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1
INTRODUCTION

1.1 INTEGER PROGRAMMING

A linear programming problem (LP) is a class of the mathematical programming

problem, a constrained optimization problem, in which we seek to find a set of values

for continuous variables (x1, x2, . . . , xn) that maximizes or minimizes a linear

objective function z, while satisfying a set of linear constraints (a system of

simultaneous linear equations and/or inequalities). Mathematically, an LP is

expressed as follows:

ðLPÞ Maximize z ¼
X

j

cjxj

subject to
X

j

aijxj � bi ði ¼ 1; 2; . . . ;mÞ

xj � 0 ðj ¼ 1; 2; . . . ; nÞ

An integer (linear) programming problem (IP) is a linear programming problem in

which at least one of the variables is restricted to integer values. In the past two

decades, there has been an increasing use of an alternate term—mixed integer

programming problem (MIP)—for LPs with integer restrictions on some or all of

the variables. In this text, the terms IP and MIP may be used interchangeably unless

there is a chance of confusion. For clarity, we shall use the term pure integer
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programming problem (or pure IP) to emphasize an IP whose variables are all

restricted to be integer valued.

The term “programming” in this context means planning activities that consume

resources and/or meet requirements, as expressed in the m constraints, not the other

meaning—coding computer programs. The resources may include raw materials,

machines, equipments, facilities, workforce, money, management, information tech-

nology, and so on. In the real world, these resources are usually limited and must

be shared with several competing activities. Requirements may be implicitly or

explicitly imposed. The objective of the LP/IP is to allocate the shared resources, and

responsibility to meet requirements, to all competing activities in an optimal (best

possible) manner.

The term “programming problem” is sometimes replaced by program, for short.

Thus, an integer programming problem is also called an integer program, and so are

mixed integer program, pure integer program, and so on. Mathematically, an MIP is

defined as

ðMIPÞ Maximize z ¼
X

j

cjxj þ
X

k

dkyk

subject to
X

j

aijxj þ
X

k

gikyk � bi ði ¼ 1; 2; . . . ;mÞ

xj � 0 ð j ¼ 1; 2; . . . ; nÞ
yk ¼ 0; 1; 2; . . . ðk ¼ 1; 2; . . . ; pÞ

Note that all input parameters (cj, dk, aij, gik, bi) may be positive, negative, or zero.

Using matrix notation, a mixed integer program may be expressed as

ðMIPÞ Maximize z ¼ cTxþ dTy

subject to AxþGy � b

x � 0

y � 0 integer

where m¼ number of constraints

n¼ number of continuous variables

p¼ number of integer variables

cT¼ (cj) is a row vector of n elements

dT¼ (dk) is a row vector of p elements

A¼ (aij) is an m� n matrix

G¼ (gik) is an m� p matrix

b¼ (bi) is a column vector of m constants (or right-hand-side column, rhs)

x¼ (xj) is a column vector of n continuous variables

y¼ (yk) is a column vector of p integer variables
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When n¼ 0, no continuous variables x are present and the MIP reduces to a pure

IP. When p¼ 0, no integer-restricted variables y are present and the MIP reduces to a

linear program. An LP is also obtained by relaxing (or ignoring) the integer

requirements in a given MIP. Thus, the resulting LP is called the LP relaxation

(of a given IP). Unlike the above-mentioned LP that contains only variables x, the LP

relaxation contains both x and y variables and treats y as a vector of continuous

variables.

An integer program inwhich the integer variables are restricted to be 0 or 1 is called

a 0–1 (binary) integer program, or binary IP (BIP). A binary IP with a single� linear

constraint, whose objective function and constraint coefficients are all positive, is

called a knapsack (or backpack) problem. An IP with a single constraint and all

positive constraint coefficients is called an integer knapsack program, in which the

values of an integer variable are not restricted to 0–1. In particular, an integer

knapsack program is a knapsack program if all integer variables are restricted to be 0

or 1. Figure 1.1 depicts the relationships between various classes of MIPs under

certain conditions. A box represents an IP class and an arrow represents the imposed

condition(s) leading to a subclass from a class. There are many more subclasses than

shown in this simple diagram, but the details of Figure 1.1 are adequate for this

introductory chapter.

1.2 STANDARD VERSUS NONSTANDARD FORMS

Throughout this text, amixed integer programwill be said to be in standard form if (1)

the objective function is maximized, (2) all the constraints are of � form, (3) each

integer variable is defined over consecutive integer numbers whose lower bound is 0

and upper bound infinity, and (4) each continuous variable is nonnegative with no

finite upper bound.

Any MIP that does not conform to the conditions (1)–(4) is considered to be in

nonstandard form, but may be converted to a standard one through simple mathe-

matical manipulations. For ease of presentation, we shall use the standard form for the

Relax all integer  

 requirements 

All integer 
variables 0–1 

Pure 
integer 

program

Linear
program

(LP)

Mixed
integer 

program
(MIP)

All variables integer 

and n = 0 

Binary  
(0–1)

integer
program

Integer 
knapsack 

All integer 
variables 0–1 

Single
constraint and
all parameters 
positive

All variables 
continuous

and p = 0 

LP 
Relaxation 

Single constraint and
all parameters positive 

 Knapsack 
problem

FIGURE 1.1 A simple classification of integer programs.
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remainder of the text, except for special purposes. The following are various

nonstandard forms that need to be converted:

. Minimization problem

. Inequality of � form

. Equation (equality constraint)

. Unrestricted variable (continuous or integer)

