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CHAPTER 1

INTRODUCTION

1.1 THE BOND ENERGY MODEL

This book is about electronic charge distributions, chemical bonds, bond energy
additivity in organic molecules, and the description of their relevant thermochemical
properties, such as the energy of atomization, the enthalpy of formation, and the like,
using computer-friendly methods.

Additivity schemes with fixed bond energy (or enthalpy) parameters plus a host
of corrective factors reflecting nonbonded steric interactions have a long history
in the prediction of thermochemical properties, such as the classical enthalpy of
formation of organic molecules. Allen-type methods, for example, nicely illustrate
the usefulness of empirical bond additivity approaches [1,2].

But theory tells a different story.
Immutable bond energy terms tacitly imply never-changing internuclear distances

between atoms whose electron populations would never change. But the point is
that invariable local electron populations cannot describe a set of electroneutral
molecules. Unless the net atomic charges of all atoms in all molecules always exactly
equal zero, any additivity scheme postulating fixed atomic charges obviously violates
all requirements of molecular electroneutrality; for example, if the same carbon
net charges and the same hydrogen net charges (=0) are assigned to the carbon and
hydrogen atoms of methane and ethane, simple charge normalization indicates that
molecular electroneutrality cannot be satisfied for both molecules. Finally, unless we
stipulate that atomic charges have no bearing on bond energies or else, that
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any change in atomic charge is perfectly counteracted by appropriate changes in
internuclear distances in order to prevent changes of bond energy, we are led to the
concept of bond energies depending on the charges of the bond-forming atoms.1

But quantum chemistry hic et nunc does not know about chemical bonds, unless
we say so. The approach chosen here is centered on the potentials at the nuclei found
in a molecule.

The Hellmann–Feynman theorem tells us that all forces in a molecule can be
understood on purely classical grounds, provided that the exact electron density (or
at least a density derived from a wave function satisfying this theorem) is known
for that molecule [3]. We have exploited this vein. The description of atomization
energies, on the one hand, and that of bond energies, on the other, were reduced to
purely electrostatic problems involving only nuclear–electronic and nuclear–
nuclear interactions. There is a price to be paid for this simplification—the mechan-
ism of bond formation cannot be understood in purely electrostatic terms [4,5]. The
kinetic energy of the electrons plays a decisive role because the electronic
Hamiltonian of an atom or a molecule is bounded from below only if the kinetic
energy is duly accounted for. This decisive role deeply reflects the theory explaining
why chemical bonds are formed in the first place [4,5]. In short, our electrostatic
approach allows no inquiry into the origin of chemical bonds. In contrast, it is well
suited for describing chemical bonds as they are found in molecules at equilibrium.

This is so because the Hellmann–Feynman theorem offers a most convenient way
to bring out the main features of chemical binding. By taking the nuclear charges as
parameters, the binding of each individual atom in a molecule can be defined without
having recourse to an a priori real-space partitioning of that molecule into atomic sub-
spaces. This binding is determined entirely by the potentials at the atomic nuclei. In
short, our definition of bond energies does not involve virtual boundaries that delimit
the space assigned to the individual atoms in a molecule with intent to subsequently
describe the chemical bonds linking them. We know, of course, that powerful and
realistic methods describe a useful partitioning of molecules into “atoms in a
molecule” [6]—an approach that certainly offers much chemistry. The methods
developped here simply represent another perspective of the same problem.
Important arguments concern a real-space core–valence charge partitioning, a
topic that resists the approach [6] leading to the concept of “atoms in the molecule.”
Moreover, our approach involves the use of Gauss’ theorem and a sensible
application of the Thomas–Fermi model [7,8], which is known to give reasonably
accurate atomic energies with the use of Hartree–Fock densities [9–12].

