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1.4 About This Book

The purpose of most research is to assess relationships among a set of variables, and

choosing an appropriate statistical technique depends on the type of variables under

investigation. Suppose we have a set of numerical values for a variable:

1. If each element of this set may lie only at a few isolated points, we have a

discrete or categorical data set. In other words, a categorical variable is one for

which the measurement scale consists of a set of categories; examples are race,

sex, counts of events, or some sort of artificial grading.

2. If each element of this set may theoretically lie anywhere on the numerical

scale, we have a continuous data set. Examples are blood pressure, cholesterol

level, or time to a certain event such as death.

This text focuses on the analysis of categorical data and multivariate problems

when at least three variables are involved. The first section of this chapter shows a

simple example of real-life problems to which some of the methods described in this

book can be applied. This example shows a potential complexity when the data

involve more than two variables with a phenomenon known as effect modification.

We will return to this example later when illustrating some methods of analysis for

categorical data in Chapters 2, 3 and 4. The second section briefly reviews some

likelihood-based statistical methods to be used in subsequent chapters with various
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regression models. The last section summarizes special features of this text, its

objectives, and for whom it is intended; we also briefly points out special features of

this second edition.

1.1 A PROTOTYPE EXAMPLE

Many research outcomes can be classified as belonging to one of two possible

categories: for example, Presence and Absence, White and Nonwhite, Male and

Female, Improved andNot Improved.Of course, one of these two categories is usually

identified as of primary interest to the researcher; for example, Presence in the

‘‘Presence and Absence’’ classification, Nonwhite in the ‘‘White and Nonwhite’’

classification. We can, in general, relabel the two outcome categories as Positive

(or þ ) and Negative (or �). An outcome is positive if the primary category is

observed and is negative if the other category is observed. Health decisions are

frequently based on the ‘‘proportion’’ of positive outcomes defined by

p ¼ x=n

where x in the above equation is the number of positive outcomes from the n

observations made on n individuals: 0� p� 1 because 1� x� n. Proportion is a

number used to describe a group of individuals according to a dichotomous (or binary)

characteristic under investigation and the following example provides an illustration

of its use in the health sciences.

Comparative studies are intended to show possible differences between two or

more groups. Data for comparative studies may come from different sources, with the

two fundamental designs being retrospective and prospective. Retrospective studies

gather past data from selected cases and controls to determine differences, if any, in

the exposure to a suspected risk factor. They are commonly referred to as case–control

studies; a ‘‘case’’ is a person with the disease under investigation and a ‘‘control’’ is a

person without that disease. In a case–control study, cases of a specific disease are

ascertained as they arise from population-based registers or lists of hospital admis-

sions and controls are sampled either as disease-free individuals from the population

at risk, or as hospitalized patients having a diagnosis other than the one under study.

The advantages of a retrospective study or case–control study are that it is economical

and it is possible to obtain answers to research questions relatively quickly because the

cases are already available. Major limitations are due to the inaccuracy of the

exposure histories and uncertainty about the appropriateness of the control sample;

these problems sometimes hinder retrospective studies and make them less preferred

than prospective studies. The following example introduces a retrospective study

concerning occupational health.

& Example 1.1 A case–control study was undertaken to identify reasons for the

exceptionally high rate of lung cancer among male residents of coastal Georgia

(Blot et al., 1978). Cases (of lung cancer) were identified from these sources:
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(i) diagnoses since 1970 at the single large hospital in Brunswick, (ii) diagnoses

during 1975 and 1976 at three major hospitals in Savannah, and (iii) death

certificates for the period 1970–1974 in the area.

Controls (or control subjects) were selected from admissions to the four

hospitals and from death certificates in the same period for diagnoses other than

lung cancer, bladder cancer, or chronic lung cancer.Data are tabulated separately

for smokers and nonsmokers as follows:

Smoking Shipbuilding Cases Controls

No Yes 11 35

No 50 203

Yes Yes 84 45

No 313 270

The exposure under investigation, ‘‘Shipbuilding,’’ refers to employment in

shipyards duringWorldWar II. By a separate tabulation, with the first half of the

table for nonsmokers and the second half for smokers, we treat smoking as a

potential confounder. A confounder is a factor that may be an exposure by itself,

not under investigation but related to the disease (in this case, lung cancer) and

the exposure (shipbuilding); previous studies have linked smoking to lung cancer

and construction workers are more likely to be smokers. The term exposure is

used here to emphasize that employment in shipyards is a risk factor; however,

the term would also be used in studies where the factor under investigation has

beneficial effects.

