
1
WHAT IS DENSITY FUNCTIONAL
THEORY?

1.1 HOW TO APPROACH THIS BOOK

There are many fields within the physical sciences and engineering where the
key to scientific and technological progress is understanding and controlling
the properties of matter at the level of individual atoms and molecules.
Density functional theory is a phenomenally successful approach to finding
solutions to the fundamental equation that describes the quantum behavior
of atoms and molecules, the Schrödinger equation, in settings of practical
value. This approach has rapidly grown from being a specialized art practiced
by a small number of physicists and chemists at the cutting edge of quantum
mechanical theory to a tool that is used regularly by large numbers of research-
ers in chemistry, physics, materials science, chemical engineering, geology,
and other disciplines. A search of the Science Citation Index for articles pub-
lished in 1986 with the words “density functional theory” in the title or abstract
yields less than 50 entries. Repeating this search for 1996 and 2006 gives more
than 1100 and 5600 entries, respectively.

Our aim with this book is to provide just what the title says: an introduction
to using density functional theory (DFT) calculations in a practical context.
We do not assume that you have done these calculations before or that you
even understand what they are. We do assume that you want to find out
what is possible with these methods, either so you can perform calculations
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yourself in a research setting or so you can interact knowledgeably with
collaborators who use these methods.

An analogy related to cars may be useful here. Before you learned how to
drive, it was presumably clear to you that you can accomplish many useful
things with the aid of a car. For you to use a car, it is important to understand
the basic concepts that control cars (you need to put fuel in the car regularly,
you need to follow basic traffic laws, etc.) and spend time actually driving a car
in a variety of road conditions. You do not, however, need to know every detail
of how fuel injectors work, how to construct a radiator system that efficiently
cools an engine, or any of the other myriad of details that are required if you
were going to actually build a car. Many of these details may be important
if you plan on undertaking some especially difficult car-related project such
as, say, driving yourself across Antarctica, but you can make it across town
to a friend’s house and back without understanding them.

With this book, we hope you can learn to “drive across town” when doing
your own calculations with a DFT package or when interpreting other people’s
calculations as they relate to physical questions of interest to you. If you are
interested in “building a better car” by advancing the cutting edge of
method development in this area, then we applaud your enthusiasm. You
should continue reading this chapter to find at least one surefire project that
could win you a Nobel prize, then delve into the books listed in the Further
Reading at the end of the chapter.

At the end of most chapters we have given a series of exercises, most of
which involve actually doing calculations using the ideas described in the
chapter. Your knowledge and ability will grow most rapidly by doing rather
than by simply reading, so we strongly recommend doing as many of the exer-
cises as you can in the time available to you.

1.2 EXAMPLES OF DFT IN ACTION

Before we even define what density functional theory is, it is useful to relate a
few vignettes of how it has been used in several scientific fields. We have
chosen three examples from three quite different areas of science from the
thousands of articles that have been published using these methods. These
specific examples have been selected because they show how DFT calcu-
lations have been used to make important contributions to a diverse range of
compelling scientific questions, generating information that would be essen-
tially impossible to determine through experiments.

1.2.1 Ammonia Synthesis by Heterogeneous Catalysis

Our first example involves an industrial process of immense importance: the
catalytic synthesis of ammonia (NH3). Ammonia is a central component of

2 WHAT IS DENSITY FUNCTIONAL THEORY?



fertilizers for agriculture, and more than 100 million tons of ammonia are
produced commercially each year. By some estimates, more than 1% of all
energy used in the world is consumed in the production of ammonia. The
core reaction in ammonia production is very simple:

N2 þ 3H2 �! 2NH3:

To get this reaction to proceed, the reaction is performed at high tempera-
tures (.4008C) and high pressures (.100 atm) in the presence of metals
such as iron (Fe) or ruthenium (Ru) that act as catalysts. Although these
metal catalysts were identified by Haber and others almost 100 years ago,
much is still not known about the mechanisms of the reactions that occur on
the surfaces of these catalysts. This incomplete understanding is partly because
of the structural complexity of practical catalysts. To make metal catalysts with
high surface areas, tiny particles of the active metal are dispersed throughout
highly porous materials. This was a widespread application of nanotechno-
logy long before that name was applied to materials to make them sound
scientifically exciting! To understand the reactivity of a metal nanoparticle,
it is useful to characterize the surface atoms in terms of their local coordination
since differences in this coordination can create differences in chemical
reactivity; surface atoms can be classified into “types” based on their local
coordination. The surfaces of nanoparticles typically include atoms of various
types (based on coordination), so the overall surface reactivity is a compli-
cated function of the shape of the nanoparticle and the reactivity of each
type of atom.

The discussion above raises a fundamental question: Can a direct connec-
tion be made between the shape and size of a metal nanoparticle and its activity
as a catalyst for ammonia synthesis? If detailed answers to this question can be
found, then they can potentially lead to the synthesis of improved catalysts.
One of the most detailed answers to this question to date has come from the
DFT calculations of Honkala and co-workers,1 who studied nanoparticles of
Ru. Using DFT calculations, they showed that the net chemical reaction
above proceeds via at least 12 distinct steps on a metal catalyst and that the
rates of these steps depend strongly on the local coordination of the metal
atoms that are involved. One of the most important reactions is the breaking
of the N2 bond on the catalyst surface. On regions of the catalyst surface
that were similar to the surfaces of bulk Ru (more specifically, atomically
flat regions), a great deal of energy is required for this bond-breaking reaction,
implying that the reaction rate is extremely slow. Near Ru atoms that form a
common kind of surface step edge on the catalyst, however, a much smaller
amount of energy is needed for this reaction. Honkala and co-workers used
additional DFT calculations to predict the relative stability of many different
local coordinations of surface atoms in Ru nanoparticles in a way that allowed
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them to predict the detailed shape of the nanoparticles as a function of particle
size. This prediction makes a precise connection between the diameter of a Ru
nanoparticle and the number of highly desirable reactive sites for breaking N2

bonds on the nanoparticle. Finally, all of these calculations were used to
develop an overall model that describes how the individual reaction rates for
the many different kinds of metal atoms on the nanoparticle’s surfaces
couple together to define the overall reaction rate under realistic reaction con-
ditions. At no stage in this process was any experimental data used to fit or
adjust the model, so the final result was a truly predictive description of the
reaction rate of a complex catalyst. After all this work was done, Honkala
et al. compared their predictions to experimental measurements made with
Ru nanoparticle catalysts under reaction conditions similar to industrial con-
ditions. Their predictions were in stunning quantitative agreement with the
experimental outcome.

1.2.2 Embrittlement of Metals by Trace Impurities

It is highly likely that as you read these words you are within 1 m of a large
number of copper wires since copper is the dominant metal used for carrying
electricity between components of electronic devices of all kinds. Aside from
its low cost, one of the attractions of copper in practical applications is that it is
a soft, ductile metal. Common pieces of copper (and other metals) are almost
invariably polycrystalline, meaning that they are made up of many tiny
domains called grains that are each well-oriented single crystals. Two neigh-
boring grains have the same crystal structure and symmetry, but their orien-
tation in space is not identical. As a result, the places where grains touch
have a considerably more complicated structure than the crystal structure of
the pure metal. These regions, which are present in all polycrystalline materials,
are called grain boundaries.

It has been known for over 100 years that adding tiny amounts of certain
impurities to copper can change the metal from being ductile to a material
that will fracture in a brittle way (i.e., without plastic deformation before the
fracture). This occurs, for example, when bismuth (Bi) is present in copper
(Cu) at levels below 100 ppm. Similar effects have been observed with lead
(Pb) or mercury (Hg) impurities. But how does this happen? Qualitatively,
when the impurities cause brittle fracture, the fracture tends to occur at grain
boundaries, so something about the impurities changes the properties of
grain boundaries in a dramatic way. That this can happen at very low concen-
trations of Bi is not completely implausible because Bi is almost completely
insoluble in bulk Cu. This means that it is very favorable for Bi atoms to seg-
regate to grain boundaries rather than to exist inside grains, meaning that the
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local concentration of Bi at grain boundaries can be much higher than the net
concentration in the material as a whole.

