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1.1 OVERVIEW

Driven by growing competition and globalization and to remain competitive,
companies across the world strive to maintain high product and service quality, low
production costs, short lead times, an efficient supply chain, and high customer sat-
isfaction. To this end, companies often relay on traditional process improvement and
cost reduction measures and adopt emerging initiatives of quality management, lean
manufacturing, and Six Sigma. These initiatives are widely used for system-level
design, improvement, and problem-solving with the aim of integrating continuous
improvement into the company’s policy and strategic planning.

Successful deployment of such initiatives, therefore, requires an accurate
system-level representation of underlying production and business processes.
Examples of process representation range from transfer functions to process map-
ping, flow-charting, modeling, and value stream mapping. Real-world production
and business systems are, however, characterized by complexity and dynamic and
stochastic behavior. This makes mathematical approximation, static representation,
and deterministic models less effective in representing the actual system behavior.
Alternatively, simulation facilitates better representation of real-world systems and
its application for system-level modeling is increasingly used as a common platform
in emerging methods of system design, problem-solving, and improvement.

Simulation modeling, as an industrial engineering (IE) tool, has undergone a
tremendous development in the last decade. This development can be pictured
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through the growing capabilities of simulation software tools and the application of
simulation solutions to a variety of real-world problems. With the aid of simulation,
companies nowadays can design efficient production and business systems, trou-
bleshoot potential problems, and validate/tradeoff proposed solution alternatives to
improve performance metrics, and, consequently, cut cost, meet targets, and boost
sales and profits.

WITNESS® simulation software is a modern modeling tool that has been
increasingly utilized in a wide range of production and business applications.
WITNESS® is mainly characterized by ease-of-use, well-designed simulation
modules, and integrated tools for system analysis and optimization. WITNESS®

is also linked to emerging initiatives of Six Sigma and Lean Techniques through
modules that facilitate Sigma calculation and process optimization.

This book discusses the theoretical and practical aspects of simulation model-
ing in the context of WITNESS® simulation environment. This chapter provides an
introduction to the basic concepts of simulation and clarifies the simulation role and
rationale. This includes an introduction to the concept, terminology, and types of
models, a justification for utilizing simulation in real-world applications, and a brief
discussion on the simulation process. Such background is essential to establish a basic
understanding of what simulation is all about and to understand the key simulation
role in process engineering and emerging technologies.

1.2 SYSTEM MODELING

System modeling as a term includes two important commonly used concepts;
system and modeling. It is imperative to clarify such concepts before attempting to
focus on their relevance to the “Simulation” topic. This section will introduce these
two concepts and provide a generic classification to the different types of systeml
models.

1.2.1 System Concept

System thinking is a fundamental skill in simulation modeling. The word system is
commonly used in its broad meaning in a variety of engineering and nonengineering
fields. In simple words, a system is often referred to as a set of elements or opera-
tions that are logically related and effectively configured toward the attainment of a
certain goal or objective. To attain the intended goal or to serve the desired function,
it is necessary for the system to receive a set of inputs, process them correctly, and
produce the required outcomes. To sustain such flow, a certain control is required to
govern the system behavior. Given such definition, we can analyze any system (S)
based on the architecture shown in Figure 1.1.

As shown in Figure 1.1, each system (S) can be mainly defined in terms of a set of
Inputs (I) received by a Process (P) and transformed into a specific set of Outputs (O).
The process consists of a set of system Elements or Entities (EN) that are configured
based on a set of logical Relationships (RL). An overall Goal (G) is often defined to
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Figure 1.1 Definition of system concept. El-Haik, B., Al-Aomar, R. (2006). Reproduced
with permission of John Wiley & Sons, Inc.

represent the purpose and objective of the system. To sustain a flawless flow and cor-
rect functionality of I–P–O, some kind of controls (C) is essentially applied to system
Inputs, Process, and Outputs. Thus, building a system or a system model primarily
requires the following:

1. Defining the goal (G) or the overall system objective and relating system struc-
ture to the goal attainment.

2. Specifying the set of outcomes (O) that should be produced and their specifi-
cations that result in attaining the specified Goal (G).

3. Specifying the set of system Inputs (I) that are required in order to pro-
duce the specified system Outcomes (O) along with the specifications of
these Inputs (I).

4. Listing system entities S = (EN1, EN2, EN3, … , ENn) and defining the char-
acteristics and the individual role of each entity (resources, storage, etc.).

5. Setting the logical relationships (RL1, RL2, RL3, … , RLm) among the defined
set of system elements to perform the specified process activities.

6. Specifying the system Controls (C) and their role in monitoring the specifica-
tions of system Inputs (I) and Outputs (O) and adjusting the operation of the
Process (P) to meet the specified Goal (G).

This understanding requires for any arrangement of objects to be called a system
to be structured logically and to have an interaction that leads to a useful outcome.
Transforming system inputs into desired outputs is often performed through system
resources. Correct processing is often supported by controls and inventory systems
to assure quality and maintain steady performance. This understanding of system
concept is our gateway to the broader subject of system engineering. Examples of
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common real-life systems include classrooms, computer systems, factories, hospitals,
and so on. In the classroom example, students are subject to various elements of the
educational process (P) in the classroom, which involves attendance, participation in
class activities, submitting assignments, passing examinations, and so on in order to
complete the class with certain qualifications and skills. Applying the definition of
system to the classroom example leads to the following:

1. The overall system goal (G) is set to educate students on a certain subject and
provide quality education to students attending classes.

2. System Inputs (I) are students of certain age, academic level, major, and so on.

3. System Outputs (O) are also students upon fulfilling class requirements.

4. The set of system entities is defined as follows:

S = {Tables, Chairs, Students, Instructor, Books, Whiteboard}

5. The defined entities in S are logically related through a set of relationships (RL).
For example, chairs are located around tables that face the instructor, the instruc-
tor stands in front of students and writes on whiteboard, and so on.

6. Finally, class regulations and policies for admission, attendance, grading, and
graduation represent process Controls (C).

It is worth mentioning that the term “system” covers both products and processes.
A product system can be an automobile, a cellular telephone, a computer, a calculator,
and so on. Any of these products involves the defined components of the system in
terms inputs, outputs, elements, relationships, controls, and goal. Try to analyze all
the mentioned examples from this perspective. On the other hand, a process system
can be a manufacturing process, an assembly line, a power plant, and a business pro-
cess. Similarly, any of these processes involves the defined components of the system.
Try to analyze all the mentioned examples from this perspective.

1.2.2 Modeling Concept

The word modeling refers to the process of representing a system with a selected
model that is easier to understand and less expensive to build compared to the actual
system. The system model includes a representation of system elements, relation-
ships, inputs, controls, and outputs. Modeling a system, therefore, has two prerequi-
sites:

1. Understanding the structure of the actual (real-world) system and the function-
ality of its components. It is imperative for the analyst to be familiar with the
system and understand its purpose and functionality. For example, in an auto-
mobile assembly plant, the modeler needs to be familiar with the production
system of building vehicles before attempting to model the vehicle assembly
operations. Similarly, the modeler needs to be familiar with different types of
bank transactions to develop a useful model of a bank.
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2. Being familiar with different modeling and system representation techniques
and methods. This skill is essential to choose the appropriate modeling tech-
nique for representing the underlying real-world system under budgetary and
time constraints. The selection of the most feasible modeling method is a deci-
sion of economy, attainability, and usefulness.

Modeling a system of interest is a combination of both art and science. It involves
abstracting a real-world system into a clear, comprehensive, accurate, reliable, and
useful representation. Such model can be used to better understand the system and to
facilitate system analysis and improvement. As shown in Figure 1.2, the objects of the
real-world system are replaced by objects of representation and symbols of indication.
This includes the set of system entities (EN), relationships among entities (RL), sys-
tem inputs (I), Controls (C), and system outputs (O). Actual system EN–RL–I–C–O
is mimicked to a degree in the system model, leading to a representation that captures
the characteristics of the real-world process for the purpose at hand. However, in a
reliable model, this approximation should be as realistic as needed and should not
overlook the key system characteristics.

