repetition    
   x i     =    x j      ⇔     i    =    j   
    Permutations With Unrestricted Repetition    
    x x xi i is0 1 1= = = −�  for  s  distinct indices  i  0 ,  i  1 ,  ·  ·  ·  ,  i s    − 1  with  no  restriction on  s  or the 

indices { i j  }  
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 PERMUTATIONS  11

    Permutations With Restricted Repetition    
    x x xi i is0 1 1= = = −�  for  s  distinct indices  i  0 ,  i  1 ,  ·  ·  ·  ,  i s    − 1  with  some  restrictions on  s  

and/or the indices { i j  }    

   Theorem 1.4.     The number of m - permutations from the universe  U  of  n  elements 
is  n m  .  

  Proof.     The product rule.    �   

  Example 1.6.     The number of  n  - bit sequences   x     =   ( x  0 ,  x  1 ,  ·  ·  ·  ,  x n    − 1 ) with  x i      ∈     Z  2    =   {0, 
1} for 0    ≤     i     <     n  is 2  n   by the product rule.  

  Example 1.7.     The American Standard Code for Information Interchange (ASCII) 
alphabet is a 7 - bit code representing 

   •      Uppercase and lowercase alphabetic characters  a b   ·  ·  ·   z A B   ·  ·  ·   Z ;  
   •      Digits  0 1   ·  ·  ·   9 ;  
   •      Blank space, punctuation  . , ! ? ;:  −  ;      

 Of the 128   =   2 7  possible 7 - bit sequences, only 95 are  printable ; the remaining 33 are 
nonprintable characters that consist mostly of control characters; for example, 

   •       BELL , which rings a bell when the typewriter carriage returns — I hope everyone 
remembers what a typewriter is?  4    

   •       CR  (or linefeed), which shifts the  cursor  to the next line  

 plus many communication control characters. 

   Theorem 1.5.     The number  N n   ,   m  ( ¬  R ) of m - permutations without repetition from the 
universe  U  of  n  elements is ( n ) m .   

 Note in the special case  m    =    n , the number of n - permutations without repetition 
from the universe  U  of  n  elements is  n !. 

 Let  U    =   {0, 1,  ·  ·  ·  ,  n     −    1} and suppose  x  is an  n  - permutations   without repetition 
of the elements of  U .  x  can be interpreted as a rearrangement of the elements of  U , 

and the 2 - rowed notation   x
n

x x x xn

=
−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟−

0 1 2 1

0 1 2 1

�
�

 is often used to emphasize 

this interpretation of  x . 

   4      My former employer used to manufacturer and sell typewriters; I believe they were assembled in 
Lexington, Kentucky. The  Selectric , which was introduced in 1961, provided a convenient way to enter 
data into a computer. Various versions of the Selectric followed during the next 30 years. Finally in 1990, 
IBM formed a wholly owned subsidiary consolidating the company ’ s typewriter, keyboard, intermediate 
and personal printers, and supplies business in the United States, including manufacturing and develop-
ment facilities. IBM also reported that it was working to create an alliance under which Clayton  &  
Dubilier, Inc. would become the majority owner of the new subsidiary and that IBM was studying a plan 
to include the remainder of its worldwide  “ information products ”  business in the alliance in the United 
States, including manufacturing and development facilities. A year later, IBM and Clayton  &  Dubilier, 
Inc. created a new information products company called Lexmark International, Incorporated to develop, 
manufacture, and sell personal printers, typewriters, keyboards, and related supplies worldwide.  
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12  COUNTING