Can the changes in copper caused by Bi be explained in a detailed way? As
you might expect for an interesting phenomena that has been observed over
many years, several alternative explanations have been suggested. One class
of explanations assigns the behavior to electronic effects. For example, a Bi
atom might cause bonds between nearby Cu atoms to be stiffer than they are
in pure Cu, reducing the ability of the Cu lattice to deform smoothly. A
second type of electronic effect is that having an impurity atom next to a
grain boundary could weaken the bonds that exist across a boundary by chan-
ging the electronic structure of the atoms, which would make fracture at the
boundary more likely. A third explanation assigns the blame to size effects,
noting that Bi atoms are much larger than Cu atoms. If a Bi atom is present
at a grain boundary, then it might physically separate Cu atoms on the other
side of the boundary from their natural spacing. This stretching of bond dis-
tances would weaken the bonds between atoms and make fracture of the
grain boundary more likely. Both the second and third explanations involve
weakening of bonds near grain boundaries, but they propose different root
causes for this behavior. Distinguishing between these proposed mechanisms
would be very difficult using direct experiments.

Recently, Schweinfest, Paxton, and Finnis used DFT calculations to offer a
definitive description of how Bi embrittles copper; the title of their study gives
away the conclusion.2 They first used DFT to predict stress–strain relationships
for pure Cu and Cu containing Bi atoms as impurities. If the bond stiffness argu-
ment outlined above was correct, the elastic moduli of the metal should be
increased by adding Bi. In fact, the calculations give the opposite result, immedi-
ately showing the bond-stiffening explanation to be incorrect. In a separate and
much more challenging series of calculations, they explicitly calculated the cohe-
sion energy of a particular grain boundary that is known experimentally to be
embrittled by Bi. In qualitative consistency with experimental observations,
the calculations predicted that the cohesive energy of the grain boundary is
greatly reduced by the presence of Bi. Crucially, the DFT results allow the elec-
tronic structure of the grain boundary atoms to be examined directly. The result is
that the grain boundary electronic effect outlined above was found to not be the
cause of embrittlement. Instead, the large change in the properties of the grain
boundary could be understood almost entirely in terms of the excess volume
introduced by the Bi atoms, that is, by a size effect. This reasoning suggests
that Cu should be embrittled by any impurity that has a much larger atomic
size than Cu and that strongly segregates to grain boundaries. This description
in fact correctly describes the properties of both Pb and Hg as impurities in
Cu, and, as mentioned above, these impurities are known to embrittle Cu.
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1.2.3 Materials Properties for Modeling Planetary Formation

To develop detailed models of how planets of various sizes have formed, it is
necessary to know (among many other things) what minerals exist inside
planets and how effective these minerals are at conducting heat. The extreme
conditions that exist inside planets pose some obvious challenges to probing
these topics in laboratory experiments. For example, the center of Jupiter
has pressures exceeding 40 Mbar and temperatures well above 15,000 K.
DFT calculations can play a useful role in probing material properties at
these extreme conditions, as shown in the work of Umemoto, Wentzcovitch,
and Allen.3 This work centered on the properties of bulk MgSiO3, a silicate
mineral that is important in planet formation. At ambient conditions,
MgSiO3 forms a relatively common crystal structure known as a perovskite.
Prior to Umemoto et al.’s calculations, it was known that if MgSiO3 was
placed under conditions similar to those in the core–mantle boundary of
Earth, it transforms into a different crystal structure known as the CaIrO3 struc-
ture. (It is conventional to name crystal structures after the first compound dis-
covered with that particular structure, and the naming of this structure is an
example of this convention.)

Umemoto et al. wanted to understand what happens to the structure of
MgSiO3 at conditions much more extreme than those found in Earth’s
core–mantle boundary. They used DFT calculations to construct a phase
diagram that compared the stability of multiple possible crystal structures
of solid MgSiO3. All of these calculations dealt with bulk materials. They
also considered the possibility that MgSiO3 might dissociate into other
compounds. These calculations predicted that at pressures of �11 Mbar,
MgSiO3 dissociates in the following way:

MgSiO3 [CaIrO3 structure] �! MgO [CsCl structure]

þ SiO2 [cotunnite structure]:

In this reaction, the crystal structure of each compound has been noted in the
square brackets. An interesting feature of the compounds on the right-hand
side is that neither of them is in the crystal structure that is the stable structure
at ambient conditions. MgO, for example, prefers the NaCl structure at ambi-
ent conditions (i.e., the same crystal structure as everyday table salt). The beha-
vior of SiO2 is similar but more complicated; this compound goes through
several intermediate structures between ambient conditions and the conditions
relevant for MgSiO3 dissociation. These transformations in the structures of
MgO and SiO2 allow an important connection to be made between DFT cal-
culations and experiments since these transformations occur at conditions that
can be directly probed in laboratory experiments. The transition pressures

6 WHAT IS DENSITY FUNCTIONAL THEORY?



predicted using DFT and observed experimentally are in good agreement,
giving a strong indication of the accuracy of these calculations.

The dissociation reaction predicted by Umemoto et al.’s calculations has
important implications for creating good models of planetary formation. At
the simplest level, it gives new information about what materials exist inside
large planets. The calculations predict, for example, that the center of Uranus
or Neptune can contain MgSiO3, but that the cores of Jupiter or Saturn will
not. At a more detailed level, the thermodynamic properties of the materials
can be used to model phenomena such as convection inside planets.
Umemoto et al. speculated that the dissociation reaction above might severely
limit convection inside “dense-Saturn,” a Saturn-like planet that has been
discovered outside the solar system with a mass of �67 Earth masses.

A legitimate concern about theoretical predictions like the reaction above is
that it is difficult to envision how they can be validated against experimental
data. Fortunately, DFT calculations can also be used to search for similar types
of reactions that occur at pressures that are accessible experimentally. By using
this approach, it has been predicted that NaMgF3 goes through a series of trans-
formations similar to MgSiO3; namely, a perovskite to postperovskite transition
at some pressure above ambient and then dissociation in NaF and MgF2 at higher
pressures.4 This dissociation is predicted to occur for pressures around 0.4 Mbar,
far lower than the equivalent pressure for MgSiO3. These predictions suggest an
avenue for direct experimental tests of the transformation mechanism that DFT
calculations have suggested plays a role in planetary formation.

We could fill many more pages with research vignettes showing how DFT
calculations have had an impact in many areas of science. Hopefully, these
three examples give some flavor of the ways in which DFT calculations can
have an impact on scientific understanding. It is useful to think about the
common features between these three examples. All of them involve materials
in their solid state, although the first example was principally concerned with
the interface between a solid and a gas. Each example generated information
about a physical problem that is controlled by the properties of materials on
atomic length scales that would be (at best) extraordinarily challenging to
probe experimentally. In each case, the calculations were used to give infor-
mation not just about some theoretically ideal state, but instead to understand
phenomena at temperatures, pressures, and chemical compositions of direct
relevance to physical applications.

1.3 THE SCHRÖDINGER EQUATION

By now we have hopefully convinced you that density functional theory
is a useful and interesting topic. But what is it exactly? We begin with
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the observation that one of the most profound scientific advances of the
twentieth century was the development of quantum mechanics and the
repeated experimental observations that confirmed that this theory of matter
describes, with astonishing accuracy, the universe in which we live.

In this section, we begin a review of some key ideas from quantum mech-
anics that underlie DFT (and other forms of computational chemistry). Our
goal here is not to present a complete derivation of the techniques used in
DFT. Instead, our goal is to give a clear, brief, introductory presentation of
the most basic equations important for DFT. For the full story, there are a
number of excellent texts devoted to quantum mechanics listed in the
Further Reading section at the end of the chapter.

Let us imagine a situation where we would like to describe the properties
of some well-defined collection of atoms—you could think of an isolated
molecule or the atoms defining the crystal of an interesting mineral. One of
the fundamental things we would like to know about these atoms is their
energy and, more importantly, how their energy changes if we move the
atoms around. To define where an atom is, we need to define both where its
nucleus is and where the atom’s electrons are. A key observation in applying
quantum mechanics to atoms is that atomic nuclei are much heavier than indi-
vidual electrons; each proton or neutron in a nucleus has more than 1800 times
the mass of an electron. This means, roughly speaking, that electrons respond
much more rapidly to changes in their surroundings than nuclei can. As a
result, we can split our physical question into two pieces. First, we solve,
for fixed positions of the atomic nuclei, the equations that describe the electron
motion. For a given set of electrons moving in the field of a set of nuclei, we
find the lowest energy configuration, or state, of the electrons. The lowest
energy state is known as the ground state of the electrons, and the separation
of the nuclei and electrons into separate mathematical problems is the Born–
Oppenheimer approximation. If we have M nuclei at positions R1, . . . , RM ,
then we can express the ground-state energy, E, as a function of the
positions of these nuclei, E(R1, . . . , RM). This function is known as the
adiabatic potential energy surface of the atoms. Once we are able to
calculate this potential energy surface we can tackle the original problem
posed above—how does the energy of the material change as we move its
atoms around?

