
1
Introducing IIS 7.0

Microsoft Internet Information Services (IIS) version 7.0 was introduced with the Windows Vista
operating system as the main Windows web server. The same web server is going to be utilized by
Windows Server 2008 with the same features, which means developing with Windows Vista IIS 7.0
will cost nothing when it is time to deploy on Windows Server 2008 IIS 7.0.

IIS 7.0 is a revolution in terms of web application processing and handling. It has been re-architected
to provide a more robust, extensible, componentized web server that gives developers a better
opportunity to integrate more into its features.

This chapter starts with an overview of new IIS 7.0 features. Application pools and worker pro-
cesses are reviewed before diving into more advanced topics. The discussion goes deeper to cover
the major components inside IIS 7.0. IIS 7.0 introduces the concept of modules as a new architec-
tural design. Both native and managed modules are covered, with a brief description of each. The
chapter ends by giving an overview on the request processing in IIS 7.0 and the new application
pool modes: Integrated and Classic.

By the end of this chapter, you will have a good knowledge of the following:

IIS 7.0 features overview❑❑

Application pool and worker processes❑❑

IIS 7.0 components❑❑

Managed and native modules inside IIS 7.0❑❑

IIS 7.0 request processing pipeline❑❑

Integrated and Classic mode application pools❑❑

79301c01.indd 1 10/6/08 12:07:11 PM

CO
PYRIG

HTED
 M

ATERIA
L

2

Chapter 1: Introducing IIS 7.0

Overview of IIS 7.0
IIS 7.0 is the new web server that ships with Windows Vista and Windows Server 2008. Similar to
the previous versions of IIS, this new version will continue to handle and process web requests that
arrive at the Windows machine. The most mature version of IIS before the current one is IIS 6.0 which
ships with Windows Server 2003. IIS 6.0 is very robust in terms of security, speed, process manage-
ment, and reliability. IIS 7.0 builds its core engine on its predecessor and improves several areas. In
addition, many new features have been added, making it extensible and manageable, thus leveraging
IIS 7.0 to be a web server platform powerful enough to handle the challenges of present and future web
applications.

The new IIS 7.0 features and characteristics are briefly summarized and presented in the next few sec-
tions to give a high-level overview of what has been done to improve the web server.

Modular Architecture
As mentioned above, IIS 7.0 bases its core engine on the best features of IIS 6.0 and adds to them the
extensibility and accessibility for developers through its modular core engine. IIS 7.0 is based on a plug-
in architecture that allows developers to have a hand in the processing of web requests. IIS 7.0 provides
extensibility through its runtime pipeline, configuration management, and operational features to have
a customizable web server for varying needs and requirements.

Making IIS 7.0 modular gives you the chance to customize it according to personal preferences and
needs. Contrary to how the IIS 6.0 was configured, IIS 7.0 has most of its modules available but not
installed. An administrator or developer can choose what modules or features to install and activate
and what modules to deactivate. This provides both administrators and developers with a robust and
reliable capability to configure the web server as needed. Figure 1-1 shows the new IIS 7.0 Manager list-
ing the 40 available managed and native modules or features that ship with a full installation.

Figure 1-1

79301c01.indd 2 10/6/08 12:07:11 PM

3

Chapter 1: Introducing IIS 7.0

All modules are not installed by default, unless specified. Any module can be uninstalled and removed
from the runtime pipeline processing, giving a flexible and dynamic experience in terms of choosing
what to configure from built-in modules or even adding new modules and features. From the security
point of view, an administrator or developer can choose what modules to include in the processing,
hence affecting the overall performance of loading the configured modules to handle requests. This
modular architecture helps reduce surface attacks by having the freedom to choose the modules to
include and provides better performance by having the administrator or developer install only the
required set of modules or features. IIS 7.0 managed and unmanaged modules are covered in detail
later in this chapter.

Web server features or modules are configured through XML configuration files. The configuration
files (discussed in a later section) are built into a hierarchy where at every level modules or features are
configurable.

A Microsoft TechNet resource is available online that lists all the modules and features contained in
IIS 7.0 and shows which modules are installed by default and which can be added later:
http://technet2.microsoft.com/WindowsServer2008/en/library/
0d35e92b-ddb7-4423-b1e5-df550e25713b1033.mspx

Developing Modules and Features
The modular architecture introduced above discusses the ability to customize the modules installed
on the web server whether by adding new ones or uninstalling existing ones. Adding new modules is
easier with the new extensibility API for developing modules to integrate into IIS.

All of the native modules installed or shipped with IIS are developed on top of this extensibility API
and this API is public, which means any developer can take that API and either redevelop an existing
module or develop a new module as required.

The new extensibility API is built with C++ and it fully represents the new web server object model.
The set of classes allows the developer to develop modules that can participate in request processing
on IIS. This model is a replacement of the ISAPI extensibility model and is much easier to develop with
since the new model includes a type-safe and well-encapsulated object model. Every needed web server
object has a corresponding specialized object interface in the new API. For example, the IHttpRequest
interface allows custom modules developed on top of the new extensibility API to access all the infor-
mation related to the request under processing. The IHttpResponse interface allows custom modules
to interact with the response generated for a request processed by IIS 7.0.

The new extensibility API even excels in terms of memory allocation and state management over ISAPI.
In the days of ISAPI extensions, the developer had to take care of allocating and unallocating memory
as required. The new extensibility API and most of the new IIS 7.0 APIs allocate server-managed mem-
ory for the data processed, which is different from the days of ISAPI extensions where developers had
to take care of all the mess.

Finally, the new extensibility API allows modules to access features that were impossible to access before,
such as request buffering and other IIS request processing tasks.

What about ASP.NET developers who are not ready to learn C++ to develop new modules for IIS? IIS 7.0
allows ASP.NET developers to utilize their existing ASP.NET module or create new ones using both the
.NET 2.0 and 3.5 Frameworks and plug them automatically into the IIS request pipeline. In a later sec-
tion, the ASP.NET integration process is explained in more depth.

79301c01.indd 3 10/6/08 12:07:11 PM

4

Chapter 1: Introducing IIS 7.0

Deployment and Configuration Management
IIS 7.0 uses a new configuration system that is conceptually much different from the IIS 6.0 centralized
metabase configuration system. The new configuration system borrows many ideas from the current
.NET 2.0 and 3.5 Frameworks configuration system, which is based on section groups and sections.

IIS 7.0 configuration system is based on XML configuration files mainly the ApplicationHost.config
and Administration.config configuration files. Both of these files get deployed on the machine
when IIS 7.0 is installed The configuration file of concern for most of the tasks related to IIS 7.0 is the
ApplicationHost.config configuration file that contains all the new web server meta-data.