. Variable with a positive or a negative lower bound

. Variable with a finite upper bound

If a given problem is a minimization problem, then it may be converted to an

“equivalent”maximization problem. Two problems are considered equivalent if their

optimal solutions are the same. Consider the given problem,

Minimize z0 ¼
X

j

cjxj þ
X

k

dkyk

To convert to a standard form, we multiply the given objective function by �1 and

change the minimization to the maximization as follows:

Maximize �z0 ¼ �
X

j

cjxj�
X

k

dkyk

For example, we convert min z0 ¼ 3x1� 2x2 þ 4x3 to max z¼�3x1 þ 2x2� 4x3,

and the new objective value becomes z¼�z0.
If a given inequality is in � form, we then convert it to the standard � form

by multiplying the inequality by �1 and reversing the direction of the inequality

sign. For example, the inequality 6x1� 5x2 þ 3x3� 10 may be converted to

�6x1 þ 5x2� 3x3��10.

Converting an equation to the standard� form requires two steps: (1) replace the

equation by a pair of inequalities of opposite sense, and as before, (2) convert the

inequality of � form to the standard � form. For example, we first convert

�2x1 þ 5x2� 3x3¼ 15 to the following two inequalities: �2x1 þ 5x2� 3x3� 15

and�2x1 þ 5x2� 3x3� 15. We then convert the nonstandard inequality by multi-

plying it by �1 and reversing the sign of the inequality to get the second standard

inequality: 2x1� 5x2 þ 3x3��15.

If a continuous or an integer variable is unrestricted in sign (i.e., it can be negative,

positive, or zero), then we may replace an unrestricted variable by the difference of

two new variables, xþ
j and x�j , as follows:

xj ¼ xþ
j �x�j ; xþ

j ; x�j ¼ 0

where xþ
j ¼ xj if xj> 0

¼ 0, otherwise

x�j ¼�xj if xj< 0

¼ 0, otherwise
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Note that the same variable t may be used for other unrestricted variables. Thus,

only one variable is increased regardless of the number of unrestricted variables.

If a continuous or an integer variable, respectively, has a positive or negative lower

bound, say, lj or lk, respectively, then it can be transformed to a new variable (say, x0j or
y0k) by substituting

x0j ¼ xj�lj or y0k ¼ yk�lk

The transformed problem is equivalent to the original problem with a set of new

variables. After solving the transformed problem, the optimum solution in terms of

the original variables is recoverable from the above equations.

Recall that the upper bound of a continuous or an integer variable in the standard

form of IP is infinite. Thus, a continuous or an integer variable having a finite (value

of) upper bound needs to be transformed. However, the above substituting equation

cannot be used to get a standard (an infinite) upper bound because the new transformed

variable will still have a finite upper bound (why?). In this case, an upper bound

constraint, xj� uj or yk� uk, must be adjoined to the program. Basically, we treat a

lower or an upper bound as a simple constraint consisting of a single variable.

1.3 COMBINATORIAL OPTIMIZATION PROBLEMS

A combinatorial optimization problem (COP) is a discrete optimization problem in

whichwe seek to find a solution in a finite set of solutions thatmaximizes orminimizes

an objective function. This type of problem usually arises in the selection of a finite set

ofmutually exclusive alternatives. These qualitative alternativesmay be quantified by

the use of discrete variables. Usually, the set of all possible solutions can be

enumerated and their associated objective values can be evaluated to determine an

optimum solution. But unfortunately, the number of solutions by complete enumera-

tion is usually too huge even for a moderate-sized problem.

The COP is closely related to the IP in that most, if not all, COPs can be formulated

as 0–1 integer programs. Well-known examples of COP include the classical assign-

ment problem and traveling salesman problem (TSP). The assignment problem may

be applied, for example, to assign n jobs to nworkers in amost efficientmanner so that

each job is assigned to one and only one worker, and vice versa. The TSP originates

from a salesman who starts from a home city to visit n� 1 cities so that each city is

visited once and only once and then returns to the home city with a minimum travel

distance. The assignment problem is “well solved” because any optimum solution to

its LP relaxation is naturally integer. Moreover, there are special assignment algo-

rithms such as Hungarian algorithm that are available to solve the problem much

faster than the standard simplex method. This class of “well-solved (easy)” integer

programs will be discussed in more detail in Chapter 10.

It is “hard” to find an exact optimum solution to a traveling salesman problem

because of its combinatorial nature. Although there are many algorithms available for

finding an approximate solution, the state of the art for finding an exact solution is to
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formulate and solve it as a 0–1 (binary) integer program. Unfortunately, the

formulated model requires an enormous number of binary variables and constraints

even for a moderate-sized problem. Modeling combinatorial optimization problems

will be discussed in Chapters 5 and 6, and the solutionmethods to these problems will

be a main theme of Chapters 11–13.

1.4 SUCCESSFUL INTEGER PROGRAMMING APPLICATIONS

The authors believe that integer programming plays a key role in operations research,

an observation supported by analysis below. This textbook is grounded in theoretical

developments in IP over the past five decades, but iswritten in hope of bridging the gap

between academic developments in IP and modern OR practice.

Interfaces, a bimonthly journal publication of INFORMS, had published over 500

OR/MS application articles from 1979 to 2006, whenwe startedwriting this book.We

reviewed all these articles and surprisingly found that about 23% of them used integer

programming and that many of them were finalists of the annual Franz Edelman

Award competitions over the years.