One simple form of the Schrödinger equation—more precisely, the time-
independent, nonrelativistic Schrödinger equation—you may be familiar
with is Hc ¼ Ec. This equation is in a nice form for putting on a T-shirt or
a coffee mug, but to understand it better we need to define the quantities
that appear in it. In this equation, H is the Hamiltonian operator and c is a
set of solutions, or eigenstates, of the Hamiltonian. Each of these solutions,

8 WHAT IS DENSITY FUNCTIONAL THEORY?



cn, has an associated eigenvalue, En, a real number� that satisfies the
eigenvalue equation. The detailed definition of the Hamiltonian depends on
the physical system being described by the Schrödinger equation. There are
several well-known examples like the particle in a box or a harmonic oscillator
where the Hamiltonian has a simple form and the Schrödinger equation can be
solved exactly. The situation we are interested in where multiple electrons are
interacting with multiple nuclei is more complicated. In this case, a more
complete description of the Schrödinger is

� h�2

2m

XN

i¼1

r2
i þ

XN

i¼1

V(ri) þ
XN

i¼1

X

j,i

U(ri, rj)

" #
c ¼ Ec: (1:1)

Here, m is the electron mass. The three terms in brackets in this equation
define, in order, the kinetic energy of each electron, the interaction energy
between each electron and the collection of atomic nuclei, and the interaction
energy between different electrons. For the Hamiltonian we have chosen, c is
the electronic wave function, which is a function of each of the spatial coordi-
nates of each of the N electrons, so c ¼ c(r1, . . . , rN), and E is the ground-
state energy of the electrons.�� The ground-state energy is independent of
time, so this is the time-independent Schrödinger equation.†

Although the electron wave function is a function of each of the coordinates
of all N electrons, it is possible to approximate c as a product of individual
electron wave functions, c ¼ c1(r)c2(r), . . . , cN(r). This expression for the
wave function is known as a Hartree product, and there are good motivations
for approximating the full wave function into a product of individual one-
electron wave functions in this fashion. Notice that N, the number of electrons,
is considerably larger than M, the number of nuclei, simply because each atom
has one nucleus and lots of electrons. If we were interested in a single molecule
of CO2, the full wave function is a 66-dimensional function (3 dimensions for
each of the 22 electrons). If we were interested in a nanocluster of 100 Pt atoms,
the full wave function requires more the 23,000 dimensions! These numbers
should begin to give you an idea about why solving the Schrödinger equation
for practical materials has occupied many brilliant minds for a good fraction
of a century.

�The value of the functions cn are complex numbers, but the eigenvalues of the Schrödinger
equation are real numbers.
��

For clarity of presentation, we have neglected electron spin in our description. In a complete
presentation, each electron is defined by three spatial variables and its spin.
†The dynamics of electrons are defined by the time-dependent Schrödinger equation,

i�h(@c=@t) ¼ Hc. The appearance of i ¼
ffiffiffiffiffiffiffi
�1

p
in this equation makes it clear that the wave func-

tion is a complex-valued function, not a real-valued function.
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The situation looks even worse when we look again at the Hamiltonian, H.
The term in the Hamiltonian defining electron–electron interactions is the
most critical one from the point of view of solving the equation. The form
of this contribution means that the individual electron wave function we
defined above, ci(r), cannot be found without simultaneously considering
the individual electron wave functions associated with all the other electrons.
In other words, the Schrödinger equation is a many-body problem.

Although solving the Schrödinger equation can be viewed as the fundamen-
tal problem of quantum mechanics, it is worth realizing that the wave function
for any particular set of coordinates cannot be directly observed. The quantity
that can (in principle) be measured is the probability that the N electrons are at
a particular set of coordinates, r1, . . . , rN . This probability is equal to
c�(r1, . . . , rN)c(r1, . . . , rN), where the asterisk indicates a complex conju-
gate. A further point to notice is that in experiments we typically do not
care which electron in the material is labeled electron 1, electron 2, and so
on. Moreover, even if we did care, we cannot easily assign these labels.
This means that the quantity of physical interest is really the probability that
a set of N electrons in any order have coordinates r1, . . . , rN . A closely related
quantity is the density of electrons at a particular position in space, n(r). This
can be written in terms of the individual electron wave functions as

n(r) ¼ 2
X

i

c�
i (r)ci(r): (1:2)

Here, the summation goes over all the individual electron wave functions that
are occupied by electrons, so the term inside the summation is the probability
that an electron in individual wave function ci(r) is located at position r. The
factor of 2 appears because electrons have spin and the Pauli exclusion prin-
ciple states that each individual electron wave function can be occupied by
two separate electrons provided they have different spins. This is a purely
quantum mechanical effect that has no counterpart in classical physics. The
point of this discussion is that the electron density, n(r), which is a function
of only three coordinates, contains a great amount of the information that is
actually physically observable from the full wave function solution to the
Schrödinger equation, which is a function of 3N coordinates.

1.4 DENSITY FUNCTIONAL THEORY—FROM WAVE
FUNCTIONS TO ELECTRON DENSITY

The entire field of density functional theory rests on two fundamental math-
ematical theorems proved by Kohn and Hohenberg and the derivation of a
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set of equations by Kohn and Sham in the mid-1960s. The first theorem, proved
by Hohenberg and Kohn, is: The ground-state energy from Schrödinger’s
equation is a unique functional of the electron density.

This theorem states that there exists a one-to-one mapping between the
ground-state wave function and the ground-state electron density. To appreci-
ate the importance of this result, you first need to know what a “functional” is.
As you might guess from the name, a functional is closely related to the more
familiar concept of a function. A function takes a value of a variable or vari-
ables and defines a single number from those variables. A simple example of a
function dependent on a single variable is f (x) ¼ x2 þ 1. A functional is
similar, but it takes a function and defines a single number from the function.
For example,

F[ f ] ¼
ð1

�1

f (x) dx,

is a functional of the function f (x). If we evaluate this functional using
f (x) ¼ x2 þ 1, we get F[ f ] ¼ 8

3. So we can restate Hohenberg and Kohn’s
result by saying that the ground-state energy E can be expressed as E[n(r)],
where n(r) is the electron density. This is why this field is known as density
functional theory.

Another way to restate Hohenberg and Kohn’s result is that the ground-state
electron density uniquely determines all properties, including the energy and
wave function, of the ground state. Why is this result important? It means that
we can think about solving the Schrödinger equation by finding a function of
three spatial variables, the electron density, rather than a function of 3N vari-
ables, the wave function. Here, by “solving the Schrödinger equation” we
mean, to say it more precisely, finding the ground-state energy. So for a
nanocluster of 100 Pd atoms the theorem reduces the problem from something
with more than 23,000 dimensions to a problem with just 3 dimensions.

Unfortunately, although the first Hohenberg–Kohn theorem rigorously
proves that a functional of the electron density exists that can be used to
solve the Schrödinger equation, the theorem says nothing about what the func-
tional actually is. The second Hohenberg–Kohn theorem defines an important
property of the functional: The electron density that minimizes the energy of
the overall functional is the true electron density corresponding to the full sol-
ution of the Schrödinger equation. If the “true” functional form were known,
then we could vary the electron density until the energy from the functional is
minimized, giving us a prescription for finding the relevant electron density.
This variational principle is used in practice with approximate forms of
the functional.
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A useful way to write down the functional described by the Hohenberg–
Kohn theorem is in terms of the single-electron wave functions, ci(r).
Remember from Eq. (1.2) that these functions collectively define the electron
density, n(r). The energy functional can be written as

E[{ci}] ¼ Eknown[{ci}] þ EXC[{ci}], (1:3)

where we have split the functional into a collection of terms we can write down
in a simple analytical form, Eknown[{ci}], and everything else, EXC. The
“known” terms include four contributions:

Eknown[{ci}] ¼ � h�2

m

X

i

ð
c�

i r2cid
3r þ

ð
V(r)n(r) d3r

þ e2

2

ð ð
n(r)n(r0)
jr � r0j d3r d3r0 þ Eion: (1:4)

The terms on the right are, in order, the electron kinetic energies, the Coulomb
interactions between the electrons and the nuclei, the Coulomb interactions
between pairs of electrons, and the Coulomb interactions between pairs of
nuclei. The other term in the complete energy functional, EXC[{ci}], is the
exchange–correlation functional, and it is defined to include all the quantum
mechanical effects that are not included in the “known” terms.