This configuration file contains global- and application-specific configuration sections. It resembles the
.NET Frameworks configuration files: machine.config and the root web.config configuration files. The
web server configuration file can be reached by browsing to the %WINDIR%/System32/inetsrv/config
folder. Figure 1-2 shows the two main sections of the ApplicationHost.config configuration file.

ApplicationHost.config

applicationPools
listenerAdapters

Log
Sites

webLimits

Asp
Caching

Cgi
defaultDocument

directoryBrowsing
globalModules

Handlers
httpCompression

httpErrors
httpLogging
httpProtocol
httpRedirect
httpTracing
isaoiFilters
Modules

odbcLogging
Security

serverRuntime
serverSideInclude

staticContent
Tracing

urlCompression
validation

System.applicationHost

System.webServer

Figure 1-2

The two main section groups are the <system.applicationHost> and the <system.webServer>
section groups. The <system.applicationHost> section group contains all the global settings for the
web server, including the sites, applicationPools, listenerAdapaters, and so forth. This section is locked
down and cannot be extended by any application hosted insideIIS.

79301c01.indd 4 10/6/08 12:07:13 PM

5

Chapter 1: Introducing IIS 7.0

 <sites>
 <site name=”Default Web Site” id=”1” serverAutoStart=”true”>
 <application path=”/”>
 <virtualDirectory path=”/” physicalPath=”%SystemDrive%\inetpub\
wwwroot” />
 </application>
 <application path=”/MyApp”>
 <virtualDirectory path=”/” physicalPath=”%SystemDrive%\inetpub\
wwwroot\MyApp” />
 </application>
 <bindings>
 <binding protocol=”http” bindingInformation=”*:80:” />
 </bindings>
 </site>

The <sites> section defines all the configuration information on all sites hosted by the web server.
At the root node there is the Default Web Site that points to the site located at %SystemDrive%\
inetpub\wwwroot. To add a new website to IIS 7.0, simply add a new application node specifying
the virtual path attributes together with a virtualDirectory sub-node setting the path and
physicalPath attributes. With the above configuration, a new website has been added to IIS and
can be accessed by http://localhost/MyApp.

The other section group, <system.webServer>, holds all the configurable sections for an application.
For instance, this section contains configuration information about all the modules installed on the
web server, a configuration section for directory browsing, and all the rest of the sections shown in
Figure 1-2.

Note that with the new configuration system introduced by IIS 7.0, an administrator can configure the
<system.applicationHost> and then select which section groups and sections from the <system
.webServer> can be changed and edited by the application’s web.config configuration file. This
eliminates the need for a site owner to contact the administrator to change any settings in IIS, which
was always happening before the release of IIS 7.0. This makes deployment with IIS 7.0 much easier. A
developer can configure the <system.webServer> configuration section group during the develop-
ment stage and then once the application is deployed, all the settings that were applied locally on IIS 7.0
would have the same effect on the hosting server given the fact that the administrator on the hosting
server has already unlocked most of the configurable sections within the <system.webServer>. For
instance, a developer can override the default web server settings for the default document for an
application and set it to a customized page name.

 <system.webServer>
 <defaultDocument>
 <files>
 <clear />
 <add value=”MyPage.aspx” />
 </files>
 </defaultDocument>
 </system.webServer>

The <system.webServer> configuration section group is the only section group in the Application
Host.config configuration file that can be extended and configured in the web.config configuration
file of an application. The default documents configured on the web server are cleared out and a new
customized default document for the current application is set to point to MyPage.aspx.

79301c01.indd 5 10/6/08 12:07:13 PM

6

Chapter 1: Introducing IIS 7.0

In regard to security, administrators are allowed to select which sections of the <system.webServer>
to allow for editing and which are locked. For instance, an administrator can unlock many sections that
do not pose any threat to the security of the web server as a whole and leave open all the sections that
site owners usually require to change per application.

When a request reaches IIS for a resource, the different configuration files are joined together in a hier-
archy to form single, unified configuration settings that apply to the current request. Figure 1-3 shows
the process of how the different configuration files are grouped together to form a final web.config
configuration file.

ApplicationHost.config web.config
(%SystemDrive%/inetpub/

wwwroot)

web.config
(%SystemDrive%/inetpub/

wwwroot/MyApp)

Machine.config web.config (root)

web.config
(sub applications)

Figure 1-3

The machine.config file is merged with the web.config configuration file located in the root folder
of the .NET 2.0 Framework, which is a shared folder used by both ASP.NET 2.0 and ASP.NET 3.5. The
ApplicationHost.config configuration file is added to the result of the above grouping, and then the
combined configuration settings are grouped with the web.config configuration file in the root web-
site of the web server. The final result is added to the grouped configuration settings of the web.config
configuration file of the executing application with its sub-applications’ web.config configuration files.

An IIS resource is available online that gives a detailed overview of the ApplicationHost.config con-
figuration file: http://learn.iis.net/page.aspx/124/introduction-to-applicationhostconfig/

Improved Administration
The IIS 7.0 Manager has been developed from scratch to replace the previous version. The difference is
evident through the new UI experience and quick availability for any section to check and configure.

The IIS 7.0 Manager provides the UI interface experience for administrators and developers to configure
the ApplicationHost.config configuration file without touching any physical resources. For instance,
Figure 1-4 lists the available application pools in the ApplicationHost.config configuration file.

The Manager is just a UI representation to whatever is stored in the ApplicationHost.config con-
figuration file. Using the manager to configure IIS 7.0 helps to prevent imposing possible wrong XML
tag placement.

79301c01.indd 6 10/6/08 12:07:13 PM

7

Chapter 1: Introducing IIS 7.0

Figure 1-4

 <applicationPools>
 <add name=”DefaultAppPool” />
 <add name=”Classic .NET AppPool” managedPipelineMode=”Classic” />
 <applicationPoolDefaults>
 <processModel identityType=”NetworkService” />
 </applicationPoolDefaults>
 </applicationPools>

Application pools can be removed and edited, and new ones can be added. The result is stored in the
ApplicationPool configuration section group inside the ApplicationHost.config configuration file.

The IIS 7.0 Manager inherits the idea of extensibility from IIS 7.0 and provides an extensible API that
can be used to extend its UI features, hence extending the UI experience with much more features as
required. In addition, the Manager allows management delegation that helps in administrating remote
websites. For example, administrators in hosting companies can configure IIS 7.0 with the major and
most secure configurations and allow the sites’ owners to configure their sites remotely through their
version of IIS 7.0 Manager. This does away with the need for special control panels for site owners to
log into and configure their websites.