We further identified 44 IP application articles in Interfaces that claimed enormous

savings in cost or increase in profit. Financial benefits cited were of a magnitude of

tens or hundreds of million dollars per year. In Table 1.1, these 44 applications are

classified by industry sector. They are transportation and distribution, manufacturing,

communication, military and government, finance, energy, and others. In this count,

the sectors of manufacturing and transportation and distribution tie for first place in

terms of most IP application papers (13 each), followed by the communication,

military and government, and finance sectors (4 articles each of three sectors).Within

the sectors, the airline industry had the most application papers (9 articles).

These 44 articles also are classified in Table 1.1 by problem/model type:

workforce/staff scheduling, transportation and distribution, supply chain manage-

ment, production planning, government services, financial services, project man-

agement, and others. In this count, workforce/staff scheduling problem has the most

papers (11 articles), followed by the transportation and distribution (10 articles), and

the supply chain management (5 articles).

1.5 TEXT ORGANIZATION AND CHAPTER PREVIEW

This text is organized into three parts: Part I Modeling, Part II Review of Linear

Programming and Network Flows, and Part III Solutions. Part I (Chapters 1–6)

includes areas of successful integer programming applications, systematic modeling

procedure, types of integer programming models, transformation of non-IP models,

automatic preprocessing for better formulation, and an introduction to combinatorial

optimization. Part II (Chapters 7–10) reviews algebraic–geometric concepts and

solution methods relating to LP and network flows that are needed for understanding

IP. Part III (Chapters 11–15) describes various solution approaches for large-scale IP

8 INTRODUCTION



T
A
B
L
E
1
.1

C
la
ss
ifi
ca
ti
o
n
o
f
IP

A
p
p
li
ca
ti
o
n
P
a
p
er
s
in

In
te
rf
a
ce
s
b
y
In
d
u
st
ry

In
d
u
st
ry

C
at
eg
o
ry

S
u
b
ca
te
g
o
ry

C
o
m
p
an
y
N
am

e

(Y
ea
r
P
u
b
li
sh
ed
)

IP
/L
P

N
at
u
re

o
f
P
ri
m
ar
y

A
p
p
li
ca
ti
o
n
s

S
av
in
g
s/
B
en
efi
ts

(P
ro
je
ct
ed
/A
ct
u
al
)

T
ra
n
sp
o
rt
at
io
n
an
d

d
is
tr
ib
u
ti
o
n

A
ir
li
n
e

A
m
er
ic
an

A
ir
li
n
es

(1
9
8
1
)

IP
U
se
d
an

IP
m
o
d
el

to
d
et
er
m
in
e
th
e

le
as
t-
co
st
cr
ew

sc
h
ed
u
le

$
0
.2
5
m
il
li
o
n

A
ir
li
n
e

A
m
er
ic
an

A
ir
li
n
es

(1
9
9
1
a
)

IP
C
re
w

p
ai
ri
n
g
o
p
ti
m
iz
at
io
n

$
2
0
m
il
li
o
n
p
er

y
ea
r

A
ir
li
n
e

A
m
er
ic
an

A
ir
li
n
es

(1
9
9
1
b
)

IP
an
d
L
P

Im
p
le
m
en
te
d
a
n
et
w
o
rk

o
p
ti
m
iz
a-

ti
o
n
-b
as
ed

sy
st
em

to
h
el
p
re
d
u
ce

d
el
ay
s
ca
u
se
d
b
y
ai
r
tr
af
fi
c
co
n
tr
o
l

$
5
.2

m
il
li
o
n

A
ir
li
n
e

A
ir
N
ew

Z
ea
la
n
d

(2
0
0
1
a
)

IP
D
ev
el
o
p
ed

co
m
p
u
te
r
sy
st
em

s
to

so
lv
e
th
e
p
la
n
n
in
g
an
d
ro
st
er
in
g

p
ro
ce
ss
es

(I
P
p
ro
b
le
m
)

$
1
5
.6
5
5
m
il
li
o
n
p
er

y
ea
r

A
ir
li
n
e

A
m
er
ic
an

A
ir
li
n
es

(1
9
8
9
)

IP
U
se
d
IP

al
g
o
ri
th
m
to
b
u
il
d
fl
ig
h
tc
re
w

sc
h
ed
u
le
s

$
1
8
m
il
li
o
n
p
er

y
ea
r

A
ir
li
n
e

C
o
n
ti
n
en
ta
l

A
ir
li
n
es

(2
0
0
4
)

IP
S
o
lv
ed

la
rg
e-
sc
al
e
IP
-f
o
rm

u
la
te
d

p
il
o
t
st
af
fi
n
g
an
d
tr
ai
n
in
g

p
ro
b
le
m
s
to

sa
v
e
co
st
s

$
1
0
m
il
li
o
n
p
er

y
ea
r

A
ir
li
n
e

C
o
n
ti
n
en
ta
l

A
ir
li
n
es

(2
0
0
3
b
)

IP
D
ev
el
o
p
ed

IP
-b
as
ed

sy
st
em

to

g
en
er
at
e
o
p
ti
m
al

cr
ew

re
co
v
er
y

so
lu
ti
o
n
s

$
4
0
m
il
li
o
n

A
ir
li
n
e

D
el
ta

A
ir
li
n
es

(2
0
0
3
c
)