Let us imagine for now that we can express the as-yet-undefined exchange–
correlation energy functional in some useful way. What is involved in finding
minimum energy solutions of the total energy functional? Nothing we have
presented so far really guarantees that this task is any easier than the formid-
able task of fully solving the Schrödinger equation for the wave function.
This difficulty was solved by Kohn and Sham, who showed that the task of
finding the right electron density can be expressed in a way that involves sol-
ving a set of equations in which each equation only involves a single electron.

The Kohn–Sham equations have the form

� h�2

2m
r2 þ V(r) þ VH(r) þ VXC(r)

� �
ci(r) ¼ 1ici(r): (1:5)

These equations are superficially similar to Eq. (1.1). The main difference is
that the Kohn–Sham equations are missing the summations that appear
inside the full Schrödinger equation [Eq. (1.1)]. This is because the solution
of the Kohn–Sham equations are single-electron wave functions that
depend on only three spatial variables, ci(r). On the left-hand side of the
Kohn–Sham equations there are three potentials, V, VH, and VXC. The first
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of these also appeared in the full Schrödinger equation (Eq. (1.1)) and in the
“known” part of the total energy functional given above (Eq. (1.4)). This
potential defines the interaction between an electron and the collection of
atomic nuclei. The second is called the Hartree potential and is defined by

VH(r) ¼ e2
ð

n(r0)
jr � r0jd

3r0: (1:6)

This potential describes the Coulomb repulsion between the electron being
considered in one of the Kohn–Sham equations and the total electron density
defined by all electrons in the problem. The Hartree potential includes a so-
called self-interaction contribution because the electron we are describing in
the Kohn–Sham equation is also part of the total electron density, so part of
VH involves a Coulomb interaction between the electron and itself. The self-
interaction is unphysical, and the correction for it is one of several effects
that are lumped together into the final potential in the Kohn–Sham equations,
VXC, which defines exchange and correlation contributions to the single-
electron equations. VXC can formally be defined as a “functional derivative”
of the exchange–correlation energy:

VXC(r) ¼ dEXC(r)
dn(r)

: (1:7)

The strict mathematical definition of a functional derivative is slightly more
subtle than the more familiar definition of a function’s derivative, but concep-
tually you can think of this just as a regular derivative. The functional deriva-
tive is written using d rather than d to emphasize that it not quite identical to a
normal derivative.

If you have a vague sense that there is something circular about our discus-
sion of the Kohn–Sham equations you are exactly right. To solve the Kohn–
Sham equations, we need to define the Hartree potential, and to define the
Hartree potential we need to know the electron density. But to find the electron
density, we must know the single-electron wave functions, and to know these
wave functions we must solve the Kohn–Sham equations. To break this circle,
the problem is usually treated in an iterative way as outlined in the following
algorithm:

1. Define an initial, trial electron density, n(r).
2. Solve the Kohn–Sham equations defined using the trial electron density

to find the single-particle wave functions, ci(r).
3. Calculate the electron density defined by the Kohn–Sham single-

particle wave functions from step 2, nKS(r) ¼ 2
P

i
c�

i (r)ci(r).
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4. Compare the calculated electron density, nKS(r), with the electron
density used in solving the Kohn–Sham equations, n(r). If the two
densities are the same, then this is the ground-state electron density,
and it can be used to compute the total energy. If the two densities are
different, then the trial electron density must be updated in some way.
Once this is done, the process begins again from step 2.

We have skipped over a whole series of important details in this process
(How close do the two electron densities have to be before we consider
them to be the same? What is a good way to update the trial electron density?
How should we define the initial density?), but you should be able to see how
this iterative method can lead to a solution of the Kohn–Sham equations that is
self-consistent.

1.5 EXCHANGE–CORRELATION FUNCTIONAL

Let us briefly review what we have seen so far. We would like to find the
ground-state energy of the Schrödinger equation, but this is extremely diffi-
cult because this is a many-body problem. The beautiful results of Kohn,
Hohenberg, and Sham showed us that the ground state we seek can be found
by minimizing the energy of an energy functional, and that this can be achieved
by finding a self-consistent solution to a set of single-particle equations. There
is just one critical complication in this otherwise beautiful formulation: to solve
the Kohn–Sham equations we must specify the exchange–correlation func-
tion, EXC[{ci}]. As you might gather from Eqs. (1.3) and (1.4), defining
EXC[{ci}] is very difficult. After all, the whole point of Eq. (1.4) is that we
have already explicitly written down all the “easy” parts.

In fact, the true form of the exchange–correlation functional whose exist-
ence is guaranteed by the Hohenberg–Kohn theorem is simply not known.
Fortunately, there is one case where this functional can be derived exactly:
the uniform electron gas. In this situation, the electron density is constant at
all points in space; that is, n(r) ¼ constant. This situation may appear to be
of limited value in any real material since it is variations in electron density
that define chemical bonds and generally make materials interesting. But the
uniform electron gas provides a practical way to actually use the Kohn–
Sham equations. To do this, we set the exchange–correlation potential at
each position to be the known exchange–correlation potential from the uni-
form electron gas at the electron density observed at that position:

VXC(r) ¼ V electron gas
XC [n(r)]: (1:8)
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This approximation uses only the local density to define the approximate
exchange–correlation functional, so it is called the local density approxi-
mation (LDA). The LDA gives us a way to completely define the Kohn–
Sham equations, but it is crucial to remember that the results from these
equations do not exactly solve the true Schrödinger equation because we are
not using the true exchange–correlation functional.

It should not surprise you that the LDA is not the only functional that has
been tried within DFT calculations. The development of functionals that
more faithfully represent nature remains one of the most important areas of
active research in the quantum chemistry community. We promised at the
beginning of the chapter to pose a problem that could win you the Nobel
prize. Here it is: Develop a functional that accurately represents nature’s
exact functional and implement it in a mathematical form that can be effi-
ciently solved for large numbers of atoms. (This advice is a little like the
Hohenberg–Kohn theorem—it tells you that something exists without provid-
ing any clues how to find it.)

Even though you could become a household name (at least in scientific cir-
cles) by solving this problem rigorously, there are a number of approximate
functionals that have been found to give good results in a large variety of phys-
ical problems and that have been widely adopted. The primary aim of this
book is to help you understand how to do calculations with these existing
functionals. The best known class of functional after the LDA uses infor-
mation about the local electron density and the local gradient in the electron
density; this approach defines a generalized gradient approximation (GGA).
It is tempting to think that because the GGA includes more physical
information than the LDA it must be more accurate. Unfortunately, this is
not always correct.

Because there are many ways in which information from the gradient of the
electron density can be included in a GGA functional, there are a large number
of distinct GGA functionals. Two of the most widely used functionals in cal-
culations involving solids are the Perdew–Wang functional (PW91) and the
Perdew–Burke–Ernzerhof functional (PBE). Each of these functionals are
GGA functionals, and dozens of other GGA functionals have been developed
and used, particularly for calculations with isolated molecules. Because differ-
ent functionals will give somewhat different results for any particular configur-
ation of atoms, it is necessary to specify what functional was used in any
particular calculation rather than simple referring to “a DFT calculation.”

Our description of GGA functionals as including information from the elec-
tron density and the gradient of this density suggests that more sophisticated
functionals can be constructed that use other pieces of physical information.
In fact, a hierarchy of functionals can be constructed that gradually include
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more and more detailed physical information. More information about this
hierarchy of functionals is given in Section 10.2.

1.6 THE QUANTUM CHEMISTRY TOURIST

As you read about the approaches aside from DFT that exist for finding numeri-
cal solutions of the Schrödinger equation, it is likely that you will rapidly
encounter a bewildering array of acronyms. This experience could be a little
bit like visiting a sophisticated city in an unfamiliar country. You may recog-
nize that this new city is beautiful, and you definitely wish to appreciate its
merits, but you are not planning to live there permanently. You could spend
years in advance of your trip studying the language, history, culture, and
geography of the country before your visit, but most likely for a brief visit
you are more interested in talking with some friends who have already visited
there, reading a few travel guides, browsing a phrase book, and perhaps trying to
identify a few good local restaurants. This section aims to present an overview
of quantum chemical methods on the level of a phrase book or travel guide.

