
 The SharePoint 2007
Architecture

 SharePoint 2007 is an extension of ASP.NET and IIS. This chapter walks through the main
architectural components of IIS and ASP.NET and shows you how these components are extended
to add support for SharePoint functionalities.

 Because IIS is one of the many options for hosting ASP.NET, the discussion begins with the
coverage of the ASP.NET hosting environment where HTTP worker requests and runtime classes
are discussed. Next, the chapter covers IIS concepts such as web sites and application pools
followed by discussions of the related SharePoint object model classes. The ASP.NET HTTP
Runtime Pipeline and the SharePoint extensions to this pipeline are discussed in depth. You ’ ll also
learn about the ASP.NET dynamic compilation model and the role it plays in SharePoint.

 ASP.NET Hosting Environment
 One of the great architectural characteristics of the ASP.NET Framework is its isolation from its
hosting environment, which allows you to run your ASP.NET applications in different hosting
scenarios such as IIS 5.0, IIS 5.1, IIS 6.0, IIS 7.0, or even a custom managed application. This section
discusses these architectural aspects of the ASP.NET Framework as well as the most common
hosting scenario, IIS.

 Hosting ASP.NET
 As mentioned, ASP.NET can be hosted in different environments, such as IIS 5.0, IIS 6.0, IIS 7.0, or
even a custom managed application such as a console application. Hosting ASP.NET in a given
environment involves two major components:

 Worker request class. This is a class that directly or indirectly inherits from the
HttpWorkerRequest abstract base class. As you ’ ll see later, an ASP.NET component named
HttpRuntime uses the worker request class to communicate with the underlying
environment. All worker request classes implement the HttpWorkerRequest API,

❑

c01.indd 1c01.indd 1 9/20/08 6:49:26 AM9/20/08 6:49:26 AM

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: The SharePoint 2007 Architecture

2

which isolates HttpRuntime from the environment - specific aspects of the communications
between HttpRuntime and the underlying environment. This allows ASP.NET to be hosted in
any environment as long as the environment comes with a worker request class that implements
the HttpWorkerRequest API.

 Runtime class. By convention, the name of this class ends with the word Runtime. The runtime
class must perform two tasks for every client request. These tasks are to:

❑ Instantiate and initialize an instance of the appropriate worker request class.

❑ Call the appropriate method of HttpRuntime, passing in the worker request instance to
process the request.

 The worker request and runtime classes are discussed in the following sections.

 HttpWorkerRequest
 As mentioned previously, this API isolates HttpRuntime from its environment, allowing ASP.NET
to be hosted in different types of environments. For example, as you can see from Listing 1 - 1, the
HttpWorkerRequest class exposes a method named CloseConnection that HttpRuntime calls to close the
connection with the client without knowing the environment - specific details that close the connection
under the hood. Or HttpRuntime calls the FlushResponse method (see Listing 1 - 1) to flush the response
without knowing the environment - specific details that flush the response under the hood.

 Listing 1 - 1: The HttpWorkerRequest API

public abstract class HttpWorkerRequest

{

 public virtual void CloseConnection();

 public abstract void EndOfRequest();

 public abstract void FlushResponse(bool finalFlush);

 public virtual byte[] GetPreloadedEntityBody();

 public virtual int GetPreloadedEntityBody(byte[] buffer, int offset);

 public abstract string GetQueryString();

 public virtual int ReadEntityBody(byte[] buffer, int size);

 public abstract void SendResponseFromFile(string filename, long offset,

 long length);

 public abstract void SendResponseFromMemory(byte[] data, int length);

}

 ASP.NET comes with several standard implementations of the HttpWorkerRequest API, each one
specifically designed to handle the communications with a specific hosting environment such as
IIS 5.1, IIS 6.0, IIS 7.0, and so on. ASP.NET also comes with a standard implementation of the
HttpWorkerRequest API called SimpleWorkerRequest, which you can use to host ASP.NET in custom
managed environments, such as a console application.

❑

c01.indd 2c01.indd 2 9/20/08 6:49:28 AM9/20/08 6:49:28 AM

Chapter 1: The SharePoint 2007 Architecture

3

 Runtime Class
 The ASP.NET 2.0 Framework comes with two important runtime classes named ISAPIRuntime and
PipelineRuntime. Each class is described next:

 ISAPIRuntime. This is the runtime class for ISAPI - based IIS environments, including IIS 5, IIS 6,
and IIS 7 running in ISAPI mode.

 PipelineRuntime. This is the runtime class for IIS 7 running in integrated mode.

 These runtime classes are very different from one another because they represent different runtime
environments. However, they both feature a method (though each method is different) that processes the
request:

 ISAPIRuntime uses the ProcessRequest method.

 PipelineRuntime uses the GetExecuteDelegate method.

 The request processing method for each runtime class takes two important steps. First, it instantiates and
initializes an instance of the appropriate worker request class. Second, it passes the instance to the
appropriate method of HttpRuntime to process the request.

 Internet Information Services (IIS)
 Microsoft Internet Information Services (IIS), the Windows web server, is an integral part of the
Windows 2000 Server, Windows XP Professional, Windows Server 2003, Windows Vista, and Windows
Server 2008 operating systems. IIS is an instance of a Win32 executable named inetinfo.exe, which is
located in the following folder on your machine:

%SystemRoot%\System32\inetsrv

 The version of IIS running on your machine depends on your OS version. Each IIS version presents a
somewhat different ASP.NET request processing model. An ASP.NET request processing model is a set
of steps taken to process incoming requests. These steps vary from one IIS version to another. We ’ ll only
cover IIS 6.0 here.

 One of the great architectural advantages of IIS 6.0 is its extensibility model, which allows you to write
your own ISAPI extension and filter modules to extend the functionality of the web server. An ISAPI
extension module is a Win32 DLL that can be loaded into the IIS process (inetinfo.exe) itself or another
process.

 IIS communicates with ISAPI extension modules through a standard API that contains an important
function named HttpExtensionProc as shown in the following code snippet:

DWORD WINAPI HttpExtensionProc (LPEXTENSION_CONTROL_BLOCK lpECB);

 This function takes a parameter named lpECB that references the Extension_Control_Block data structure
associated with the current request. Every ISAPI extension is specifically designed to process requests
for resources with specific file extensions. For example, the asp.dll ISAPI extension handles requests for
resources with an .asp file extension. Every version of ASP.NET comes with a specific version of the

❑

❑

❑

❑

c01.indd 3c01.indd 3 9/20/08 6:49:28 AM9/20/08 6:49:28 AM

Chapter 1: The SharePoint 2007 Architecture

4

ISAPI extension module named aspnet_isapi.dll. This module, like any other ISAPI module, is a Win32
dynamic link library (DLL). As such it ’ s an unmanaged component. The ASP.NET ISAPI extension
module (aspnet_isapi.dll) is located in the following folder on your machine:

%SystemRoot%\Microsoft.NET\Framework\versionNumber\aspnet_isapi.dll

 Upon installation, ASP.NET automatically registers the ASP.NET ISAPI extension module with the IIS
metabase for handling requests for resources with the ASP.NET - specific file extensions such as .aspx,
.asmx, .asax, .ashx, and so on. The IIS metabase is where the IIS configuration settings are stored. You can
use the Application Configuration dialog to access the IIS metabase.

 IIS passes the Extension_Control_Block data structure to the HttpExtensionProc method of the ASP.NET
ISAPI extension module, and is then finally passed into the ProcessRequest method of the ISAPIRuntime
class. This is discussed in greater detail later in the chapter.

 Application Pools
 IIS 6.0 allows you to group your web applications into what are known as application pools (see
Figure 1 - 1). Web applications residing in the same application pool share the same worker process.
The worker process is an instance of the w3wp.exe executable.

 Because different application pools run in different worker processes, application pools are separated by
process boundaries. This has the following important benefits:

 Because web applications do not run inside the IIS process, application misbehaviors will not
affect the IIS process itself. This dramatically improves the reliability and stability of the
web server.

 Because application pools are isolated by process boundaries, application failure in one pool has
no effect on applications running in other pools.

 Because upgrades and troubleshooting are done on a per application pool basis, upgrading and
troubleshooting one pool has no effect on other pools. This provides tremendous benefits to
system administrators because they don ’ t have to restart the whole web server or all
applications running on the web server to perform a simple upgrade or troubleshooting that
affects only a few applications.

❑

❑

c01.indd 4c01.indd 4 9/20/08 6:49:29 AM9/20/08 6:49:29 AM

Chapter 1: The SharePoint 2007 Architecture

5

 The w3wp.exe executable is an IIS 6.0 - specific executable located in the following IIS - specific directory
on your machine:

%SystemRoot%\System32\inetsvc\w3wp.exe

 As such, you have to configure the w3wp worker process from the Internet Information Services (IIS) 6.0
Manager.

aspnet_isapi.dll

ASP.NET Application

ASP.NET Application

ASP.NET Worker
Process (w3wp.exe)

Application Pool

aspnet_isapi.dll

ASP.NET Application

ASP.NET Application

ASP.NET Worker
Process (w3wp.exe)

Application Pool

aspnet_isapi.dll

ASP.NET Application

ASP.NET Application

ASP.NET Worker
Process (w3wp.exe)

Application Pool

FTP Service

IIS Admin Service

NNTP Service

SMTP Service

HTTP Protocol Stack (http.sys)

IIS Process
(Inetinfo.exe)

IIS Admin Service

Svchost.exe

Meta
base

User Mode

Kernel Mode

 Figure 1 - 1: The default_aspx class

c01.indd 5c01.indd 5 9/20/08 6:49:29 AM9/20/08 6:49:29 AM

Chapter 1: The SharePoint 2007 Architecture

6

 IIS 6.0 introduces a new kernel - mode component named the HTTP Protocol Stack (http.sys) that
eliminates the need for interprocess communications between the worker process and the IIS process.
Earlier IIS versions use the user - mode Windows Socket API (WinSock) to receive HTTP requests from
the clients and to send HTTP responses back to the clients. IIS 6.0 replaces this user - mode component
with the kernel - mode http.sys driver. Here is how this driver manages to avoid the interprocess
communications.