IP
D
ev
el
o
p
ed

an
au
to
m
at
ed

o
p
ti
m
iz
a-

ti
o
n
sy
st
em

to
m
in
im

iz
e
o
p
er
at
in
g

co
st
s
an
d
m
ax
im

iz
e
tr
ai
n
in
g

as
si
g
n
m
en
ts

$
7
.5

m
il
li
o
n

A
ir
li
n
e

Q
an
ta
s
A
ir
w
ay
s

L
im

it
ed

(1
9
7
9
)

IP
an
d
L
P

U
se
d
IL
P
m
o
d
el
fo
r
p
la
n
n
in
g
an
n
u
al

m
an
p
o
w
er

re
q
u
ir
em

en
t
fo
r

te
le
p
h
o
n
e
re
se
rv
at
io
n

$
0
.2
3
5
m
il
li
o
n

A
ir
li
n
e

U
n
it
ed

A
ir
li
n
es

(1
9
8
6
a
)

IP
an
d
L
P

U
se
d
IP
/L
P
-b
as
ed

sy
st
em

to
co
n
tr
o
l

th
e
en
ti
re

m
an
p
o
w
er

sc
h
ed
u
li
n
g

p
ro
ce
ss

$
6
m
il
li
o
n
p
er

y
ea
r

(c
o
n
ti
n
u
ed

)

9



T
A
B
L
E
1
.1

(C
o
n
ti
n
u
ed

)

In
d
u
st
ry

C
at
eg
o
ry

S
u
b
ca
te
g
o
ry

C
o
m
p
an
y
N
am

e

(Y
ea
r
P
u
b
li
sh
ed
)

IP
/L
P

N
at
u
re

o
f
P
ri
m
ar
y

A
p
p
li
ca
ti
o
n
s

S
av
in
g
s/
B
en
efi
ts

(P
ro
je
ct
ed
/A
ct
u
al
)

P
u
b
li
c

tr
an
sp
o
rt
at
io
n

T
h
e
S
o
ci
� et
� e
d
e

tr
an
sp
o
rt
d
e
la

co
m
m
u
n
au
t� e

u
rb
ai
n
e
d
e

M
o
n
tr
� ea
l
(1
9
9
0
a
)

IP
E
m
p
lo
y
s
n
et
w
o
rk

fl
o
w

m
et
h
o
d
s
(a
n

IP
fo
rm

u
la
ti
o
n
)
to

g
en
er
at
e

o
p
ti
m
al

v
eh
ic
le

sc
h
ed
u
le
s

$
4
m
il
li
o
n
p
er

y
ea
r

R
ai
lw
ay

T
h
e
C
an
ad
ia
n

P
ac
ifi
c
R
ai
lw
ay

(2
0
0
4
b
)

IP
an
d
L
P

U
se
d
IP
/n
et
w
o
rk

al
g
o
ri
th
m
s
fo
r

p
la
n
n
in
g
lo
co
m
o
ti
v
e
u
se

an
d

d
is
tr
ib
u
ti
n
g
em

p
ty

ca
rs

C
N
$
5
1
0
m
il
li
o
n

R
ai
lw
ay

N
S
R
ei
zi
g
er
s

(D
u
tc
h
R
ai
lw
ay
)

(2
0
0
5
c
)

IP
A
p
p
li
ed

a
se
t
co
v
er
in
g
m
o
d
el

to

su
p
p
o
rt
th
e
d
ev
el
o
p
m
en
t
o
f
an

al
te
rn
at
iv
e
se
t
o
f
sc
h
ed
u
li
n
g
ru
le
s

$
4
.8

m
il
li
o
n
p
er

y
ea
r

S
h
ip
p
in
g

M
en
lo

W
o
rl
d
w
id
e

F
o
rw

ar
d
in
g

(2
0
0
4
a
)

IP
D
ev
el
o
p
ed

a
n
et
w
o
rk

ro
u
ti
n
g

o
p
ti
m
iz
at
io
n
m
o
d
el
to
o
p
ti
m
iz
e
it
s

tr
an
sp
o
rt
at
io
n
n
et
w
o
rk

in
N
o
rt
h

A
m
er
ic
a

$
8
0
m
il
li
o
n

S
h
ip
p
in
g

U
P
S
(2
0
0
4
a
)

IP
C
re
at
ed

an
IP
-b
as
ed

sy
st
em

to

o
p
ti
m
iz
e
th
e
d
es
ig
n
o
f
p
ac
k
ag
e

d
el
iv
er
in
g
n
et
w
o
rk
s

$
8
7
m
il
li
o
n

C
o
n
ta
in
er

p
o
rt

H
o
n
g
K
o
n
g
In
te
r-

n
at
io
n
al

T
er
m
-

in
al
s
(2
0
0
5
a
)

IP
D
ev
el
o
p
ed

a
d
ec
is
io
n
su
p
p
o
rt
sy
st
em

to
g
en
er
at
e
v
ar
io
u
s
d
ec
is
io
n
s,

in
cl
u
d
in
g
sc
h
ed
u
li
n
g
,
st
o
ra
g
e,
an
d

so
o
n

$
1
0
0
m
il
li
o
n
p
er

y
ea
r

C
o
m
m
u
n
ic
at
io
n

T
el
ep
h
o
n
e

A
T
&
T
(1
9
9
0
a
)

IP
D
ev
el
o
p
ed

an
M
IP
-b
as
ed

sy
st
em

to

m
in
im

iz
e
co
st

$
1
m
il
li
o
n

T
el
ep
h
o
n
e

G
T
E
(1
9
9
2
a
)