1.6.1 Localized and Spatially Extended Functions

One useful way to classify quantum chemistry calculations is according to
the types of functions they use to represent their solutions. Broadly speaking,
these methods use either spatially localized functions or spatially extended
functions. As an example of a spatially localized function, Fig. 1.1 shows
the function

f (x) ¼ f1(x) þ f2(x) þ f3(x), (1:9)

where f1(x) ¼ exp(�x2),

f2(x) ¼ x2 exp(�x2=2),

f3(x) ¼ 1
10 x2(1 � x)2 exp(�x2=4).

Figure 1.1 also shows f1, f2, and f3. All of these functions rapidly approach
zero for large values of jxj. Functions like this are entirely appropriate for
representing the wave function or electron density of an isolated atom. This
example incorporates the idea that we can combine multiple individual func-
tions with different spatial extents, symmetries, and so on to define an overall
function. We could include more information in this final function by includ-
ing more individual functions within its definition. Also, we could build up
functions that describe multiple atoms simply by using an appropriate set of
localized functions for each individual atom.
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Spatially localized functions are an extremely useful framework for thinking
about the quantum chemistry of isolated molecules because the wave functions
of isolated molecules really do decay to zero far away from the molecule.
But what if we are interested in a bulk material such as the atoms in solid
silicon or the atoms beneath the surface of a metal catalyst? We could still
use spatially localized functions to describe each atom and add up these func-
tions to describe the overall material, but this is certainly not the only way for-
ward. A useful alternative is to use periodic functions to describe the wave
functions or electron densities. Figure 1.2 shows a simple example of this
idea by plotting

f (x) ¼ f1(x) þ f2(x) þ f3(x),

where f1(x) ¼ sin2 px

4

� �
,

f2(x) ¼ 1
3

cos2 px

2

� �
,

f3(x) ¼ 1
10 sin2 (px):

The resulting function is periodic; that is

f (x þ 4n) ¼ f (x),

Figure 1.1 Example of spatially localized functions defined in the text.
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for any integer n. This type of function is useful for describing bulk materials
since at least for defect-free materials the electron density and wave function
really are spatially periodic functions.

Because spatially localized functions are the natural choice for isolated
molecules, the quantum chemistry methods developed within the chemistry
community are dominated by methods based on these functions. Conversely,
because physicists have historically been more interested in bulk materials
than in individual molecules, numerical methods for solving the Schrödinger
equation developed in the physics community are dominated by spatially
periodic functions. You should not view one of these approaches as “right”
and the other as “wrong” as they both have advantages and disadvantages.

1.6.2 Wave-Function-Based Methods

A second fundamental classification of quantum chemistry calculations can be
made according to the quantity that is being calculated. Our introduction to
DFT in the previous sections has emphasized that in DFT the aim is to com-
pute the electron density, not the electron wave function. There are many
methods, however, where the object of the calculation is to compute the full
electron wave function. These wave-function-based methods hold a crucial
advantage over DFT calculations in that there is a well-defined hierarchy of
methods that, given infinite computer time, can converge to the exact solution
of the Schrödinger equation. We cannot do justice to the breadth of this field in
just a few paragraphs, but several excellent introductory texts are available

Figure 1.2 Example of spatially periodic functions defined in the text.
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and are listed in the Further Reading section at the end of this chapter. The
strong connections between DFT and wave-function-based methods and
their importance together within science was recognized in 1998 when the
Nobel prize in chemistry was awarded jointly to Walter Kohn for his work
developing the foundations of DFT and John Pople for his groundbreaking
work on developing a quantum chemistry computer code for calculating the
electronic structure of atoms and molecules. It is interesting to note that this
was the first time that a Nobel prize in chemistry or physics was awarded
for the development of a numerical method (or more precisely, a class of
numerical methods) rather than a distinct scientific discovery. Kohn’s Nobel
lecture gives a very readable description of the advantages and disadvantages
of wave-function-based and DFT calculations.5

Before giving a brief discussion of wave-function-based methods, we
must first describe the common ways in which the wave function is described.
We mentioned earlier that the wave function of an N-particle system is an
N-dimensional function. But what, exactly, is a wave function? Because we
want our wave functions to provide a quantum mechanical description of a
system of N electrons, these wave functions must satisfy several mathematical
properties exhibited by real electrons. For example, the Pauli exclusion
principle prohibits two electrons with the same spin from existing at the
same physical location simultaneously.‡ We would, of course, like these
properties to also exist in any approximate form of the wave function that
we construct.

1.6.3 Hartree–Fock Method

Suppose we would like to approximate the wave function of N electrons. Let us
assume for the moment that the electrons have no effect on each other. If this is
true, the Hamiltonian for the electrons may be written as

H ¼
XN

i¼1

hi, (1:10)

where hi describes the kinetic and potential energy of electron i. The full elec-
tronic Hamiltonian we wrote down in Eq. (1.1) takes this form if we simply
neglect electron–electron interactions. If we write down the Schrödinger

‡Spin is a quantum mechanical property that does not appear in classical mechanics. An electron
can have one of two distinct spins, spin up or spin down. The full specification of an electron’s
state must include both its location and its spin. The Pauli exclusion principle only applies to
electrons with the same spin state.
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equation for just one electron based on this Hamiltonian, the solutions would
satisfy

hx ¼ Ex: (1:11)

The eigenfunctions defined by this equation are called spin orbitals. For each
single-electron equation there are multiple eigenfunctions, so this defines a set
of spin orbitals xj(xi) ( j ¼ 1, 2, . . .) where xi is a vector of coordinates that
defines the position of electron i and its spin state (up or down). We will
denote the energy of spin orbital xj(xi) by Ej. It is useful to label the spin orbitals
so that the orbital with j ¼ 1 has the lowest energy, the orbital with j ¼ 2 has the
next highest energy, and so on. When the total Hamiltonian is simply a sum of
one-electron operators, hi, it follows that the eigenfunctions of H are products
of the one-electron spin orbitals:

c(x1, . . . , xN) ¼ x j1 (x1)x j2 (x2) � � �x jN (xN): (1:12)

The energy of this wave function is the sum of the spin orbital energies, E ¼
E j1 þ � � � þ E jN . We have already seen a brief glimpse of this approximation
to the N-electron wave function, the Hartree product, in Section 1.3.

Unfortunately, the Hartree product does not satisfy all the important criteria
for wave functions. Because electrons are fermions, the wave function must
change sign if two electrons change places with each other. This is known
as the antisymmetry principle. Exchanging two electrons does not change
the sign of the Hartree product, which is a serious drawback. We can obtain
a better approximation to the wave function by using a Slater determinant.
In a Slater determinant, the N-electron wave function is formed by combining
one-electron wave functions in a way that satisfies the antisymmetry principle.
This is done by expressing the overall wave function as the determinant of a
matrix of single-electron wave functions. It is best to see how this works for
the case of two electrons. For two electrons, the Slater determinant is

c(x1, x2) ¼ 1ffiffiffi
2

p det
xj(x1) xj(x2)
xk(x1) xk(x1)

� �

¼ 1ffiffiffi
2

p xj(x1)xk(x1) � xj(x2)xk(x1)
h i

: (1:13)

The coefficient of (1/
p

2) is simply a normalization factor. This expression
builds in a physical description of electron exchange implicitly; it changes
sign if two electrons are exchanged. This expression has other advantages.
For example, it does not distinguish between electrons and it disappears
if two electrons have the same coordinates or if two of the one-electron
wave functions are the same. This means that the Slater determinant satisfies
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the conditions of the Pauli exclusion principle. The Slater determinant
may be generalized to a system of N electrons easily; it is the determinant of
an N � N matrix of single-electron spin orbitals. By using a Slater deter-
minant, we are ensuring that our method for solving the Schrödinger
equation will include exchange. Unfortunately, this is not the only kind of
electron correlation that we need to describe in order to arrive at good compu-
tational accuracy.

The description above may seem a little unhelpful since we know that in any
interesting system the electrons interact with one another. The many different
wave-function-based approaches to solving the Schrödinger equation differ in
how these interactions are approximated. To understand the types of approxi-
mations that can be used, it is worth looking at the simplest approach, the
Hartree–Fock method, in some detail. There are also many similarities
between Hartree–Fock calculations and the DFT calculations we have
described in the previous sections, so understanding this method is a useful
way to view these ideas from a slightly different perspective.

