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INTRODUCTION

1.1 INTEGER PROGRAMMING

A linear programming problem (LP) is a class of the mathematical programming
problem, a constrained optimization problem, in which we seek to find a set of values
for continuous variables (x;, x5, ..., X,,) that maximizes or minimizes a linear
objective function z, while satisfying a set of linear constraints (a system of
simultaneous linear equations and/or inequalities). Mathematically, an LP is
expressed as follows:

(LP) Maximize z:Zc_,x_/
J
subject to Zaﬁxj <b (i=12,...,m)
J
x; >0 G=1L12,...,n)

An integer (linear) programming problem (IP) is a linear programming problem in
which at least one of the variables is restricted to integer values. In the past two
decades, there has been an increasing use of an alternate term—mixed integer
programming problem (MIP)—for LPs with integer restrictions on some or all of
the variables. In this text, the terms IP and MIP may be used interchangeably unless
there is a chance of confusion. For clarity, we shall use the term pure integer
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4 INTRODUCTION

programming problem (or pure IP) to emphasize an IP whose variables are all
restricted to be integer valued.

The term “programming” in this context means planning activities that consume
resources and/or meet requirements, as expressed in the m constraints, not the other
meaning—coding computer programs. The resources may include raw materials,
machines, equipments, facilities, workforce, money, management, information tech-
nology, and so on. In the real world, these resources are usually limited and must
be shared with several competing activities. Requirements may be implicitly or
explicitly imposed. The objective of the LP/IP is to allocate the shared resources, and
responsibility to meet requirements, to all competing activities in an optimal (best
possible) manner.

The term “programming problem” is sometimes replaced by program, for short.
Thus, an integer programming problem is also called an integer program, and so are
mixed integer program, pure integer program, and so on. Mathematically, an MIP is
defined as

(MIP) Maximize z= z ¢jXj+ de)’k
J k

subject to Zaijxj + Zgikyk <b (i=12,...,m)
J k

x; >0 (j=1,2,....n)
ye=0,1,2,... (k=1,2,....p)

Note that all input parameters (c;, dy, jjy ik b;) may be positive, negative, or zero.
Using matrix notation, a mixed integer program may be expressed as

(MIP) Maximize z=c'x+d"y
subjectto Ax+Gy<b
x>0
y > Ointeger

where m = number of constraints

n=number of continuous variables

p =number of integer variables

= (¢;) is a row vector of n elements

d'= (dy) is a row vector of p elements

A = (a;) is an m X n matrix

G =(g;x) is an m X p matrix

b = (b;) is a column vector of m constants (or right-hand-side column, rhs)
X = (x;) is a column vector of n continuous variables
y = (yx) is a column vector of p integer variables
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All variables integer Pure All.mteger Binary Single constraint and
integer variables 0-1 (0-1)  [all parameters positive
. andn=0 ”1 integer
Mixed program
. program
integer 1
program
(MIP) All variables Linear Knapsack
continuous | program Single problem
andp=0 (LP) constraint and y
all parameters .
positive All .mteger
Relax all integer LP Integer variables 0-1
requirements Relaxation knapsack

FIGURE 1.1 A simple classification of integer programs.

When n =0, no continuous variables x are present and the MIP reduces to a pure
IP. When p =0, no integer-restricted variables y are present and the MIP reduces to a
linear program. An LP is also obtained by relaxing (or ignoring) the integer
requirements in a given MIP. Thus, the resulting LP is called the LP relaxation
(of a given IP). Unlike the above-mentioned LP that contains only variables x, the LP
relaxation contains both x and y variables and treats y as a vector of continuous
variables.