In an examination of the smokers in the above data set, the numbers of people

employed in shipyards, 84 and 45, tell us little because the sizes of the two

groups, cases and controls, are different. Adjusting these absolute numbers for

the group sizes, we have the following:

(1a) For the controls,

Proportion of exposure¼ 45=315

¼ 0:143 or 14:3%

(2a) For the cases,

Proportion of exposure¼ 84=397

¼ 0:212 or 21:2%

The results reveal different exposure histories: the proportion of exposure among

cases was higher than that among controls. It is not in any way yet a conclusive
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proof, but it is a good clue indicating a possible relationship between the disease

(lung cancer) and the exposure (employment in shipbuilding industry—a

possible occupational hazard).

Similar examination of the data for nonsmokers shows that, by taking into

consideration the numbers of cases and of controls, we have the following figures

for employment:

(1b) For the controls:

Proportion of exposure ¼ 35=238

¼ 0:147 or 14:7%

(2b) For the cases:

Proportion of exposure ¼11=61

¼ 0:180 or 18:0%

Again, the results also reveal different exposure histories: the proportion of

exposure among cases was higher than that among controls.

The above analyses also show that the difference (cases versus controls)

between proportions of exposure among smokers, that is,

21:2%�14:3% ¼ 6:9%

is different from the difference (cases versus controls) between proportions of

exposure among nonsmokers, which is

18:0%�14:7% ¼ 3:3%

The differences, 6.9% and 3.3%, are measures of the strength of the relation-

ship between the disease and the exposure, one for each of the two strata—the

two groups of smokers and nonsmokers, respectively. The above calculation

shows that the possible effects of employment in shipyards (as a suspected risk

factor) are different for smokers and nonsmokers. This difference of the two

case–control differences (6.9% versus 3.3%), if confirmed, is called an ‘‘inter-

action’’ or an effectmodification, where smoking alters the effect of employment

in shipyards as a risk factor for lung cancer. In that case, smoking is not only a

confounder, it is an effectmodifier,whichmodifies the effects of shipbuilding (on

the possibility of having lung cancer).

In some extreme examples, a pair of variables may even have their marginal

association in a different direction from their partial association (the association

between them as seen at each and every level of a confounder or effect modifier).

This interesting phenomenon is called Simpson’s paradox, which further empha-

sizes theanalysiscomplexitywhenwehavedata involvingmorethantwovariables.
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1.2 A REVIEW OF LIKELIHOOD-BASED METHODS

Problems in biological and health sciences are formulated mathematically by con-

sidering the data that are to be used for making a decision as the observed values of a

certain randomvariableX.ThedistributionofX is assumed tobelong toacertain family

of distributions specified by one or several parameters; a parameter can be defined as

an (unknown) numerical characteristic of a population. The problem for decision

makers is to decide on the basis of the data which members of the family could

represent the distribution of X; that is, to predict or estimate the value of a certain

parameteru (or severalparameters). Themagnitudeof aparameter often represents the

effect of a risk or environmental factor, and knowing its value, even approximately,

wouldshed some lighton the impactof sucha factor.The likelihood functionL(x;u) for
a random sample (x’s) of size n from the probability density function (or pdf) f(x; u) is

Lðx; uÞ ¼
Yn
i¼1

f ðxi; uÞ

Themaximum likelihood estimator (MLE) of u is the value û for which L(x; u) is
maximized. Calculus suggests setting the derivative of L(x; u) with respect to u equal
to zero and solving the resulting equation.

Since

dL

du
¼ ðLÞ dðln LÞ

du

dL/du¼ 0 if and only if d(ln L)/du¼ 0 because L is never zero. Thus we can find the

possible maximum of L by maximizing ln L; it is often easier to deal mathematically

with a sum than with a product.

ln L ¼
Xn
i¼1

ln f ðxi; uÞ

The MLE has a number of good properties, which we will state without proofs;

readers can skip this entire section without having any discontinuity.

1. MLE is consistent.

2. If an efficient estimator exists, it is the MLE.

3. The MLE is asymptotically distributed as normal. The variance of this

asymptotic distribution is given by the following formula:

VarðûÞ ¼ 1

E � d2 ln L

du2

� �
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in which E{.} denotes the expected value and the value of the denominator,

called Fisher’s informationmatrix (in this case, it is a number), often needs to be

estimated using the MLE of u.

This is an asymptotic distribution; that is, results are good for large samples only. If

a closed-form solution does not exist, the iterative solution may be obtained by first

solving for an additive correction,

Dû ¼ � d ln L

du

� ��
d2 ln L

du2

� �

using numerical values of the derivatives. The iterative solution by this Newton–

Raphson method would proceed as follows:

Step 1: Provide an initial value of û, denoted by û
ð0Þ
.