1.2.3 Types of Models

Several modeling methods can be used to develop a system model. The analyst’s
choice of modeling method is based on several criteria including modeling objec-
tive, system nature and complexity, and the time and cost of modeling. As shown in
Figure 1.3, we can classify the different types of models into four major categories:
physical models, graphical models, mathematical models, and computer (logical)
models. The following is a summary of those types of models.

1. Physical models: Physical models are tangible prototypes of the actual products
or processes in a one-to-one scale or in any other feasible scale of choice. Such
models provide a close-to-reality direct representation of the actual system to
demonstrate its structure and functionality in a physical manner. They are com-
mon in large-scale engineering projects such as new car and airplane concepts,
bridges, buildings, ships, and other architectural designs. They help designers

Actual system

Modeling

Process

System model

EN    RL    I    C    O EN    RL    I    C    O

Figure 1.2 The process of systemmodeling. El-Haik, B., Al-Aomar, R. (2006). Reproduced
with permission of John Wiley & Sons, Inc.
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Figure 1.3 Types of system models. El-Haik, B., Al-Aomar, R. (2006). Reproduced with
permission of John Wiley & Sons, Inc.

Figure 1.4 Examples of product prototypes. El-Haik, B., Al-Aomar, R. (2006). Reproduced
with permission of John Wiley & Sons, Inc.

better understand the system of interest and allow them to try out different con-
figurations of design elements before the actual build up. Physical models may
be built from clay or wood such as car prototypes or developed using 3D print-
ing machines using different materials. Various techniques of rapid prototyping
and reverse engineering are also used to develop product/process prototypes.
Figure 1.4 shows examples of product prototypes. Physical models can also be
operational models such as flight simulators and real time simulators of chem-
ical operations. Another form of physical models can be Lego-type machines,
conveyor structures, and plant or reactor models. The benefit of physical mod-
els is the direct and easy to understand tangible representation of the underlying
system. However, there are several limitations to physical models. The cost of
physical modeling could be enormous in some cases. Some systems are too
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complex to be prototyped. Other physical models might be time consuming
and require superior crafting skills to be built. For example, think of building a
physical model for an internal combustion engine (ICE) or an assembly line of
personal computers (PCs). What kind of cost, time, and skill would be involved
in developing such prototypes?

2. Graphical models: Graphical models are abstracts of products or processes
developed using graphical tools. These tools range from paper and pencil
sketches to engineering drawings. Common graphical representations include
process maps, flow and block diagrams, networks, and operations charts.
Figure 1.5 presents an example of a graphical model (operations chart of
can opener assembly). The majority of graphical representations are static
models that oversimplify the reality of the system and do not provide technical
and functionality details of the process, which makes it difficult to try out
what-if scenarios and to explain how the system responds to various changes
in process parameters and operating conditions. Thus, graphical models as
commonly used to develop physical and computer models.
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Figure 1.5 Example of a process graphical model. El-Haik, B., Al-Aomar, R. (2006). Repro-
duced with permission of John Wiley & Sons, Inc.
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Figure 1.6 An example of a MATLAB mathematical model. El-Haik, B., Al-Aomar, R.
(2006). Reproduced with permission of John Wiley & Sons, Inc.

3. Mathematical Models: Mathematical modeling is the process of repre-
senting the system behavior with formulas, mathematical equations, and
calculus-based methods. They are symbolic representations of systems
functionality, decision (control) variables, response, and constraints. Design
formulas for stress-strain analyses, probabilistic and statistical models, and
mathematical programming models are examples of mathematical models.
Typical example of mathematical models includes using linear programming
(LP) in capital budgeting, production planning, resources allocation, and
facility location. Other examples include queuing models, Markov chains, and
economic order quantity (EOQ) model. Some mathematical models can be
also empirical models derived from regression analysis and transfer functions.
Typically, a mathematical formula is a closed-form relationship between a
dependent variable (Y) and one or more independent variables (X) with the
form of Y = f(X). Such a formula can be linear or nonlinear. Figure 1.6 shows
an example of a mathematical model built using MATLAB software. The
dependent variable is often selected to measure a key characteristic of the
system such as the speed of a vehicle or the yield of a process. Independent
variables of the formula represent the key or critical parameters on which
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system response depends such as time, distance, or force. Unfortunately, not all
system responses can be modeled using mathematical formulas. Complexity of
most real-world systems challenges the application of such models. Hence, a
set of simplification assumptions often accompanies the application of math-
ematical models in order for the derived mathematical formulas to hold. For
example, applying the EOQ inventory model assumes constant demand and
lead-time. Such assumptions often lead to impractical results that have a lim-
ited chance of being implemented. For example, think of developing a for-
mula that computes a production system throughput given parameters such
as machine cycle times, speeds of conveyance systems, number of assembly
operators, sizes of system buffers, and plant operating pattern. What kind of
mathematical model would you use to approximate such response? How rep-
resentative will the mathematical model be? Can you use the throughput num-
bers obtained from such a mathematical model to plan schedule deliveries to
customers?

4. Computer Models: Computer models are numerical, graphical, mathematical,
and logical representation of a system (a product or a process) that utilizes the
capability of computers in fast computations, large capacity, consistency, ani-
mation, and accuracy. Computer simulation models, in particular, are virtual
representations of real-world products and processes on the computer. Sim-
ulations of products and processes are developed using different application
programs and software tools. For example, a computer program can be used to
develop a finite element analysis (FEA) model to analyze stress and strains for
a certain product design, as shown in Figure 1.7. Similarly, several mathemat-
ical models that represent complex mathematical operations, control systems,
fluid mechanics, and others can be built, animated, and analyzed with com-
puter tools. Software tools are also available to develop static and dynamic
animations of many industrial processes.

Accurate and well-built computer models compensate for the limitations of the
other types of models. They are typically easier, faster, and cheaper than building
physical models. In addition, the flexibility and computation capability of computer
models allow for making quick model changes, easy testing of what-ifs, and accurate
evaluation of system performance for experimental design and optimization stud-
ies. Computer models also provide the benefits of graphical models through mod-
ern animation and graphical modeling tools. Compared to complex mathematical
models, computer models are generally more realistic and efficient. They utilizel
computer capabilities for more accurate approximations, they run tremendous com-
putations in little time, and they can measure system performance without the need
for a closed-form definition of the system objective function. Such capabilities made
computer models the most common modeling techniques. Limitations of computer
models stem from the limitation of computer hardware, the limitations of application
software, the simulated system complexity and data availability, and the limited skills
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Figure 1.7 Example of a FEA computer model. El-Haik, B., Al-Aomar, R. (2006). Repro-
duced with permission of John Wiley & Sons, Inc.

of the simulation analyst in benefiting from the software features and in conducting
the simulation analyses.

discrete event simulation (DES) is the type of computer simulation that mimics
the operation of real-world processes as they evolve over time. The mechanism of
DES computer modeling, discussed in Chapter 2, assists in capturing the dynamics
and logics of system processes and estimating the system’s long-term performance
under stochastic conditions. Moreover, DES models allow the user to test various
“what-if” system scenarios, make model changes to mimic potential changes in the
physical conditions, and run the system many times for long periods to “simulate”
the impacts of such changes. The model results are then analyzed to gain insight
into the behavior of the system. For example, a DES plant model can be used to
estimate the assembly line throughput by running themodel dynamically and tracking
its throughput hour-by-hour or shift-by-shift. The model can also be used to assess
multiple production scenarios based on long-term average throughput. As shown in
Figure 1.8, simulation software tools provide a flexible environment of modeling and
analysis that makes DES more preferable compared to graphical, mathematical, and
physical models.
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Figure 1.8 Example of a DES model built-in WITNESS® software.

1.3 SIMULATION MODELING

Modeling, as shown earlier, is the art and science of capturing the functionality and
the relevant characteristics of real-world systems. Modeling involves presenting
such systems in a form that provides sufficient knowledge and facilitates system
analyses and improvement. Physical, graphical, mathematical, and computer models
are the major types of models developed for different purposes and applications.
This section focuses on defining the simulation concept, developing a taxonomy
of different types of simulation models, and explaining the role of simulation in
planning, designing, and improving the performance of business and production
systems.