Aninteger program in which the integer variables are restricted tobe O or 1 is called
a0-1 (binary) integer program, or binary IP (BIP). A binary IP with a single < linear
constraint, whose objective function and constraint coefficients are all positive, is
called a knapsack (or backpack) problem. An IP with a single constraint and all
positive constraint coefficients is called an integer knapsack program, in which the
values of an integer variable are not restricted to O—1. In particular, an integer
knapsack program is a knapsack program if all integer variables are restricted to be 0
or 1. Figure 1.1 depicts the relationships between various classes of MIPs under
certain conditions. A box represents an IP class and an arrow represents the imposed
condition(s) leading to a subclass from a class. There are many more subclasses than
shown in this simple diagram, but the details of Figure 1.1 are adequate for this
introductory chapter.

1.2 STANDARD VERSUS NONSTANDARD FORMS

Throughout this text, a mixed integer program will be said to be in standard form if (1)
the objective function is maximized, (2) all the constraints are of < form, (3) each
integer variable is defined over consecutive integer numbers whose lower bound is 0
and upper bound infinity, and (4) each continuous variable is nonnegative with no
finite upper bound.

Any MIP that does not conform to the conditions (1)—(4) is considered to be in
nonstandard form, but may be converted to a standard one through simple mathe-
matical manipulations. For ease of presentation, we shall use the standard form for the
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remainder of the text, except for special purposes. The following are various
nonstandard forms that need to be converted:

¢ Minimization problem

e Inequality of > form

¢ Equation (equality constraint)

e Unrestricted variable (continuous or integer)

e Variable with a positive or a negative lower bound
e Variable with a finite upper bound

If a given problem is a minimization problem, then it may be converted to an
“equivalent” maximization problem. Two problems are considered equivalent if their
optimal solutions are the same. Consider the given problem,

Minimize Z = Z ¢x; + deyk
J k

To convert to a standard form, we multiply the given objective function by —1 and
change the minimization to the maximization as follows:

Maximize -z = — E cjxj— g diyr
7 %

For example, we convert minz’ =3x; — 2x, + 4x3 to max z= —3x; + 2x, — 4Xx3,
and the new objective value becomes z = —z.

If a given inequality is in > form, we then convert it to the standard < form
by multiplying the inequality by —1 and reversing the direction of the inequality
sign. For example, the inequality 6x; —5x; + 3x3>10 may be converted to
—6x1 + 5x, —3x3 < —10.

Converting an equation to the standard < form requires two steps: (1) replace the
equation by a pair of inequalities of opposite sense, and as before, (2) convert the
inequality of > form to the standard < form. For example, we first convert
—2x1 + 5x5 — 3x3 =15 to the following two inequalities: —2x; + 5x, —3x3 <15
and —2x; + 5x, — 3x3 > 15. We then convert the nonstandard inequality by multi-
plying it by —1 and reversing the sign of the inequality to get the second standard
inequality: 2x; — S5x, + 3x3 < —15.

If a continuous or an integer variable is unrestricted in sign (i.e., it can be negative,
positive, or zero), then we may replace an unrestricted variable by the difference of
two new variables, xj+ and X;, as follows:

= xF—xT T xm =
Xp=Xp =X XX 0

I

where X=X if x;>0
= (0, otherwise

X7 =—x;if x;<0

J
= (0, otherwise
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Note that the same variable ¢ may be used for other unrestricted variables. Thus,
only one variable is increased regardless of the number of unrestricted variables.

If a continuous or an integer variable, respectively, has a positive or negative lower
bound, say, /; or i, respectively, then it can be transformed to a new variable (say, x} or
¥}.) by substituting

/ /
X;=x;—l or yp=y—I

The transformed problem is equivalent to the original problem with a set of new
variables. After solving the transformed problem, the optimum solution in terms of
the original variables is recoverable from the above equations.

Recall that the upper bound of a continuous or an integer variable in the standard
form of IP is infinite. Thus, a continuous or an integer variable having a finite (value
of) upper bound needs to be transformed. However, the above substituting equation
cannot be used to get a standard (an infinite) upper bound because the new transformed
variable will still have a finite upper bound (why?). In this case, an upper bound
constraint, x; < u; or y, < uy, must be adjoined to the program. Basically, we treat a
lower or an upper bound as a simple constraint consisting of a single variable.