Step 2: Determine the value of D û by evaluating the derivatives at û
ð0Þ
.

Step 3: Add D û to the initial value to obtain a new value for û, that is,

uð1Þ ¼ uð0Þ þD u:

Step 4: Repeat Steps 2 and 3 using û
ð1Þ
to obtain û

ð2Þ
and stop when results from

successive steps are very close (below certain previously set threshold).

After a final solution has been obtained, an estimate of its variance is then given by

dVarðûÞ ¼ 1

� d2 ln L

du2

where the second derivative is evaluated using the value of the MLE of u.
For example, we have for a binomial distribution with unknown probability p

Lðx; pÞ ¼
�
n
x

�
pxð1�pÞn�x

lnLðx; pÞ ¼ ln
�
n
x

�
þ x ln pþðn�xÞ ln ð1�pÞ

d

dx
ln Lðx; pÞ ¼ x

p
� n�x

1�r

� d2

dp2
ln Lðx; pÞ ¼ x

p2
þ n�x

ð1�pÞ2
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E � d2

dp2
ln Lðx; pÞ

� �
¼ np

p2
þ n�np

ð1�pÞ2

¼ n

pð1�pÞ

The results are

p̂ ¼ p

¼ x

n
ðsample proportionÞ

VarðpÞ ¼ 1

E � d2

dp2
ln Lðx; pÞ

� �
¼ pð1�pÞ

n

Consider the case of a two-parameter model with probability density function f(.).

Let L(x; u1, u2) be the likelihood function defined from a random sample {xi} by

Lðx; u1; u2Þ ¼
Yn
i¼1

f ðxi; u1; u2Þ

The MLEs u1 and u2 are the values û1 and û2 of u1 and u2 for which L(x; u1, u2) is
maximized. These estimators are obtained by solving the following equations:

d

du1
ln L ¼ 0 and

d

du2
ln L ¼ 0

If closed-form solutions do not exist, the iterative solutions to these equations may be

obtained by the Newton–Raphson method, which is similar to that for the above one-

parameter model.

The variance–covariance matrix of the estimators û1 and û2 can be obtained from
the Fisher’s information matrix, which is defined as

I ¼
E � d2

du21

� �
ln L E � d2

du1du2
ln L

� �

E � d2

du1du2
ln L

� �
E � d2

du22

� �
ln L

266664
377775

In obtaining numerical variance–covariance estimates, all expected values of the

partial derivatives are replaced by numerical evaluations of those partial derivatives
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using MLE values for the parameters or values from the last iteration if iterative

solutions are required.

dVarðû1Þ dCovðû1; û2ÞdCovðû1; û2Þ dVarðû2Þ
" #

¼
� d2

du21
ln L

d2

du1du2
ln L

� d2

du1du2
ln L � d2

du22
ln L

26664
37775
�1

Of course, the maximum likelihood procedure, as explained for the two-parameter

model, can be easily generalized to models with more than two parameters.

As an example of two-parametermodels, let us consider a random sample of size n,

{xi}, from the normal distribution with mean m and variance u¼s2. We have

u ¼ s2

Lðx;m; uÞ ¼
Yn
i¼1

1

u1=2
ffiffiffiffiffiffi
2p

p exp �ðxi�mÞ2
2u

" #

ln Lðx;m; uÞ ¼ � n

2
ln u� n

2
lnð2pÞ� 1

2u

Xn
i¼1

ðxi�mÞ2

d

dm
ln L ¼ 1

u
ðxi�mÞ2

d

du
ln L ¼ 1

2u
�nþ 1

u

X
ðxi�mÞ2

� �
The results are

m̂ ¼ �x

ŝ2 ¼ û

¼ 1

n
ðxi�mÞ2

¼ n�1

n
s2

From these derivatives, we find

d2

dm2
ln L ¼ �n=u

d2

dm du
ln L ¼ � 1

u2

X
xi�nm

n o
d2

du2
ln L ¼ n

2u2
� 1

u3

Xn
i¼1

ðxi�mÞ2
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And from their expected values, we can easily derive the variances and covariance:

Varð�xÞ ¼ s2

n

Varðŝ2Þ ¼ 2s4

n

Covð�x; ŝ2Þ ¼ 0

A multiple regression model involves many parameters, the unknown regression

coefficients, b. Once we have fit such a multiple regression model and obtained

estimates for the various parameters of interest using the above method, we want to

answer questions about the contributions of various factors to the prediction of the

response variable. There are three types of questions:

1. An Overall Test. Taken collectively, does the entire set of explanatory or

independent variables contribute significantly to the prediction of the response? The

null hypothesis for this test may be stated as: ‘‘all k independent variables considered

together do not explain the variation in the responses.’’ In other words, the null

hypothesis is

H0 : b1 ¼ b2 ¼ � � � ¼ bk ¼ 0

Two likelihood-based statistics can be used to test this global null hypothesis; each has

an asymptotic chi-squared distribution with k degrees of freedom under the null

hypothesis H0:

(a) Likelihood Ratio Test.