1.3.1 Simulation Defined

Simulation is a widely used term in reference to computer models that represent
physical systems (products or processes). It provides a simplified representation that
captures important operational features of a real system. For example, FEA represents



12 CONCEPTS OF SIMULATION MODELING

the mathematical basis for a camshaft product simulation. Similarly, production flow,
scheduling rules, and operating pattern represent the logical basis for developing a
plant process model.

System simulation model is the computer mimicking of the complex, stochastic,
and dynamic operation of a real-world system (including inputs, elements, logic,
controls, and outputs). Examples of system simulation models include mimicking
the day-to-day operation of a bank, the production flow in an assembly line, or the
departure/arrival schedule in an airport. As an alternative to impractical mathemati-
cal models or costly physical prototypes, computer simulation has made it possible
to model and analyze real-world systems.

As shown in Figure 1.9, the primary requirements for simulation are: a system
to be simulated, a simulation analyst, a computer system, and simulation software.
The analyst has a pivotal role in the simulation process. He or she is responsible for
understanding the real-world system (inputs, elements, logic, and outputs), devel-
oping a conceptual model, and collecting pertinent data. The analyst then operates
the computer system and uses the simulation software to build, validate, and ver-
ify the system simulation model. Finally, the analyst analyzes simulation results and
determines best process setting.

Computer system provides the hardware and software tools required to operate and
run the simulation model. The simulation software or language provides the platform
and environment that facilitates model building, testing, debugging, and running. The
simulation analyst utilizes the simulation software on a capable computer system to
develop a system simulation model that can be used as a practical (close-to-reality)
representation of the actual system.

1.3.2 Simulation Taxonomy

Based on the selected internal representation scheme, simulation models can be dis-
crete, continuous, or combined. DES models, which are the focus of this book, are

Actual system

Simulation

Analyst

System
simulation
model  

+
Simulation
software 

Computer
system 

Figure 1.9 The simulation process. El-Haik, B., Al-Aomar, R. (2006). Reproduced with per-
mission of John Wiley & Sons, Inc.
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the most common among simulation types. DES models are based on a discrete inter-
nal representation of model variables (variables that change their state at discrete
points in time). DES mechanics will be discussed in detail in Chapter 2. In general,
discrete simulation models focus on modeling discrete variables that receive values
from random or probabilistic distributions, where the state of the system changes
in discrete points in time. A discrete variable can be the number of customers in a
bank, products and components in an assembly process, or cars in a drive-through
restaurant.

Continuous simulation models, on the other hand, focus on continuous variables,
receiving values from random or probabilistic distributions, where the state of the sys-
tem changes continuously. Examples of continuous variables include waiting time,
level of water behind a dam, and fluids flow in chemical processes and distribution
pipes. Continuous simulation is less popular than discrete simulation since the major-
ity of production and business systems are modeled using discrete random variables
(customers, units, entities, orders, etc.).

Combined simulation models include both discrete and continuous elements in
the model. For example, separate (discrete) fluid containers arrive to a chemical pro-
cess where fluids are poured into a reservoir to be processed in a continuous manner.
This kind of simulation requires the capability to define and track both discrete and
continuous variables.

Furthermore, models are either deterministic or stochastic. A stochastic process
is modeled using probabilistic models. Examples of stochastic models include
customers arriving to a bank, servicing customers, and equipment failure. In these
examples, the random variable can be the inter-arrival time, the service or processing
time, and equipment time to failure (TTF), respectively.

Deterministic models, on the other hand, involve no random or probabilistic vari-
ables in their processes. Examples include modeling fixed cycle time operations in
an automated system or modeling the scheduled arrivals to a clinic. The majority of
real-world operations are probabilistic. Hence most simulation studies involve ran-
dom generation and sampling from theoretical or empirical probability distributions
to model random system variables. Variability in model inputs leads to variability in
model outputs. As shown in Figure 1.10, a deterministic model Y = f(X) will gener-
ate a stochastic response (Y) when model inputs (X1, X2, and X3) are stochastic. If
the response represents the productivity of a production system, model inputs such
as parts arrival rates, demand forecast, and model mix generate a variable produc-
tion rate.

Finally, and based on the nature of model evolvement with time, models can be
static or dynamic. As shown in Figure 1.11, a simulation model can involve both
static and dynamic responses. In static models, system state (defined in state vari-
ables) does not change over time. For example, a static variable (X1) can be a fixed
number of workers in an assembly line, which does not change with time. Alterna-
tively, a dynamic variable (X2) can be the number of units in a buffer, which changes
dynamically over time. Monte Carlo simulation models are time independent (static)
models that deal with a system of fixed state. In such spreadsheet-like models, cer-
tain variable values change based on random distributions and performance measure
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Figure 1.10 A deterministic model with stochastic inputs and response. El-Haik, B.,
Al-Aomar, R. (2006). Reproduced with permission of John Wiley & Sons, Inc.
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Figure 1.11 Static and dynamic model variables. El-Haik, B., Al-Aomar, R. (2006). Repro-
duced with permission of John Wiley & Sons, Inc.

are evaluated per such changes without considering the timing and the dynamics of
such changes.Most operational models are, however, dynamic. System state variables
often change with time and the interactions that result from such dynamic changes
do impact the system behavior.

Dynamic simulation models are further divided into terminating and nonterminat-
ing models based on run time. Terminating models are stopped by a certain natural
event such as the number of items processed or reaching a certain condition. For
example, a bank model stops at the end of the day and a workshop model stops when
finishing all tasks in a certain order. These models are impacted by initial conditions
(system status at the start). Nonterminating models, on the other hand, can run con-
tinuously making the impact of initialization negligible. For example, a plant runs in
continuous mode where production starts every shift without emptying the system.
The run time for such models is often determined statistically to obtain a steady-state
response. Figure 1.12 presents a simulation taxonomy with highlighted attributes
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Terminating models Nonterminating models

Simulation

Discrete models Continuous models Combined models

Deterministic models Stochastic models 

Dynamic modelsStatic models

Figure 1.12 Simulation taxonomy. El-Haik, B., Al-Aomar, R. (2006). Reproduced with per-
mission of John Wiley & Sons, Inc.

of DES (discrete, stochastic, and dynamic models of terminating or nonterminating
response).

1.4 THE ROLE OF SIMULATION

After understanding the different concepts and aspects of the term “simulation mod-
eling,” it is necessary to clarify the role that the simulation plays in developing pro-
duction and business systems. We first justify the use of simulation technically and
economically and then present the spectrum of simulation applications in manufac-
turing and service sectors.

1.4.1 Simulation Justified

“Why and when to simulate?” and “How can we justify a simulation project?”
are key questions that often cross the mind of simulation practitioners, engineers,
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and decision-makers. We simply turn to simulation because of simulation capa-
bilities that are unique and powerful in system representation and performance
estimation under real-world conditions. Most real-world processes in production
and business systems are complex, stochastic, and highly nonlinear and dynamic.
Other modeling types such as graphical, mathematical, and physical models fall
short in providing a cost-effective and usable system representation under such
conditions.

“Decision support” is another common justification of simulation studies.
Obviously, engineers and managers want to make the best decisions possible,
especially when encountering critical stages of design, expansion, or improvement
projects. Simulation studies may reveal insurmountable problems and save cost,
effort, and time. They reduce the cost of wrong capital commitments, reduce
investments risk, increase design efficiency, and improve the overall system
performance.

Although simulation studies might be costly and time-consuming in some cases,
the benefits and savings obtained from such studies often recover the simulation
cost and avoid much larger costs. Simulation costs are typically the initial simula-
tion software and computer cost, yearly maintenance and upgrade cost, training cost,
engineering time cost, and other costs for traveling, preparing presentations with mul-
timedia tools, and so on. Such costs are often recovered through the long-term savings
from increasing productivity and efficiency.

1.4.2 Simulation Applications

Abetter answer to the question “why simulate?” can be reached by exploring the wide
spectrum of simulation applications to various aspects of business, science, and tech-
nology. This spectrum starts by designing queuing systems and extends to designing
communication networks, production systems, and business operations. The focus in
this book is on the wide range of simulation applications in both manufacturing and
business operations. Simulation models of manufacturing systems can be used for
many objectives including:

• Determining throughput capability of a manufacturing cell, an assembly line,
or a production system.