1.3 COMBINATORIAL OPTIMIZATION PROBLEMS

A combinatorial optimization problem (COP) is a discrete optimization problem in
which we seek to find a solution in a finite set of solutions that maximizes or minimizes
an objective function. This type of problem usually arises in the selection of a finite set
of mutually exclusive alternatives. These qualitative alternatives may be quantified by
the use of discrete variables. Usually, the set of all possible solutions can be
enumerated and their associated objective values can be evaluated to determine an
optimum solution. But unfortunately, the number of solutions by complete enumera-
tion is usually too huge even for a moderate-sized problem.

The COP is closely related to the IP in that most, if not all, COPs can be formulated
as 0—1 integer programs. Well-known examples of COP include the classical assign-
ment problem and traveling salesman problem (TSP). The assignment problem may
be applied, for example, to assign # jobs to n workers in a most efficient manner so that
each job is assigned to one and only one worker, and vice versa. The TSP originates
from a salesman who starts from a home city to visit n — 1 cities so that each city is
visited once and only once and then returns to the home city with a minimum travel
distance. The assignment problem is “well solved” because any optimum solution to
its LP relaxation is naturally integer. Moreover, there are special assignment algo-
rithms such as Hungarian algorithm that are available to solve the problem much
faster than the standard simplex method. This class of “well-solved (easy)” integer
programs will be discussed in more detail in Chapter 10.

It is “hard” to find an exact optimum solution to a traveling salesman problem
because of its combinatorial nature. Although there are many algorithms available for
finding an approximate solution, the state of the art for finding an exact solution is to
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formulate and solve it as a 0-1 (binary) integer program. Unfortunately, the
formulated model requires an enormous number of binary variables and constraints
even for a moderate-sized problem. Modeling combinatorial optimization problems
will be discussed in Chapters 5 and 6, and the solution methods to these problems will
be a main theme of Chapters 11-13.

1.4 SUCCESSFUL INTEGER PROGRAMMING APPLICATIONS

The authors believe that integer programming plays a key role in operations research,
an observation supported by analysis below. This textbook is grounded in theoretical
developments in IP over the past five decades, butis written in hope of bridging the gap
between academic developments in IP and modern OR practice.

Interfaces, a bimonthly journal publication of INFORMS, had published over 500
OR/MS application articles from 1979 to 2006, when we started writing this book. We
reviewed all these articles and surprisingly found that about 23% of them used integer
programming and that many of them were finalists of the annual Franz Edelman
Award competitions over the years.

We further identified 44 IP application articles in Interfaces that claimed enormous
savings in cost or increase in profit. Financial benefits cited were of a magnitude of
tens or hundreds of million dollars per year. In Table 1.1, these 44 applications are
classified by industry sector. They are transportation and distribution, manufacturing,
communication, military and government, finance, energy, and others. In this count,
the sectors of manufacturing and transportation and distribution tie for first place in
terms of most IP application papers (13 each), followed by the communication,
military and government, and finance sectors (4 articles each of three sectors). Within
the sectors, the airline industry had the most application papers (9 articles).

These 44 articles also are classified in Table 1.1 by problem/model type:
workforce/staff scheduling, transportation and distribution, supply chain manage-
ment, production planning, government services, financial services, project man-
agement, and others. In this count, workforce/staff scheduling problem has the most
papers (11 articles), followed by the transportation and distribution (10 articles), and
the supply chain management (5 articles).

1.5 TEXT ORGANIZATION AND CHAPTER PREVIEW

This text is organized into three parts: Part I Modeling, Part II Review of Linear
Programming and Network Flows, and Part III Solutions. Part I (Chapters 1-6)
includes areas of successful integer programming applications, systematic modeling
procedure, types of integer programming models, transformation of non-IP models,
automatic preprocessing for better formulation, and an introduction to combinatorial
optimization. Part II (Chapters 7-10) reviews algebraic—geometric concepts and
solution methods relating to LP and network flows that are needed for understanding
IP. Part IIT (Chapters 11-15) describes various solution approaches for large-scale IP
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and combinatorial optimization problems in addition to fundamentals of typical
software systems. Solution approaches include classical, branch-and-cut, branch-
and-price, primal heuristics, and Lagrangian relaxation. In Chapter 15, three popular
modeling languages and one solver are introduced. Answers to selected exercises
from each chapter appear in an appendix.