Moreover, the IIS 7.0 team thought of providing developers with a managed API to allow them to con-
figure the IIS 7.0 configuration settings programmatically. The new API is called the Microsoft.Web
.Adminisration API. Before this API can be used in Visual Studio, a reference has to be added to the
Microsoft.Web.Administration.dll found at %SystemDrive%:\Windows\System32\inetsrv.
The main class in this new API is the ServerManager .NET class. This class contains properties for
the sites, applications, virtual directories, application pools, and worker processes.

79301c01.indd 7 10/6/08 12:07:13 PM

8

Chapter 1: Introducing IIS 7.0

C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Web.Administration;

namespace Microsoft.Web.Administration
{
 public class Program
 {
 static void Main(string[] args)
 {
 // Get a reference to the factory object
 // ServerManager
 var manager = new ServerManager();

 // Define a new website
 manager.Sites.Add(
 “ProgrammaticSite”,
 @”D:\ProgrammaticSite\”,
 8080);

 // Commit changes to the ApplicationHost.config
 manager.CommitChanges();
 }
 }
}

VB.NET
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports Microsoft.Web.Administration

Namespace Microsoft.Web.Administration
 Public Class Program
 Shared Sub Main(ByVal args() As String)
 ‘ Get a reference to the factory object
 ‘ ServerManager
 Dim manager = New ServerManager()

 ‘ Define a new website
 manager.Sites.Add(“ProgrammaticSite”, “D:\ProgrammaticSite\”,_
 8080)

 ‘ Commit changes to the ApplicationHost.config
 manager.CommitChanges()
 End Sub
 End Class
End Namespace

79301c01.indd 8 10/6/08 12:07:13 PM

9

Chapter 1: Introducing IIS 7.0

The preceding code creates a new instance of the ServerManager factory object. Then it adds a new site
by accessing the Sites property and specifying the site name, physical path, and the port, and finally,
a call to the CommitChanges method to reflect the changes in the ApplicationHost.config configu-
ration file. The result of executing the preceding code can be checked in the <sites> configuration
section:

 <site name=”ProgrammaticSite” id=”20”>
 <application path=”/”>
 <virtualDirectory path=”/” physicalPath=”D:\ProgrammaticSite\” />
 </application>
 <bindings>
 <binding protocol=”http” bindingInformation=”*:8080:” />
 </bindings>
 </site>

A new site entry is created within the <sites> configuration section group. The new site specifies the
application’s physical path, virtualDirectory’s physicalPath, and the protocol binding.

Moreover, IIS 7.0 provides an additional tool called appcmd.exe that allows administrators and devel-
opers to configure the web server from the command prompt to create and configure sites, applica-
tions, virtual directories, start and stop application pools, recycle application pools, and much more.
The utility is very rich in options and even presents a deeper configuration interface than that of IIS
7.0 Manager.

The book titled Professional IIS 7 and ASP.NET Integrated Programming (Wrox) explains in detail the IIS 7.0
Manager and the new Administration API. In addition, it includes informative chapters on the new IIS
7.0 configuration system and many more topics. An IIS resource is available online that gives a detailed
overview of the Microsoft.Web.Administration API: http://learn.iis.net/page.aspx/165/
how-to-use-microsoftwebadministration/

ASP.NET Integration
ASP.NET, since its release, has been used for several years to provide high level and powerful web
applications developed purely within the context of the .NET Framework. A revolutionary stage has
been introduced with the release of ASP.NET 2.0 that introduced new concepts and services to web
development in ASP.NET. ASP.NET 3.5 continues to use the ASP.NET 2.0 at its core and adds to it addi-
tional new features and improvements to help developers build better and robust Web solutions.

So far, ASP.NET has been used only as a framework for developing dynamic web applications. IIS 7.0
leverages ASP.NET 2.0 and ASP.NET 3.5 to extensibility frameworks to extend the new web server.

IIS 6.0 handles requests for ASP.NET pages through ISAPI filters and extensions. Request handling
is delegated to the ASP.NET ISAPI extension, the ASP.NET pipeline is triggered to handle the new
request, and a response is generated and finally handed back to the IIS to deliver it to the requesting
client. APS.NET has no control over what is being sent to its engine, since it is solely controlled by the
IIS core engine. Only requests defined by the ASP.NET engine can be passed and processed, but what
about other content? For instance, what if an ASP.NET application wants to secure access to some old
Classic ASP pages using the same FormsAuthenticationModule used to protect ASP.NET resources?
Before IIS 7.0, that was hard to do, if not impossible. If you are in a hurry to learn how to control and
process non-ASP.NET content and resources through the ASP.NET pipeline, you can jump directly to

79301c01.indd 9 10/6/08 12:07:13 PM

10

Chapter 1: Introducing IIS 7.0

Chapter 7 for a detailed discussion on how to integrate ASP.NET security with Classic ASP
pages. Note that whatever applies to Classic ASP applies also to any other non-ASP.NET resource
including .php, .jpg, .htm, and so on.

In IIS 7.0, ASP.NET 2.0 and 3.5 can run in two different modes: Classic and Integrated. The Classic mode
resembles the same model as that of IIS 6.0 and ASP.NET. ASP.NET 1.1 applications running inside IIS
7.0 can only be run using the Classic mode. When an ASP.NET 2.0 or 3.5 application is running in the
Integrated mode, however, the ASP.NET engine gets unified with the IIS 7.0 engine, hence they share
the same request pipeline. IIS’s native C++ modules and ASP.NET HttpModules work together on pro-
cessing a request. A request is processed by the configured native modules and any module registered
with ASP.NET. One of the clear and shining results of this unified integration is that ASP.NET can
now have a say when processing any content resource (and not only ASP.NET resources), a feature not
present before the days of IIS 7.0. Figure 1-5 shows the unified request pipeline in processing a request
in IIS 7.0.

Authentication

Execute Handler

Send Response

HT
TP

 R
eq

ue
st

Anonymous

Basic

Windows

Forms

Page

Webservice

Trace

Compression

Logging

Figure 1-5

When it is time for IIS to authenticate a request, it executes all the configured native and managed
authentication modules at the same time. The same applies for any stage inside IIS 7.0. This signifies
again the power of having both ASP.NET modules and native modules execute side by side in han-
dling a request.

More on ASP.NET integration with IIS 7.0 is covered in detail in Chapter 2.

79301c01.indd 10 10/6/08 12:07:14 PM

11

Chapter 1: Introducing IIS 7.0

Security Improvements
IIS 7.0 security is based on the robustness of IIS 6.0’s security. By default, when IIS 6.0 is installed, it is
installed in a locked-down mode, meaning that only handling of static files and the World Wide Web
Publishing Service (WWW Service) are installed and enabled. The rest of services that operate on top
of IIS 6.0 (including ASP, ASP.NET, and so forth) are disabled and can be added and enabled at any
time by the administrator.