• Configuring labor resources in an intensive assembly process.

• Determining the needed number of automated guided vehicles (AGVs) in a
complex material handling system (MHS).

• Determining the size and resources in a complex automated storage and retrieval
system (AS/RS).

• Determining best ordering policies for an inventory control system.

• Validating the outcomes of material requirement planning (MRP).

• Determining buffer sizes for work-in-progress (WIP) in an assembly line.
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For business operations, simulation models can be also used for a wide range of
applications including:

• Determining the number of bank tellers that results in reducing customers wait-
ing time by a certain percentage.

• Designing distribution and transportation networks to improve the performance
of logistic and supply chains.

• Analyzing the financial portfolio of a company over time.
• Designing the operating policies in a fast food restaurant to reduce customer

Time-In-System and increase customer satisfaction.
• Evaluating hardware and software requirements for a computer network.
• Scheduling the working pattern of the medical staff in an emergency room (ER)

to reduce patients’ waiting time.
• Testing the feasibility of different product development processes and evaluat-

ing their impact on the company’s budget and strategy.
• Designing communication systems and data transfer protocols.
• Designing traffic control systems.

Table 1.1 shows a summary of ten examples of simulation applications in both
manufacturing and service sectors.

To reach the goals of the simulation study, certain elements of each simulated
system often become the focus of the simulation model. Modeling and tracking such
elements provide attributes and statistics necessary to design, improve, and optimize
the underlying system performance. Table 1.2 shows a summary of ten examples of
simulated systems with examples of principal model elements.

1.4.3 Simulation Precautions

Like any other engineering tool, simulation has limitations. Such limitations should
be realized by practitioners and should not discourage analysts and decision-makers
from using simulation. Knowing the limitations of simulation should emphasize using

TABLE 1.1 Examples of Simulation Applications

Manufacturing Services

Automotive Banking industry
Aerospace Health systems
Plastics industry Hotel operations
Paper mills Communication services
House appliances Computer networks
Furniture manufacturing Transportation systems
Chemical industry Logistics and supply chain
Clothing and textile Restaurants and fast food
Packaging Postal services
Storage/retrieval Airport operations
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TABLE 1.2 Examples of Simulated Systems

Simulated System Examples of Model Elements

Manufacturing system Parts, machines, operators, conveyors, storage
Emergency room (ER) Patients, beds, doctors, nurses, waiting room
Bank Customers, bank tellers, ATMs, loan officers
Retail store Shoppers, checkout cash registers, customer service
Computer network Server, client PCs, administrator, data protocol
Freeway system Cars, traffic lights, road segments, interchanges
Fast food restaurant Servers, customers, cars, drive-through windows
Border crossing point Cars, customs agents, booths, immigration officers
Classes registration office Students, courses, registration stations, helpers
Supply chain/logistics Suppliers and vendors, transportation system, clients

it wisely and should motivate the user to develop creative methods and establish the
correct assumptions in order to benefit from the powerful simulation capabilities.
Still, however, certain precautions should be considered to avoid the potential pit-
falls of simulation studies. We should pay attention to the following issues when
considering simulation:

• The simulation analyst as well as the decision-maker should be able to answer
the question “when not to simulate?” Simulation studies may not be used for
solving problems of relative simplicity. Such problems can be solved using engi-
neering analysis, common sense, or mathematical models.

• The cost and time of simulation should be considered and planned well.
Many simulation studies are underestimated in terms of time and cost. Some
decision-makers think of simulation as model building although it consumes
less time and cost when compared to data collection and output analysis.

• The skill and knowledge of the simulation analyst need to be addressed.
Essential skills for simulation practitioners include systems thinking, fluency
in programming and simulation software, knowledge in statistics, strong
communication and analytical skills, project management (PM) skills, ability
to work in teams, and creativity in design and problem-solving.

• Expectations from the simulation study should be realistic and not exaggerated.
A lot of professionals think of simulation as a “crystal ball” through which they
can predict and optimize system behavior. It should be clear that simulation
models by themselves are not system optimizers. They are flexible experimental
platforms that facilitate planning, what-if analysis, statistical analyses, experi-
mental design, and optimization.

• The time frame of the simulation project needs to be realistic and properly set.
Insufficient time and resources at various project stages, improper work break-
down structure, and lack of project control are issues that result in project delays
and low-quality deliverables. Typical PM skills are essential to execute the sim-
ulation project in an efficient manner.
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• The results obtained from simulation models are as good as the model
data inputs, assumptions, and logical design. The commonly used phrase
of “garbage-in-garbage-out (GIGO)” is very much applicable to simulation
studies. Hence, special attention should be paid to data inputs selection,
filtering, and simulation assumptions.

• The analyst should pay attention to the level of detail incorporated into the
model. Some study objectives can be reached with macro-level modeling while
some others require micro-level modeling. The analyst should decide on the
proper level of model detail and avoid details that are irrelevant to simulation
objectives.

• Model verification and validation is not a trivial task. As will be discussed later,
model verification aims at making sure that the model behaves according to
intended model logic. Model validation, on the other hand, focuses on making
sure that the model behaves as the actual system. Both practices determine the
degree of model reliability and usefulness.

• The results of simulation can be easilymisinterpreted. Hence, the analyst should
concentrate the effort on collecting reliable results from the model through
proper settings of run controls and by using the proper statistical analyses.
Typical mistakes in interpreting simulation results include relying on short run
time, including biases caused by model initial conditions in the results, using
the results of only one simulation replication, and relying on the mean of the
response while ignoring variability inherent in response.

• The analyst should pay attention to communicating simulation inputs and out-
puts clearly and correctly to all parties of the simulation study. Also, the results
of the simulation model should be communicated to get feedback from parties
on relevancy and accuracy of the results.

• The analyst should avoid using wrong measures of performance when building
and analyzing the model results. Such measures should represent the kind of
information required for the analyst and the decision-maker to draw conclusions
and inferences on model behavior.

• The analyst should also avoid the misuse of model animation. In fact, ani-
mation is an important simulation capability that provides engineers and
decision-makers with a valuable tool of system visualization. Such capability
is also useful for model debugging, verification, and validation. However, some
may misuse model animation by relying solely on observing the model for
short-term, which may not necessarily reflect its long-term behavior.

• Finally, the analyst should select the appropriate simulation software tool that
is capable of modeling the underlying system and providing the required sim-
ulation results. Criteria for selecting the proper simulation software tool typi-
cally include price, modeling capabilities, learning curve, animation, produced
reports, input modeling, output analysis, and add-in modules. Simulation pack-
ages vary in their capabilities and inclusiveness of different modeling systems
and techniques such MHS, human modeling, statistical tools, animation.
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1.5 SIMULATION METHODOLOGY

A systematic approach should be followed when conducting simulation studies. The
simulation methodology consists of five main stages, as shown in Figure 1.13.

1.5.1 Identify Problem/Opportunity

Any simulation study should start by defining the problem to be solved and improve-
ment opportunity to be explored. System design challenges, operational problems,
and improvement opportunities are the main categories of simulation problems. The
simulation problem is defined in terms of study scope, study objectives, and model
assumptions:

1. The study scope includes a clear description of the system problem or oppor-
tunity, the overall goal of simulation, the challenges, limitations, and issues
with the current state. It starts by describing the system structure, logic, and
functionality. The problem can be structured using a schematic diagram or pro-
cess map to make it easy for the analyst to understand different aspects of the
problem.

Define problem or opportunity

Develop solution alternatives

Evaluate solution alternatives

Select best solution alternative

Implement the selected solution 

Figure 1.13 Systematic simulation approach. El-Haik, B., Al-Aomar, R. (2006). Repro-
duced with permission of John Wiley & Sons, Inc.
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2. Based on the problem scope, the simulation study objectives are set and
expressed in the most concise way possible. Defining quantifiable metrics
that measure the defined objectives provides the criteria and the mecha-
nism for solving the problem. For example, the overall goal might be to
increase customer satisfaction and the specific objectives might be to reduce
the customer waiting time and increase delivery speed. It is always better to
define quantifiable metrics that measure the defined objectives.