This chapter (a) defines the IP model and associated notation to be used in the text,
(b) classifies IP models and describes their relationships to linear and combinatorial
optimization models, (c) previews the contents of each chapter, and (d) categorizes
numerous successful IP applications arising in diverse industry/business sectors,
based on survey data collected from the articles published in Interfaces (a bimonthly
journal by INFORMS) 1979-2006, when we started writing this book.

Chapter 2 (a) explores the assumptions underlying the MIP mathematical model
and explains their physical interpretations, (b) provides a step-by-step procedure for
building a model from a given real-world problem, and (c) introduces fundamental
formulations for the most utilized types of MIP models that are identified from the
survey of successful applications described in this chapter. Seven assumptions
underlying the MIP problem are fully uncovered through a careful examination of
its mathematical anatomy. Some of these assumptions do not appear explicitly in
other texts of operations research and integer programming.

In Chapter 3, beyond the simple use of 0—1 variables discussed in Chapter 2, the
formulation power of 0-1 variables extends their ability to transform a variety of
optimization models into integer programs. Transformable optimization models are
identified and grouped together according to the types of decision variables, math-
ematical functions, and constraints. This chapter also describes the relation between
logical (Boolean) expressions and 0-1 formulations, in addition to modeling the
bundle pricing problem, which is a common business practice. These features appear
for the first time in any integer programming text.

Chapter 4 (a) defines and explains what is meant by better formulation of an IP
problem, (b) introduces several basic preprocessing techniques, for both general and
special problems, that can automatically transform a user-supplied formulation into a
better one, and (c) identifies primary preprocessing functions/areas that are covered
by most preprocessors of current IP software.

Chapter 5 begins with defining the class of COPs and ends with a discussion of the
computational complexity of a problem or an algorithm. Three classes of COPs are
discussed: set covering, partitioning, and packing; matching problems; and cutting
stock problems.

Chapter 6 is devoted to the best-known combinatorial optimization problem, the
TSP, and its many variations. More details on TSP applications are given, expanding
the discussion in this chapter. Solution approaches, which generally involve creating
constraints that prevent inclusion of subtours in the IP search for the optimal tour,
depend on whether the arcs connecting the nodes are one-way (asymmetric TSP) or
bidirectional (symmetric TSP).

Chapter 7 reviews the fundamentals of linear programming theory and network
flows that are essential to the understanding of the solution space and solution
methods to be discussed in Chapters 11-13.
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Chapter 8 reviews/introduces basic geometric concepts and terminology that are
essential to the understanding of the properties of the solution spaces and cutting
planes for both general and special IP problems. These concepts are prerequisites for
full understanding of the branch-and-cut method to be discussed in Chapter 12.

The modern methods for solving a large-scale integer program require the
optimization and reoptimization of a usually long sequence of LP relaxation
problems that in turn are often solved by a variety of simplex-based methods
(and/or an interior point method). Chapter 9 reviews four simplex-based methods
that serve as building blocks for solving integer programs. The simplex method
provides the foundation for optimizing a long sequence of LP relaxations. The
simplex method for upper-bounded variables is used for reducing the problem size by
implicitly handling the upper and lower bounds on variables (equivalent to single-
variable constraints). The dual simplex method is most effective for reoptimizing the
current optimum, after addition of constraints, without resolving the augmented LP
problem from scratch. The revised simplex method produces the same sequence of
bases as the simplex method, but depends on updating the basis inverse (m columns)
rather than the entire simplex tableau (n columns) in each iteration.