 When we interpret a permutation  x  as a rearrangement of the elements of  U , it 
is natural to compose or multiply them as follows:

    x x x x i xn
x

i= ( ) ⎯ →⎯−0 1 1, , , ;�  

    y y y y i yn
y

i= ( ) ⎯ →⎯−0 1 1, , , ;�  
   x y z z z z i yn

x y
xi× ≡ = ( ) ⎯ →⎯⎯−

×
0 1 1, , , ;�  

then the set of  all n ! permutations of the elements of  U  forms a group  5   the symmetric 
group  G n  . A transposition  x  is a permutation of the elements of  U , which leaves all 
of the elements alone other than elements  i  and  j , which it interchanges. For example, 
if  i    =   1,  j    =   4, and  n    =   8, then

   x = ⎛
⎝⎜

⎞
⎠⎟

0 1 2 3 4 5 6 7

0 4 2 3 1 5 6 7
 

is a transposition. 
 The transpositions form the building blocks of the symmetric group  G n  . The fol-

lowing theorem summarizes the basic properties that we will later use. 

   Theorem 1.6.     For the symmetric group  G n .    

    a)     A transposition  x  is  idempotent , meaning  x     ×     x    =   1, where 1 is the identity 
permutation

   1
0 1 2 1

0 1 2 1
=

−
−

⎛
⎝⎜

⎞
⎠⎟

�
�

n

n
   

  b)     Every permutation can be written, not necessarily in a unique way, as a 
product of transpositions; that is, the transpositions of  U   generate  the sym-
metric group  G n  .  

  c)     If   x y y y y y ym m= × × × = ′ × ′ × × ′− ′−0 1 1 0 1 1� � , then  m  and  m  ′  are either even or 
odd. 
 The alternating group  A n   of  U  consists of all permutations whose representa-
tion as a product of transpositions involving an  even  number of transpositions.    

 An m - permutation with repetition from the universe  U  of  n  elements is an ordered 
sample   x     =   ( x  0 ,  x  1 ,  ·  ·  ·  ,  x m    − 1 ), whose elements { x i  } are in  U  with no restriction on the 
number of times each element of  U  appears. 

 The term  sampling  in statistics refers to a process by which an  m  - permutation   
may be constructed. Imagine an urn that contains  n  balls bearing the numbers 0, 1, 

   5      The elements { u } of  U  form a group if 
  1.      u  1 ,  u  2     ∈     U  implies  u  1     ×     u  2     ∈     U  (closure  ).  
  2.      u  1 ,  u  2 ,  u  3     ∈     U  implies  u  1     ×    ( u  2     ×     u  3 )   =   ( u  1     ×     u  2 )    ×     u  3  (associativity law).  
  3.     There exists an element  e     ∈     U  such that  u     ×     e    =    e     ×     u    =    u  for all  u     ∈     U  (identity).  
  4.     for every  u     ∈     U , there exists an element  u   − 1     ∈     U  such that  u     ×     u   − 1    =    u   − 1     ×     u    =    e  (inverse).     
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 PERMUTATIONS  13

 ·  ·  ·  ,  n     −    1. A sampling process describes how the sample is constructed; two variants 
of sampling are worth noting, as follows: 

    Sampling without Replacement    
  After a ball is drawn from the urn (the person who draws the ball is of course 

blindfolded), its number is recorded and the ball is not returned to the urn.  
    Sampling with Replacement    
  After a ball is drawn from the urn (same security provisions as before), its 

number is recorded and the ball is returned to the urn.    

 Frequently, the ball manufacturers insist on business, and the urn contains  N  replicas 
of each numbered ball. 

   Example 1.8 (Powerball).      His truck broke down the morning he and his wife of 20 
years discovered they had won a $105.8     million Powerball jackpot from June 27th.  
Powerball is an American lottery operated by the Multi - State Lottery Association 
(MUSL), a consortium of lottery commissions in 29 states, the District of Columbia, 
and the U.S. Virgin Islands. Powerball is licensed as the monopoly provider of mul-
tistate lotteries in these jurisdictions.   

 A player picks 5 numbers from 1 to 55 and one number from 1 to 42. 
 Every Wednesday and Saturday night at 10:59 p.m. Eastern time, the Powerball 

management draws 5 white balls out of a drum with 55 balls and 1 red ball out of 
a drum with 42 red balls. Five balls from 53 plus 1 power ball from a separate group 
of 42 are selected. First prize is won by matching all 6 balls drawn. There are nine 
prize levels. 