3. Model assumptions are defined to narrow the scope of the problem and focus
the study objectives. Most model assumptions can be related to the underlying
system conditions and constraints, data, external factors, and study time and
cost.

1.5.2 Develop Solution/Improvement Alternatives

Once a problem or an opportunity has been identified, solution alternatives can be
proposed and developed. Defining the set of solution alternatives is approached
by exploring the solution domain and listing the potential solution methods. Such
alternatives are aimed to define the parameter setup, structural changes, and logic
necessary to meet the problem objectives without violating defined constraints. The
analyst should be able to pinpoint the differences among solution alternatives. Tables,
graphs, and summary sheets can be used to present and compare the developed
solution alternatives. The following needs to be considered when developing solution
alternatives:

1. Simulation flexibility facilitates idea generation, brainstorming, and creative
problem-solving. Through the close-to-reality representation of the system,
the model can be used to observe the system behavior and predict the perfor-
mance at each solution alternative.

2. The generated ideas are transformed into a set of solution alternatives. The
feasibility of each alternative is checked using the model combined with
cost-benefit analysis. Each feasible solution is structured in terms of a concise
and specific plan that is aimed at making the change required to eliminate
the problem or improve system performance.

1.5.3 Evaluate Solution Alternatives

At this stage, the selected set of solution alternatives is evaluated based on the
defined objectives and ranked based on decision criteria. This includes evaluating the
set of defined performance measures at each solution alternative. Simulation plays
a primary role in performance evaluation under complex, dynamic, and stochastic
behavior.

Defining a set of performance criteria includes providing the proper quantitative
metrics that measure various aspects of the system performance. This includes mon-
etary criteria such as cost, profit, and rate of return. This also includes technical
and operational criteria such as throughput, effectiveness, and delivery speed. For
example, in a manufacturing system model, system throughput is a function of buffer
sizes, machines cycle times and reliability, conveyor speeds, and so on. In addition to
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the simulation capability of flexible programming, model counters, tallies, and statis-
tics provide the analyst with a variety of techniques to track performance measures.
Some of these criteria can be taken at a system-level such as throughput, lead-time,
unit cost, and inventory level. Others can be assessed at the process or operation level
such as utilization, effectiveness, and reliability. Once the set of performance mea-
sures is defined, solution alternatives are then compared and the alternative with best
performance is selected.

1.5.4 Select the Best Alternative

In this stage, the best solution or improvement alternative is selected based on the
simulation evaluation (values of performance measures and the overall performance).
This may involve comparing the performance of solution alternatives based on mul-
tiple objectives, establishing a tradeoff among criteria, and forming an overall value
function.

If the comparison is made based on a single objective, the alternative with best
performance can be directly selected. In case multiple performance measures are
used, multi-criteria decision-making (MCDM) techniques such as goal programming
(GP) and analytical hierarchy process (AHP) are used to support the multi-criteria
decision. Such methods are based on both subjective and objective judgments of
a decision-maker or a group of experts in weighting decision criteria and ranking
solution alternatives. An overall utility function (often referred to as a multi-attribute
utility function, MAUF) is developed by combining criteria weights and performance
evaluation. MAUF is used to provide an overarching utility score to rank solution
alternatives. Statistical comparative analysis and hypothesis testing are also used to
compare solution alternatives. The selected solution is then recommended for imple-
mentation in the real-world system.

1.5.5 Implement the Selected Alternative

Finally, the selected solution alternative is considered for deployment. Depending on
the nature of the problem, implementation preparations are often taken prior to the
actual implementation. As with any other project, implementing the solution recom-
mended by the simulation study is performed in phases. PM techniques are often used
to structure the time frame for the execution plan and allocate the required resources.
Themodel can be used as a tool for guiding the implementation process at its different
stages.

1.6 STEPS IN A SIMULATION STUDY

This section presents a procedure for conducting simulation studies in terms of a
step-by-step approach. This procedure is a detailed translation of the systematic sim-
ulation approach presented in Figure 1.13. The details of these steps may vary from
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one analyst to another based on the nature of the problem and the simulation soft-
ware used. However, the building blocks of the simulation procedure are typically
common among simulation studies. Figure 1.14 shows a flowchart of the step-by-step
simulation procedure.

1.6.1 Problem Formulation

The simulation study should start by a concise definition and statement of the under-
lying problem. The problem statement includes a description of the situation or the
system of the study and the problem that needs to be solved. Formulating the problem
in terms of an overall goal and a set of constraints provides a better representation
of the problem statement. A thorough understanding of the elements and structure of
the system under study often helps in developing the problem statement.

Formulating a design problem includes stating the overall design objective and the
constraints on the design process. For example, the goal might be to design a MHS
that is capable of transferring a certain item from point A to point B. The constraints
on the design process may include certain throughput requirements, budget limita-
tions, unit load capacity, path inclination and declination, and so on. Thus the design
problem is formulated such that the defined goal is met without violating any of the
defined constraints.

Similarly, formulating a problem in an existing system includes stating the overall
problem-solving objective and the constraints on the proposed solution. For example,
the problem might be identified as a drop in system throughput by a certain per-
centage. Hence, the simulation goal is set to boost the system throughput to reach a
certain target. The constraints on the proposed solution may include limited capacity
of workstations, conveyor speeds, number of operators, product mix, budget limita-
tions, and so on. Thus the problem is formulated such that the defined goal is met
without violating any of the defined constraints.

Finally, formulating an improvement problem may include stating the overall
improvement objective in terms of multiple and often competing goals while
meeting process constraints. For example, the first goal might be to reduce the
manufacturing lead-time (MLT) by a certain percentage in order to apply lean
manufacturing principles. The second goal may include meeting certain throughput
requirements. Both goals are often subject to a similar set of process constraints such
as budget limitations, variations in manufacturing operations, inventory capacity,
flow requirements, and so on. Thus the improvement problem is formulated such
that the two defined goals are met without violating any of the defined constraints.

1.6.2 Setting Study Objectives

Based on the problem formulation, a set of objectives can be assigned to the simula-
tion study. Such objectives represent the criteria through which the overall goal of the
study is achieved. Study objectives simply indicate questions that should be answered
by the simulation study. Examples include testing design alternatives for plant oper-
ations, studying the effects of using trucks rather than rail system in a supply chain,
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Figure 1.14 The simulation procedure. El-Haik, B., Al-Aomar, R. (2006). Reproduced with
permission of John Wiley & Sons, Inc.
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and so on. Differently in a call center, the objective could be to observe the duration
of routing calls, and so on.

Specifying study objectives serves various purposes. First, we can decide if sim-
ulation is the right tool to solve the underlying problem. Do we have enough data
to determine metrics for the defined objectives? Can we use analytical methods to
answer the questions raised? Is the software tool capable of presenting and analyzing
study requirements so that the study objectives are achieved? Such questions can be
better answered by unambiguously stating the objectives of the simulation study.

In terms of modeling, model elements and model logic are selected and designed
to provide appropriate measures of performance that quantify the study objectives.
For example, to meet study objectives, an accumulating conveyor is used as a MHS.
Also, statistics that represent throughput, lead-time, delays, number of carriers used,
are tracked in the model over time to accumulate the required data at the end of the
simulation run. Specifying study objectives provides a clear vision for designing and
analyzing model outputs so that the raised questions are answered by the simulation.

1.6.3 Conceptual Modeling

Developing a conceptual model is the process throughwhich themodeler abstracts the
structure, functionality, and essential features of the real-world system into a struc-
tural and logical representation that is transferable into a simulationmodel. Themodel
concept can be a simple or complex graphical representation such as a block diagram,
a flowchart, or a process map that depicts key characteristics of the simulated system
such as inputs, elements, parameters, logic, flow, and outputs. The conceptual model
should be eventually programmable and transferable into a simulation model using
available simulation software tools. Thus, a successful model concept is one that takes
into consideration the method of transferring each abstracted characteristics, building
each model element, and programming the conceptual logic using the software tool.