In a Hartree–Fock (HF) calculation, we fix the positions of the atomic
nuclei and aim to determine the wave function of N-interacting electrons.
The first part of describing an HF calculation is to define what equations are
solved. The Schrödinger equation for each electron is written as

� h�2

2m
r2 þ V(r) þ VH(r)

� �
xj(x) ¼ Ejxj(x): (1:14)

The third term on the left-hand side is the same Hartree potential we saw in
Eq. (1.5):

VH(r) ¼ e2
ð

n(r0)
jr � r0j d3r0: (1:15)

In plain language, this means that a single electron “feels” the effect of other
electrons only as an average, rather than feeling the instantaneous repulsive
forces generated as electrons become close in space. If you compare
Eq. (1.14) with the Kohn–Sham equations, Eq. (1.5), you will notice that
the only difference between the two sets of equations is the additional
exchange–correlation potential that appears in the Kohn–Sham equations.

To complete our description of the HF method, we have to define how the
solutions of the single-electron equations above are expressed and how these
solutions are combined to give the N-electron wave function. The HF approach
assumes that the complete wave function can be approximated using a single
Slater determinant. This means that the N lowest energy spin orbitals of the
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single-electron equation are found, xj(x) for j ¼ 1, . . . , N, and the total wave
function is formed from the Slater determinant of these spin orbitals.

To actually solve the single-electron equation in a practical calculation,
we have to define the spin orbitals using a finite amount of information
since we cannot describe an arbitrary continuous function on a computer.
To do this, we define a finite set of functions that can be added together to
approximate the exact spin orbitals. If our finite set of functions is written as
f1(x), f2(x), . . . , fK(x), then we can approximate the spin orbitals as

xj(x) ¼
XK

i¼1

aj,ifi(x): (1:16)

When using this expression, we only need to find the expansion coefficients,
a j,i, for i ¼ 1, . . . , K and j ¼ 1, . . . , N to fully define all the spin orbitals that
are used in the HF method. The set of functions f1(x), f2(x), . . . , fK(x) is
called the basis set for the calculation. Intuitively, you can guess that using
a larger basis set (i.e., increasing K ) will increase the accuracy of the calcu-
lation but also increase the amount of effort needed to find a solution.
Similarly, choosing basis functions that are very similar to the types of
spin orbitals that actually appear in real materials will improve the accuracy
of an HF calculation. As we hinted at in Section 1.6.1, the characteristics of
these functions can differ depending on the type of material that is being
considered.

We now have all the pieces in place to perform an HF calculation—a basis
set in which the individual spin orbitals are expanded, the equations that the
spin orbitals must satisfy, and a prescription for forming the final wave func-
tion once the spin orbitals are known. But there is one crucial complication left
to deal with; one that also appeared when we discussed the Kohn–Sham
equations in Section 1.4. To find the spin orbitals we must solve the single-
electron equations. To define the Hartree potential in the single-electron
equations, we must know the electron density. But to know the electron den-
sity, we must define the electron wave function, which is found using the indi-
vidual spin orbitals! To break this circle, an HF calculation is an iterative
procedure that can be outlined as follows:

1. Make an initial estimate of the spin orbitals xj(x) ¼
PK

i¼1 a j,ifi(x) by
specifying the expansion coefficients, a j,i:

2. From the current estimate of the spin orbitals, define the electron
density, n(r0):

3. Using the electron density from step 2, solve the single-electron
equations for the spin orbitals.
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4. If the spin orbitals found in step 3 are consistent with orbitals used in
step 2, then these are the solutions to the HF problem we set out to
calculate. If not, then a new estimate for the spin orbitals must be
made and we then return to step 2.

This procedure is extremely similar to the iterative method we outlined in
Section 1.4 for solving the Kohn–Sham equations within a DFT calculation.
Just as in our discussion in Section 1.4, we have glossed over many details that
are of great importance for actually doing an HF calculation. To identify just a
few of these details: How do we decide if two sets of spin orbitals are similar
enough to be called consistent? How can we update the spin orbitals in step 4
so that the overall calculation will actually converge to a solution? How large
should a basis set be? How can we form a useful initial estimate of the spin
orbitals? How do we efficiently find the expansion coefficients that define
the solutions to the single-electron equations? Delving into the details of
these issues would take us well beyond our aim in this section of giving an
overview of quantum chemistry methods, but we hope that you can appreciate
that reasonable answers to each of these questions can be found that allow HF
calculations to be performed for physically interesting materials.

1.6.4 Beyond Hartree–Fock

The Hartree–Fock method provides an exact description of electron exchange.
This means that wave functions from HF calculations have exactly the same
properties when the coordinates of two or more electrons are exchanged as
the true solutions of the full Schrödinger equation. If HF calculations were
possible using an infinitely large basis set, the energy of N electrons that
would be calculated is known as the Hartree–Fock limit. This energy is not
the same as the energy for the true electron wave function because the
HF method does not correctly describe how electrons influence other
electrons. More succinctly, the HF method does not deal with electron
correlations.

As we hinted at in the previous sections, writing down the physical laws that
govern electron correlation is straightforward, but finding an exact description
of electron correlation is intractable for any but the simplest systems. For the
purposes of quantum chemistry, the energy due to electron correlation is
defined in a specific way: the electron correlation energy is the difference
between the Hartree–Fock limit and the true (non-relativistic) ground-state
energy. Quantum chemistry approaches that are more sophisticated than the
HF method for approximately solving the Schrödinger equation capture
some part of the electron correlation energy by improving in some way
upon one of the assumptions that were adopted in the Hartree–Fock approach.
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How do more advanced quantum chemical approaches improve on the HF
method? The approaches vary, but the common goal is to include a description
of electron correlation. Electron correlation is often described by “mixing” into
the wave function some configurations in which electrons have been excited or
promoted from lower energy to higher energy orbitals. One group of methods
that does this are the single-determinant methods in which a single Slater
determinant is used as the reference wave function and excitations are made
from that wave function. Methods based on a single reference determinant
are formally known as “post–Hartree–Fock” methods. These methods
include configuration interaction (CI), coupled cluster (CC), Møller–Plesset
perturbation theory (MP), and the quadratic configuration interaction (QCI)
approach. Each of these methods has multiple variants with names that
describe salient details of the methods. For example, CCSD calculations are
coupled-cluster calculations involving excitations of single electrons (S),
and pairs of electrons (double—D), while CCSDT calculations further include
excitations of three electrons (triples—T). Møller–Plesset perturbation theory
is based on adding a small perturbation (the correlation potential) to a zero-
order Hamiltonian (the HF Hamiltonian, usually). In the Møller–Plesset
perturbation theory approach, a number is used to indicate the order of the
perturbation theory, so MP2 is the second-order theory and so on.

Another class of methods uses more than one Slater determinant as the
reference wave function. The methods used to describe electron correlation
within these calculations are similar in some ways to the methods listed above.
These methods include multiconfigurational self-consistent field (MCSCF),
multireference single and double configuration interaction (MRDCI), and
N-electron valence state perturbation theory (NEVPT) methods.§

The classification of wave-function-based methods has two distinct com-
ponents: the level of theory and the basis set. The level of theory defines the
approximations that are introduced to describe electron–electron interactions.
This is described by the array of acronyms introduced in the preceding para-
graphs that describe various levels of theory. It has been suggested, only
half-jokingly, that a useful rule for assessing the accuracy of a quantum chem-
istry calculation is that “the longer the acronym, the better the level of theory.”6

The second, and equally important, component in classifying wave-function-
based methods is the basis set. In the simple example we gave in Section 1.6.1
of a spatially localized function, we formed an overall function by adding
together three individual functions. If we were aiming to approximate a par-
ticular function in this way, for example, the solution of the Schrödinger

§This may be a good time to remind yourself that this overview of quantum chemistry is meant to
act something like a phrase book or travel guide for a foreign city. Details of the methods listed
here may be found in the Further Reading section at the end of this chapter.
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equation, we could always achieve this task more accurately by using more
functions in our sum. Using a basis set with more functions allows a more
accurate representation of the true solution but also requires more compu-
tational effort since the numerical coefficients defining the magnitude of
each function’s contribution to the net function must be calculated. Just as
there are multiple levels of theory that can be used, there are many possible
ways to form basis sets.

To illustrate the role of the level of theory and the basis set, we will look at
two properties of a molecule of CH4, the C–H bond length and the ionization
energy. Experimentally, the C–H bond length is 1.094 Å7 and the ionization
energy for methane is 12.61 eV. First, we list these quantities calculated with
four different levels of theory using the same basis set in Table 1.1. Three of
the levels of theory shown in this table are wave-function-based, namely HF,
MP2, and CCSD. We also list results from a DFT calculation using the most
popular DFT functional for isolated molecules, that is, the B3LYP functional.
(We return at the end of this section to the characteristics of this functional.)
The table also shows the computational time needed for each calculation nor-
malized by the time for the HF calculation. An important observation from this
column is that the computational time for the HF and DFT calculations are
approximately the same—this is a quite general result. The higher levels of
theory, particularly the CCSD calculation, take considerably more compu-
tational time than the HF (or DFT) calculations.