Chapter 10 (a) identifies a class of easy network optimization problems whose IP
formulations are solvable as LPs by simply ignoring the integer requirements, (b)
describes the sufficient conditions (or model structure) that characterize this class of
problems, and (c) introduces a more efficient algorithm than the ordinary simplex for
solving this class of network optimization problem.

Chapter 11 introduces three classical approaches for solving integer programs:
branch-and-bound, cutting plane, and group theoretic. Currently, these approaches are
not implemented in practice as stand-alone solvers. However, they are integrated parts
of amodern solution approach such as the branch-and-cut to be described in Chapter 12.

The recent advances in solving large-scale integer programs have been made
possible by great improvements in modeling, preprocessing, solution algorithms, LP
software, and computer hardware. We have already discussed modeling and pre-
processing. Chapter 12 addresses a modern solution approach known as the branch-
and-cut, in which a substantial portion of the discussion centers on the generation of
cuts that are useful for solving general and special integer programs.

In the previous chapter, branch-and-bound is generalized to include generation of
cuts or rows, hence the name branch-and-cut.In Chapter 13, branch-and-bound is first
generalized to include generation of columns by solving pricing problems, hence the
name branch-and-price, and then generalized to include columns and rows, hence the
name branch-and-price-and-cut. Basically, all these generalizations solve a sequence
of LP relaxations of a given IP. Branch-and-cut tightens the LP relaxations (or
polyhedra) by adding cuts or constraints (rows). Branch-and-price tightens the LP
relaxations by generating a subset of profitable columns associated with variables to
join the current basis. These columns are generated iteratively by solving subpro-
blems or pricing problems.

Chapter 14 introduces a variety of primal heuristic algorithms that can be used to
obtain a good solution or an approximate solution for an integer program or a
combinatorial optimization problem. Both classical and artificial intelligence (AI)
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heuristic algorithms are provided. The traveling salesman problem is used for the
purpose of illustration. This chapter also (a) describes various relaxation methods for
solving IP problems, (b) lists examples of IP model types to which the Lagrangian
relaxation approach is applied, (c) derives the associated Lagrangian dual problems
for both linear and integer programs, (d) provides efficient methods for solving the
Lagrangian dual, and (e) develops Benders’ decomposition algorithm for integer
programming.

Chapter 15 (a) provides some practical considerations when algorithms are
implemented in software, (b) describes the key components and features of a typical
software system, (c) introduces three commonly used modeling languages (AMPL®,
LINGO®, and MPL®) in more depth than earlier chapters, and (d) briefly describes
other modeling languages and systems.

1.6 NOTES

Section 1.1

General IP textbooks that are referenced in this text include Hu (1969), Garfinkel and
Nemhauser (1972), Zionts (1974), Taha (1975), Nemhauser and Wolsey (1988),
Parker and Rardin (1988), Salkin and Mathur (1989), and Wolsey (1998).

Introductory OR/MS textbooks that are referenced in this text include Wagner
(1975), Winston (1994), Hillier and Lieberman (2005), and Taha (2007).

Journals that are referenced include Interfaces, Operations Research, Manage-
ment Science, European Journal of Operational Research, IIE Transactions, Trans-
portation Science, Naval Research Logistics Quarterly, Journal of the Association
for Computing Machinery, Mathematical Programming, Discrete Applied Mathe-
matics, and SIAM Journal on Algebraic and Discrete Methods.

Many textbooks, like this one, use a maximization problem as a standard MIP,
while others use a minimization problem. In a minimization MIP, the standard
inequality constraint is of > form.

Section 1.2

Conversion from a nonstandard MIP to standard form is similar to that for linear
programs. For references of conversion techniques, see any introductory OR/MS
textbooks such as Winston (1994) and Hillier and Lieberman (2005).