IP
D
ev
el
o
p
ed

an
IP
-b
as
ed

o
p
ti
m
iz
at
io
n

to
o
l
to

im
p
ro
v
e
p
ro
d
u
ct
iv
it
y

$
3
0
m
il
li
o
n
p
er

y
ea
r

T
el
ep
h
o
n
e

B
el
lc
o
re

(1
9
9
5
a
)

IP
B
u
il
t
an

IP
-b
as
ed

d
ec
is
io
n
su
p
p
o
rt

so
ft
w
ar
e
to

d
es
ig
n
ro
b
u
st
fi
b
er
-

o
p
ti
c
n
et
w
o
rk
s

$
5
0
–
2
2
5
m
il
li
o
n

10



T
el
ep
h
o
n
e

M
o
to
ro
la

(2
0
0
5
b
)

IP
U
se
d
E
m
p
to
ri
s’
s
en
d
-t
o
-e
n
d
In
te
rn
et

n
eg
o
ti
at
io
n
s
p
la
tf
o
rm

to
id
en
ti
fy

th
e
b
es
t
p
ro
cu
re
m
en
t
st
ra
te
g
y

$
6
0
0
m
il
li
o
n

T
el
ev
is
io
n

N
B
C
(2
0
0
2
a
)

IP
U
se
d
M
IP
-b
as
ed

sa
le
s
sy
st
em

s
to

im
p
ro
v
e
it
s
re
v
en
u
es

an
d

p
ro
d
u
ct
iv
it
y

$
2
0
0
m
il
li
o
n

M
an
u
fa
ct
u
ri
n
g

A
u
to
m
o
b
il
e

F
o
rd

M
o
to
r

C
o
m
p
an
y

(2
0
0
1
a
)

IP
D
ev
el
o
p
ed

an
IP

m
o
d
el
to
sh
o
rt
en

th
e

p
la
n
n
in
g
p
ro
ce
ss

an
d
es
ta
b
li
sh

g
lo
b
al

p
ro
ce
d
u
re
s

$
2
5
0
m
il
li
o
n

A
u
to
m
o
b
il
e

G
en
er
al

M
o
to
rs

(1
9
8
7
a
)

IP
/L
P

U
se
d
n
et
w
o
rk

to
o
ls
to

re
d
u
ce

lo
g
is
ti
cs

co
st

$
2
.9

m
il
li
o
n
p
er

y
ea
r

A
u
to
m
o
b
il
e

G
en
er
al

M
o
to
rs

(2
0
0
4
d
)

C
O
P

D
ev
el
o
p
ed

a
h
eu
ri
st
ic
-b
as
ed

d
ec
is
io
n

su
p
p
o
rt
to
o
l
to

sc
h
ed
u
le

v
eh
ic
le

ro
ad

te
st
s

M
il
li
o
n
s
o
f
d
o
ll
ar
s
o
f

sa
v
in
g
s;
1
0
0
%

in
-

cr
ea
se

in
th
ro
u
g
h
p
u
t

A
u
to
m
o
b
il
e

V
o
lk
sw

ag
en

o
f

A
m
er
ic
a
(2
0
0
0
)

IP
U
se
d
a
co
m
b
in
at
io
n
o
f
si
m
u
la
ti
o
n

an
d
M
IP

m
o
d
el
s
to
an
al
y
ze

su
p
p
ly

ch
ai
n

3
5
%

re
d
u
ct
io
n
in

co
st

C
h
em

ic
al

A
ir
P
ro
d
u
ct
s
an
d

C
h
em

ic
al
s

(1
9
8
3
b
)

IP
D
ev
el
o
p
ed

a
d
ec
is
io
n
su
p
p
o
rt
sy
st
em

fo
r
v
eh
ic
le

sc
h
ed
u
li
n
g

$
1
.5
4
–
1
.7
2
m
il
li
o
n

C
h
em

ic
al

P
ro
ct
o
r
&

G
am

b
le

(2
0
0
6
a
)

IP
B
u
il
t
a
so
u
rc
in
g
n
et
w
o
rk

th
at

o
p
ti
m
iz
es

so
u
rc
in
g
p
ro
b
le
m

w
it
h

su
p
p
li
er
s

$
2
9
4
.8

m
il
li
o
n

C
h
em

ic
al

T
ru
m
b
u
ll
A
sp
h
al
t

(1
9
8
5
)

IP
U
se
d
M
IP

to
as
si
st
p
la
n
n
in
g
o
f

so
u
rc
in
g
,
d
is
tr
ib
u
ti
o
n
,
b
le
n
d
in
g
,

an
d
fa
ci
li
ty

co
n
fi
g
u
ra
ti
o
n

$
1
m
il
li
o
n
p
er

y
ea
r

C
o
m
p
u
te
r

D
ig
it
al

E
q
u
ip
m
en
t

C
o
rp
o
ra
ti
o
n

(1
9
9
5
a
)

IP
U
se
d
a
la
rg
e-
sc
al
e
M
IP

m
o
d
el

to

m
in
im

iz
e
su
p
p
ly

ch
ai
n
co
st

$
1
0
0
m
il
li
o
n (c
o
n
ti
n
u
ed

)

11



T
A
B
L
E
1
.1

(C
o
n
ti
n
u
ed

)

In
d
u
st
ry

C
at
eg
o
ry

S
u
b
ca
te
g
o
ry

C
o
m
p
an
y
N
am

e

(Y
ea
r
P
u
b
li
sh
ed
)