However, direct calculations of accurate bond energies represent a major challenge.
Examples are given [13,14] where the ratios of carbon–carbon bond energies, relative
to that of ethane, were successfully calculated for ethylene, acetylene, benzene, and

1Empirical bond additivity methods circumvent the problems linked to charge normalization constraints
because they modify the genuine “bond energies” by tacit inclusion of extra terms that have nothing to
do with bond energy itself. Still, a number of additional “steric factors” must be introduced in order to
achieve what fixed bond energy terms alone cannot do: an agreement with experimental results (see
Chapter 10).
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cyclopropane (Table 1.1). For ethane itself, the calculated CC bond energy amounts to
�70 kcal/mol from Hartree–Fock calculations [13] or 68.3+0.4 kcal/mol, as given
by density functional calculations [14]. The best fit with experimental data is obtained
with 69.633 kcal/mol for that bond, which is satisfactory.

1.2 SCOPE

The difficulties encountered in the direct calculation of bond energies can be
overcome—with hard labor and some approximations—in only a few cases,
but the good news is that only a few reference bond energies need to be calculated
for model systems. Those determined for the CC and CH bonds of ethane, for
example, are sufficient for the description of saturated hydrocarbons; the addition
of the reference bond energy describing the double bond of ethene extends the
range of applications to olefinic molecules, including polyenic material. It is thus
well worth the trouble to calculate a few reference bond energies—and this can be
done with reasonable accuracy—because the rest follows as explained here. That is
where atomic charges come into the picture and solve the problem presented here.

The description of bond energies that depend explicitly on the charges of the
bond-forming atoms is attractive for the concepts it applies and for its usefulness
in the prediction of important thermochemical quantities, such as the energy of
atomization or the enthalpy of formation of organic molecules. But its success
critically depends on the availability of accurate charge results.

Now, the problems associated with the search for meaningful atomic charges, such
as those required in applications of our bond energy formulas, are manifold. One

TABLE 1.1. CC Bond Energies Relative to That of Ethane

Ratio of CC Bond Energies

Basisa C2H4 C2H2 C6H6 c-C3H6

1 6231 G(d,p) 1.846 2.828 1.590 1.002

2 62311 G(d,p) 1.938 3.048 1.601 0.993

3 62311 G(2df,2p) 1.955 2.908 1.603 0.972

4 62311 G(2df,2pd) 1.972 2.960 1.621 0.977

5 vD(2d,2p) BLYP 1.991 3.094 1.615 0.951

6 vD(2d,2p) B3LYP 1.915 2.980 1.581 0.958

7 vD(2df,2pd) BLYP 2.020 3.154 1.634 0.959

8 vD(2df,2pd) B3LYP 1.943 3.036 1.597 0.962

Semiempirical 2.000 1.640

aThe basis set of 1 is from Ref. 15, that of 2 from Ref. 16, and those of 3 and 4 are from Ref. 17. In 5–8 we
used van Dujneveldt’s bases [18], also adding a set of f functions on C and of d functions on H [17] (7,8),
Becke’s gradient correction to exchange [19], and the Lee–Yang–Parr (LYP) potential [20]. The B3LYP
functional involves a fully coherent implementation, whereby the self-consistent field (SCF) process, the
optimized geometry, and the analytic second derivatives are computed with the complete density func-
tional, including gradient corrections and exchange.
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concerns the selection of the population analysis. As is well known, Mulliken charges
represent only one of the possible definitions of atomic net charges [21–29]; widely
different values are produced with comparatively small changes in a basis set, even in
ab initio SCF calculations. Since trends within similar series are generally little
affected by the computational scheme, this has seldom received significant attention
in applications to chemical problems. But the present situation is one where the
choice of the basis set could play a very important role, as does inclusion of basis
superposition effects [30]. While Mulliken’s population analysis [31] is probably
the most widely used one, Löwdin’s method [32] or Jug’s approach [33] could
also be envisaged with success. Selection of the method does greatly affect the
final numerical results, as vividly exemplified by the SCF net charges obtained
with a minimal basis set for the nitrogen of methylamine, namely, 2374, þ47,
and 2291 millielectron (1 me ¼ 1023 e units), respectively, depending on whether
Mulliken’s, Löwdin’s, or Jug’s definition is implemented. So, under these circum-
stances, things do not seem encouraging. Fortunately, they are not really as bad as
suggested by these examples. We shall learn about charge variations suited for
bond energy calculations that withstand comparison with experiment. A promising
example is offered by the calculated charge variations DqN of the nitrogen atoms
of a series of amines, relative to that of methylamine, as given by the Mulliken,
Löwdin, and Jug methods (Table 1.2). The examples shown in Table 1.2 are
meant to illustrate how different ways of partitioning overlap populations do affect
calculated atomic charge variations accompanying structural modifications; admit-
tedly, the differences can be relatively minor, but the absolute values of the same
charges defy any reasonable expectation. Evidently, one should not rely too
heavily on numbers calculated by population analysis. Mulliken’s assignment of
half the overlap probability density to each atomic orbital (AO) is rather arbitrary
and occasionally leads to unphysical results. Still, we shall see that the Mulliken
scheme offers a valid starting point. To get useful charges, however, we must
rethink the problem of assigning overlap populations—a topic highlighted in
Chapter 8.