The model concept is developed taking into consideration the formulated problem
and the objectives of the simulation study. Figure 1.15 shows the requirements of
conceptual modeling. Study objective is the main factor that facilitates the structure
of the conceptual model and the level of detail to be used in the model.

The art of conceptual modeling also requires system knowledge and model build-
ing skills. The modeler starts by establishing a thorough understanding of the sim-
ulated system whether it is a new system or an existing one. The modeler studies
system inputs, elements, structure, logic, flow, and outputs and abstracts the overall
structure and the interrelationships of structure elements into a conceptual model.

Themodel concept is presented considering the components and capabilities of the
simulation environment. For example, developing a concept that includes a power and
free conveyor system should consider whether there is a capability for modeling such
system in the used simulation software tool. Key parameters of system elements are
also specified as a part of model concept. For example, a concept of using a conveyor
system to transfer entities from point A to point B should include parameters of con-
veyor type, speed, reliability, and capacity. Such parameters guide data collection and
element selection.
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Figure 1.15 Developing a model concept. El-Haik, B., Al-Aomar, R. (2006). Reproduced
with permission of John Wiley & Sons, Inc.

1.6.4 Data Collection

Simulation models are data-driven computer programs that receive input data, exe-
cute a designed logic, and produce certain outputs. Hence, data collection step is a key
component of any simulation study. Simulation data can be, however, collected in par-
allel to building the model using the simulation software. This is recommended since
data collection may be time-consuming in some cases and building the model struc-
ture and designing model logic can be independent of model data. Default parameters
and generic data can be used initially until the system data is collected.

The quality of data used in the model drives the overall model quality and validity.
It also impacts the accuracy of the model results and collected statistics. Hence, the
term “garbage-in-garbage-out” or GIGO is often common among engineers. For a
model to be representative, it has to be driven by reliable data in terms of data integrity,
accuracy, and comprehensiveness.

Data elements required for constructing a simulation model are often determined
based on the model concept, model structure, and the nature and type of model out-
comes and statistics to be collected. For example, typical input data collected for
modeling a bank operation includes customer inter-arrival time and the service time
distributions.

Depending on the nature of the simulation study,model data is collected by review-
ing historical data, observing and monitoring system operations, or using benchmark
data assumptions. The three types of data collected in model development are shown
in Figure 1.16.

Historical data is often used when modeling existing systems that have been in
operation for a certain time. Examples of historical data include actual production
data, maintenance data, inventory records, customer feedbacks, weekly and monthly
reports on operations performance, and so on. Statistical methods of input modeling
(discussed in Chapter 8) such as descriptive statistics, removing outliers, fitting data
distributions, and so on play an important role in analyzing historical data.
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Figure 1.16 Collecting model data. El-Haik, B., Al-Aomar, R. (2006). Reproduced with
permission of John Wiley & Sons, Inc.

In case historical data is not available for a sufficient period of time or is not rep-
resentative of the current system, the actual performance of system can be observed
to collect pertinent data. Time studies using a stopwatch or predetermined time stan-
dards (MTM, MOST, MODAPST, etc.) are common data collection methods in this
regard. A stopwatch time study uses a standard form to collect data and starts by mon-
itoring the system behavior. System monitoring includes watching the operation of a
certain system element, understanding its functionality, and deciding on the param-
eters to be collected and the times of collecting data. The collected data should be
statistically representative and should be distributed to cover the whole spectrum of
system operation. Selecting the appropriate sample size and times of taking observa-
tions are essentials to obtain representative data.

Finally, when no historical data is available and it is not permissible to collect
data using time studies, simulation data may be benchmarked or assumed. Educated
guesses, benchmark data, and theoretical statistical models can be used to develop the
data required for simulation. This often occurs when modeling new systems and test-
ing proposed design alternatives. Experience in both modeling and system analysis
often equips the simulation analyst with the knowledge and skill that is essential to
provide educated guesses of different model data. Data of a similar business or man-
ufacturing process can also be used in the model at least as a starting point. Finally,
theoretical statistical distributions with estimated parameters can be used for model
data. All types of assumed data are subject to modification and alteration as the model
building progresses and more insight is gained into model behavior.

1.6.5 Model Building

Data collection and model building often consume the majority of the time required
for completing a simulation study. To reduce this time, the modeler should start build-
ing the simulation model while data is being collected. The conceptual model can be
used to construct the computer model using assumed data until the collected data
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Figure 1.17 Model building procedure. El-Haik, B., Al-Aomar, R. (2006). Reproduced with
permission of John Wiley & Sons, Inc.

become available. The overlap between model building and data collection does not
impact the logical sequence of the simulation procedure. Constructing model com-
ponents, flow of entities, and logic depends mostly on the model concept and in most
cases is independent of model data. Once the model is ready, model input data and
parameter settings can then be inserted into the model. Also, since a large portion of a
simulation study is often spent in collecting model data, building the model simulta-
neously reduces significantly the overall duration of the simulation study and provides
more time for model analysis and experimentation.

There is no standard procedure for building a simulation model. The procedure
is often based on the modeler’s approach and on the simulation software tool used.
However, a generic procedure for building a simulation model effectively is expected
to include key basic steps. This procedure is shown in Figure 1.17.

The model building procedure may start by importing a computer aided design
(CAD) file of the system layout especially of manufacturing systems. The CAD file is
a 2D or 3D layout file developed in any commercial drafting and design software tool
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such as AutoCAD™. Although the layout has no impact on model performance, it is
a useful graphical representation of the system that provides realistic system anima-
tion, especially the 3D layout. Because of the large size of 3D files, most simulation
models are built on a 2D layout. The 2D layout provides locations and spaces for dif-
ferent system elements such as machines, pieces of equipment, conveyors, storage,
and load/unloading decks. It also provides a physical reference to the entities’ flow
by showing physical system elements such as aisles, walkways, walls, empty spaces,
and offices. Thus, when running the model, the entities’ flow between different model
elements will match the flow of parts or customers in the real-world system.

Different model elements and components are built using the set of modules or
building blocks defined in the simulation software selected for the study. Examples
include resources or machines, queues or buffers, conveyors, loads or parts, and so
on. Simulation tools provide built-in, ready-to-use, and drag-and-drop modules of
such components with some graphical representation. Constructing a model compo-
nent includes selecting the simulation element that best represents the component
and locating the element on its actual location in the system CAD layout without
connecting them.

Elements’ interrelationships, decision points, and entities’ flow are defined by
developing the model logic. Depending on the simulation tool used, the model logic
can be developed by defining input and output routing rules at each simulation ele-
ment or the model logic can be written and debugged in a certain editing environment,
or a combination of both. Although most new simulation software tools strive to
reduce the programming effort, writing code is still necessary to implement the logic
in most models.

Once the model logic is developed, one can start running the model. However,
the model performance and results may not reflect the behavior of the system of
interest without inserting representative data into the model and setting the param-
eters of different system components. Such data should be collected while the first
three steps in the model building procedure are executed. As the model data become
available, we start inserting such data in the model following the instructions of the
simulation tool used. This is usually an easy and quick step in the model building
procedure.

The last step in building a simulation model is to add the animation and graphical
representations of model complements and surrounding environment. Examples may
include developing an animation that reflects a plant environment, a banking sys-
tem, a restaurant, and so on. Although animation does not really add to the statistical
quality simulation results, it greatly helps in model verification and validation. It is
also a great selling and presentation tool, especially if developed with 3D graphics.
Some simulation environments allow only for 2D or 21

2
D graphical representation.

In addition to providing a graphics editing environment, simulation software tools
also include libraries of ready-to-use graphics that suit different simulated systems
for both manufacturing and services applications.
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1.6.6 Model Verification

Model verification is the quality control check that is applied to the built simulation
model. Like any other computer program, the simulationmodel should perform based
on the intended logical design used in building the model. Although model logic can
be defined using different methods and can be implemented using different program-
ming techniques, the execution of the logic when running the model should reflect
the way the programmer or the modeler has initially designed. Different methods
are, therefore, used for debugging logical (programming) errors as well as errors in
inputting data and setting model parameters. Corrected potential code and data dis-
crepancies should always be verified by carefully observing the changes in model
behavior.