 When you add a new virtual directory for a new web application belonging to a particular application
pool, IIS 6.0 registers this virtual directory with the kernel - mode http.sys driver. The main responsibility
of http.sys is to listen for an incoming HTTP request and pass it onto the worker process responsible for
processing requests for the associated application pool. http.sys maintains a kernel - mode queue for
each application pool, allowing it to queue the request in the kernel - mode request queue of the
associated application pool. The worker process then picks up the request directly from the kernel - mode
request queue. As you can see, this avoids the interprocess communications between the web server and
worker process. When the worker process is done with processing the request, it returns the response
directly to http.sys, avoiding the interprocess communication overhead.

 http.sys not only eliminates the interprocess communication overhead but also improves the availability
of your applications. Here ’ s why: Imagine that the worker process responsible for processing requests
for a particular application pool starts to misbehave. http.sys will keep receiving HTTP requests and
queueing them in the associated kernel - level queue while the WWW Service is starting a new worker
process to process the requests. The users may feel a little delay, but their requests will not be denied.

 Another added performance benefit of http.sys is that it caches the response in a kernel - mode cache.
Therefore the next requests are directly serviced from this kernel - mode cache without switching to the
user mode.

 SharePoint Extensions
 SharePoint extends IIS and ASP.NET to add support for SharePoint functionality. This section provides
more detailed information about these extensions and the roles they play in the overall SharePoint
architecture. The SharePoint object model also contains types whose instances represent typical IIS entities
such as application pools, web sites, and so on. These types allow you to program against these
entities within your managed code.

 SP ApplicationPool
 SharePoint represents each IIS application pool with an instance of a type named SPApplicationPool,
which allows you to program against IIS application pools from your managed code. Here are some of
the public properties of the SPApplicationPool class that you can use in your managed code:

 CurrentIdentityType. This property gets or sets an IdentityType enumeration value that
specifies the type of identity (such as the type of Windows account) under which this
application pool is running. The possible values are LocalService, LocalSystem, NetworkService,
and SpecificUser.

 DisplayName. This read - only property gets the display name of this application pool.

❑

❑

c01.indd 6c01.indd 6 9/20/08 6:49:29 AM9/20/08 6:49:29 AM

Chapter 1: The SharePoint 2007 Architecture

7

 Farm. This read - only property gets a reference to the SPFarm object that represents the
SharePoint farm where this application pool resides.

 Id. This property gets or sets a GUID that uniquely identifies this application pool.

 Name. This property gets or sets a string that contains the name of this application pool.

 Password. This property gets or sets a string that specifies the password of the Windows
account under which this application pool is running.

 Username. This property gets or sets a string that specifies the username of the Windows
account under which this application pool is running.

 Status. This property gets or sets an SPObjectStatus enumeration value that specifies the current
status of this application pool. The possible values are Disabled, Offline, Online, Provisioning,
Unprovisioning, and Upgrading.

 Here are some of the public methods of the SPApplicationPool class:

 Delete. This method deletes the application pool.

 Provision. This method creates the application pool.

 Unprovision. This method removes the application pool.

 Update. This method updates and commits the changes made to the application pool.

 UpdateCredentials. This method updates and commits the credentials under which the
application pool is running.

 Listing 1 - 2 presents an example that shows you how to use the SPApplicationPool class to program
against the IIS application pools.

 Listing 1 - 2: A page that displays the application pools running in the local farm

 < %@ Page Language=”C#” % >

 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71E9BCE111E9429C” % >

 < %@ Import Namespace=”Microsoft.SharePoint” % >

 < %@ Import Namespace=”Microsoft.SharePoint.Administration” % >

 < %@ Import Namespace=”System.ComponentModel” % >

 < %@ Import Namespace=”System.Collections.Generic” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < script runat=”server” >

 void Page_Load(object sender, EventArgs e)

 {

 SPWebServiceCollection wsc = new SPWebServiceCollection(SPFarm.Local);

 foreach (SPWebService ws in wsc)

 {

 SPApplicationPoolCollection apc = ws.ApplicationPools;

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

(continued)

c01.indd 7c01.indd 7 9/20/08 6:49:30 AM9/20/08 6:49:30 AM

Chapter 1: The SharePoint 2007 Architecture

8

Listing 1 - 2 (continued)

 foreach (SPApplicationPool ap in apc)

 {

 Response.Write(ap.Name);

 Response.Write(“ < /br > ”);

 }

 }

 }

 < /script >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < head runat=”server” >

 < title > Untitled Page < /title >

 < /head >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < /div >

 < /form >

 < /body >

 < /html >

 SPI isWebSite
 SharePoint runs on top of IIS. As such, it uses IIS web sites. An IIS web site is an entry point into IIS and
is configured to listen for incoming requests on a specific port over a specific IP address and/or with a
specific host header. Upon installation, IIS creates an IIS web site named Default Web Site and configures
it to listen for incoming requests on port 80. You have the option of creating one or more IIS web sites
and configuring them to listen for incoming requests on other ports and/or IP addresses supported on
the IIS web server.

 One of the great things about IIS web sites is that their security settings can be configured
independently. For example, you can have an IIS web site such as Default Web Site that acts as an
Internet - facing web site for your company, allowing anonymous users to access its contents. You can
then create another IIS web site to act as an intranet - facing web site and configure it to use integrated
Windows authentication, allowing only users with Windows accounts on the web server or a trusted
domain to access its content.

 SharePoint ’ s object model comes with a class named SPIisWebSite whose instances represent IIS web
sites. The following list presents the public properties of this class:

 Exists. This gets a Boolean value that specifies whether the IIS web site that the SPIisWebSite
object represents exists in the metabase.

 InstanceId. This gets an integer value that uniquely identifies the IIS web site that the
SPIisWebSite represents.

 ServerBindings. This gets or sets a string array where each string in the array specifies a server
binding that the IIS web site that the SPIisWebSite object represents serves.

❑

❑

❑

c01.indd 8c01.indd 8 9/20/08 6:49:30 AM9/20/08 6:49:30 AM

Chapter 1: The SharePoint 2007 Architecture

9

 ServerComment. This gets or sets a string that contains the display name of the IIS web site that
the SPIisWebSite object represents.

 ServerState. This gets an SPIisServerState enumeration value that specifies the server state. The
possible values are Continuing, Paused, Pausing, Started, Starting, Stopped, and Stopping.

 The following list presents the public methods of the SPIisWebSite class:

 Provision. This provisions (creates) the IIS web site that the SPIisWebSite object represents.

 Unprovision. This unprovisions (removes) the IIS web site that the SPIisWebSite object
represents.

 Update. This commits all changes to the registry.

 You can create an instance of this class to access a specified IIS web site from within your managed code
as shown in Listing 1 - 3 .

 Listing 1 - 3: An application page that shows how to access an IIS web site

 < %@ Page Language=”C#” % >

 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71E9BCE111E9429C” % >

 < %@ Import Namespace=”Microsoft.SharePoint” % >

 < %@ Import Namespace=”Microsoft.SharePoint.Administration” % >

 < %@ Import Namespace=”System.Globalization” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < script runat=”server” >

 void Page_Load(object sender, EventArgs e)

 {

 HttpContext context = HttpContext.Current;

 int instanceId = int.Parse(context.Request.ServerVariables[“INSTANCE_ID”],

 NumberFormatInfo.InvariantInfo);

 SPIisWebSite site = new SPIisWebSite(instanceId);

 lbl.Text = “Exists: “ + site.Exists + “ < br/ > ”;

 lbl.Text += “InstanceId: “ + site.InstanceId + “ < br/ > ”;

 lbl.Text += “Server bindings served by this IIS Web site: < br/ > ”;

 foreach (string serverBinding in site.ServerBindings)

 {

 lbl.Text += “ & nbsp; & nbsp; & nbsp; & nbsp;Server Binding & nbsp; & nbsp;” +

 serverBinding + “ < br/ > ”;

 }

 lbl.Text += “ < br/ > ”;

 lbl.Text += “ServerComment: “ + site.ServerComment + “ < br/ > ”;

 lbl.Text += “Server State: “ + site.ServerState + “ < br/ > ”;

 }

 < /script >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

❑

❑

❑

❑

❑

(continued)

c01.indd 9c01.indd 9 9/20/08 6:49:31 AM9/20/08 6:49:31 AM

Chapter 1: The SharePoint 2007 Architecture

10

Listing 1 - 3 (continued)

 < head runat=”server” >

 < title > Untitled Page < /title >

 < /head >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < asp:Label ID=”lbl” runat=”server” / >

 < /div >

 < /form >

 < /body >

 < /html >

 As Listing 1 - 3 shows, the Page_Load method of this application page first accesses the current ASP.NET
HTTP context as shown next:

HttpContext context = HttpContext.Current;

 Next, it uses the current ASP.NET HTTP context to access the instance ID of the current IIS web site,
which hosts the current SharePoint web application:

 int instanceId = int.Parse(context.Request.ServerVariables[“INSTANCE_ID”],

 NumberFormatInfo.InvariantInfo);