At first, it may seem surprising that many methods give results in semiquantitative
agreement with Mulliken population analysis values, but it now appears that it is rather
what one should expect from any sensible method. This holds true for the simplest

TABLE 1.2. Calculation of DqN in Amines

Molecule

DqN (me)

Mulliken Löwdin Jug

CH3NH2 0 0 0
C2H5NH2 25.16 24.86 25.01
n-C3H7NH2 24.96 24.65 24.86
iso-C3H7NH2 29.00 28.90 29.20
iso-C4H9NH2 23.59 23.84 24.10
tert-C4H9NH2 211.58 211.94 212.49
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possible one [29]: Del Re’s approach is based on rough semiempirical approximations
of simple molecular orbital–linear combination of atomic orbitals (MO-LCAO) theory
of localized bonds. The original, extremely simple parameterization that reproduced
electric dipole moments [29] and a more recent one [34–36] for charges that correlate
with nuclear magnetic resonance (NMR) shifts and that are fit for accurate energy
calculations, turn out to correspond to solutions of MO-LCAO Mulliken-type
population analyses differing from one another by the mode of partitioning overlap
terms [37]. The link between Del Re’s simple semiempirical approach and the more
familiar MO-LCAO charge analyses is clearly established.

While the charges for use in our description of bond energies were originally
obtained from accurate SCF computations using a variant of Mulliken’s population
analysis, the observation [38–44] that the 13C, 15N, and 17O nuclear magnetic
resonance (NMR) shifts are linearly related to these charges permitted rapid progress
in the application of the charge-dependent bond energy formulas to thermochemical
problems since NMR results are more readily available than are good-quality
population analyses. Of course, this strategy presumes not only a justification for
assumed correlations between NMR shifts and net atomic charges (which is described
in Chapter 6) but also a solid knowledge of well-justified charge analyses. This is no
minor task.

The original definition of atomic charges found in the CH backbone of organic
molecules is rooted in the idea that the carbon charges vary as little as possible on
structural modification. This has triggered inductive reasoning, which maintains
that if a situation holds in all observed cases, then the situation holds in all cases.
Indeed, detailed tests involving 13C chemical shifts, the ionization potentials of
selected alkanes, and, most importantly, thermochemical data, unmistakably point
to identical sets of charge values. Now, of course, the problem of induction is one
of considerable controversy (and importance) in the philosophy of science; we
must thus be extremely cautious in attributing physical meaning to atomic charges.
In the approach known as instrumentalism, one could as well consider them as
convenient ideas, useful instruments to explain, predict, and control our experiences;
the empirical method is there to do no more than show that theories are consistent
with observation. With these ideas in mind, atomic charges that are now widely
used in molecular dynamics calculations and in the evaluation of solvation energies
within the generalized Born approach also deserve renewed attention.

Admittedly, things have not been easy. But now we can benefit from the
beauty of simplicity and learn about one unique kind of atomic charge rooted in
quantum theory: the only ones that satisfy highly accurate correlations with
experimental NMR shift results and that are at the same time directly applicable to
bond energy calculations.

But the key to the theory of bond energy is in the description of real-space core
and valence regions in atoms and molecules: therein lies the basic idea that gives
rise to the notion of molecular chemical binding, expressed as a sum of atomlike
terms. That marks the beginning of our story.
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