To verify a model, we simply check if the model is doing what it is supposed to
do. For example, does the model read the input data properly? Does the model send
the right part to the right place? Does the model implement the defined production
schedule? Do customers in the model follow the defined queuing discipline? Does
the model provide the right output? And so on. Other verification techniques include
applying rules of common sense, watching the model animation periodically during
run time, examining model outputs, and asking another modeler to review the model
and check its behavior. The observations made by other analysts are valuable since
the model builder will be more focused on the programming details and less focused
on the implication of different programming elements. In cases where model logic is
complex, more than one simulation analyst may have to work on building the model.

1.6.7 Model Validation

Model validation is the process of checking the accuracy of the built model represen-
tation to the simulated real-world system. It is simply about answering the following
question: does the model behave similarly to the simulated system? Since the model
will be used to replace the actual system in experimental design and performance
analysis, can we rely in its representation of the actual system?

Knowing that the model is only an approximation of the real-world system, key
characteristics of the actual system behavior should be captured in the model, espe-
cially those related to comparing alternatives, drawing inferences, and making deci-
sions. Hence, necessary changes and calibrations that are made to the model in order
to better represent the actual system returns the modeler to the model concept. The
model concept represents the modeler’s abstraction of the real-world system struc-
ture and logic. Thus, if the model was not fully valid, such abstraction need to be
enhanced in the model concept and then translated into the simulation model.

Several techniques are usually followed by modeler to check the validity of the
built model before using it for such purposes. Examples include checking the data
used in the model and comparing it to that of the actual system data, validating the
model logic in terms of flow, sequence, routing, decisions, scheduling, and so on to
that of the real-world system, and matching the results of the model statistics to those
of actual system performance measures, and so on.
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Cross validation using actual system results and running certain what-if scenarios
can be also used to check model validity. For example, the last year’s throughput data
can be used to validate the throughput number produced by the model for the same
duration and under similar defined conditions. We can also double the cycle time of a
certain operation and see if the produced system throughput is impacted accordingly
or if the collected MLT reflects this increase in cycle time.

1.6.8 Model Analysis1

Having a verified and validated simulation model is a great opportunity to analysts
since it provides a flexible platform to run experiments and apply various types of
engineering analyses effectively. With the latest advances in CPU speed and capacity,
even large-scale simulation models of intensive graphics can be run for several repli-
cations in a relatively short time. Hence, it takes only a few minutes to run multiple
simulation replications and for long periods of time in most simulation environments.

As shown in Figure 1.18, model analysis often includes statistical analysis, exper-
imental design, and optimization search. The objective of such methods is to ana-
lyze the performance of the simulation model, compare the performance of proposed
design alternatives, and provide best model structure and parameter settings that lead
to best level of performance. Statistical analyses include representing performance
with descriptive statistics such as mean, variance, and confidence intervals. It also
includes performing different statistical tests for hypothesis testing and comparative
analysis. Experimental design with simulation includes conducting a partial or full
factorial design of experiments (DOEs) to provide best settings to model control
variables. Finally, search algorithms include the application of optimization search
methods such as exhaustive search, genetic algorithm, simulation annealing, and tabu
search to optimize a selected objective function.

The speed and flexibility of the simulation model also facilitate conducting experi-
mental design and running optimization algorithms. Also, the availability of different
methods and analyses in commercial simulation software tools facilitates the applica-
tion of output analyses. Most full versions of simulation packages are equipped with
modules for statistical analyses and add-ins of experimental design and optimization
methods.

Statistical analyses Experimental design Search algorithms

Model analysis

Figure 1.18 Continuous improvement with simulation. El-Haik, B., Al-Aomar, R. (2006).
Reproduced with permission of John Wiley & Sons, Inc.

1Chapter 9 provides further details on analyzing simulation outputs
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1.6.9 Study Documentation

The final step in a simulation study is to document the study and report its results.
Proper documentation is crucial to the success of a simulation study. The simulation
process often includes communicating with many people, writing complex logic,
encountering enormous amount of data, conducting extensive experimentation,
and going through several progress reviews and milestones. Thus, without proper
documentation, the analyst loses track and control of the study and can neither
deliver the required information nor meet the study expectations. This often results
in an inaccurate simulation model with poor results, inability to justify model
behavior and explain model results, and losing confidence in study findings and
recommendations.

Documenting the simulation study is the development of a study file that includes
the details of each simulation step. Comprehensive documentation of a simulation
study comprises three main elements: detailed documentation of the simulation
model, the development of an engineering simulation report, and the presentation of
the simulation results to customers and partners of the simulation project. Figure 1.19
presents the three elements of documenting a simulation study.

The first element in documenting the simulation study includes the documenta-
tion of the simulation model. This includes documenting both the concept model and
the simulation program. Documenting model concept includes documenting the sys-
tem process map, flowcharts, block diagrams and sketches that explain the model
concept, model elements, modeling approach, and model logical design. Simula-
tion model documentation includes a description of model structure, program details
and flowchart, code and routines explanation using within-code comments and notes,
and an explanation of the applied scheduling and sequencing rules, routing rules, and
the decision-making process followed at decision points within the model. Model
reporting also includes a statement of model assumptions and a description of model
inputs and outputs. By reviewing such documents, we should be able to understand
how the model reads inputs, processes the designed logic, uses available simulation
elements, and provides the required outputs. Such documentation facilitates mak-
ing model changes, explaining data used in the model, debugging code and logic,
understanding model behavior, and interpreting model results.

The major deliverable of the simulation study is the development of a simulation
report. This includes a formal engineering report and supplemental materials of the

Model concept Simulation program

Model documentation

Engineering report Supplements

Simulation report

Results summary Animation

Results presentation

Study documentation

Figure 1.19 Documenting a simulation study. El-Haik, B., Al-Aomar, R. (2006). Repro-
duced with permission of John Wiley & Sons, Inc.
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• The simulated system

A.Background

B.System description

C.System structure

• The simulation problem

A.Problem formulation

B.Problem assumptions

C.Study objectives

• The simulation model

A.Model structure

B.Model logic

C.Model inputs

D.Model assumptions

• Simulation results

A.Experimental design

B.Results analysis

C.Results summary

• Study conclusion

A.Study findings

B.Study recommendations

• Study supplements

A.Drawings and graphs

B.Input data

C.Output data

D.Experimental design

E.Others

Figure 1.20 Elements of a simulation report.

simulation process. Such a report is the communicationmedia between the simulation
analyst and the other parties involved in the simulation study. Some of those parties
may not even see the model or talk to the simulation analyst; hence the report should
be comprehensive, unambiguous, and understandable by people of various skills and
backgrounds.

The elements of a formal simulation report include description of the underly-
ing system, formulation of the simulation problem, a statement of study objectives
and assumptions, sources of model data, a description of model structure, and sum-
mary of simulation results, findings, conclusions, and recommendations. Supplement
materials include the data inputs used, system and model graphs, sketches out and
drawings, details of experimental design and output analysis, and a printout of sim-
ulation results. It is also common among simulation engineers to provide a one-page
summary of key information provided by the simulation study. This kind of executive
review provides concise and focused information for decision-makers, managers, and
firm executives who may not be interested in the details of model inputs, structure,
and results analysis. Figure 1.20 shows elements of a simulation report.
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The simulation study is often concluded by presenting the simulation results to
customers, managers, and different parties of the simulation project. Such presen-
tation often includes a summary of the simulation results (summary of study steps,
results and findings, conclusions, and recommendations). The presentation should
also include running animations, movies, or snapshots of the simulation model at dif-
ferent situations. Such animations help explain the study results and aid the analyst in
selling proposed design, comparing design alternatives, and convincing management
of the viability of proposed solutions and plans of actions. Communication and pre-
sentation skills of the simulation analyst play a major role in developing a successful
presentation and gainingmanagerial support to implement the recommendation of the
simulation study. Chapter 11 provides more in-depth explanation of the simulation
project steps as they relate to the success of a simulation project.