IP
/L
P

N
at
u
re

o
f
P
ri
m
ar
y

A
p
p
li
ca
ti
o
n
s

S
av
in
g
s/
B
en
efi
ts

(P
ro
je
ct
ed
/A
ct
u
al
)

F
o
o
d

G
o
ld
en

V
al
e
C
o
o
p
-

er
at
iv
e
C
re
am

-

er
ie
s
L
td

(1
9
8
3
)

IP
an
d
L
P

D
ev
el
o
p
ed

la
rg
e-
sc
al
e
IP
/L
P
p
ro
-

g
ra
m

to
an
al
y
ze

th
e
p
ro
b
le
m

o
f

m
il
k
co
ll
ec
ti
n
g
an
d
tr
an
sp
o
rt
in
g

$
4
m
il
li
o
n

F
o
o
d

Ir
is
h
M
il
k
C
o
o
p
-

er
at
iv
e
(1
9
8
6
)

IP
an
d
L
P

U
se
d
la
rg
e-
sc
al
e
n
et
w
o
rk

(g
ra
p
h
ic
)

m
et
h
o
d
to

so
lv
e
th
e
tr
an
ss
h
ip
m
en
t

an
d
lo
t
si
zi
n
g
p
ro
b
le
m

IR
£
1
.5
m
il
li
o
n
p
er
y
ea
r

L
u
m
b
er

T
h
e
C
h
il
ea
n
F
o
re
st

S
ec
to
r
(1
9
9
9
a
)

IP
Im

p
le
m
en
te
d
M
IP

m
o
d
el
s
to

su
p
p
o
rt

d
ec
is
io
n
s
o
n
tr
u
ck

sc
h
ed
u
li
n
g
,

h
ar
v
es
ti
n
g
,
an
d
so

o
n

$
2
0
m
il
li
o
n
p
er

y
ea
r

M
ac
h
in
er
y

S
ch
in
d
le
r
E
le
v
at
o
r

C
o
rp
o
ra
ti
o
n

(2
0
0
3
a
)

IP
P
ro
v
id
ed

an
IP
-b
as
ed

ap
p
li
ca
ti
o
n
to

o
p
ti
m
iz
e
p
re
v
en
ti
v
e
m
ai
n
te
n
an
ce

o
p
er
at
io
n
s

$
1
m
il
li
o
n
p
er

y
ea
r

P
h
ar
m
ac
y

P
&
G

(1
9
9
7
a
)

IP
an
d
L
P

D
ev
el
o
p
ed

M
IP

an
d
n
et
w
o
rk

m
o
d
el
s

to
im

p
ro
v
e
w
o
rk

p
ro
ce
ss
es

$
2
0
0
m
il
li
o
n

P
h
o
to
g
ra
p
h
y

K
o
d
ak

A
u
st
ra
la
si
a

(1
9
9
1
a
)

IP
D
ev
el
o
p
ed

a
tw
o
-p
h
as
e
IP
-b
as
ed

sy
st
em

fo
r
th
e
p
ro
b
le
m

o
f
cu
tt
in
g

p
h
o
to
g
ra
p
h
ic

co
lo
r
p
ap
er
s

$
2
m
il
li
o
n

S
te
el

T
h
e
B
et
h
le
h
em

P
la
n
t
(1
9
8
9
a
)

IP
D
ev
el
o
p
ed

a
tw
o
-p
h
as
e,
IP
-b
as
ed

p
ro
ce
d
u
re

to
d
et
er
m
in
e
n
ew

m
o
ld

d
im

en
si
o
n
s

$
8
m
il
li
o
n
p
er

y
ea
r

E
n
er
g
y

E
le
ct
ri
ci
ty

S
o
u
th
er
n
C
o
m
p
an
y

(1
9
9
1
a
)

IP
In
st
al
le
d
an

o
p
ti
m
iz
at
io
n
so
ft
w
ar
e

b
as
ed

o
n
IP

al
g
o
ri
th
m

to
re
d
u
ce

fu
el

co
st

$
1
4
0
m
il
li
o
n

G
as

E
x
x
o
n
C
o
rp
o
ra
ti
o
n

(1
9
8
2
a
)

IP
D
ev
el
o
p
ed

an
M
IP

m
o
d
el
to
ev
al
u
at
e

p
ro
je
ct
s
an
d
d
et
er
m
in
e
u
ti
li
ty

d
is
tr
ib
u
ti
o
n

$
1
0
0
m
il
li
o
n

12



W
at
er

H
id
ro
el
� ec
tr
ic
a

E
sp
añ
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and combinatorial optimization problems in addition to fundamentals of typical

software systems. Solution approaches include classical, branch-and-cut, branch-

and-price, primal heuristics, and Lagrangian relaxation. In Chapter 15, three popular

modeling languages and one solver are introduced. Answers to selected exercises

from each chapter appear in an appendix.

This chapter (a) defines the IP model and associated notation to be used in the text,

(b) classifies IP models and describes their relationships to linear and combinatorial

optimization models, (c) previews the contents of each chapter, and (d) categorizes

numerous successful IP applications arising in diverse industry/business sectors,

based on survey data collected from the articles published in Interfaces (a bimonthly

journal by INFORMS) 1979–2006, when we started writing this book.

Chapter 2 (a) explores the assumptions underlying the MIP mathematical model

and explains their physical interpretations, (b) provides a step-by-step procedure for

building a model from a given real-world problem, and (c) introduces fundamental

formulations for the most utilized types of MIP models that are identified from the

survey of successful applications described in this chapter. Seven assumptions

underlying the MIP problem are fully uncovered through a careful examination of

its mathematical anatomy. Some of these assumptions do not appear explicitly in

other texts of operations research and integer programming.