 This process demonstrates sampling without replacement. 
 There are many varieties of permutations with specifi ed repetition, for example, 

specifying the number of repetitions  m i   of the universe  U  element  a i   subject to the 
obvious conditions

   m m m m mi n≥ = + + + −0 0 1 1�   

   Theorem 1.7.     The number  N n   ,    m   ( R ) of  m  - permutations from  U    =   {0, 1,  ·  ·  ·  ,  n     −    1} with 
the specifi ed repetition pattern   m     =   ( m  0 ,  m  1 ,  ·  ·  ·  ,  m n    − 1 ) is

    N
m

m m m
m

m m m
n m

n n
,

!
! ! !

R( ) = ⎛
⎝⎜

⎞
⎠⎟

=
− −0 1 1 0 1 1� �

    (1.10)    

  Example 1.9.     How many ways are there of permutating the letters of  CALIFORNIA ?  

  Answer.       
12
3 2

11
!

! !
!=     �   

  Example 1.10.     I gave the following problem during the recall election for the 
Governor of California when I taught discrete mathematics at the University of 
California at Santa Barbara in the fall of 2003.   

c01.indd   13c01.indd   13 4/26/2010   10:44:14 AM4/26/2010   10:44:14 AM



14  COUNTING

 Which of the two names  GRAYDAVIS  or  ARNOLDSCHWARZENEGGER  has the most 
permutations? 

   Answer.     There are

   NGD = ⎛
⎝⎜

⎞
⎠⎟

=
9

2
181 440  

permutations of the letters of  GRAYDAVIS  because only the letter  A  is repeated and

   NAS = ⎛
⎝⎜

⎞
⎠⎟

= ×
20

2 3 2 3 2
1 550 400 13!  

of the letters of  ARNOLDSCHWARZENEGGER  because the letters  A  and  G  each occur 
twice and the letters  R  and  E  each occur three times.    �    

 And the winner was Arnold Schwarzenegger. I am reasonably certain this ques-
tion did not affect the outcome. 

 Other types of restrictions on repetitions are possible. 

   Example 1.11.     How many permutations are there of  MASSACHUSETTS  in which no 
 S  ’ s are adjacent?  

  Answer.     There are   
9

1 2 1 1 1 1 2
⎛
⎝⎜

⎞
⎠⎟

 permutations of  MAACHUETT . It remains to place 

the 4  S s, one in each of the positions between, before, or after the letters in 
 MAACHUETT , for example, as shown by  ↑  in

   ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑M A A C H U E T T     

 These four positions may be chosen from the 10  ↑ s (without repetition) in   10

4
⎛
⎝⎜

⎞
⎠⎟
 

ways.    �   

   1.7    COMBINATIONS 

 An m - combination from the universe  U  of  n  elements is an unordered sample { x  0 , 
 x  1 ,  ·  ·  ·  ,  x m    − 1 } whose elements { x i  } are in  U . 

 Note that we have written { x  0 ,  x  1 ,  ·  ·  ·  ,  x r    − 1 } rather than ( x  0 ,  x  1 ,  ·  ·  ·  ,  x r    − 1 ) because an 
 ordering  is implicit in the latter. 

   Theorem 1.8.     The number of m - combinations from the universe  U  of  n  elements 

is   n

m
⎛
⎝⎜

⎞
⎠⎟

.   

 Just as in the case of permutations, there are combinations with additional con-
straints; two are mentioned here. 

   Example 1.12.     How many permutations are there of the 15 letters of 
 POLYUNSATURATED  maintaining the relative order of the vowels  A, E, I, O , 
and  U ?  
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 COMBINATIONS  15

  Solution. 

    1.     The positions in which the vowels  OUAUAE  appearing in  POLYUNSATURATED  

can be chosen is   
15

6
⎛
⎝⎜

⎞
⎠⎟

.  