IIS 7.0 takes the locked-down strategy of IIS 6.0 one step further and follows the same locked-down pat-
tern by installing fewer services at installation time. Having fewer features installed and enabled mini-
mizes the risk of attack on the web server and minimizes the work done by the administrator to keep
updating with patches and service packs on the different services installed, whether enabled or not. By
making use of the modular architecture, an administrator can easily, at any time, install a new module
or feature required by applications hosted by the web server.

Enabling the unified request pipeline in IIS 7 by configuring applications with the Integrated mode,
the web server gains a more secure environment through the use of ASP.NET security modules. These
modules include the FormsAuthenticationModule and the Membership and Role management ser-
vices introduced early in ASP.NET 2.0 that still constitute a major feature in ASP.NET 3.5. Not only can
ASP.NET benefit from these modules, but IIS 7.0 also gets better protection by utilizing these modules
to protect the resources hosted in its environment.

In addition, IIS 7.0 introduces URL Authorization, which is inspired (more or less) by the architecture of
the ASP.NET URL Authorization. The new authorization system allows administrators to add declara-
tive access control rules for the hosted applications to protect their resources. This new feature inte-
grates well with the ASP.NET Membership and Role management services. A more detailed discussion
on URL Authorization is given in Chapter 3 of this book.

Moreover, the IIS 7.0 team replaced the old URL Scan security tool with a new RequestFilteringModule
that gives administrators finer control on what to allow and disallow in a request targeting the web server.
The RequestFilteringModule, as shown in the following code, can be configured through the <sys-
tem.webServer> configuration section group either in the ApplicationHost.config configuration
file or through the application’s web.config configuration file.

<configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <fileExtensions allowUnlisted=”false” >
 <add fileExtension=”.aspx” allowed=”true”/>
 </fileExtensions>
 </requestFiltering>
 </security>
 </system.webServer>
</configuration>

For instance, to configure IIS 7.0 to process ASP.NET web pages only, the RequestFilteringModule
is configured to allow only ASP.NET web pages and prevent all other file extensions from being served
and processed.

79301c01.indd 11 10/6/08 12:07:14 PM

12

Chapter 1: Introducing IIS 7.0

For further details, an IIS resource is available online that gives a wider overview of the new Request
FilteringModule: http://learn.iis.net/page.aspx/143/how-to-use-request-filtering/

Another security feature in which IIS 7.0 excels is the IIS Manager. As mentioned above, when appli-
cations are hosted locally, the site owner can configure IIS 7.0 settings by either direct access to the
ApplicationHost.config configuration file, or through the appcmd.exe command-line utility, or
programmatically by utilizing the Microsoft.Web.Adminsitration API. When configuring remote
applications, IIS Manager provides remote connections to site owners through their local instance of
the manager through firewall-friendly HTTPs connections. Based on the restrictions set by the remote
administrator, a site owner connects to the remote web server through the local instance of the man-
ager. The user gets authenticated on the remote server either by Windows authentication, if the user
has a Windows account on the remote server, or by custom authentication of the ASP.NET Membership
services. Once authenticated, the site owner can now configure the web server’s settings under the limi-
tations set by the remote administrator.

Not only does IIS Manager allow remote connections; it also allows administrators to configure the IIS
Manager UI to select the features to show for remote connections. This is yet another security protec-
tion on the hosting web server.

Finally, IIS 7.0 introduces a new IIS anonymous account, the IIS_USR. This built-in account has no
expiration date, nor does it need any password synchronization among different machines. Also, a new
group is IIS_IUSRS that replaces the old IIS_WPG group. This group injects itself into the identity of the
Worker process automatically at runtime. This makes the process of specifying another custom account
for the Worker process identity easier without having to worry about adding this custom account to the
IIS_IUSRS group. Since the IIS_IUSR and IIS_IUSRS are built-in, any Windows access control lists
(ACLs) that an administrator or developer assigns on one machine can be copied to another machine,
for instance, from the development machine to the testing and deployment machine, without any fur-
ther worries, making the deployment process easier and more flexible.

Troubleshooting Improvements
IIS modular architecture not only introduces flexibility and robustness in configuring the web server,
but it also adds more complexities when it comes to debugging or tracing requests when a problem
occurs while a resource is being executed by the web server. Therefore, several new troubleshooting
improvements have been added to allow administrators and developers to better detect what is going
wrong with their applications.

A new, improved tracing system is added to the IIS infrastructure that is capable of capturing all related
information for a request being processed by the web server. This way, an administrator can refer back
at any time to check the status of requests being served by IIS. The trace information generated by the
web server can be monitored and listened to by a new feature, the Failed Request Tracing feature. This
new feature is basically configured to listen only to failure requests and logs them to the hard-disk. Before
using this feature, it must be enabled in the IIS Manager tool. Figure 1-6 shows how to open up the Failure
Request Tracing form to enable/disable the feature and to specify the path where to log the trace data.

By default, the Failure Request Tracing feature passes all successful requests and logs only the failed
ones, as mentioned above. In addition, an administrator can define Failure Request Tracing Rules to
specify what trace information to listen to in the web server tracing system. To define these rules, the
Failing Request Tracing Rules feature can be configured inside the IIS Manager tool reached by select-
ing Server Name ➪ Web Sites ➪ Default Web Site ➪ Failed Request Tracing Rules under the IIS section.

79301c01.indd 12 10/6/08 12:07:14 PM

13

Chapter 1: Introducing IIS 7.0

Figure 1-6

In addition, IIS provides new error information pages when errors are detected in the resources being
processed. These error pages are similar in concept to the error pages generated by ASP.NET when an
exception or error occurs in the application while a request is being made to any of its resources. The IIS
error information pages give details about the problem that occurred, what module caused the problem,
if any, where to find more tracing information about the specific failure of the request, and even more
information that helps the administrator or developer to locate the problem quickly. The detailed error
pages are configured for local access only by default and can be localized for any culture of preference.

To better benefit from the unified integration model between IIS and ASP.NET, the new web server’s
tracing system exposes its functionality to the modules created by the managed code in ASP.NET. The
new tracing system is extensible enough to allow the managed modules registered in IIS to make use of
the tracing information and to emit tracing data to the IIS tracing system. ASP.NET 2.0 and ASP.NET 3.5
contain the System.Diagnostics.TraceSource class that makes the developer’s life easier in handling
tracing events, data, and information (shown in the following code). The tracing system present in IIS 7.0
integrates with the tracing system in ASP.NET 2.0 and 3.5, thus allowing tracing information generated
by ASP.NET to flow to the IIS 7.0 tracing system.