 Then, it instantiates an SPIisWebSite object to represent the current IIS web site:

 SPIisWebSite site = new SPIisWebSite(instanceId);

 Next, it iterates through the properties of this SPIisWebSite and prints their values:

 lbl.Text = “Exists: “ + site.Exists + “ < br/ > ”;

 lbl.Text += “InstanceId: “ + site.InstanceId + “ < br/ > ”;

 lbl.Text += “Server bindings served by this IIS Web site: < br/ > ”;

 foreach (string serverBinding in site.ServerBindings)

 {

 lbl.Text += “ & nbsp; & nbsp; & nbsp; & nbsp;Server Binding & nbsp; & nbsp;” +

 serverBinding + “ < br/ > ”;

 }

 lbl.Text += “ < br/ > ”;

 lbl.Text += “ServerComment: “ + site.ServerComment + “ < br/ > ”;

 lbl.Text += “Server State: “ + site.ServerState + “ < br/ > ”;

 As the following application page shows, you can also update the properties of an IIS web site:

 < %@ Page Language=”C#” % >

 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71E9BCE111E9429C” % >

 < %@ Import Namespace=”Microsoft.SharePoint” % >

 < %@ Import Namespace=”Microsoft.SharePoint.Administration” % >

c01.indd 10c01.indd 10 9/20/08 6:49:31 AM9/20/08 6:49:31 AM

Chapter 1: The SharePoint 2007 Architecture

11

 < %@ Import Namespace=”System.Globalization” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < script runat=”server” >

 void Page_Load(object sender, EventArgs e)

 {

 HttpContext context = HttpContext.Current;

 int instanceId = int.Parse(context.Request.ServerVariables[“INSTANCE_ID”],

 NumberFormatInfo.InvariantInfo);

 SPIisWebSite site = new SPIisWebSite(instanceId);

 site.ServerComment = “My “ + site.ServerComment;

 site.Update();

 }

 < /script >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < head runat=”server” >

 < title > Untitled Page < /title >

 < /head >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < asp:Label ID=”lbl” runat=”server” / >

 < /div >

 < /form >

 < /body >

 < /html >

 As this code listing shows, this application page first creates an SPIisWebSite object to represent the
current IIS web site as discussed earlier. Then, it sets the value of the ServerComment property on
this SPIisWebSite object. Finally, it invokes the Update method on this SPIisWebSite object to commit
the change.

 SP WebApplication
 SharePoint takes an IIS web site through a one - time configuration process to enable it to host SharePoint
sites. Such an IIS web site is known as a web application in SharePoint terminology. This configuration
process adds a wildcard application map to the IIS metabase to have IIS route all incoming requests
targeted to the specified IIS web site to the aspnet_isapi.dll ISAPI extension module. Because this ISAPI
extension module routes the requests to ASP.NET in turn, it ensures that all requests go through the
ASP.NET HTTP Runtime Pipeline and are properly initialized with ASP.NET execution context before
they are routed to SharePoint. This avoids a lot of the awkward problems associated with request
processing in previous versions of SharePoint.

 The SharePoint object model comes with a class named SPWebApplication that you can use to program
against web applications from your managed code.

c01.indd 11c01.indd 11 9/20/08 6:49:31 AM9/20/08 6:49:31 AM

Chapter 1: The SharePoint 2007 Architecture

12

 The following list describes some of the public properties of the SPWebApplication class:

 AllowAccessToWebPartCatalog. This gets or sets a Boolean value that specifies whether sites in
the web application can use Web parts from the global Web part catalog.

 AllowPartToPartCommunication. This gets or sets a Boolean value that specifies whether the
web application allows Web parts to communicate with each other to share data.

 ApplicationPool. This gets or sets the SPApplicationPool object that represents the application
pool in which the web application is running.

 BlockedFileExtensions. This gets a Collection < string > object that contains the list of blocked file
extensions. Files with such file extensions cannot be uploaded to the sites in the web application
or downloaded from the sites in the web application.

 ContentDatabases. This gets the SPContentDatabaseCollection collection that contains the
SPContentDatabase objects that represent the content databases that are available to the web
application.

 DaysToShowNewIndicator. This gets or sets an integer value that specifies how many days the
New icon is displayed next to new list items or documents.

 DefaultTimeZone. This gets or sets an integer value that specifies the default time zone for the
web application.

 DisplayName. This gets the string that contains the display name of the web application.

 Farm. This gets the SPFarm object that represents the SharePoint farm in which the web
application resides.

 Features. This gets the SPFeatureCollection collection that contains the SPFeature objects that
represent the features activated for the web application.

 Id. This gets or sets the GUID that uniquely identifies the web application.

 IsAdministrationWebApplication. This gets or sets a Boolean value that indicates whether the
web application is the Central Administration application.

 Name. This gets or sets a string that contains the name of the web application.

 Properties. This gets a property bag that is used to store properties for the web application.
SharePoint automatically stores and retrieves the custom objects that you place in this property bag.

 Sites. This gets a reference to the SPSiteCollection collection that contains the SPSite objects that
represent all site collections in the web application.

 Status. This gets or sets the SPObjectStatus enumeration value that specifies the status of the
web application. The possible values are Disabled, Offline, Online, Provisioning,
Unprovisioning, and Upgrading.

 WebService. This gets a reference to the SPWebService object that contains the web application.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 12c01.indd 12 9/20/08 6:49:32 AM9/20/08 6:49:32 AM

Chapter 1: The SharePoint 2007 Architecture

13

 The following list presents the public methods of the SPWebApplication class:

 Delete. This deletes the web application that the SPWebApplication object represents.

 GrantAccessToProcessIdentity. This takes a string that contains a username as its argument and
grants the user access to the process identity of the SharePoint web application. This basically
gives the user full control.

 Lookup. This takes a string that contains the URL of a web application and returns a reference to
the SPWebApplication object that represents the web application.

 Provision. This provisions (creates) the web application that the SPWebApplication object
represents on the local server.

 Unprovision. This unprovisions (removes) the web application that the SPWebApplication
object represents from all local IIS web sites.

 Update. This serializes the state of the web application and propagates changes to all web
servers in the server farm.

 UpdateCredentials. This commits new credentials (username or password) to the database.

 UpdateMailSettings. This commits the new email settings. These email settings are used to
send emails.

 Use one of the following methods to access the SPWebApplication object that represents a given
SharePoint web application:

 The SPSite object that represents a SharePoint site collection exposes a property named
WebApplication. WebApplication returns a reference to the SPWebApplication object that
represents the SharePoint web application that hosts the site collection.

 The SPWeb object that represents a SharePoint site exposes a property named WebApplication
returning a reference to the SPWebApplication object that represents the SharePoint web
application that hosts the site.

 The SharePoint object model comes with a class named SPWebService that mainly acts as a
container for SPWebApplication objects representing a SharePoint farm ’ s collection of web
applications. The SPWebService object for a given SharePoint farm exposes a collection property
of type SPWebApplicationCollection named WebApplications that contains the farm ’ s web
applications. Use the name or GUID of a web application as an index into this collection to
return a reference to the SPWebApplication object that represents the web application.

 The SPWebApplication class exposes a static method named Lookup. This method takes a URI
object that specifies the URI of a web application and then returns the SPWebApplication object
that represents it.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 13c01.indd 13 9/20/08 6:49:32 AM9/20/08 6:49:32 AM

Chapter 1: The SharePoint 2007 Architecture

14

 The following code listing presents a web page that uses the SharePoint object model to display the
names of all web applications in the local farm:

 < %@ Page Language=”C#” % >

 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71E9BCE111E9429C” % >

 < %@ Import Namespace=”Microsoft.SharePoint” % >

 < %@ Import Namespace=”Microsoft.SharePoint.Administration” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < script runat=”server” >

 void Page_Load(object sender, EventArgs e)

 {

 SPWebServiceCollection wsc = new SPWebServiceCollection(SPFarm.Local);

 foreach (SPWebService ws in wsc)

 {

 SPWebApplicationCollection wac = ws.WebApplications;

 foreach (SPWebApplication wa in wac)

 {

 Response.Write(wa.Name);

 Response.Write(“ < br/ > ”);

 }

 }

 }

 < /script >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < head runat=”server” >

 < title > Untitled Page < /title >

 < /head >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < /div >

 < /form >

 < /body >

 < /html >

 SP WebApplicationBuilder
 Use an instance of the SPWebApplicationBuilder class to create an instance of the SPWebApplication
class. The SPWebApplicationBuilder instance automatically provides default values for all the required
settings, allowing you to override only the desired settings.

 The following list presents the public properties of the SPWebApplicationBuilder class:

 AllowAnonymousAccess. This gets or sets a Boolean value that indicates whether anonymous
users are allowed to access the new web application.

❑

c01.indd 14c01.indd 14 9/20/08 6:49:32 AM9/20/08 6:49:32 AM

Chapter 1: The SharePoint 2007 Architecture

15

 ApplicationPoolId. This gets or sets a string that contains the GUID that uniquely identifies the
application pool in which the new web application is created.

 ApplicationPoolPassword. This gets or sets the password of the Windows account under which
the new application pool for the web application is to run.

 ApplicationPoolUsername. This gets or sets a string that contains the username of the Windows
account under which the new application pool for the new web application is to run.

 CreateNewDatabase. This gets or sets a Boolean value that indicates whether to create a new
content database for the web application.

 DatabaseName. This gets or sets a string that specifies the name for the new content database.

 DatabasePassword. This gets or sets a string that specifies the password for the new content
database.

 DatabaseServer. This gets or sets a string that contains the database server name and instance in
which to create the new content database.