  2.     Having chosen their positions, their orders are determined.  

  3.     There remain   
9

1 1 1 1 1 2 1 1
181 400⎛

⎝⎜
⎞
⎠⎟

=  permutations of the remaining letters 

of  PLYNSTRTD .    �       

 A is a multiset of size  m  of a universe  U  with  n  elements if it contains  m i   copies of 
the element  a i      ∈     U  for 0    ≤     i     <     k . We can write

   A a a am m
= ( ) ( ) ( ){ }− −0 1 10 1 1� � ��, ,  

where the elements  a  0 ,  a  1 ,  ·  ·  ·  ,  a m    − 1  of  U  are distinct and

   � � � � �i mi m n≥ ≤ < = + + + −0 0 0 1 1   

 A multiset can also be interpreted as an ordered permutation with specifi ed repeti-
tion, equivalently, an ordered partition  6   of the integer  n  into  m  non - negative parts. 

 To count the number  C n   ,   m  , we consider a set of  n    +    m     −    1 positions (horizontal 
lines) corresponding to the  n  elements of  U  together with  m     −    1  fi ctitious  elements. 
We place a divider (a vertical line) in the following locations: 

   •      Immediately to the left of the leftmost position  
   •      Immediately to the right of the leftmost position  
   •       m     −    1 dividers through some  m     −    1 of the  n    +    m     −    1 positions    

 The partition is determined by dividing the set {0, 1,  ·  ·  ·  ,  n     −    1} according to the 
number of positions between dividers (Figure  1.1 ).   

   Theorem 1.9.     The number  C n   ,   m   of partitions of the integer  n  into  m  non - negative 

parts is   n m

m

n m

n

+ −
−

⎛
⎝⎜

⎞
⎠⎟

=
+ −⎛

⎝⎜
⎞
⎠⎟

1

1

1 .  

0, 1 2, 3, 4 5 6, 7  : 8 = 2 + 3 + 1 + 2

0 1 2 3 4 5 6 7 8 9 10 11

     Figure 1.1.     An ordered partition of  n    =   8 into  m    =   4 parts.  

   6      See  Example 2.6  in Chapter  2  for another type of partition.  
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16  COUNTING

  Corollary 1.10.     The number  C n   ,   m   of partitions of the integer  n  into  m  positive parts 

is   n

m

−
−

⎛
⎝⎜

⎞
⎠⎟

1

1
.  

  Proof.     If

    � � � � �i mi m n≥ ≤ < = + + −0 0 0 1 1     (1.11 a )  

then   � � � � �* * * *= −( , , , )0 1 1m  defi ned by

    � �i i i m* = + ≤ <1 0     (1.11 b )  

implies (1.11 c )

    � � � � �i mi m n m* * *> ≤ < − = ++
−0 0 0 1 1     (1.11 c )  

and conversely, if    l    and    l    *  are related by equation  (1.11 b ) , then the conditions of 
equation  (1.11 b )  imply the conditions of equation  (1.11 a ) .    �   

  Example 1.13 (donuts).     Dunkin ’  Donuts offers more than 30 varieties of donuts, 
including the ever popular chocolate creme - fi lled donut.  7     

 How many ways are there of buying 12 donuts from the 30 varieties without any 
restriction on the number of each kind? 

   Solutions.        29 12

29

+⎛
⎝⎜

⎞
⎠⎟

 

     How many ways are there of buying 12 donuts from the 30 varieties if at least four 
must be of one specifi c variety?     