C#
using System;
using System.Diagnostics;
using System.Web;

public class CustomTracing : IHttpModule
{
 // Private member to hold a reference to the
 // TraceSource class
 private TraceSource tsTracing;

79301c01.indd 13 10/6/08 12:07:14 PM

14

Chapter 1: Introducing IIS 7.0

 /// <summary>
 /// Initialize event in the HttpModule
 /// </summary>
 /// <param name=”application”></param>
 public void Init(HttpApplication application)
 {
 // Attach to the EndRequest event
 application.EndRequest += new EventHandler(application_EndRequest);

 // Define the trace source
 tsTracing = new TraceSource(“tsTracing”);
 }

 /// <summary>
 /// Handles the end request event
 /// </summary>
 /// <param name=”sender”></param>
 /// <param name=”e”></param>
 void application_EndRequest(object sender, EventArgs e)
 {
 // Write a message to the configured trace listeners mentioning the start of
 // a logical operation or event, which is in this case beginning of the
 // EndRequest method.
 this.tsTracing.TraceEvent(
 TraceEventType.Start,
 0,
 “[CustomTracing MODULE] START EndRequest”);

 // Get a reference to the HttpContext
 var app = (HttpApplication)sender;
 var context = app.Context;

 // Write some text to the response stream
 context.Response.Write(
 “Testing Tracing from ASP.NET and integrating into IIS 7.0”);

 this.tsTracing.TraceEvent(
 TraceEventType.Verbose,
 0,
 “A debugging trace message to the trace listener!”);
 this.tsTracing.TraceEvent(
 TraceEventType.Critical,
 0,
 “A fatal error or crash message to the trace listener!”);
 this.tsTracing.TraceEvent(
 TraceEventType.Error,
 0,
 “A recoverable error message to the trace listener!”);
 this.tsTracing.TraceEvent(
 TraceEventType.Information,
 0,
 “An informational message to the trace listener!”);

 // Write a message to the configured trace listeners mentioning the end of a
 // logical operation or event, which is in this case end of the EndRequest
 // method

79301c01.indd 14 10/6/08 12:07:14 PM

15

Chapter 1: Introducing IIS 7.0

 this.tsTracing.TraceEvent(
 TraceEventType.Stop,
 0,
 “[CustomTracing MODULE] STOP EndRequest”);
 }

 #region IHttpModule Members

 public void Dispose()
 {
 throw new NotImplementedException();
 }
 #endregion
}

VB.NET
Imports System
Imports System.Diagnostics
Imports System.Web

Namespace CustomTracingModule
 Public Class CustomTracing
 Implements IHttpModule
 ‘ Private member to hold a reference to the
 ‘ TraceSource class
 Private tsTracing As TraceSource

 ‘’’ <summary>
 ‘’’ Initialize event in the HttpModule
 ‘’’ </summary>
 ‘’’ <param name=”application”></param>
 Public Sub Init(ByVal application As HttpApplication) Implements_
 IHttpModule.Init
 ‘ Attach to the EndRequest event
 AddHandler application.EndRequest, AddressOf application_EndRequest

 ‘ Define the trace source
 tsTracing = New TraceSource(“tsTracing”)
 End Sub

 ‘’’ <summary>
 ‘’’ Handles the end request event
 ‘’’ </summary>
 ‘’’ <param name=”sender”></param>
 ‘’’ <param name=”e”></param>
 Private Sub application_EndRequest(ByVal sender As Object,_
 ByVal e As EventArgs)
 ‘ Write a message to the configured trace listeners
 ‘ mentioning the start of a logical operation
 ‘ or event, which is in this case beginning of the EndRequest method.
 Me.tsTracing.TraceEvent(TraceEventType.Start,_
 0,_
 “[CustomTracing MODULE] START EndRequest”)

79301c01.indd 15 10/6/08 12:07:14 PM

16

Chapter 1: Introducing IIS 7.0

 ‘ Get a reference to the HttpContext
 Dim app = CType(sender, HttpApplication)
 Dim context = app.Context

 ‘ Write some text to the response stream
context.Response.Write(“Testing Tracing from ASP.NET and integrating into IIS 7.0”)

 Me.tsTracing.TraceEvent(TraceEventType.Verbose,_
 0,_
 “A debugging trace message to the trace listener!”)
 Me.tsTracing.TraceEvent(TraceEventType.Critical,_
 0,_
 “A fatal error or crash message to the trace listener!”)
 Me.tsTracing.TraceEvent(TraceEventType.Error,_
 0,_
 “A recoverable error message to the trace listener!”)
 Me.tsTracing.TraceEvent(TraceEventType.Information,_
 0,_
 “An informational message to the trace listener!”)

 ‘ Write a message to the configured trace listeners
 ‘ mentioning the end of a logical operation
 ‘ or event, which is in this case end of the EndRequest method
 Me.tsTracing.TraceEvent(TraceEventType.Stop,_
 0,
 “[CustomTracing MODULE] STOP EndRequest”)
 End Sub

#Region “IHttpModule Members”

 Public Sub Dispose() Implements IHttpModule.Dispose
 Throw New NotImplementedException()
 End Sub
#End Region
 End Class
End Namespace

The preceding code defines a local instance of the TraceSource class to hold all the tracing information
by the managed ASP.NET module. The name of the TraceSource is important, as it will be referenced
later as a source for the IIS trace listener. The HttpModule subscribes to the EndRequest event of the
module and writes some dummy text into the response stream. Several trace messages have been written
to the ASP.NET tracing system using the TraceSource object. Several methods are available in the afore-
mentioned object, one of which is the TraceEvent method that takes as one of the inputs a value from
the TraceEventType enumeration that defines the purpose of the trace message and another input, the
trace message to be sent to the trace listener. There are several values in the TraceEventType enumera-
tion that defines the different contexts in which a trace message might be present.

.NET 3.5 Framework ships with the System.Web.IisTraceListner class, which is used to route tracing
information from ASP.NET tracing system to the IIS tracing infrastructure. To define the trace listener
and attach it as a listener to the TraceSource, the <system.diagnostics> configuration section in the
web.config configuration file is used.

79301c01.indd 16 10/6/08 12:07:14 PM

17

Chapter 1: Introducing IIS 7.0

<system.diagnostics>
 <sharedListeners>
 <add name=”IisTraceListener” type=”System.Web.IisTraceListener, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a” />
 </sharedListeners>
 <switches>
 <add name=”DefaultSwitch” value=”All” />
 </switches>
 <sources>
 <source name=”tsTracing” switchName=”DefaultSwitch”>
 <listeners>
 <add name=”IisTraceListener” type=”System.Web.IisTraceListener, System.
Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a” />
 </listeners>
 </source>
 </sources>
 </system.diagnostics>

The preceding configuration section defines the new IIS trace listener with a switch to capture all tracing
information. In addition, the tracing source, which is in this case the TraceSource instance defined pre-
viously in the custom tracing managed module, is added and configured with the IISTraceListener.
The preceding configuration section makes sure all the tracing information from ASP.NET is routed cor-
rectly to the IIS tracing system. The Failed Request Tracing feature can then be used, either through the
default behavior to capture only failure trace information for failing requests or by adding custom rules
to capture specific tracing information descending from the ASP.NET tracing system.