In Chapter 3, beyond the simple use of 0–1 variables discussed in Chapter 2, the

formulation power of 0–1 variables extends their ability to transform a variety of

optimization models into integer programs. Transformable optimization models are

identified and grouped together according to the types of decision variables, math-

ematical functions, and constraints. This chapter also describes the relation between

logical (Boolean) expressions and 0–1 formulations, in addition to modeling the

bundle pricing problem, which is a common business practice. These features appear

for the first time in any integer programming text.

Chapter 4 (a) defines and explains what is meant by better formulation of an IP

problem, (b) introduces several basic preprocessing techniques, for both general and

special problems, that can automatically transform a user-supplied formulation into a

better one, and (c) identifies primary preprocessing functions/areas that are covered

by most preprocessors of current IP software.

Chapter 5 begins with defining the class of COPs and ends with a discussion of the

computational complexity of a problem or an algorithm. Three classes of COPs are

discussed: set covering, partitioning, and packing; matching problems; and cutting

stock problems.

Chapter 6 is devoted to the best-known combinatorial optimization problem, the

TSP, and its many variations. More details on TSP applications are given, expanding

the discussion in this chapter. Solution approaches, which generally involve creating

constraints that prevent inclusion of subtours in the IP search for the optimal tour,

depend on whether the arcs connecting the nodes are one-way (asymmetric TSP) or

bidirectional (symmetric TSP).

Chapter 7 reviews the fundamentals of linear programming theory and network

flows that are essential to the understanding of the solution space and solution

methods to be discussed in Chapters 11–13.
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Chapter 8 reviews/introduces basic geometric concepts and terminology that are

essential to the understanding of the properties of the solution spaces and cutting

planes for both general and special IP problems. These concepts are prerequisites for

full understanding of the branch-and-cut method to be discussed in Chapter 12.

The modern methods for solving a large-scale integer program require the

optimization and reoptimization of a usually long sequence of LP relaxation

problems that in turn are often solved by a variety of simplex-based methods

(and/or an interior point method). Chapter 9 reviews four simplex-based methods

that serve as building blocks for solving integer programs. The simplex method

provides the foundation for optimizing a long sequence of LP relaxations. The

simplexmethod for upper-bounded variables is used for reducing the problem size by

implicitly handling the upper and lower bounds on variables (equivalent to single-

variable constraints). The dual simplexmethod is most effective for reoptimizing the

current optimum, after addition of constraints, without resolving the augmented LP

problem from scratch. The revised simplex method produces the same sequence of

bases as the simplex method, but depends on updating the basis inverse (m columns)

rather than the entire simplex tableau (n columns) in each iteration.

Chapter 10 (a) identifies a class of easy network optimization problems whose IP

formulations are solvable as LPs by simply ignoring the integer requirements, (b)

describes the sufficient conditions (or model structure) that characterize this class of

problems, and (c) introduces a more efficient algorithm than the ordinary simplex for

solving this class of network optimization problem.

Chapter 11 introduces three classical approaches for solving integer programs:

branch-and-bound, cutting plane, and group theoretic. Currently, these approaches are

not implemented in practice as stand-alone solvers. However, they are integrated parts

of amodern solutionapproach suchas thebranch-and-cut tobedescribed inChapter12.

The recent advances in solving large-scale integer programs have been made

possible by great improvements in modeling, preprocessing, solution algorithms, LP

software, and computer hardware. We have already discussed modeling and pre-

processing. Chapter 12 addresses a modern solution approach known as the branch-

and-cut, in which a substantial portion of the discussion centers on the generation of

cuts that are useful for solving general and special integer programs.

In the previous chapter, branch-and-bound is generalized to include generation of

cuts or rows, hence the name branch-and-cut. InChapter 13, branch-and-bound is first

generalized to include generation of columns by solving pricing problems, hence the

name branch-and-price, and then generalized to include columns and rows, hence the

name branch-and-price-and-cut. Basically, all these generalizations solve a sequence

of LP relaxations of a given IP. Branch-and-cut tightens the LP relaxations (or

polyhedra) by adding cuts or constraints (rows). Branch-and-price tightens the LP

relaxations by generating a subset of profitable columns associated with variables to

join the current basis. These columns are generated iteratively by solving subpro-

blems or pricing problems.

Chapter 14 introduces a variety of primal heuristic algorithms that can be used to

obtain a good solution or an approximate solution for an integer program or a

combinatorial optimization problem. Both classical and artificial intelligence (AI)
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heuristic algorithms are provided. The traveling salesman problem is used for the

purpose of illustration. This chapter also (a) describes various relaxation methods for

solving IP problems, (b) lists examples of IP model types to which the Lagrangian

relaxation approach is applied, (c) derives the associated Lagrangian dual problems

for both linear and integer programs, (d) provides efficient methods for solving the

Lagrangian dual, and (e) develops Benders’ decomposition algorithm for integer

programming.

Chapter 15 (a) provides some practical considerations when algorithms are

implemented in software, (b) describes the key components and features of a typical

software system, (c) introduces three commonly used modeling languages (AMPL�,

LINGO�, and MPL�) in more depth than earlier chapters, and (d) briefly describes

other modeling languages and systems.