  Solutions.     Suppose the desired donut is of the 0th variety. Equation  (1.11 a )  is 
replaced by

    � � � � �i

i

i

≥ =
≥ < <

⎧
⎨
⎩

= + +
4 0

9 0 30
12 0 1 29

if

if
 

If we set

   �
�
�i

i

i

i

i
*

if

if
=

− =
< <

⎧
⎨
⎩

4 0

0 30
 

   7      I worked at the Puzzle Palace during the summer of 1997. While on this assignment, I violated one of 
the security rules by failing to turn off my workstation monitor after a logout. The NSA logo remained 
there for all to see — of course, only those who were cleared to enter the facility could see it! Nevertheless, 
there was a punishment; I had to buy a dozen donuts for my group after I was told the next day of my 
infraction, and I was further informed that the  Chief  preferred the chocolate creme - fi lled variety. I did 
what I had to do!  
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 THE PRINCIPLE OF INCLUSION-EXCLUSION  17

then

   � � � � �i i* ≥ ≤ < = + +0 0 30 8 0 1 29  

yielding the answer is   29 8

29

+⎛
⎝⎜

⎞
⎠⎟

.    

   1.8    THE PRINCIPLE OF INCLUSION - EXCLUSION 

 Let  N  0 ,  N  1 ,  ·  ·  ·  ,  N n    − 1  be sets in some universe  U . Then

    N N N N N N0 1 0 1 0 1∪ ∩= + −     (1.12 a )  

    
N N N N N N N N N N N N N N N0 1 2 0 1 2 0 1 0 2 1 2 0 1 2∪ ∪ ∩ ∩ ∩ ∩ ∩= + + − − − +

   
 (1.12 b )   

 Note that 

   •      A point  u     ∈     N  0  is counted once on the right - hand side of equation  (1.12 a )  
[1   =   1   +   0    −    0] if  u     ≠     N  1 .  

   •      A point  u     ∈     N  0  is also counted once on the right - hand side of equation  (1.12 a )  
[1   =   1   +   1    −    1] if  u    =    N  1 .    

 Similarly, 

   •      A point  u     ∈     N  0  is counted once on the right - hand side of equation  (1.12 b )  
[1   =   1   +   0   +   0    −    0    −    0    −    0   +   0] if  u     ≠     N  1  and  u     ≠     N  2 .  

   •      A point  u     ∈     N  0  is also counted once on the right - hand side of equation  (1.12 b )  
[1   =   1   +   1   +   0    −    1    −    0    −    0    −    0 or 1   =   1   +   0   +   1    −    0    −    1    −    0    −    0] if  u    =    N  1  and 
 u     ≠     N  2  or  u    =    N  2  and  u     ≠     N  1 .  

   •      A point  u     ∈     N  0  is also counted once on the right - hand side of equation  (1.12 b )  
[1   =   1   +   1   +   1    −    1    −    1    −    1   +   1] if  u    =    N  1  and  u    =    N  2 .    

 These equalities are special cases of the following theorem. 

   Theorem 1.11 (principle of inclusion - exclusion).     If  N  0 ,  N  1 ,  ·  ·  ·  ,  N n    − 1  are sets in a 
universe  U , then

    

N N N N

N N N N

i
i

n

i
i

n

i i
i i n

i i i
n

=

−

=

−

≤ < <

−

= −

+ −( )

∑ ∑
0

1

0

1

0

1

0 1
0 1

0 1 2 1

∪ ∩

∩ ∩ � 00 1 1
0 0 1 2

∩ ∩� ∩N Nn
i i i n

−
≤ < < <

∑     (1.13)    

  Proof.     By mathematical induction using the equality in equation  (1.12 a ) .    �  
 Sometimes the enumeration combines the use of both ordered permutations and 

the principle of inclusion - exclusion.  
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18  COUNTING

  Example 1.14 (more donuts).     In how many ways can 27 donuts be chosen from 
the 30 varieties if  fewer  than 10 of the 0th variety is to be included?  