Finally, native developers can now troubleshoot the state of the IIS web server through the new Run-
time Status and Control (RSCA) API known as “reeska.” This new API allows native developers, mainly
C++ developers, to examine the real-time status of the server by checking the active states of the sites
and application pools, the running worker processes, and even to check current requests that are being
processed. Developers can check the normal flow of page execution on the server and identify bottle-
necks, while the different modules take their part in the request processing in the IIS pipeline. In addi-
tion, RSCA provides a means to control the state of the web server by stopping and starting the service,
recycling application pools, starting and stopping sites, etc. These features are similar to the appcmd.exe
command-line tool mentioned previously in this chapter.

An IIS resource is available online that gives an overview on developing managed tracing modules and
routing the ASP.NET trace information to the IIS 7.0 tracing system: http://learn.iis.net/page
.aspx/171/how-to-add-tracing-to-iis-7-managed-modules/

Application Pools
IIS 6.0 introduced the concept of application pools when operating in the worker process isolation-mode
compared to working in the IIS 5 mode. An application pool by definition is a unit of separation, at the
web server level, that is used to logically group applications into different boundaries, hence provid-
ing an isolation of execution from one application to another. If an application in one of the application
pools on the web server crashes, not all the applications on the web server will be crashed too. This is
because if each application is assigned to a separate application pool, then only this specific application

79301c01.indd 17 10/6/08 12:07:14 PM

18

Chapter 1: Introducing IIS 7.0

pool will recycle and all applications assigned to the same application pool will also crash. Other appli-
cations assigned to other application pools continue to function properly as if nothing happened on
the web server. Therefore, application pools provide isolation of execution under the boundaries of the
server resources allocated to every application pool, which are allocated differently from one applica-
tion pool to another.

In the previous release of IIS, the web server was configured to either run in the worker process isola-
tion mode or in the IIS 5.0 mode. However, in IIS 7.0, an application pool is created and its managed
pipeline mode property is either set to Integrated mode or Classic mode. This means that the managed pipe-
line mode is not configured on the web server as a whole. On the contrary, several application pools can
be created on IIS 7.0 with different managed pipeline modes, and applications can be assigned to any of
those application pools, hence it is possible to run applications on the same web server with different
modes of execution. Figure 1-7 shows the basic settings window for any application created inside IIS 7.0.

Figure 1-7

By opening the IIS manager tool, on the Actions tab on the right of the manager, there is a link to view
application pools. All of the application pools created on the web server are listed. Right-clicking any of
the application pools and selecting basic settings yields the screen shown in Figure 1-7. There is nothing
special about it, but the managed pipeline mode combo box that allows you to choose either the Inte-
grated or Classic mode.

Integrated Mode
When an ASP.NET 2.0 or 3.5 application is assigned to an application pool running in the Integrated mode,
the application will benefit from the IIS and ASP.NET unified request processing pipeline. This means the
request is processed by both the native and managed installed modules and ASP.NET will have the ability
to process all types of content within that specific application. This mode is recommended when there is a
need to execute an application in the Integrated mode, and it is the preferred mode to configure the appli-
cation pools. Several additional and advanced settings can be set by right-clicking on the specific applica-
tion pool and selecting Advanced Settings.

Classic Mode
The Classic mode resembles an IIS 6.0 application pool when the web server is running in a worker
process isolation-mode. In IIS 7.0, applications are still given the opportunity to function as if they are
being served by IIS 6.0. When an application is assigned to an application pool configured to run in the
Classic mode, IIS 7.0 handles the execution of the application in the same way as IIS 6.0. For instance, if

79301c01.indd 18 10/6/08 12:07:15 PM

19

Chapter 1: Introducing IIS 7.0

an ASP.NET application is assigned to function under an application pool configured with Classic mode,
the default and only available option for ASP.NET 1.1 application, when a request reaches IIS for that
application, only the native modules will be executed on the request, then IIS 7.0 hands the request to the
aspnet_isapi.dll extension to be processed by the ASP.NET runtime. Hence, IIS is able to process the
request with all the installed native modules and ASP.NET will have another round in executing its man-
aged modules; the same old-fashioned way of executing applications under IIS 6.0 when configured to
run in the worker process isolation mode. If any ASP.NET application for some reason cannot run inside
the application pool Integrated mode, it is recommended to keep it configured with the Classic mode
under IIS 7.0. It will be executed and processed as if it is hosted in an IIS 6.0 environment.

IIS 7.0 Components
IIS 7.0 is made up of several components that form the web server internal core engine. These compo-
nents include protocol listeners, services such as the w3svc service and the WAS service, protocol adapt-
ers, and many more core components. This section will present an overview of some of the protocols
and services that handle request processing inside IIS 7.0.

Protocol Listeners
Protocol listeners are services in which each service is configured to listen and process a specific
protocol request coming from the network on which the machine hosting the web server resides. For
instance, one of the listeners installed on a Windows machine keeps on waiting and listening for any
web request arriving on the machine. There are additional listeners also present to listen to other, dif-
ferent protocols. When a request is received by a listener, it forwards it to IIS 7.0 to be processed. Once a
request is processed by IIS 7.0, the response generated is sent back to the protocol listener that originally
sent the request. Finally, the response is handed back to the requestor.

An example of a protocol listener is the HTTP listener called Hyper Text Protocol Stack. This is the main
protocol listener for all HTTP requests arriving on a Windows machine. When an HTTP request is first
received by Windows Vista or Windows Server 2008, the initial handling is actually performed by the
kernel-mode HTTP driver: http.sys.

World Wide Web Publishing Service
In IIS 6.0 the WWW service was responsible for several tasks at once. These tasks included HTTP
administration and configuration, process management, and performance monitoring. In IIS 7.0, this
has changed and the WWW Service now acts as a listener adapter for http.sys. A listener adapter is
responsible for configuring the http.sys protocol listener with the IIS 7.0 configuration information
stored in the ApplicationHost.config configuration file. It then waits for changes in the configura-
tion information to reflect them into the http.sys, and finally notifies the Windows Process Activa-
tion Service (WAS) when a new HTTP request enters the local queue.

WWW Service functionality has been split into other services. It has preserved its role as a listener
adapter, however, the rest of its responsibilities have been passed into another service called the Win-
dows Process Activation Service.