X2
LR ¼ 2½ln Lðb̂Þ�ln Lð0Þ�

(b) Score Test.

X2
S ¼ d

db
ln Lð0Þ


 �
� d2

db2
ln Lð0Þ


 ��1
d

db
ln Lð0Þ


 �
Both statistics are provided by most standard computer programs such as SAS and

they are asymptotically equivalent yielding identical statistical decisions most of the

time.

2. Test for the Value of a Single Factor. Does the addition of one particular

variable of interest add significantly to the prediction of response over and above that

achieved by other independent variables? Let us assume that we now wish to test

whether the addition of one particular independent variable of interest adds sig-
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nificantly to the prediction of the response over and above that achieved by other

factors already present in themodel. The null hypothesis for this test may be stated as:

‘‘factor Xi does not have any value added to the prediction of the response given that

other factors are already included in the model.’’ In other words,

H0: bi ¼ 0

To test such a null hypothesis, one can perform a likelihood ratio chi-squared test, with

one degree of freedom, similar to that for the above global hypothesis:

X2
LR ¼ 2½ln Lðb̂; all X’sÞ�ln Lðb̂; all other X’s with Xi deletedÞ�

A much easier alternative method is to use.

zi ¼ b̂i

SEðb̂iÞ

where b̂i is the corresponding estimated regression coefficient and SE(b̂i) is the

estimate of the standard error of b̂i, both of which are printed by standard packaged

computer programs. In performing this test, we refer the value of the z statistic to

percentiles of the standard normal distribution.

3. Test for Contribution of a Group of Variables. Does the addition of a group of

variables add significantly to the prediction of response over and above that achieved

by other independent variables? This testing procedure addresses the more general

problem of assessing the additional contribution of two or more factors to the

prediction of the response over and above that made by other variables already in

the regression model. In other words, the null hypothesis is of the form

H0 : b1 ¼ b2 ¼ � � � ¼ bm ¼ 0

To test such a null hypothesis, one can perform a likelihood ratio chi-squared test, with

m degrees of freedom:

X2
LR ¼ 2½ln Lðb̂; all X’sÞ�ln Lðb̂; all other X’s with

X’s under investigation deletedÞ�

This ‘‘multiple contribution’’ procedure is very useful for assessing the importance of

potential explanatory variables. In particular, it is often used to test whether a similar

group of variables, such as ‘‘demographic characteristics,’’ is important for the

prediction of the response; these variables have some trait in common. Another

application would be a collection of powers and/or product terms (referred to as

interactionvariables). It is often of interest to assess the interaction effects collectively

before trying to consider individual interaction terms in a model as previously
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suggested. In fact, such use reduces the total number of tests to be performed and this,

in turn, helps to provide better control of overall Type I error rates, which may be

inflated due to multiple testing.

In many applications, we wish to identify from many available factors a small

subset of factors that relate significantly to the outcome, for example, the disease

under investigation. In that identification process, of course, we wish to avoid a large

Type I (or false positive) error. In a regression analysis, a Type I error corresponds to

including a predictor that has no real relationship to the outcome; such an inclusion

can greatly confuse the interpretation of the regression results. In a standard multiple

regression analysis, this goal can be achieved by using a strategy that adds into or

removes from a regression model one factor at a time according to a certain order of

relative importance. Therefore the two important steps are:

1. Specifying a criterion or criteria for selecting a model. The selection is often

based on the likelihood ratio chi-squared statistic.

2. Specifying a strategy for applying the chosen criterion or criteria. Such a

strategy is concerned with whether a particular variable should be added to a

model or whether any variable should be deleted from a model at a particular

stage of the process (stepwise regression). As computers became more acces-

sible and more powerful, these practices became more popular.