  Solution.     Equation  (1.11 a )  is now replaced by

    � � � � �i

i

i

< =
≥ < <

⎧
⎨
⎩

= + +
10 0

9 0 30
27 0 1 29

if

if
    (1.14 a )  

The complementary problem is

    � � � � �i

i

i

≥ =
≥ < <

⎧
⎨
⎩

= + +
10 0

9 0 30
27 0 1 29

if

if
    (1.14 b )  

If we set

    
�

�
�i

i

i

i

i
*

if

if
=

− =
< <

⎧
⎨
⎩

10 0

0 30

 

then

   � � � � �i i* ≥ ≤ < = + +0 0 30 18 0 1 29  

which has   
29 18

29

+⎛
⎝⎜

⎞
⎠⎟

 solutions, which means the original problem equation  (1.14 a )  has

   29 28

29

29 18

29

+⎛
⎝⎜

⎞
⎠⎟

−
+⎛

⎝⎜
⎞
⎠⎟

 

solutions.    �     

   1.9    PARTITIONS 

 A partition  8    Π  of a set of  n  elements, say  Z   n     =   {0, 1,  ·  ·  ·  ,  n     −    1}, is a collection of 
nonempty sets whose union is  Z   n  . For example, the fi ve partitions of  Z  3  are

   Π Π Π Π Π1 2 3 4 60 1 2 0 1 2 0 2 1 1 2 0 0 1 2: : , : , : , : , ,{ }{ }{ } { }{ } { }{ } { }{ } { }   

 The number of partitions of  Z   n   is the Bell number  B n  .  Example 2.6  in Chapter  2  
asks the reader to derive the recursion

    B
n

B
n

B
n

n
B n B Bn n+ = ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ + ⎛
⎝⎜

⎞
⎠⎟

≤ < ∞ = =1 0 1 0 2
0 1

0 1 1� ; ,     (1.15)  

and the generating functions of the { B n  }. 

   8      In  §  1.6  we defi ned the ordered partition; without the prefi x  order , the order of the elements in a set in 
 Π  and the order in which these sets are listed in  Π  are both immaterial.  
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 RELATIONS  19

 The Stirling number (of the second kind)  S n   ,   k   is the number of partitions of  Z   n   
into  k  (nonempty) sets; thus,

   S S S3 1 3 2 3 31 3 1, , ,= = =   

 The Stirling numbers (of the second kind) { S n   ,   k  } are obviously related to the Bell 
numbers { B n  } by

    B Sn n k
k

n

=
=

∑ ,
1

    (1.16)     

 A proof of the formula below will be given in Chapter  2 .

    S
k

k

s
k sn k

s n

s

k

,
!

= ⎛
⎝⎜

⎞
⎠⎟

−( ) −( )
=
∑1

1
0

    (1.17)   

 There is an extensive literature dealing with Stirling numbers, which arise in many 
applications; see, for example, [Bleick and Wang  1974 ]. We will encounter the { S n   ,   k  } 
in Chapter  10 .  

   1.10    RELATIONS 

 A relation  ∼  on a yset  X  generalizes the notion of function specifying some collec-
tion of pairs ( x ,  y ), and we write  x     ∼     y  for  x ,  y     ∈     X  read (elements)  x and y are related  
and  x     �     y , if they are not related. 

 A partition  X  0 ,  X  1 ,  ·  ·  ·  of a set  X  as in  §  1.9  determines a relation  ∼  by the rule 
 x     ∼     y  if and only if  x ,  y     ∈     X i   for some  i . 

 Conversely, a relation  ∼  on a set  X  determines a partition  X  0 ,  X  1 ,  ·  ·  ·  in which 

   •       X i   consists of  ∼  - related elements.  
   •      If  x     ∈     X i  ,  y     ∈     X j   and  i     ≠     j , then  x     �     y .    

 The following properties may or not be enjoyed by a relation  ∼ : 

  1.      ∼  is  refl exive  if  x     ∼     x ;  ∼  is  irrefl exive  if  x     �     x .  
  2.      ∼  is  symmetric  if  x     ∼     y  implies  y     ∼     s ; a refl exive relation  ∼  is  asymmetric  if  x     ∼     y  

and  y     ∼     x  can only occur if  y    =    x .  
  3.      ∼  is  transitive  if  x     ∼     y  and  y     ∼     z  implies  x     ∼     z ;  ∼  is  intransitive  if  x     ∼     y  and  y     ∼     z  

implies  x     �     z .    