79301c01.indd 19 10/6/08 12:07:15 PM

20

Chapter 1: Introducing IIS 7.0

Windows Process Activation Service
In IIS 7.0, the WAS is the second half of the WWW service that was present in the IIS 6.0 days. The WAS
is a new service that has three main parts. Figure 1-8 shows the architecture and main components of
the WAS.

Process
Manager

Listener Adapter Interface

Configuration
Manager

Windows Process Activation Service

Figure 1-8

The configuration manager is responsible for reading the configuration information from the
ApplicationHost.config configuration file. This manager reads global configuration information
and protocol configuration information for both HTTP and non-HTTP protocols in order to be able
to configure all protocol listeners installed on the web sever machine. It also reads application pool
configuration information to know what application pools are present when processing requests on
the server. It reads site configuration information, including the different applications included in each
site together with the bindings defined on each application, and finally, reads the application pool each
application belongs to. Such information helps the WAS when processing a request to know which
site and application the request belongs to so that it gets handled by the right application pool.

In addition, the configuration manager gets a notification when the ApplicationHost.config con-
figuration file changes so that it updates its data with the new ones and reflects this on the available
protocol listeners.

The process manager is responsible for managing the application pools and worker processes for both
HTTP and non-HTTP requests. It manages the state of the application pool by stopping, starting, and
recycling it. In addition, when WAS receives a new request from one of the configured protocol listen-
ers, it determines to which application the request belongs. It then checks with the configuration man-
ager for the application pool of the application that the current request belongs to. Once the application
pool is determined, it checks to see if there is any worker process currently active. If it finds one, it sends
the request to the application pool to be processed by the worker process. If there is no worker process
active inside the application pool, WAS instantiates a new one to process the current and upcoming
requests.

The last component of the WAS is the unmanaged listener adapter interface. This layer inside the WAS
defines how the external listeners communicate the requests they receive into the WAS in order to pro-
cess them by the web server.

79301c01.indd 20 10/6/08 12:07:15 PM

21

Chapter 1: Introducing IIS 7.0

On startup of IIS 7.0, WAS gets initiated and performs several tasks. Figure 1-9 shows the flow of inter-
action when WAS first configures the protocol listener adapters.

Process
Manager

HTTP.sys NetTcpActivator

Listener Adapter Interface

Configuration
Manager

WWW Service

ApplicationHost.config

NetTcpActivator

Windows Process Activation Service

1

2

2

33

Figure 1-9

When WAS is instantiated, it first reads the configuration data from the ApplicationHost.config con-
figuration file. Once the configuration information is read, it interacts with the configured protocol listener
adapters to pass to them the needed configuration information. Protocol listener adapters function as the
glue between the WAS and the protocol listeners. For instance, the WAS passes the configuration informa-
tion into the WWW Service, the http.sys protocol listener adapter, which in turn configures http.sys
to start listening for HTTP requests.

Once a new request comes in, the specific protocol listener communicates the request to the WAS through
the listener adapter interface, so that the request gets processed. Once a response is ready for the request,
WAS passes the response back to the protocol listener responsible for delivering the response back to the
client. Again, WAS uses the listener adapter interface for the incoming and outgoing communication with
the protocol listeners.

As shown in Figure 1-9, NetTcpActivator is the protocol listener and adapter for handling WCF
requests. This indicates that WAS can process HTTP and non-HTTP requests; that means WAS can
function properly without the need for the WWW Service by serving only non-HTTP requests. A good
MSDN resource on the WCF listener adapters and hosting WCF applications inside IIS 7.0 is available
online at http://msdn2.microsoft.com/en-us/library/ms730158.aspx

79301c01.indd 21 10/6/08 12:07:15 PM

22

Chapter 1: Introducing IIS 7.0

IIS 7.0 Modules
The modular architecture of IIS 7.0 has been discussed thoroughly at the beginning of this chapter. It is
the new architecture that characterizes the web server core engine. Modules or features can be thought
of as classes or objects embedding certain functionality that get executed whenever a new request is
being processed by the IIS pipeline. Every installed module gets its turn in processing every request
entering the IIS 7.0 pipeline.

This modular architecture has several goals, but above all it protects the web server from security
attacks. When a small number of modules are installed on the web server, this means there is a lower
probability for a security attack on the server, hence lowering the surface attack to hackers. In addi-
tion, when a small number of modules are installed, this means less security patches and updates are
required for the administrator to maintain. Moreover, being able to customize the web server to this
extent gives the administrator the chance of deciding on the role of the web server by installing and
uninstalling modules in the way best suited for the role intended for the web server.

IIS 7.0 ships with a set of unmanaged or native modules that are all installed in case of a full installation
of the web server. In addition, IIS 7.0 allows you to extend its functionality with managed modules.
Each of these modules is discussed in detail.

Unmanaged Modules
The native modules are grouped by functionality. There are HTTP-related modules that perform tasks
specific to HTTP; another set of modules perform tasks related to security; and anther set of modules
perform tasks related to content (static files, directory browsing, and so on). There are a set of modules
responsible for compression, modules concerned with caching, modules responsible for logging and
diagnostics, and modules that help in integrating managed modules. All of these modules are fired and
executed during the request-processing pipeline. The available native modules at the time of this writ-
ing together with a description are listed in the following table.

Module Name Description

HTTP Modules

CustomErrorModule Sends default and configured HTTP error
messages when an error status code is set
on a response.

HttpRedirectionModule Supports configurable redirection for HTTP
requests.

OptionsVerbModule Provides information about allowed verbs
in response to OPTIONS verb requests.

ProtocolSupportModule Performs protocol-related actions, such as
setting response headers and redirecting
headers based on configuration.

RequestForwarderModule Forwards requests to external HTTP servers
and captures responses.

79301c01.indd 22 10/6/08 12:07:15 PM

23

Chapter 1: Introducing IIS 7.0

Module Name Description

TraceVerbModule Returns request headers in response to
TRACE verb requests

Security Modules

AnonymousAuthModule Performs Anonymous authentication when
no other authentication method succeeds.

BasicAuthModule Performs Basic authentication.

CertificateMappingAuthenticationModule Performs Certificate Mapping authentica-
tion using Active Directory.

DigestAuthModule Performs Digest authentication.

IISCertificateMappingAuthenticationModule Performs Certificate Mapping authentica-
tion using IIS certificate configuration.

RequestFilteringModule Performs URLScan tasks, such as configur-
ing allowed verbs and file extensions, set-
ting limits, and scanning for bad character
sequences.

UrlAuthorizationModule Performs URL authorization.

WindowsAuthModule Performs NTLM integrated authentication.

Content Modules

CgiModule Executes CGI processes to build response
output.

DavFSModule Sets the handler for Distributed Authoring
and Versioning (DAV) requests to the DAV
handler.

DefaultDocumentModule Attempts to return the default document
for requests made to the parent directory.