1.6 NOTES

Section 1.1

General IP textbooks that are referenced in this text include Hu (1969), Garfinkel and

Nemhauser (1972), Zionts (1974), Taha (1975), Nemhauser and Wolsey (1988),

Parker and Rardin (1988), Salkin and Mathur (1989), and Wolsey (1998).

Introductory OR/MS textbooks that are referenced in this text include Wagner

(1975), Winston (1994), Hillier and Lieberman (2005), and Taha (2007).

Journals that are referenced include Interfaces, Operations Research, Manage-

ment Science, European Journal of Operational Research, IIE Transactions, Trans-

portation Science, Naval Research Logistics Quarterly, Journal of the Association

for Computing Machinery, Mathematical Programming, Discrete Applied Mathe-

matics, and SIAM Journal on Algebraic and Discrete Methods.

Many textbooks, like this one, use a maximization problem as a standard MIP,

while others use a minimization problem. In a minimization MIP, the standard

inequality constraint is of � form.

Section 1.2

Conversion from a nonstandard MIP to standard form is similar to that for linear

programs. For references of conversion techniques, see any introductory OR/MS

textbooks such as Winston (1994) and Hillier and Lieberman (2005).

Section 1.3

Some authors, for example, Parker and Rardin (1988), view discrete optimization

problems as a combination of integer programming and combinatorial

optimization problems. Literally speaking, a discrete optimization problem is an

optimization problem defined over discrete variables. However, a discrete variable is

different from an integer variable in that an integer variable may take on any

consecutive integral values, while a discrete variable may take on specified discrete
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values, consecutive or not, integer number or not—essentially what mathematicians

call a countable set. Thus, an integer variable is a discrete variable, but a discrete

variable may or may not be an integer variable. For example, both solution sets of y5
and y3, defined by Z5¼ {3, 4, 5, 6, 7} and Z3¼ {4, 6, 7, 10}, respectively, are discrete

variables. But y3 is not an integer variable, while variable y5 is both an integer and a

discrete variable. In Chapter 2, we shall show how a discrete variable can be converted

to a set of binary (0–1) variables.

Section 1.4

INFORMS is a professional society that was founded through the merger of two

older societies: the former Operations Research Society of America (ORSA) and

The Institute of Management Science (TIMS).

Interfaces, a bimonthly journal publication of INFORMS, has published over 500

OR/MS application articles since 1971. All articles are available in both electronic

form and hard copy.

The Franz Edelman Award was founded in 1972 (initially under the name of “the

Annual International Management Science Achievement Award”). From 1975 to

1984 (the year in which the award name was changed to Franz Edelman Award), the

papers of the finalist and the winners were published in Interfaces in the last issue of

that year. From1985 up to today, the first issue each year is dedicated to the finalist and

the winner(s) of the previous year. “The Edelman Award recognizes outstanding

implemented operations research that has had a significant, positive impact on the

performance of a client organization. The top finalist receives a $10,000 first prize”

(OR/MS Today).

The Daniel H. Wagner prize was founded in 1998. It “emphasizes the quality and

coherence of the analysis used in practice. Dr. Wagner strove for strong mathematics

applied to practical problems, supported by clear and intelligible writing. This prize

recognizes those principles by emphasizing good writing, strong analytical content,

and verifiable practice successes. The competition is held each year in the fall at the

INFORMS Annual Meeting” (see http://www2.informs.org/Prizes/WagnerPrize.

html for details). Papers of each year’s finalists are published in the fifth issue of

Interfaces of the following year.

1.7 EXERCISES

1.1 Read one of the successful application articles from the category of transporta-

tion and distribution published by INFORMS in Interfaces as shown in

Table 1.1. Do the following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints,

decision variables, and types of variables (continuous or integer, binary

or general).
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1.2–1.7 Do the same for each of the remaining categories: (1.2) communications,

(1.3) manufacturing, (1.4) energy, (1.5) military and government, (1.6)

finance, and (1.7) others.

1.8–1.14 Read one of the application articles from each of the following problem

types published in Interfaces, as given in Table 1.1: (1.8) project manage-

ment, (1.9) production planning, (1.10) workforce scheduling, (1.11)

transportation and distribution, (1.12) supply chain management, (1.13)

cutting stock, and (1.14) machine scheduling and sequencing. Do the

following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints,

decisionvariables, and types of variables (continuous or integer, binary

or general).

1.15–1.19 Transform each of the following nonstandard integer programs into a

standard form of IP defined in this text.

1.15 Minimize 3x1�11x2 þ 5x3 þ x4

subject to x1 þ 5x2�3x3 þ 6x4 � 7

�x1 þ x2 þ x3�2x4 � 3

x1; x2; x3; x4 � 0

1.16 Maximize �x1 þ 5x2 þ 2x3�7x4�x5

subject to x2 þ x3 þ x4 � 13

x1�x2 þ 2x4 þ 2x5 � 4

x1 unrestricted in sign

x2; x4; x5 � 0

x3 � �2

1.17 Maximize 7x1 þ 2x2 þ x3�4x4

subject to 2x1�x2 þ x3 � 10

x1 þ x4 ¼ 12

x1; x2; x4 � 0

x3 � 0
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1.18 Minimize �11x1 þ 13x2�15x3

subject to x2 þ x3 ¼ 7

x1�x3 � 3

x1 unrestricted in sign

x2 � 5

x3 � 0

1.19 Maximize x1 þ x2 þ x3

subject to �x1 þ x2 � 8

x1�x2 þ x3 � 2

x1; x3 � 0

x2 � 15
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