All of the levels of theory listed in Table 1.1 predict the C–H bond length
with accuracy within 1%. One piece of cheering information from Table 1.1 is
that the DFT method predicts this bond length as accurately as the much more
computationally expensive CCSD approach. The error in the ionization energy
predicted by HF is substantial, but all three of the other methods give better
predictions. The higher levels of theory (MP2 and CCSD) give considerably
more accurate results for this quantity than DFT.

Now we look at the properties of CH4 predicted by a set of calculations in
which the level of theory is fixed and the size of the basis set is varied.

TABLE 1.1 Computed Properties of CH4 Molecule for Four Levels of Theory
Using pVTZ Basis Seta

Level of
Theory

C–H
(Å)

Percent
Error

Ionization
(eV)

Percent
Error

Relative
Time

HF 1.085 20.8 11.49 28.9 1
DFT (B3LYP) 1.088 20.5 12.46 21.2 1
MP2 1.085 20.8 12.58 20.2 2
CCSD 1.088 20.5 12.54 20.5 18

aErrors are defined relative to the experimental value.
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Table 1.2 contains results of this kind using DFT calculations with the B3LYP
functional in each case. There is a complicated series of names associated with
different basis sets. Without going into the details, let us just say that STO-3G
is a very common “minimal” basis set while cc-pVDZ, cc-pVTZ, and cc-
pVQZ (D stands for double, T for triple, etc.) is a popular series of basis
sets that have been carefully developed to be numerically efficient for molecu-
lar calculations. The table lists the number of basis functions used in each cal-
culation and also the computational time relative to the most rapid calculation.
All of the basis sets listed in Table 1.2 give C–H bond lengths that are within
1% of the experimental value. The ionization energy, however, becomes sig-
nificantly more accurate as the size of the basis set becomes larger.

One other interesting observation from Table 1.2 is that the results for the
two largest basis sets, pVTZ and pVQZ, are identical (at least to the numerical
precision we listed in the table). This occurs when the basis sets include
enough functions to accurately describe the solution of the Schrödinger
equation, and when it occurs the results are said to be “converged with respect
to basis set.” When it happens, this is a good thing! An unfortunate fact of
nature is that a basis set that is large enough for one level of theory, say
DFT, is not necessarily large enough for higher levels of theory. So the results
in Table 1.2 do not imply that the pVTZ basis set used for the CCSD calcu-
lations in Table 1.1 were converged with respect to basis set.

In order to use wave-function-based methods to converge to the true sol-
ution of the Schrödinger equation, it is necessary to simultaneously use a
high level of theory and a large basis set. Unfortunately, this approach is
only feasible for calculations involving relatively small numbers of atoms
because the computational expense associated with these calculations
increases rapidly with the level of theory and the number of basis functions.
For a basis set with N functions, for example, the computational expense of
a conventional HF calculation typically requires �N4 operations, while a con-
ventional coupled-cluster calculation requires �N7 operations. Advances have
been made that improve the scaling of both HF and post-HF calculations. Even
with these improvements, however you can appreciate the problem with

TABLE 1.2 Properties of CH4 Calculated Using DFT (B3LYP) with Four Different
Basis Setsa

Basis Set
Number of Basis

Functions
C–H
(Å)

Percent
Error

Ionization
(eV)

Percent
Error

Relative
Time

STO-3G 27 1.097 0.3 12.08 24.2 1
cc-pVDZ 61 1.100 0.6 12.34 22.2 1
cc-pVTZ 121 1.088 20.5 12.46 21.2 2
cc-pVQZ 240 1.088 20.5 12.46 21.2 13

aErrors are defined relative to the experimental value. Time is defined relative to the STO-3G calculation.
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scaling if you notice from Table 1.2 that a reasonable basis set for even a tiny
molecule like CH4 includes hundreds of basis functions. The computational
expense of high-level wave-function-based methods means that these calcu-
lations are feasible for individual organic molecules containing 10–20
atoms, but physical systems larger than this fall into either the “very challen-
ging” or “computationally infeasible” categories.

This brings our brief tour of quantum chemistry almost to an end. As the
title of this book suggests, we are going to focus throughout the book on den-
sity functional theory calculations. Moreover, we will only consider methods
based on spatially periodic functions—the so-called plane-wave methods.
Plane-wave methods are the method of choice in almost all situations where
the physical material of interest is an extended crystalline material rather
than an isolated molecule. As we stated above, it is not appropriate to view
methods based on periodic functions as “right” and methods based on spatially
localized functions as “wrong” (or vice versa). In the long run, it will be a great
advantage to you to understand both classes of methods since having access to
a wide range of tools can only improve your chances of solving significant
scientific problems. Nevertheless, if you are interested in applying compu-
tational methods to materials other than isolated molecules, then plane-wave
DFT is an excellent place to start.

It is important for us to emphasize that DFT calculations can also be per-
formed using spatially localized functions—the results in Tables 1.1 and 1.2
are examples of this kind of calculation. Perhaps the main difference between
DFT calculations using periodic and spatially localized functions lies in the
exchange–correlation functionals that are routinely used. In Section 1.4 we
defined the exchange–correlation functional by what it does not include—it
is the parts of the complete energy functional that are left once we separate
out the contributions that can be written in simple ways. Our discussion of
the HF method, however, indicates that it is possible to treat the exchange
part of the problem in an exact way, at least in principle. The most commonly
used functionals in DFT calculations based on spatially localized basis func-
tions are “hybrid” functionals that mix the exact results for the exchange part of
the functional with approximations for the correlation part. The B3LYP func-
tional is by far the most widely used of these hybrid functionals. The B stands
for Becke, who worked on the exchange part of the problem, the LYP stands
for Lee, Yang, and Parr, who developed the correlation part of the functional,
and the 3 describes the particular way that the results are mixed together.
Unfortunately, the form of the exact exchange results mean that they can be
efficiently implemented for applications based on spatially localized functions
but not for applications using periodic functions! Because of this fact, the func-
tionals that are commonly used in plane-wave DFT calculations do not include
contributions from the exact exchange results.
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1.7 WHAT CAN DFT NOT DO?

It is very important to come to grips with the fact that practical DFT calcu-
lations are not exact solutions of the full Schrödinger equation. This inexact-
ness exists because the exact functional that the Hohenberg–Kohn theorem
applies to is not known. So any time you (or anyone else) performs a DFT cal-
culation, there is an intrinsic uncertainty that exists between the energies
calculated with DFT and the true ground-state energies of the Schrödinger
equation. In many situations, there is no direct way to estimate the magnitude
of this uncertainty apart from careful comparisons with experimental measure-
ments. As you read further through this book, we hope you will come to
appreciate that there are many physical situations where the accuracy of
DFT calculations is good enough to make powerful predictions about the prop-
erties of complex materials. The vignettes in Section 1.2 give several examples
of this idea. We discuss the complicated issue of the accuracy of DFT calcu-
lations in Chapter 10.

There are some important situations for which DFT cannot be expected to
be physically accurate. Below, we briefly discuss some of the most common
problems that fall into this category. The first situation where DFT calculations
have limited accuracy is in the calculation of electronic excited states. This can
be understood in a general way by looking back at the statement of the
Hohenberg–Kohn theorems in Section 1.4; these theorems only apply to
the ground-state energy. It is certainly possible to make predictions about
excited states from DFT calculations, but it is important to remember that
these predictions are not—theoretically speaking—on the same footing as
similar predictions made for ground-state properties.