 In addition to the modifi ers  ir ,  anti , and  in , there are defi nitions for the modifi er 
 not  as in  not  refl exive,  not  symmetric, and  not  transitive; we leave to the reader ’ s 
creativity, their defi nitions. 

  ∼  is an  equivalence relation  if it is refl exive, symmetric, and transitive.  
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20  COUNTING

   1.11    INVERSE RELATIONS 

 The binomial coeffi cients can be used to defi ne a sort of transformation on sequences; 
for example,

    

a a a b b b

b
n

k
a nn

k
k

l

= ( ) → = ( )

= −( ) ⎛
⎝⎜

⎞
⎠⎟

=∑
0 1 0 1

1 0 1

, , , ,

, ,

� �

�     (1.18 a )   

   Theorem 1.12.     If equation  (1.18 a )  holds, then

    a
n

k
v nn

k
k

l
= −( ) ⎛

⎝⎜
⎞
⎠⎟

=∑ 1 0 1, ,�     (1.18 b )    

  Solution:     Start with the identity E8 in the Chapter  1  Appendix   that follows, setting 

  b
m

n
n

m= −( ) ⎛
⎝⎜

⎞
⎠⎟

1 .    �    

 Theorem 1.12 is one of many inverse relations (see [Riordan  1968 ]); we will use 
it in Chapter  10 .  
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  APPENDIX 1

Summations Involving Binomial 
Coeffi cients 

 Equations  E1  through  E8  follow easily from the binomial theorem  

   x y x y
n

m
n m n m

m

n

+( ) = ⎛
⎝⎜

⎞
⎠⎟

−

=
∑

0
 

and derivatives of it by evaluating for special values of  x ,  y .    � 

    E1.
n n n n

n
n

0 1 2
2⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ + ⎛
⎝⎜

⎞
⎠⎟

=�  

    
E2.

n n n n

n
n

0 1 2
1 0⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ + −( ) ⎛
⎝⎜

⎞
⎠⎟

=�
 

    
E3.

n n n
n

0 2 4
2 1⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ = −�
 

    
E4.

n n n
n

1 3 5
2 1⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ = −�
 

    
E5.

n n n
n

n

n
n n

1
2

2
3

3
2 1⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ + ⎛
⎝⎜

⎞
⎠⎟

= −�
 

    
E6.

n n n
n

n

n
n

1
2

2
3

3
1 0⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

− + −( ) ⎛
⎝⎜

⎞
⎠⎟

=�
 

   
E7. 2

2
6

3
12

4
1 1 2

n n n
n n

n

n
n n

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ + −( )⎛
⎝⎜

⎞
⎠⎟

= −( )� nn−2

 

    
E8. −( ) −( ) ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= =
=⎧

⎨
⎩

+∑ 1 1
1

0
k m k

k
n m

n

k

k

m

n m
δ ,

if

otherwise    

    
E9.

n m

k

n

j

m

k jj

n+⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟=

∑
0   

 Vandermonde ’ s Identity E9 is proved by counting the ways of choosing  k  elements 
from the set  A     ∪     B , where   A B∩ = /0 ,  A  contains  n , and  B  contains  m  elements.
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22  COUNTING

    E10.
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  E10  is a special case of the formula
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contained in [Gould  1972 , p. 46]. It may be proved by recognizing the identity  
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    E11. x x y na
n

j
x ja y n j an j n j

j

n
− − −

=
+ +( ) = ⎛

⎝⎜
⎞
⎠⎟

+( ) + −( )( ) )∑1 1

0
  

  E11  is a nontrivial generalization of the Binomial theorem from Niel Henrik Abel 
(1802 – 1829) published in 1826 (see [Riordan  1968 ]). Abel is famous for proving the 
impossibility of representing a solution of a general equation of fi fth degree or 
higher by a radical expression.   
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