 DatabaseUsername. This gets or sets a string that contains the username for the new content
database.

 Id. This gets or sets the GUID that uniquely identifies the web application.

 IdentityType. This gets or sets an IdentityType enumeration value that specifies the process
identity type of the application pool for the web application. The possible values are
LocalService, LocalSystem, NetworkService, and SpecificUser.

 Port. This gets or sets an integer that specifies the port number of the new web application.

 RootDirectory. This gets or sets the DirectoryInfo object that represents the file system directory
in which to install static files such as web.config for the new web application.

 ServerComment. This gets or sets a string that contains the server comment for the web
application.

 WebService. This gets or sets the SPWebService object that represents the web service that
contains the web application.

 The following list presents the methods of the SPWebApplicationBuilder class:

 Create. This takes no arguments, uses the specified settings, creates a new web application, and
returns a WebApplication object that represents the newly created web application.

 ResetDefaults. This takes no arguments and initializes all values with the best defaults that
SharePoint can determine.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 15c01.indd 15 9/20/08 6:49:33 AM9/20/08 6:49:33 AM

Chapter 1: The SharePoint 2007 Architecture

16

 The following code listing creates and provisions a new web application:

 < %@ Page Language=”C#” % >

 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71E9BCE111E9429C” % >

 < %@ Import Namespace=”Microsoft.SharePoint” % >

 < %@ Import Namespace=”Microsoft.SharePoint.Administration” % >

 < %@ Import Namespace=”System.ComponentModel” % >

 < %@ Import Namespace=”System.Collections.Generic” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < script runat=”server” >

 void Page_Load(object sender, EventArgs e)

 {

 SPWebApplicationBuilder wab = new SPWebApplicationBuilder(SPFarm.Local);

 wab.Port = 12000;

 SPWebApplication wa = wab.Create();

 wa.Provision();

 }

 < /script >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < head runat=”server” >

 < title > Untitled Page < /title >

 < /head >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < /div >

 < /form >

 < /body >

 < /html >

 SP WebService
 The SPWebService acts as a container for SPWebApplication objects that represents one or more web
applications in a SharePoint farm. The following list presents the public properties of this class:

 AdministrationService. This is a static property that gets a reference to the SPWebService object
that contains the SPWebApplication object that represents the SharePoint Central
Administration web application.

 ApplicationPools. This gets a reference to the SPApplicationPoolCollection collection that
contains the SPApplicationPool objects that represent the IIS application pools available to the
web service that this SPWebService object represents.

 ContentService. This gets a reference to the SPWebService object that contains the
SPWebApplication objects that represent the content web applications.

❑

❑

❑

c01.indd 16c01.indd 16 9/20/08 6:49:33 AM9/20/08 6:49:33 AM

Chapter 1: The SharePoint 2007 Architecture

17

 DefaultDatabaseInstance. This gets or sets a reference to the SPDatabaseServiceInstance object
that represents the default named SQL Server installation for new content databases.

 DefaultDatabasePassword. This gets or sets a string that contains the default password for new
content databases.

 DefaultDatabaseUsername. This gets or sets a string that contains the default username for new
content databases.

 DisplayName. This gets a string that contains the display name of the web service that this
SPWebService object represents.

 Farm. This gets a reference to the SPFarm object that represents the SharePoint farm where this
web service resides.

 Features. This gets a reference to the SPFeatureCollection collection that contains SPFeature
objects that represent farm - level scoped features.

 Id. This gets or sets the GUID that uniquely identifies this web service.

 Name. This gets or sets a string that contains the name of this web service. The name of the web
service uniquely identifies the service.

 Properties. This gets a reference to a hash table where you can store arbitrary name/value pairs.
SharePoint automatically takes care of persistence and retrieval of this pair just like it does for
any other persistable SharePoint data.

 Status. This gets or sets the SPObjectStatus enumeration value that specifies the status of this
web service. The possible values are Disabled, Offline, Online, Provisioning, Unprovisioning,
and Upgrading.

 WebApplications. This gets a reference to an SPWebApplicationCollection collection
that contains the SPWebApplication objects that represent the web applications that this web
service contains.

 The following list contains the public methods of the SPWebService class:

 Delete. This removes the web service from the SharePoint farm.

 Provision. This provisions the web service into the local server by making the necessary changes
to the local server.

 Unprovision. This unprovisions the web service by making the necessary changes to the local
server to clean up after deleting the object.

 Update. This commits and propagates the change made to this web service to all the machines
in the farm.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 17c01.indd 17 9/20/08 6:49:33 AM9/20/08 6:49:33 AM

Chapter 1: The SharePoint 2007 Architecture

18

 The following code listing iterates through the application pools for each web service and prints their
names:

 < %@ Page Language=”C#” % >

 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71E9BCE111E9429C” % >

 < %@ Import Namespace=”Microsoft.SharePoint” % >

 < %@ Import Namespace=”Microsoft.SharePoint.Administration” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < script runat=”server” >

 void Page_Load(object sender, EventArgs e)

 {

 SPWebServiceCollection wsc = new SPWebServiceCollection(SPFarm.Local);

 foreach (SPWebService ws in wsc)

 {

 SPApplicationPoolCollection apc = ws.ApplicationPools;

 foreach (SPApplicationPool ap in apc)

 {

 Response.Write(ap.Name);

 Response.Write(“ < br/ > ”);

 }

 }

 }

 < /script >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < head id=”Head1” runat=”server” >

 < title > Untitled Page < /title >

 < /head >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < /div >

 < /form >

 < /body >

 < /html >

 ISAPI Runtime
 As discussed earlier, when a request arrives, the HttpExtensionProc function of the ASP.NET ISAPI
extension module is invoked and the Extension_Control_Block data structure is passed into it.
The HttpExtensionProc function uses this data structure to communicate with IIS. The same
Extension_Control_Block data structure is finally passed into the ProcessRequest method of the
ISAPIRuntime object (see Listing 1 - 4).

c01.indd 18c01.indd 18 9/20/08 6:49:34 AM9/20/08 6:49:34 AM

Chapter 1: The SharePoint 2007 Architecture

19

 Listing 1 - 4: The ProcessRequest method of ISAPI Runtime

public int ProcessRequest(IntPtr ecb, int iWRType)

{

 HttpWorkerRequest request = CreateWorkerRequest(ecb, iWRType);

 HttpRuntime.ProcessRequest(request);

 return 0;

}

 The ProcessRequest method of ISAPIRuntime, like the request processing method of any runtime
class, first instantiates and initializes the appropriate HttpWorkerRequest object and then calls the
ProcessRequest static method of an ASP.NET class named HttpRuntime and passes the newly
instantiated HttpWorkerRequest object into it. HttpRuntime is the entry point into what is known as
the ASP.NET HTTP Runtime Pipeline. This pipeline is discussed in detail in the next section.

 ASP.NET HTTP Runtime Pipeline
 The main responsibility of this pipeline is to process incoming requests and to generate the response text
for the client. Listing 1 - 5 presents the internal implementation of the ProcessRequest method.

 Listing 1 - 5: The ProcessRequest method of HttpRuntime

public static void ProcessRequest(HttpWorkerRequest wr)

{

 HttpContext context1 = new HttpContext(wr, true);

 IHttpHandler handler1 = HttpApplicationFactory.GetApplicationInstance(context1);

 if (handler1 is IHttpAsyncHandler)

 {

 IHttpAsyncHandler handler2 = (IHttpAsyncHandler)handler1;

 context1.AsyncAppHandler = handler2;

 handler2.BeginProcessRequest(context1, _handlerCompletionCallback,

 context1);

 }

 else

 {

 handler1.ProcessRequest(context1);

 FinishRequest(context1.WorkerRequest, context1, null);

 }

}

 ProcessRequest performs these three main tasks:

 It instantiates an instance of an ASP.NET class named HttpContext, passing in the
HttpWorkerRequest object. This HttpContext instance represents the ASP.NET execution
context for the current request:

HttpContext context1 = new HttpContext(wr, true);

❑

c01.indd 19c01.indd 19 9/20/08 6:49:34 AM9/20/08 6:49:34 AM

Chapter 1: The SharePoint 2007 Architecture

20

 It calls the GetApplicationInstance method of an ASP.NET class named HttpApplicationFactory
to return an instance of an ASP.NET class that implements the IHttpHandler. This class inherits
from another ASP.NET class named HttpApplication. ASP.NET represents each ASP.NET
application with one or more HttpApplication objects. Also notice that HttpRuntime passes the
HttpContext object into the GetApplicationInstance method:

IHttpHandler handler1 = HttpApplicationFactory.GetApplicationInstance(context1);

 It checks whether the object that GetApplicationInstance returns implements the
IHttpAsyncHandler interface. If so, it calls the BeginProcessRequest method of the object to
process the current request asynchronously:

httpApplication.BeginProcessRequest(context1, _handlerCompletionCallback,

 context1);

 If not, it calls the ProcessRequest method of the object to process the request synchronously:

handler1.ProcessRequest(context1);

 HTTP requests are always processed asynchronously to improve the performance and
throughput of ASP.NET applications. As such, GetApplicationInstance always invokes the
BeginProcessRequest method.

 Notice that HttpRuntime passes the HttpContext object to HttpApplicationFactory, which is then passed
to HttpApplication. HttpRuntime, HttpApplicationFactory, and HttpApplication, together with some
other components discussed later in this chapter, form a pipeline of managed components known as the
ASP.NET HTTP Runtime Pipeline. Each component in the pipeline receives the HttpContext object from
the previous component, extracts the needed information from the object, processes the information,
stores the processed information back into the object, and passes the object to the next component in the
pipeline.