A well-known inaccuracy in DFT is the underestimation of calculated band
gaps in semiconducting and insulating materials. In isolated molecules, the
energies that are accessible to individual electrons form a discrete set (usually
described in terms of molecular orbitals). In crystalline materials, these ener-
gies must be described by continuous functions known as energy bands. The
simplest definition of metals and insulators involves what energy levels are
available to the electrons in the material with the highest energy once all the
low-energy bands are filled in accordance with the Pauli exclusion principle.
If the next available electronic state lies only at an infinitesimal energy
above the highest occupied state, then the material is said to be a metal. If
the next available electronic state sits a finite energy above the highest occu-
pied state, then the material is not a metal and the energy difference between
these two states is called the band gap. By convention, materials with “large”
band gaps (i.e., band gaps of multiple electron volts) are called insulators while
materials with “small” band gaps are called semiconductors. Standard DFT
calculations with existing functionals have limited accuracy for band gaps,
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with errors larger than 1 eV being common when comparing with experimen-
tal data. A subtle feature of this issue is that it has been shown that even the
formally exact Kohn–Sham exchange–correlation functional would suffer
from the same underlying problem.k

Another situation where DFT calculations give inaccurate results is associ-
ated with the weak van der Waals (vdW) attractions that exist between atoms
and molecules. To see that interactions like this exist, you only have to think
about a simple molecule like CH4 (methane). Methane becomes a liquid at suf-
ficiently low temperatures and high enough pressures. The transportation of
methane over long distances is far more economical in this liquid form than
as a gas; this is the basis of the worldwide liquefied natural gas (LNG) industry.
But to become a liquid, some attractive interactions between pairs of CH4 mol-
ecules must exist. The attractive interactions are the van der Waals interactions,
which, at the most fundamental level, occur because of correlations that exist
between temporary fluctuations in the electron density of one molecule and the
energy of the electrons in another molecule responding to these fluctuations.
This description already hints at the reason that describing these interactions
with DFT is challenging; van der Waals interactions are a direct result of
long range electron correlation. To accurately calculate the strength of these
interactions from quantum mechanics, it is necessary to use high-level
wave-function-based methods that treat electron correlation in a systematic
way. This has been done, for example, to calculate the very weak interactions
that exist between pairs of H2 molecules, where it is known experimentally that
energy of two H2 molecules in their most favored geometry is �0.003 eV
lower than the energy of the same molecules separated by a long distance.8

There is one more fundamental limitation of DFT that is crucial to appreci-
ate, and it stems from the computational expense associated with solving the
mathematical problem posed by DFT. It is reasonable to say that calculations
that involve tens of atoms are now routine, calculations involving hundreds of
atoms are feasible but are considered challenging research-level problems, and
calculations involving a thousand or more atoms are possible but restricted to
a small group of people developing state-of-the-art codes and using some
of the world’s largest computers. To keep this in a physical perspective, a
droplet of water 1 mm in radius contains on the order of 1011 atoms. No con-
ceivable increase in computing technology or code efficiency will allow DFT

kDevelopment of methods related to DFT that can treat this situation accurately is an active area
of research where considerable progress is being made. Two representative examples of this kind
of work are P. Rinke, A. Qteish, J. Neugebauer, and M. Scheffler, Exciting Prospects for Solids:
Exact-Exchange Based Functional Meet Quasiparticle Energy Calculations, Phys. Stat. Sol. 245
(2008), 929, and J. Uddin, J. E. Peralta, and G. E. Scuseria, Density Functional Theory Study of
Bulk Platinum Monoxide, Phys. Rev. B, 71 (2005), 155112.
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calculations to directly examine collections of atoms of this size. As a result,
anyone using DFT calculations must clearly understand how information from
calculations with extremely small numbers of atoms can be connected with
information that is physically relevant to real materials.

1.8 DENSITY FUNCTIONAL THEORY IN OTHER FIELDS

For completeness, we need to point out that the name density functional theory
is not solely applied to the type of quantum mechanics calculations we have
described in this chapter. The idea of casting problems using functionals of
density has also been used in the classical theory of fluid thermodynamics.
In this case, the density of interest is the fluid density not the electron density,
and the basic equation of interest is not the Schrödinger equation. Realizing
that these two distinct scientific communities use the same name for their
methods may save you some confusion if you find yourself in a seminar by
a researcher from the other community.

1.9 HOW TO APPROACH THIS BOOK (REVISITED)

We began this chapter with an analogy about learning to drive to describe our
aims for this book. Now that we have introduced much of the terminology
associated with DFT and quantum chemistry calculations, we can state the
subject matter and approach of the book more precisely. The remaining chap-
ters focus on using plane-wave DFT calculations with commonly applied
functionals to physical questions involving bulk materials, surfaces, nanopar-
ticles, and molecules. Because codes to perform these plane-wave calculations
are now widely available, we aim to introduce many of the issues associated
with applying these methods to interesting scientific questions in a computa-
tionally efficient way.

The book has been written with two audiences in mind. The primary audi-
ence is readers who are entering a field of research where they will perform
DFT calculations (and perhaps other kinds of computational chemistry or
materials modeling) on a daily basis. If this describes you, it is important
that you perform as many of the exercises at the end of the chapters as possible.
These exercises have been chosen to require relatively modest computational
resources while exploring most of the key ideas introduced in each chapter.
Simply put, if your aim is to enter a field where you will perform calculations,
then you must actually do calculations of your own, not just read about other
people’s work. As in almost every endeavor, there are many details that are
best learned by experience. For readers in this group, we recommend reading
through every chapter sequentially.
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The second audience is people who are unlikely to routinely perform their
own calculations, but who work in a field where DFT calculations have
become a “standard” approach. For this group, it is important to understand
the language used to describe DFT calculations and the strengths and limit-
ations of DFT. This situation is no different from “standard” experimental
techniques such as X-ray diffraction or scanning electron microscopy, where
a working knowledge of the basic methods is indispensable to a huge commu-
nity of researchers, regardless of whether they personally apply these methods.
If you are in this audience, we hope that this book can help you become a soph-
isticated consumer of DFT results in a relatively efficient way. If you have a
limited amount of time (a long plane flight, for example), we recommend
that you read Chapter 3, Chapter 10, and then read whichever of Chapters
4–9 appears most relevant to you. If (when?) your flight is delayed, read
one of the chapters that doesn’t appear directly relevant to your specific
research interests—we hope that you will learn something interesting.

We have consciously limited the length of the book in the belief that the pro-
spect of reading and understanding an entire book of this length is more
appealing than the alternative of facing (and carrying) something the size of
a large city’s phone book. Inevitably, this means that our coverage of various
topics is limited in scope. In particular, we do not examine the details of DFT
calculations using localized basis sets beyond the cursory treatment already
presented in this chapter. We also do not delve deeply into the theory of
DFT and the construction of functionals. In this context, the word “introduc-
tion” appears in the title of the book deliberately. You should view this book as
an entry point into the vibrant world of DFT, computational chemistry, and
materials modeling. By following the resources that are listed at the end of
each chapter in the Further Reading section, we hope that you will continue
to expand your horizons far beyond the introduction that this book gives.

We have opted to defer the crucial issue of the accuracy of DFT calculations
until chapter 10, after introducing the application of DFT to a wide variety of
physical properties in the preceding chapters. The discussion in that chapter
emphasizes that this topic cannot be described in a simplistic way. Chapter 10
also points to some of the areas in which rapid developments are currently
being made in the application of DFT to challenging physical problems.
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FURTHER READING

Throughout this book, we will list resources for further reading at the end of each
chapter. You should think of these lists as pointers to help you learn about
topics we have mentioned or simplified in a detailed way. We have made no
attempt to make these lists exhaustive in any sense (to understand why, find
out how many textbooks exist dealing with “quantum mechanics” in some
form or another).

Among the many books on quantum mechanics that have been written, the following
are good places to start if you would like to review the basic concepts we have
touched on in this chapter:

P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, Oxford University
Press, Oxford, UK, 1997.

D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Valley, CA,
1983.

M. A. Ratner and G. C. Schatz, Introduction to Quantum Mechanics in Chemistry,
Prentice Hall, Upper Saddle River, NJ, 2001.

J. Simons and J. Nichols, Quantum Mechanics in Chemistry, Oxford University Press,
New York, 1997.

Detailed accounts of DFT are available in:

W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory,
Wiley-VCH, Weinheim, 2000.

R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge
University Press, Cambridge, UK, 2004.

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, Oxford, UK, 1989.
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Resources for learning about the wide range of quantum chemistry calculation
methods that go beyond DFT include:

J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure
Methods, Gaussian Inc., Pittsburgh, 1996.

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, Dover, Minneola, NY, 1996.

D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to
Real World Problems, Wiley, New York, 2001.

A book that gives a relatively brief overview of band theory is:

A. P. Sutton, Electronic Structure of Materials, Oxford University Press, Oxford, UK,
1993.

Two traditional sources for a more in-depth view of this topic are:

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing,
Orlando, 1976.

C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1976.

A good source if you want to learn about the fluid thermodynamics version of DFT is:

H. Ted Davis, Statistical Mechanics of Phases, Interfaces, and Thin Films, Wiley-
VCH, 1995.

FURTHER READING 33