1.7 SIMULATION SOFTWARE

Simulation software tools are common nowadays among analysts and engineers in
various types of applications and for different purposes. The major benefit simulation
packages provide to practitioners is the capability of dynamic systemmodeling under
close-to-real-world conditions. Processes of transactional nature in both manufactur-
ing and services often behave in a complex, dynamic, and stochastic manner. Such
capability, therefore, allows analysts to better express new concepts and designs for
transactional processes, measure process performance with time-based metrics, con-
duct statistical analyses to capture variability, and improve/optimize new and current
systems.

Indeed, many simulation software tools were initially built by practitioners
to model some particular real-world systems such as manufacturing systems,
health-care systems, supply chain systems. They were built from entities and
processes that mimic the objects and activities in the real system. To further meet the
needs of practitioners and engineers, simulation vendors developed and integrated
modules into their software products to simplify model building, facilitate model
customization, allow for the creation of impressive animation, and enable analysts to
conduct statistical analyses and run optimization searches. Some of these modules
include Six Sigma definitions and calculations, lean manufacturing measures, and
provide links to spreadsheet and statistical software such as MINITAB to directly
run experimental designs and output analyses.

The spectrum of simulation software currently available ranges from procedural
languages and simulation languages to special “simulators.” The vast amount of sim-
ulation software available can be overwhelming for the new users. Common software
packages for process simulation include Arena, AutoMod, WITNESS®, Simul8,
Enterprise Dynamics, and ProModel. The WITNESS® simulation package in partic-
ular will be the focus of this book because of its simple-to-understand and effective
features as well as its popularity. In addition, WITNESS® includes modules for Six
Sigma calculation and optimization as well as a direct link to theMINITAB statistical
package.



SIMULATION SOFTWARE 35

1.7.1 WITNESS® Simulation Software

WITNESS® is one of the leading software products in the field of visual interactive
simulation. More than 6500 licenses have been sold worldwide across the manufac-
turing, service, and noncommercial sectors. The system is also widely used within
academia. A full range of maintenance, consultancy, and training services are pro-
vided for support of the software.

WITNESS® gives the power and flexibility to model any working environment,
simulates the implications of different business decisions, and is also designed with
simplicity in mind. Some of the key features of WITNESS® are:

• Simple and powerful building block design

• Modular and hierarchical structure

• Discrete event and Continuous simulation modeling capabilities

• Easy to use standard Windows PC implementation

• Interactive model-development user interface

• Powerful range of logic and control options

• Elements for discrete manufacture, process industries, business process
re-engineering (BPR), e-commerce, call centers, health, finance and govern-
ment.

• Comprehensive statistical input and reports

• Quality graphical displays

• Ease of linkage to databases (ORACLE, SQL Server, Access, etc), direct
spreadsheet links in/out, XML save formats, HTML reports, links from partner
BPM and CAD applications, and more

The WITNESS® family of simulation products includes the following:

• Manufacturing, Service, and Process editions of the simulation modeling
software

• Optional fully integrated 3D/VR views or Post Processed VR including head-
sets, powerwalls, and more

• Optional intelligent optimization of models—unique algorithms to find the best
answer fast

• Optional Developers’ edition (SIMBA) to develop simulation applications with
custom interfaces (includes a full object model, ActiveX displays, and special
viewer software)

• A range of Microsoft VISIO linked solutions

• A range of direct and graphical CAD linkage solutions

• HLA compliance options for military and other applications

WITNESS® 2008 is Lanner Group’s simulation software package. It is the cul-
mination of more than two decades’ experience with computer-based simulation.
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AWITNESS®model consists of a collection ofWITNESS® elements, together with
the control logic (rules and actions) that ensures that the model performs in the same
way as a real-life system.WITNESS® elements can be combined intomodules which
in turn can be used in other models.

WITNESS® provides elements that represent tangible objects:

• Elements that move through the model, being processed (parts and fluids).

• Elements that transport parts and fluids (conveyors, track, vehicles, carriers,
paths, and pipes).

• Elements that store parts and fluids (buffers and tanks).

• Elements that process parts and fluids (machines and processors).

• Elements that are predominantly associated with parts (machines, buffers, con-
veyors, tracks, vehicles, paths, and parts themselves) are grouped together as
discrete elements. Labor is also treated as a discrete element.

• Elements that are predominantly associated with fluids (tanks, processors,
pipes and fluids themselves) are grouped together as continuous processing
elements.

• Parts can contain fluids, and it is possible for machines to fill parts with fluids
and empty them again, so WITNESS® is capable of modeling on a volume
basis as well as on a quantity basis.

WITNESS® also provides elements that represent intangible objects:

• Elements that represent shift patterns (shifts).

• Elements that provide statistical variation (distributions).

• Elements that provide a source of data outside the model (files).

• Elements that are referenced in the model’s control logic (variables, attributes,
and functions).

Finally,WITNESS® provides elements that enhance the presentation of the model
and supply information about the state of the model while it is running:

• Charts

• Histograms

• Time series

1.8 SUMMARY

Basic concepts of simulation modeling include the system concept, model concept,
and simulation concept. Systems include inputs, entities, relationships, controls, and
outputs. System elements should be tuned toward attaining an overall system goal.
A system model is a representation or an approximation of the real-world system.
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Models can be physical, graphical, mathematical, and computer models. The goal
of modeling is to provide a cheaper, faster, and easier-to-understand tool for system
analysis, design, and improvement. Simulation is the art and science of mimicking the
operation of a real-world system on the computer. It is aimed at capturing complex,
dynamic, and stochastic characteristics of the real-world process, where other types
of models fall short. Based on the type of state variables, computer simulation models
can be discrete, continuous, or combined. They can also be deterministic or stochastic
based on randomness in the system. Finally, they can be static or dynamic based on
the changes of system state. The focus of this book is the DES models that represent
systems’ complex and stochastic behavior dynamically in terms of discrete and con-
tinuous state variables. DES is justified by its capability, software availability, and
wide spectrum of real-world applications. Simulation is an engineering methodology
for system design, problem-solving, and continuous improvement. The WITNESS®

simulation software is the particular focus of this book due to its simple yet compre-
hensive modeling capability and wide range of applications.

QUESTIONS AND EXERCISES

Several questions addressing the basic concepts of simulation modeling include the
system concept, model concept, and simulation, and how system thinking is applied
to: a factory, a clinic, and a restaurant

1. What is a system? What is a system model?

2. Mention three examples of a production system?

3. Mention three examples of a service system?

4. Identify the I–P–O to the system examples in questions 2 and 3.

5. Explain why the I–P–O flow is not sufficient to develop a sustainable system.
Address the I–P–O limitations of the system examples in questions 2 and 3.

6. Identify the G, RL, and C to the system examples in questions 2 and 3. Are these
systems now complete and can perform in a sustainable manner?

7. What is modeling? How does it differ from simulation?

8. Give three examples of physical models. Explain the limitations of these models
in real-world applications.

9. Give three examples of graphical models. Explain the limitations of these models
in real-world applications.

10. Give three examples of mathematical models. Explain the limitations of these
models in real-world applications.

11. What is the difference between product and process models?
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12. What are the advantages of using computer models? What are the limitations of
computer models?

13. What is simulation? What is computer simulation?

14. What are the elements of the simulation process? Which one is most critical?

15. What are the types of computer simulation models? Which type in particular is
more relevant to modeling production and business systems?

16. Distinguish between deterministic and stochastic systems using examples.

17. Distinguish between discrete and continuous systems using examples.

18. Distinguish between static and dynamic systems using examples.

19. Apply the discrete, stochastic, and dynamic characteristics to the example sys-
tems in questions 2 and 3.

20. Justify the use of simulation for modeling the example systems in questions 2
and 3.

21. Apply the simulation precautions to the example systems in questions 2 and 3.

22. Apply the simulation methodology to one of the example systems in questions 2
and 3.

23. Apply the step-by-step simulation procedure in Figure 1.14 to one of the example
systems in questions 2 and 3.

24. Distinguish between model verification and validation.

25. Explain the importance of documenting simulation studies.

26. Review three commercial simulation software and compare them based on:

a. Ease of use

b. Features

c. Animation

d. Applications

27. Visit WITNESS® software website and compare its features to simulation tools
in question 26.
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