DirectoryListingModule Lists the contents of a directory.

IsapiModule Hosts ISAPI extension DLLs.

IsapiFilterModule Supports ISAPI filter DLLs.

ServerSideIncludeModule Processes server-side includes code.

StaticFileModule Serves static files.

FastCgiModule Supports FastCGI, which provides a high-
performance alternative to CGI.

Continued

79301c01.indd 23 10/6/08 12:07:16 PM

24

Chapter 1: Introducing IIS 7.0

Module Name Description

Compression Modules

DynamicCompressionModule Compresses responses, and applies Gzip
compression transfer coding to responses.

StaticCompressionModule Performs precompression of static content.

Caching Modules

FileCacheModule Provides user-mode caching for files and
file handles.

HTTPCacheModule Provides kernel-mode and user-mode cach-
ing in http.sys.

SiteCacheModule Provides user-mode caching of site
information.

TokenCacheModule Provides user-mode caching of user name
and token pairs for modules that produce
Windows user principals.

UriCacheModule Provides user mode caching of URL
information.

Logging and Diagnostics Modules

CustomLoggingModule Loads custom logging modules.

FailedRequestsTracingModule Supports the Failed Request Tracing feature.

HttpLoggingModule Passes information and processing status to
http.sys for logging.

RequestMonitorModule Tracks requests currently executing in
worker processes, and reports information
with Runtime Status and Control Applica-
tion (RSCA) Programming Interface.

TracingModule Reports events to Microsoft Event Tracing
for Windows (ETW).

Managed Support Modules

ManagedEngine Provides integration of managed code mod-
ules in the IIS request-processing pipeline.

ConfigurationValidationModule Validates configuration issues, such as
when an application is running in Inte-
grated mode but has handlers or modules
declared in the system.web section.

79301c01.indd 24 10/6/08 12:07:16 PM

25

Chapter 1: Introducing IIS 7.0

The preceding modules are all installed with a full installation of IIS 7.0. However, if IIS 7.0 is installed
with the default configuration and modules, a subset of those modules are installed. The modules
installed by default are listed as follows.

HTTP modules❑❑

CustomErrorModule❑❑

ProtoclSupportModule❑❑

Security modules❑❑

RequestFilteringModule❑❑

AnonymousAuthenticationModule❑❑

Content modules❑❑

DefaultDocumentModule❑❑

DirectoryListingModule❑❑

StaticFileModule❑❑

Content modules❑❑

StaticCompressionModule❑❑

Logging and diagnostics modules❑❑

HTTPLoggingModule❑❑

RequestMonitorModule❑❑

Caching modules❑❑

HttpCacheModule❑❑

Managed Modules
IIS 7.0 infrastructure allows the installation of .NET managed modules to participate in the request-
processing pipeline. Allowing managed modules to function properly depends mostly on the Managed
EngineModule mentioned above. Managed modules are ASP.NET 2.0 and 3.5 HttpModules that a .NET
developer has always been used to writing, however with IIS 7.0, these modules will get the chance to
work upon requests during the request-processing pipeline managed by the web server itself.

The existing managed modules that can be configured with IIS 7.0 are listed in the following table.

Module Name Description

AnonymousIdentification Manages anonymous identifiers, which are used by features
that support anonymous identification such as ASP.NET pro-
file engine.

DefaultAuthentication Ensures that an authentication object is present in the context.

FileAuthorization Verifies that a user has permission to access the requested file.

Continued

79301c01.indd 25 10/6/08 12:07:16 PM

26

Chapter 1: Introducing IIS 7.0

Module Name Description

FormsAuthentication Supports authentication by using Forms authentication.

OutputCache Supports output caching

Profile Manages user profiles by using ASP.NET profile, which stores
and retrieves user settings in a data source such as a database.

RoleManager Manages a RolePrincipal instance for the current user.

Session Supports maintaining session state, which enables storage
of data specific to a single client within an application on the
server.

UrlAuthorization Determines whether the current user is permitted access to the
requested URL, based on the user name or the list of roles that
a user is member of.

UrlMappingsModule Supports mapping a real URL to a more user-friendly URL.

WindowsAuthentication Sets the identity of the user for an ASP.NET application when
Windows authentication is enabled.

This managed modules’ information has been gathered from the official ASP.NET 2.0/3.5 documentation on MSDN.

Summary
In this chapter you were introduced to the new web server engine by Microsoft, IIS 7.0. IIS 7.0 ships with
a new architecture that is more modular and allows administrators and developers to configure it the
way they want.

The main point to keep in mind about the new web server is its modular architecture. IIS 7.0 is installed
with minimal modules or features. Additional modules can be installed whenever they are needed. In
addition, IIS 7.0 allows developing both native and managed modules using C++ and .NET, respectively.

A lot of improvements have been introduced to IIS 7.0, including security, administration and configu-
ration, and troubleshooting improvements. New APIs are now ready for use by native and managed
developers to extend the functionality of the web server.

IIS 7.0 now integrates well with ASP.NET infrastructure for request processing; hence, applications now
can run either in the Integrated mode or in the Classic mode application pool.

Integrated mode:❑❑ When running under the Integrated mode, the ASP.NET 2.0 or 3.5 applica-
tion can take benefit from the integration between IIS 7.0 and ASP.NET so that a single unified
pipeline is present where both IIS native modules and configured ASP.NET modules have a say
while processing a specific request.

Classic mode:❑❑ With the Classic mode, an application will have the same environment as it had
once under IIS 6.0, where the IIS 7.0 request-processing pipeline happens separately from the
ASP.NET request-processing pipeline.

79301c01.indd 26 10/6/08 12:07:16 PM

27

Chapter 1: Introducing IIS 7.0

In addition, IIS 7.0 components have been enhanced and a new major component that has been added
is the Windows Process Activation Service (WAS). This service is the brain of the web server that inter-
acts with the web server configuration system and configures protocol listener adapters that in turn
configure their corresponding protocol listeners. This new service handles both HTTP and non-HTTP
requests, and this gives IIS a broader field to handle so many requests from different sources. Also, this
service is responsible for the process management including application pool states, stopping, starting,
recycling them, and creating new worker process instances.

The next chapter continues this discussion with a look at the new IIS 7.0 and ASP.NET Integrated
mode. The discussion includes a thorough examination of the Integrated mode architecture as well as
developing new modules and handlers in ASP.NET and integrating them with IIS 7.0 infrastructure. In
addition, a study on handling migration errors is given to help in migrating an existing ASP.NET appli-
cation to run under the IIS 7.0 and ASP.NET Integrated mode.

79301c01.indd 27 10/6/08 12:07:16 PM

79301c01.indd 28 10/6/08 12:07:16 PM