 Each incoming HTTP request is processed with a distinct ASP.NET HTTP Runtime Pipeline. No two
requests share the same pipeline. The HttpContext object provides the context within which an incoming
HTTP request is processed.

 Every application domain contains a single instance of the HttpApplicationFactory object. The
HttpApplicationFactory class features a field named _theApplicationFactory that returns this single
instance. The main responsibility of the GetApplicationInstance method of HttpApplicationFactory is to
return an instance of a class to represent the current application. The type of this class depends on
whether the application uses the global.asax file. This file is optional but every application can contain
only a single instance of the file, which must be placed in the root directory of the application. The
instances of the file placed in the subdirectories of the root directory are ignored.

 If the root directory of an application doesn ’ t contain the global.asax file, the GetApplicationInstance
method returns an instance of an ASP.NET class named HttpApplication to represent the current
application. If the root directory does contain the file, the GetApplicationInstance method returns an
instance of a class that derives from the HttpApplication class to represent the application.

 This HttpApplication - derived class is not one of the standard classes such as HttpApplication that ships
with the ASP.NET Framework. Instead it ’ s a class that the GetApplicationInstance method dynamically

❑

❑

c01.indd 20c01.indd 20 9/20/08 6:49:34 AM9/20/08 6:49:34 AM

Chapter 1: The SharePoint 2007 Architecture

21

generates on the fly from the content of the global.asax file. In other words, the GetApplicationInstance
method automatically turns what ’ s inside the global.asax file into a class that derives from
HttpApplication, dynamically compiles this class into an assembly, and creates an instance of this
dynamically generated compiled class to represent the application.

 Listing 1 - 6 presents the internal implementation of the GetApplicationInstance method.

 Listing 1 - 6: The internal implementation of the GetApplicationInstance method

public class HttpApplicationFactory

{

 private Stack _freeList;

 private int _numFreeAppInstances;

 internal static IHttpHandler GetApplicationInstance(HttpContext context)

 {

 GenerateAndCompileAppClassIfNecessary(context);

 HttpApplication appInstance = null;

 lock (_freeList)

 {

 if (_numFreeAppInstances > 0)

 {

 appInstance = (HttpApplication)_freeList.Pop();

 _numFreeAppInstances--;

 }

 }

 if (appInstance == null)

 {

 appInstance = InstantiateAppInstance();

 appInstance.InitializeAppInstance();

 }

 return appInstance;

 }

}

 The GetApplicationInstance method performs these tasks. First, it calls the
GenerateAndCompileAppClassIfNecessary method of the HttpApplicationFactory:

GenerateAndCompileAppClassIfNecessary(context);

 The GenerateAndCompileAppClassIfNecessary method takes these steps. First, it determines whether
the root directory of the application contains the global.asax file. If so, it instantiates an instance of an
ASP.NET class named ApplicationBuildProvider. As the name suggests, ApplicationBuildProvider is the
build provider responsible for generating the source code for the class that represents the global.asax file.
As mentioned earlier, this class inherits from the HttpApplication base class.

 After generating the source code for this class, the GenerateAndCompileAppClassIfNecessary method
uses the AssemblyBuilder to dynamically compile this source code into an assembly and loads the
assembly into the application domain. This dynamic code generation and compilation process is
performed only when the first request hits the application. The process is repeated only if the timestamp
of the global.asax and root web.config file of the application change. The timestamp of a file could
change for a number of reasons. One obvious case is when you change the content of a file. Another less

c01.indd 21c01.indd 21 9/20/08 6:49:35 AM9/20/08 6:49:35 AM

Chapter 1: The SharePoint 2007 Architecture

22

obvious case is when you run a program such as an antivirus program that changes this timestamp even
though the content of the file hasn ’ t changed. If the timestamp of the global.asax file changes, the global.
asax file is recompiled when the next request arrives.

 Now back to Listing 1 - 6 . The HttpApplicationFactory maintains a pool of HttpApplication - derived
instances that represent the current application. In other words, more than one instance may be
processing requests for the same application to improve the performance. When a request hits the
application, GetApplicationInstance checks whether there ’ s a free HttpApplication - derived instance
available. If so, it returns that instance:

 lock (_freeList)

 {

 if (_numFreeAppInstances > 0)

 {

 appInstance = _freeList.Pop();

 _numFreeAppInstances--;

 }

 }

 Notice that the HttpApplicationFactory maintains the pool members in an internal instance of the Stack
class named _freeList. As the previous listing shows, GetApplicationInstance simply calls the Pop
method of this internal Stack object to access the free HttpApplication object and decrements the number
of available HttpApplication objects by one. Also notice that GetApplicationInstance locks the Stack
object before it accesses it because the same Stack object is accessed by multiple threads handling
multiple requests.

 If the pool has no free HttpApplication object available, GetApplicationInstance calls the
InstantiateAppInstance method to create a new HttpApplication object:

 if (appInstance == null)

 {

 appInstance = InstantiateAppInstance();

 appInstance.InitializeAppInstance();

 }

 Notice that GetApplicationInstance finally calls the InitializeAppInstance method of the newly
instantiated HttpApplication - derived object to initialize it. What this initialization process entails is
discussed later in this chapter.

 As mentioned, the GetApplicationInstance method parses the content of the global.asax file into a class
that derives from HttpApplication. This means that you can have this method generate a different type
of class by implementing and adding the global.asax file to your application. The global.asax file like
many other ASP.NET files can have an associated code - behind class. You must use the Inherits attribute
of the @Application directive inside the global.asax file to specify the complete information about this
code - behind class, which contains the fully qualified name of the type of the class, including its complete
namespace containment hierarchy and the complete information about the assembly that contains the
class such as assembly name, version, culture, and public key token.

c01.indd 22c01.indd 22 9/20/08 6:49:35 AM9/20/08 6:49:35 AM

Chapter 1: The SharePoint 2007 Architecture

23

 SharePoint uses the same approach to introduce a code - behind class named SPHttpApplication. This
means that the objects that represent a given application are instances of a dynamically generated class
that inherits from SPHttpApplication. As such, SharePoint applications are represented by instances of
the SPHttpApplication class. This class like any code - behind class used in the global.asax file inherits
from the HttpApplication class, which means that it exposes the same familiar API as HttpApplication
class, which you can use to program against SharePoint applications. As such, we first need to study the
HttpApplication class.

 HttpApplication
 The HttpApplication class is the base class for the class that represents the current application. As such,
it provides its subclass with the base functionality that it needs to process the request. Recall that the
GetApplicationInstance method of HttpApplicationFactory invokes the InitializeAppInstance method of
HttpApplication on the newly instantiated HttpApplication - derived instance to initialize the instance.
This method performs these tasks. First, it reads the contents of the < httpModules > sections of the
configuration files. The < httpModules > section of a configuration file contains zero or more < add > child
elements where each < add > element is used to register an ASP.NET component known as an HTTP
module.

 Listing 1 - 7 presents the portion of the < httpModules > section of the root web.config file, which registers
the standard ASP.NET HTTP modules.

 Listing 1 - 7: The < httpModules > section of the root web.config file

 < configuration >

 < system.web >

 < httpModules >

 < add name=”OutputCache” type=”System.Web.Caching.OutputCacheModule” / >

 < add name=”Session” type=”System.Web.SessionState.SessionStateModule” / >

 < add name=”WindowsAuthentication”

 type=”System.Web.Security.WindowsAuthenticationModule” / >

 < add name=”FormsAuthentication”

 type=”System.Web.Security.FormsAuthenticationModule” / >

 ...

 < /httpModules >

 < /system.web >

 < /configuration >

 An HTTP module is a class that implements the IHttpModule interface. Recall from the previous section
that HttpRuntime creates an instance of a class named HttpContext, which provides the execution
context for the current request. Each module must extract the required information from the HttpContext
object, process the information, then store the processed information back in the object.

 For example, the FormsAuthenticationModule authenticates the request, creates an IPrincipal object to
represent the security context of the current request, and assigns this object to the User property of the
HttpContext object. Listing 1 - 8 presents the definition of the IHttpModule interface.

c01.indd 23c01.indd 23 9/20/08 6:49:35 AM9/20/08 6:49:35 AM

Chapter 1: The SharePoint 2007 Architecture

24

 Listing 1 - 8: The IHttpModule interface

public interface IHttpModule

{

 void Dispose();

 void Init(HttpApplication context);

}

 InitializeAppInstance reads the contents of the < httpModules > section of the root web.config and other
configuration files. Notice that the < add > element features two important attributes, that is, name and
type, which respectively contain the friendly name and type information of the HTTP module. The
friendly name provides an easy way to reference an HTTP module. The type attribute contains
the complete type information needed to instantiate the module.

 InitializeAppInstance first uses the value of the type attribute of each < add > element and .NET reflection
to dynamically instantiate an instance of the associated HTTP module. It then calls the Init method of
each HTTP module to initialize the module. As Listing 1 - 8 shows, every HTTP module implements the
Init method.

 The main function of the Init method of an HTTP module is to register event handlers for one or more
of the events of the HttpApplication object. HttpApplication exposes a bunch of application - level
events as described in the following table. Notice that this table lists the events in the order in which they
are fired.