1.3 INTERVAL ESTIMATION FOR A PROPORTION

Recall the following results on the maximum likelihood estimation of an unknown

probability or proportion p:

p̂ ¼ p

¼ x

n
ðsample proportionÞ

VarðpÞ ¼ 1

E � d2

dp2
ln Lðx; pÞ

� �
¼ u

¼ pð1�pÞ
n

Consider the usual estimate of variance of p:

varðpÞ ¼ pð1�pÞ
n
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We can see that

E varðpÞf g ¼ 1

n
EðpÞ�Eðp2Þ� 


p ¼
P

xi

n
; xi ¼ 0=1

p2 ¼
P

x2i þ 2
P

xixj
� 


n2

EðpÞ ¼ p

Eðp2Þ ¼ pþðn�1Þp2� 

n

E varðpÞf g ¼ n�1

n

� �
pð1�pÞ

n

¼ 1� 1

n

� �
p

The results have the following meaning:

1. var(p) is a biased estimate of Var(p); an unbiased estimate of Var(p) is p(1� p)/

(n� 1), with denominator (n� 1) similar to the sample variance of a continuous

sample.

2. However, var(p), with denominator n, is asymptotically unbiased and its use is

popular.

In summary, we have an approximate 95% confidence interval for a population

proportion p:

p� 1:96 SEðpÞ

where the standard error of the sample proportion, SE(p), is calculated as

SEðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

r

& Example 1.2 Consider the problem of estimating the prevalence of malignant

melanoma in 45–54-year-old women in the United States. Suppose a random

sample of (n¼ 5000) women is selected from this age group and (x¼ 28) are

found to have the disease. Our point estimate for the prevalence of this disease is

0.0056 (¼28/5000); its standard error is

SEðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:0056Þð1�0:0056Þ

5000

r
¼ 0:0011
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Therefore a 95% confidence interval for the prevalence p of malignant mela-

noma in 45–54-year-old women in the United States is given by

0:0056� ð1:96Þð0:0011Þ ¼ ð0:0034; 0:0078Þ or ð0:34%; 0:78%Þ

1.4 ABOUT THIS BOOK

This book is intended to meet the needs of practitioners and students in applied fields

by covering major, updated methods in the analysis of categorical data. It is also

intended to meet the needs of clinicians and students in biomedical sciences with

some basic introduction to a reemerging field called ‘‘translational research.’’ It is

written for beginning graduate students in biostatistics, epidemiology, and environ-

mental health, as well as for biomedical research workers. As a book for biostatistics

and statistics students, it is designed to offer some details for a better understanding of

the various procedures as well as the relationships among different methods. How-

ever, the mathematics have been kept to an absolute minimum. As a book for students

in applied fields and as a reference book for practicing biomedical research workers,

this book is very application oriented. It introduces applied research areas and a large

number of real-life examples, most of which are completely solved with samples of

computer programs.

The book is divided into nine chapters including this introductory chapter.

Chapter 2 covers basic methods and applications of two-way contingency tables

including etiologic fraction, the evaluation of ordinal risks, and the Mantel–Haenszel

method. Compared to the first edition, the first section (on screening tests) is moved

and expanded to form a new chapter, Chapter 8.

Chapter 3 is devoted to loglinear models; topics covered include the selection of

the best model for three-way tables, and selection of a model for higher-dimensional

tables, with or without the identification of a dependent variable.

Chapter 4 is focused on logistic regression models, both binary and ordinal

responses. Topics covered include the stepwise procedure, measures of goodness-

of-fit, and the use of logistic models for different designs. Compared to the first

edition, the new edition represents a major overhaul of Chapter 4: (i) we added a

new introductory Section 4.1, ‘‘Modeling a Probability,’’ to include othermodels such

as probit; (ii) we moved old Section 4.2.5, ‘‘ROC Curve,’’ to the new Chapter 8; and

(iii) we added a new Section 4.5, ‘‘Quantal Bioassays,’’ an important topic in

translational research.

Chapter 5 covers similar topics as those in Chapters 2–4, but for matched designs,

singly or multiply, including the conditional logistic regression model.

Chapter 6 covers analytical methods for count data including the Poisson regres-

sion model. Topics covered in this chapter include overdispersion and how to fit

overdispersed models.

Chapter 7, ‘‘Categorical Data and Translational Research,’’ is a new chapter.

Topics covered represent the core material of translational research—early

phase clinical trials. These topics include, among others, the standard design, the

sequential monitoring of toxicity, and one-stage and two-stage designs for Phase II

clinical trials.
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Chapter 8, ‘‘Categorical Data and Diagnostic Medicine’’, is another new addition.

Topics covered include examples and description of the disease screening process,

some basic issues, the ROC curve and the corresponding optimization problem, and

the roles of covariates.

Chapter 9 presents a brief introduction to survival analysis and Cox’s regression

model. This inclusion is partly to show the difference between categorical data and

survival data, and partly to serve as a brief introduction to the field of survival analysis,

which is an important part of translational research.

In each of the nine chapters, numerous examples are provided for illustration.
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