Section 1.3

Some authors, for example, Parker and Rardin (1988), view discrete optimization
problems as a combination of integer programming and combinatorial
optimization problems. Literally speaking, a discrete optimization problem is an
optimization problem defined over discrete variables. However, a discrete variable is
different from an integer variable in that an integer variable may take on any
consecutive integral values, while a discrete variable may take on specified discrete
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values, consecutive or not, integer number or not—essentially what mathematicians
call a countable set. Thus, an integer variable is a discrete variable, but a discrete
variable may or may not be an integer variable. For example, both solution sets of ys
and y3, defined by Zs = {3,4,5,6,7} and Z; = {4, 6,7, 10}, respectively, are discrete
variables. But y; is not an integer variable, while variable ys is both an integer and a
discrete variable. In Chapter 2, we shall show how a discrete variable can be converted
to a set of binary (0-1) variables.

Section 1.4

INFORMS is a professional society that was founded through the merger of two
older societies: the former Operations Research Society of America (ORSA) and
The Institute of Management Science (TIMS).

Interfaces, a bimonthly journal publication of INFORMS, has published over 500
OR/MS application articles since 1971. All articles are available in both electronic
form and hard copy.

The Franz Edelman Award was founded in 1972 (initially under the name of “the
Annual International Management Science Achievement Award”). From 1975 to
1984 (the year in which the award name was changed to Franz Edelman Award), the
papers of the finalist and the winners were published in Interfaces in the last issue of
that year. From 1985 up to today, the first issue each year is dedicated to the finalist and
the winner(s) of the previous year. “The Edelman Award recognizes outstanding
implemented operations research that has had a significant, positive impact on the
performance of a client organization. The top finalist receives a $10,000 first prize”
(OR/MS Today).

The Daniel H. Wagner prize was founded in 1998. It “emphasizes the quality and
coherence of the analysis used in practice. Dr. Wagner strove for strong mathematics
applied to practical problems, supported by clear and intelligible writing. This prize
recognizes those principles by emphasizing good writing, strong analytical content,
and verifiable practice successes. The competition is held each year in the fall at the
INFORMS Annual Meeting” (see http://www2.informs.org/Prizes/WagnerPrize.
html for details). Papers of each year’s finalists are published in the fifth issue of
Interfaces of the following year.

1.7 EXERCISES

1.1 Read one of the successful application articles from the category of transporta-
tion and distribution published by INFORMS in Interfaces as shown in
Table 1.1. Do the following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints,
decision variables, and types of variables (continuous or integer, binary
or general).
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1.2-1.7 Do the same for each of the remaining categories: (1.2) communications,
(1.3) manufacturing, (1.4) energy, (1.5) military and government, (1.6)
finance, and (1.7) others.

1.8-1.14 Read one of the application articles from each of the following problem
types published in Interfaces, as given in Table 1.1: (1.8) project manage-
ment, (1.9) production planning, (1.10) workforce scheduling, (1.11)
transportation and distribution, (1.12) supply chain management, (1.13)
cutting stock, and (1.14) machine scheduling and sequencing. Do the
following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints,
decision variables, and types of variables (continuous or integer, binary
or general).

1.15-1.19 Transform each of the following nonstandard integer programs into a
standard form of IP defined in this text.

1.15 Minimize 3x;—11x+5x3+ x4
subjectto  x; +5x,—3x3+6x4 <7
—X1+X2+Xx3—2x4 >3

X1, X2, X3, X4 >0

1.16 Maximize —x;+5x2 4+ 2x3—7x4—X5
subjectto X, +x3+ x4 > 13
X1—Xy +2x4+2x5 < 4
X unrestricted in sign
X2, X4,X5 >0

X3Z—2

1.17 Maximize 7x;+2x; + x3—4x4
subjectto  2x;—x;+x3 < 10
X1 +x4 =12
X1,X2,%4 >0

X3ZO



20

1.18

1.19

Minimize

subject to

INTRODUCTION

—11x; +13x,—15x3
Xy +x3="7

xX1—x3 <3

X1 unrestricted in sign
X, > 5

x3>0

Maximize x|+ x>+ X3

subject to

—X1+x, > 8
X1—Xp+x3 <2
X1, X3 > 0

XQSIS