 Event Description

 BeginRequest Fires when ASP.NET begins processing the request

 AuthenticateRequest Fires when ASP.NET authenticates the request

 PostAuthenticateRequest Fires after ASP.NET authenticates the request

 AuthorizeRequest Fires when ASP.NET authorizes the request

 PostAuthorizeRequest Fires after ASP.NET authorizes the request

 ResolveRequestCache Fires when ASP.NET is determining whether the request can be
serviced from the cache

 PostResolveRequestCache Fires after ASP.NET determines that the request can indeed be
serviced from the cache bypassing the execution of the request
handler

 MapRequestHandler Fires when ASP.NET determines the request handler

 PostMapRequestHandler Fires after ASP.NET determines the HTTP request handler

 AcquireRequestState Fires when ASP.NET acquires the request state

 PostAcquireRequestState Fires after ASP.NET acquires the request state

 PreRequestHandlerExecute Fires before ASP.NET executes the request handler

 RequestHandlerExecute Fires when ASP.NET executes the request handler

c01.indd 24c01.indd 24 9/20/08 6:49:36 AM9/20/08 6:49:36 AM

Chapter 1: The SharePoint 2007 Architecture

25

 Event Description

 PostRequestHandlerExecute Fires after ASP.NET executes the request handler

 ReleaseRequestState Fires when ASP.NET stores the request state

 PostReleaseRequestState Fires after ASP.NET stores the request state

 UpdateRequestCache Fires when ASP.NET is caching the response

 PostUpdateRequestCache Fires after ASP.NET caches the response so the next request is
serviced from the cache bypassing the execution of the request
handler

 LogRequest Fires when ASP.NET is logging the request

 PostLogRequest Fires after ASP.NET logs the request

 EndRequest Fires when ASP.NET ends processing the request

 Disposed Fires when ASP.NET releases all resources used by the application

 The following three events could be raised at any time during the lifecycle of a request:

 Event Description

 Error Fires when an unhandled exception is thrown

 PreSendRequestContent Fires before ASP.NET sends the request content or body

 PreSendRequestHeaders Fires before ASP.NET sends the request HTTP headers

 So far, I ’ ve covered the synchronous versions of the events of the HttpApplication object. The
asynchronous version of each event follows this same format: AddOnXXXAsync where XXX is
the placeholder for the event name. AddOnXXXAsync is a method that registers an event handler for the
specified events. For example, in the case of the BeginRequest event, this method is
AddOnBeginRequestAsync.

 Now back to the InitializeAppInstance method of HttpApplication. So far, you ’ ve learned that this
method instantiates and initializes the registered HTTP modules. Next it instantiates an instance of a
class named ApplicationStepManager.

 To understand the role of ApplicationStepManager, you need to understand how HttpApplication
processes the request. The request processing of HttpApplication consists of a set of execution steps,
which are executed in order. Each execution step is represented by an object of type IExecutionStep. The
IExecutionStep interface features a method named Execute. As the name suggests, this method executes
the step. Each IExecutionStep object is associated with a particular event of HttpApplication. For
example, there ’ s an IExecutionStep object associated with the BeginRequest event of HttpApplication.

 As the name implies, ApplicationStepManager manages the building and executing the IExecutionStep
objects associated with the HttpApplication events. ApplicationStepManager exposes two methods

c01.indd 25c01.indd 25 9/20/08 6:49:36 AM9/20/08 6:49:36 AM

Chapter 1: The SharePoint 2007 Architecture

26

named BuildSteps and ExecuteStage where the former creates these IExecutionStep objects and the latter
calls the Execute method of these IExecutionStep objects to execute them. Now let ’ s see who calls these
two methods of ApplicationStepManager.

 After instantiating the ApplicationStepManager, the InitializeAppInstance method of HttpApplication
calls the BuildSteps method to create the IExecutionStep objects associated with the HttpApplication
events. These objects are instantiated and added to an internal collection in the same order as their
associated events. The order of these events was discussed in the previous table.

 Next, you see who calls the ExecuteStage method. Recall that the ProcessRequest method of
HttpRuntime calls the BeginProcessRequest method of the HttpApplication object as shown in the
boldfaced section of the following code listing:

public static void ProcessRequest(HttpWorkerRequest wr)

{

 HttpContext context1 = new HttpContext(wr, true);

 IHttpHandler handler1 = HttpApplicationFactory.GetApplicationInstance(context1);

 IHttpAsyncHandler handler2 = (IHttpAsyncHandler)handler1;

 context1.AsyncAppHandler = handler2;

 handler2.BeginProcessRequest(context1, _handlerCompletionCallback, context1);

}

 BeginProcessRequest internally calls the ExecuteStage method of the ApplicationStepManager, which,
in turn, iterates through the internal collection that contains the IExecutionStep objects and calls their
Execute methods in the order in which they were added to the collection.

 SP HttpApplication
 Launch the Windows Explorer and navigate to the physical root directory of your SharePoint web
application, which is located in the following folder on the file system of the front - end web server:

Local_Drive:\inetpub\wwwroot\wss\VirtualDirectories

 There you should see the global.asax file. SharePoint automatically adds this file every time you create a
new SharePoint web application. If you open this file in your favorite editor, you should see the
following:

 < %@ Assembly Name=”Microsoft.SharePoint”% >

 < %@ Application Language=”C#”

Inherits=”Microsoft.SharePoint.ApplicationRuntime.SPHttpApplication” % >

 As you can see, the global.asax file contains two directives. The @Assembly directive references the
Microsoft.SharePoint.dll assembly, which contains the ApplicationRuntime namespace. Note that
the Inherits attribute of the @Application directive instructs ASP.NET to use SPHttpApplication as the
base class for the class that it dynamically creates and instantiates. Recall that instances of this
dynamically generated class represent the SharePoint web application.

c01.indd 26c01.indd 26 9/20/08 6:49:37 AM9/20/08 6:49:37 AM

Chapter 1: The SharePoint 2007 Architecture

27

 Listing 1 - 9 presents the internal implementation of the SPHttpApplication class.

 Listing 1 - 9: The internal implementation of the SPHttpApplication class

public class SPHttpApplication : HttpApplication

{

 private ReaderWriterLock readerWriterLock = new ReaderWriterLock();

 private List < IVaryByCustomHandler > varyByCustomHandlers =

 new List < IVaryByCustomHandler > ();

 [SharePointPermission(SecurityAction.Demand, ObjectModel = true)]

 public sealed override string GetVaryByCustomString(HttpContext context,

 string custom)

 {

 StringBuilder stringBuilder = new StringBuilder();

 readerWriterLock.AcquireReaderLock(-1);

 try

 {

 foreach (IVaryByCustomHandler varyByCustomHandler in varyByCustomHandlers)

 {

 stringBuilder.Append(

 varyByCustomHandler.GetVaryByCustomString(this, context, custom));

 }

 }

 finally

 {

 readerWriterLock.ReleaseReaderLock();

 }

 return stringBuilder.ToString();

 }

 [SharePointPermission(SecurityAction.Demand, ObjectModel = true)]

 public override void Init()

 {

 AppDomain currentAppDomain = AppDomain.CurrentDomain;

 if (currentAppDomain != null)

 currentAppDomain.UnhandledException +=

 new UnhandledExceptionEventHandler(UnhandledExceptionHandler);

 }

 public void RegisterGetVaryByCustomStringHandler(IVaryByCustomHandler

 varyByCustomHandler)

 {

 if (varyByCustomHandler!= null)

 {

 readerWriterLock.AcquireWriterLock(-1);

 try

 {

 varyByCustomHandlers.Add(varyByCustomHandler);

 }

 finally

(continued)

c01.indd 27c01.indd 27 9/20/08 6:49:37 AM9/20/08 6:49:37 AM

Chapter 1: The SharePoint 2007 Architecture

28

Listing 1 - 9 (continued)

 {

 readerWriterLock.ReleaseWriterLock();

 }

 }

 }

 public void DeregisterGetVaryByCustomStringHandler(IVaryByCustomHandler

 varyByCustomHandler)

 {

 if (varyByCustomHandler != null)

 {

 readerWriterLock.AcquireWriterLock(-1);

 try

 {

 varyByCustomHandlers.Remove(varyByCustomHandler);

 }

 finally

 {

 readerWriterLock.ReleaseWriterLock();

 }

 }

 }

}

 As you can see, the SPHttpApplication class overrides the GetVaryByCustomString and Init methods
of the HttpApplication base class. Note that SPHttpApplication exposes a public method named
RegisterGetVaryByCustomStringHandler that takes an IVaryByCustomHandler handler and adds it to
an internal list. When ASP.NET finally invokes the GetVaryByCustomString method, this method iterates
through these IVaryByCustomHandler handlers and invokes their GetVaryByCustomString methods,
passing in these three parameters: a reference to the SPHttpApplication object, a reference to the current
HttpContext object, and the string that contains the custom parameter. The GetVaryByCustomString
method then collects the string values returned from the GetVaryByCustomString methods of these
handlers in a string and returns this string to its caller.

 SP RequestModule
 When you create a new SharePoint web application, SharePoint automatically adds a web.config file to
the root directory of the application. This file, among many other settings, includes the < httpModules >
configuration section shown in Listing 1 - 10 .

 As discussed earlier, the InitializeAppInstance method of SPHttpApplication reads the content of the
 < httpModules > configuration section, instantiates the registered HTTP modules, and invokes their Init
methods to allow them to register event handlers for one or more of the SPHttpApplication events. Note
that the InitializeAppInstance method invokes the Init methods of the registered HTTP modules in the
order in which these modules are added inside the < httpModules > configuration section. Therefore,

c01.indd 28c01.indd 28 9/20/08 6:49:38 AM9/20/08 6:49:38 AM

Chapter 1: The SharePoint 2007 Architecture

29

the HTTP modules that are added first get to register their event handlers first. This means that when the
respective events are raised, their registered event handlers are the first to be invoked.

 SharePoint comes with an HTTP module of its own named SPRequestModule that registers event
handlers for most of these events. SharePoint uses these event handlers to initialize the SharePoint
runtime environment. Because these initializations must be performed before any other ASP.NET HTTP
modules get to perform their own tasks, SharePoint first adds the < clear/ > element as the first element
of the < httpModules > configuration section to clear up all the registered ASP.NET HTTP modules and
then registers the SPRequestModule HTTP module (see Listing 1 - 10). SharePoint adds all the ASP.NET
HTTP modules back inside the < httpModules > element after the SPRequestModule module. This
ensures that the SPRequestModule HTTP module initializes the SharePoint runtime environment before
any ASP.NET HTTP module gets involved.

 Listing 1 - 10: The content of the web.config file

 < configuration >

 < system.web >

 < httpModules >

 < clear / >

 < add name=”SPRequest”

 type=”Microsoft.SharePoint.ApplicationRuntime.SPRequestModule,

 Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

 PublicKeyToken=71e9bce111e9429c” / >

 < add name=”OutputCache” type=”System.Web.Caching.OutputCacheModule” / >

 < add name=”FormsAuthentication”

 type=”System.Web.Security.FormsAuthenticationModule” / >

 < add name=”UrlAuthorization”

 type=”System.Web.Security.UrlAuthorizationModule” / >

 < add name=”WindowsAuthentication”

 type=”System.Web.Security.WindowsAuthenticationModule” / >

 < add name=”RoleManager” type=”System.Web.Security.RoleManagerModule” / >

 < add name=”PublishingHttpModule”

 type=”Microsoft.SharePoint.Publishing.PublishingHttpModule,

 Microsoft.SharePoint.Publishing, Version=12.0.0.0, Culture=neutral,

 PublicKeyToken=71e9bce111e9429c” / >

 < add name=”Session” type=”System.Web.SessionState.SessionStateModule” / >

 < /httpModules >

 < /system.web >

 < /configuration >

 Listing 1 - 11 presents the portion of the internal implementation of the Init method of the
SPRequestModule.

c01.indd 29c01.indd 29 9/20/08 6:49:38 AM9/20/08 6:49:38 AM

Chapter 1: The SharePoint 2007 Architecture

30

 Listing 1 - 11: The portion of the implementation of the Init method of the
 SP RequestModule

public sealed class SPRequestModule : IHttpModule

{

 void IHttpModule.Init(HttpApplication app)

 {

 if (app is SPHttpApplication)

 {

 if (!_virtualPathProviderInitialized)

 {

 lock (_virtualServerDataInitializedSyncObject)

 {

 if (!_virtualPathProviderInitialized)

 {

 SPVirtualPathProvider virtualPathProvider =

 new SPVirtualPathProvider();

 HostingEnvironment.RegisterVirtualPathProvider(virtualPathProvider);

 _virtualPathProviderInitialized = true;

 }

 }

 }

 }

 else

 return;

 app.BeginRequest += new EventHandler(this.BeginRequestHandler);

 app.PostResolveRequestCache +=

 new EventHandler(this.PostResolveRequestCacheHandler);

 app.PostMapRequestHandler += new EventHandler(this.PostMapRequestHandler);

 app.ReleaseRequestState += new EventHandler(this.ReleaseRequestStateHandler);

 app.PreRequestHandlerExecute +=

 new EventHandler(this.PreRequestExecuteAppHandler);

 app.PostRequestHandlerExecute +=

 new EventHandler(this.PostRequestExecuteHandler);

 app.AuthenticateRequest += new EventHandler(this.AuthenticateRequestHandler);

 app.PostAuthenticateRequest +=

 new EventHandler(this.PostAuthenticateRequestHandler);

 app.Error += new EventHandler(this.ErrorAppHandler);

 app.EndRequest += new EventHandler(this.EndRequestHandler);

 }

}

 As you can see, the Init method first instantiates and registers an instance of a class named
SPVirtualPathProvider and then registers event handlers for different events of the SPHttpApplication
object representing the current SharePoint web application. As discussed earlier, these event handlers are
responsible for initializing the SharePoint runtime environment.

 SP VirtualPathProvider
 SharePoint site pages are normally provisioned from a page template, which resides on the file system of
each front - end web server on a SharePoint farm. A site page remains in a state known as ghosted until it is
customized. When a request for a ghosted site page arrives, SharePoint checks whether this is the first

c01.indd 30c01.indd 30 9/20/08 6:49:38 AM9/20/08 6:49:38 AM

Chapter 1: The SharePoint 2007 Architecture

31

request for any site page instance of the associated page template. If so, SharePoint loads the page
template from the file system into memory and passes it to the ASP.NET page parser, which in turn
parses the page template into a dynamically generated class, compiles the class into an assembly, loads
the assembly into the current application domain, instantiates an instance of the compiled class, and then
passes the request into it for processing.

 When another request for a site page that is an instance of the same page template arrives, the same
compiled class is used to process the request. Because this compiled class represents the page template,
which resides in the file system of the front - end web server, as opposed to the requested site page, it is as
if the requester requested the page template as opposed to the site page, hence the name ghosted .

 As a result, all requests for a SharePoint web application ’ s site pages that are instances of the same page
template are processed through the same compiled class, which is already loaded into memory. This
improves the performance of the ghosted site pages dramatically. As you can see, SharePoint ghosted
site pages are processed just like a normal ASP.NET page.

 When you customize a SharePoint site page in the SharePoint Designer and save the changes, the SharePoint
Designer stores the content of the site page file into the content database. This alters the state of the site page
from ghosted to unghosted. When a request for an unghosted site page arrives, SharePoint must load the
page from the content database and pass that to the ASP.NET page parser. In other words, the page template
on the file system is no longer used to process a request for an unghosted page, hence the name unghosted .

 Because the ASP.NET page parser in ASP.NET 1.1 can only parse pages loaded from the file system, the
previous version of SharePoint comes with its own page parser, which allows it to parse files loaded
from the content database. Unfortunately the SharePoint page parser is not as rich as the ASP.NET page
parser. For example, it does not handle user controls.

 ASP.NET 2.0 has changed all that. ASP.NET 2.0 has moved the logic that loads the page from the page
parser to a dedicated component known as virtual path provider. This component is a class that inherits a
base class named VirtualPathProvider. The ASP.NET 2.0 page parser communicates with these components
through the VirtualPathProvider API. It is the responsibility of the configured virtual path provider, not the
page parser, to load the ASP.NET page from whatever data source it is designed to work with.

 SharePoint 2007 comes with an implementation of the VirtualPathProvider API named
SPVirtualPathProvider that incorporates the logic that loads an ASP.NET page from

 The file system of the front - end web server if the page being loaded is an application page or a
ghosted site page (and this is the first request for any instance of the associated page template)

 The content database if the page being loaded is an unghosted site page

 This means that SharePoint 2007 no longer uses its own page parser. When a request for an ASP.NET
page arrives, the SPVirtualPathProvider loads the page from the appropriate source and passes it along
to the ASP.NET 2.0 page parser for parsing.

 As the following excerpt from Listing 1 - 11 shows, the Init method of the SPRequestModule HTTP
module instantiates an instance of the SPVirtualPathProvider and uses the RegisterVirtualPathProvider
static method of the HostingEnvironment class to register it with ASP.NET:

SPVirtualPathProvider virtualPathProvider = new SPVirtualPathProvider();

HostingEnvironment.RegisterVirtualPathProvider(virtualPathProvider);

❑

❑

c01.indd 31c01.indd 31 9/20/08 6:49:39 AM9/20/08 6:49:39 AM

Chapter 1: The SharePoint 2007 Architecture

32

 Take these steps if you need to customize the behavior of the SPVirtualPathProvider:

 1. Implement a custom virtual path provider that inherits the VirtualPathProvider base class where
your implementation of the methods of this base class should delegate to the associated
methods of the previous virtual path providers. Keep in mind that ASP.NET chains the
registered virtual path providers together.

 2. Implement a custom HTTP module where your implementation of the Init method must use the
RegisterVirtualPathProvider static method of the HostingEnvironment class to register your
custom virtual path provider with ASP.NET.

 3. Add your HTTP module after the SPRequestModule inside the < httpModules > configuration
section of the web.config file of the SharePoint web application. This ensures that the
SPRequestModule HTTP module gets to register the SPVirtualPathProvider first so this
virtual provider path comes before your custom virtual path provider in the chain of virtual
path providers. This allows your virtual path provider ’ s implementation of the methods of the
VirtualPathProvider base class to use the Previous property to delegate to the associated
methods of the SPVirtualPathProvider.

 I HttpHandlerFactory and IHttpHandler
 HttpApplication features an event named MapRequestHandler, which like any other HttpApplication
event is associated with an IExecutionStep object. The main responsibility of the Execute method of this
IExecutionStep object is to find a class that either knows how to handle the current request or knows the
class that knows how to handle the current request. The class that knows how to handle HTTP requests
for a resource with a specified file extension is known as an HTTP handler. The class that knows the
HTTP handler that handles HTTP requests for a resource with a specified file extension is known as
an HTTP handler factory. All HTTP handlers implement an interface named IHttpHandler. Listing 1 - 12
presents the definition of this interface.

 Listing 1 - 12: The IHttpHandler interface

public interface IHttpHandler

{

 void ProcessRequest(HttpContext context);

 bool IsReusable { get; }

}

 The following table describes the members of the IHttpHandler interface:

 Member Description

 ProcessRequest The main function of this method is to process the request, that is, to generate
the response text sent to the client.

 IsReusable This gets a Boolean value that specifies whether the same IHttpHandler instance
can be reused to handle other requests.

 All HTTP handler factories implement an interface named IHttpHandlerFactory. Listing 1 - 13 contains
the definition of this interface.

c01.indd 32c01.indd 32 9/20/08 6:49:39 AM9/20/08 6:49:39 AM

Chapter 1: The SharePoint 2007 Architecture

33

 Listing 1 - 13: The IHttpHandlerFactory interface

public interface IHttpHandlerFactory

{

 IHttpHandler GetHandler(HttpContext context, string requestType, string url,

 string pathTranslated);

 void ReleaseHandler(IHttpHandler handler);

}

 The GetHandler method takes four parameters: the current HttpContext object, the HTTP verb used to
make the request, the virtual path of the requested file, and the physical path of the requested file.

 As discussed earlier, the main responsibility of the Execute method of the IExecutionStep object
associated with the MapRequestHandler event of HttpApplication is to determine the HTTP handler
that knows how to process requests for the resource with the specified file extension or the HTTP
handler factory that knows the HTTP handler. The Execute method uses the < httpHandlers > section of
the configuration files to make this determination. Listing 1 - 14 shows the portion of the < httpHandlers >
section of the web.config file of an ASP.NET application.

 Listing 1 - 14: The portion of the < httpHandler > section

 < configuration >

 < system.web >

 < httpHandlers >

 < add path=”*.aspx” verb=”*” type=”System.Web.UI.PageHandlerFactory” / >

 < add path=”*.ashx” verb=”*” type=”System.Web.UI.SimpleHandlerFactory” / >

 < add path=”*.asmx” verb=”*”

 type=”System.Web.Services.Protocols.WebServiceHandlerFactory,

 System.Web.Services, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a” / >

 ...

 < /httpHandlers >

 < /system.web >

 < /configuration >

 Note that the < add > element features three important attributes: path, verb, and type. The type
attribute contains a comma - separated list of up to five substrings that provide the Execute method of the
associated IExecutionStep object with the complete type information needed to instantiate the specified
implementation of the IHttpHandlerFactory or IHttpHandler. The only required substring is the first
substring, which contains the fully qualified name of the type of the specified implementation of the
IHttpHandlerFactory or IHttpHandler.

 The path attribute specifies the virtual path of the resource(s) that the specified implementation
of the IHttpHandlerFactory or IHttpHandler handles. For example, as Listing 1 - 14 shows,
PageHandlerFactory handles requests for ASP.NET pages, that is, files with the file extension .aspx.
Or, WebServiceHandlerFactory handles requests for ASP.NET web services, that is, files with the file
extension .asmx.

 The verb attribute contains a comma - separated list of HTTP verbs. The * value specifies that all HTTP
verbs are supported. For example, PageHandlerFactory handles requests for ASP.NET pages no matter
what HTTP verb the client uses to make the request.

c01.indd 33c01.indd 33 9/20/08 6:49:39 AM9/20/08 6:49:39 AM

Chapter 1: The SharePoint 2007 Architecture

34

 The Execute method of the IExecutionStep object associated with the MapRequestHandler event
searches the content of the < httpHandlers > section for the IHttpHandlerFactory or IHttpHandler
implementation that handles the request for the file with the specified file extension. For example, if the
client has made the request for an ASP.NET page, that is, a file with the file extension .aspx, the Execute
method will look for an < add > element whose path attribute has been set to *.aspx or something such
as * that includes the file extension .aspx. The method then reads the value of the type attribute of this
 < add > element and uses that information and .NET reflection to dynamically instantiate an instance of
the specified IHttpHandlerFactory or IHttpHandler implementation. For example, if the request is made
for an ASP.NET page, the Execute method instantiates an instance of the PageHandlerFactory class.

 What the Execute method does next depends on whether the type or class that the type attribute
specifies is an HTTP handler or HTTP handler factory. If it ’ s an HTTP handler, Execute simply calls
the ProcessRequest method of the handler to process the request. Recall that every HTTP handler
implements the ProcessRequest method of the IHttpHandler interface. If it ’ s an HTTP handler factory,
Execute first calls the GetHandler method of the handler factory to return the HTTP handler responsible
for processing the request and then calls the ProcessRequest method of the HTTP handler to process the
request.

 For example, in the case of a request for a resource with the file extension .aspx, the Execute method calls
the GetHandler method of PageHandlerFactory to return an instance of the HTTP handler responsible
for processing the request. This HTTP handler is a class that inherits from the Page base class.

 SP HttpHandler
 ASP.NET comes with a special HTTP handler named DefaultHttpHandler, which allows you to custom
handle the incoming requests. Doing so involves four steps:

 1. Add a wildcard application map to the IIS metabase to have IIS route all requests to the
aspnet_isapi.dll ISAPI extension module.

 2. Implement a custom HTTP handler that inherits from DefaultHttpHandler.

 3. Add the following < remove > element as the first child element of the < httpHandlers >
configuration section of the web.config file at the root directory of your ASP.NET application:

 < remove verb=”GET,HEAD,POST” path=”*” / >

 As you can see, this < remove > element removes all the HTTP handler factories and HTTP
handlers registered for handling requests made through any HTTP verb for resources with any
file extension (path= “ *”). This effectively removes all the ASP.NET registered HTTP handler
factories and HTTP handlers.

 4. Add your custom HTTP handler immediately after the preceding < remove > child element.

 SharePoint follows this same four - step process to custom handle all SharePoint requests. Following these
steps, SharePoint comes with a custom HTTP handler named SPHttpHandler that inherits from the
DefaultHttpHandler HTTP handler.

 When you create a SharePoint web application, SharePoint automatically adds the < httpHandlers >
configuration section shown in Listing 1 - 15 to the web.config file at the root directory of the web
application.

c01.indd 34c01.indd 34 9/20/08 6:49:40 AM9/20/08 6:49:40 AM

Chapter 1: The SharePoint 2007 Architecture

35

 Listing 1 - 15: The web.config file

 < configuration >

 < system.web >

 < httpHandlers >

 < remove verb=”GET,HEAD,POST” path=”*” / >

 < add verb=”GET,HEAD,POST” path=”*”

 type=”Microsoft.SharePoint.ApplicationRuntime.SPHttpHandler,

 Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

 PublicKeyToken=71e9bce111e9429c” / >

 ...

 < /httpHandlers >

 < /system.web >

 < /configuration >

 So far you ’ ve learned how to configure IIS and ASP.NET to route all requests to a custom
DefaultHttpHandler - derived HTTP handler for processing. This HTTP handler, like any other HTTP
handler, exposes a method named ProcessRequest. As the name implies, this method processes the
request. Listing 1 - 16 presents the internal implementation of the DefaultHttpHandler HTTP handler.

 Listing 1 - 16: The DefaultHttpHandler HTTP handler

public class DefaultHttpHandler : IHttpAsyncHandler

{

 private HttpContext context;

 private NameValueCollection executeUrlHeaders;

 public virtual IAsyncResult BeginProcessRequest(HttpContext context,

 AsyncCallback asyncCallback, object asyncState)

 {

 this.context = context;

 string virtualPath = OverrideExecuteUrlPath();

 ...

 return context.Response.BeginExecuteUrlForEntireResponse(virtualPath,

 executeUrlHeaders, asyncCallback, asyncState);

 }

 ...

 }

 public virtual void EndProcessRequest(IAsyncResult asyncResult);

 public virtual void OnExecuteUrlPreconditionFailure() { }

 public virtual string OverrideExecuteUrlPath()

 {

 return null;

 }

 protected NameValueCollection ExecuteUrlHeaders { get; }

 protected HttpContext Context {get;}

 public virtual bool IsReusable {get;}

}

c01.indd 35c01.indd 35 9/20/08 6:49:40 AM9/20/08 6:49:40 AM

Chapter 1: The SharePoint 2007 Architecture

36

 Note that this HTTP handler implements the IHttpAsyncHandler interface, which in turn extends
the standard IHttpHandler to add support for asynchronous request processing. Listing 1 - 17 presents the
definition of this interface.

 Listing 1 - 17: The IHttpAsynchronousHandler interface

public interface IHttpAsyncHandler : IHttpHandler

{

 IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb,

 object extraData);

 void EndProcessRequest(IAsyncResult result);

}

 As you can see, the IHttpAsyncHandler interface exposes the following two methods:

 BeginProcessRequest. This method takes a reference to the current HttpContext object, a reference
to an AsyncCallback delegate, and a reference to an optional object and returns an IAsyncResult
instance. The caller of this method must wrap a callback method in the AsyncCallback delegate.
When the HTTP handler is done with processing the current request, it automatically invokes this
callback method, passing in the same IAsyncResult object that the BeginProcessRequest method
returns. This object exposes a property named AsyncState that references the optional object that
the caller passed into the BeginProcessRequest as the third argument.

 EndProcessRequest. This method takes an IAsyncResult object. It is the responsibility of the
callback method wrapped in the AsyncCallback delegate to call the EndProcessRequest method.

 In effect, the IHttpAsyncHandler interface allows you to process the request asynchronously where your
callback method is automatically invoked after the handler is done with processing request. Now back to
the DefaultHttpHandler HTTP handler ’ s implementation of the BeginProcessRequest method as shown
in Listing 1 - 16 . As you can see, this method first calls the OverrideExecuteUrlPath method:

string virtualPath = OverrideExecuteUrlPath();

 The DefaultHttpHandler HTTP handler ’ s implementation of the OverrideExecuteUrlPath method does
not do anything. It simply returns null. It is the responsibility of the HTTP handler that derives from the
DefaultHttpHandler to override this method where it must take two important steps. First, it must
populate the ExecuteUrlHeaders NameValueCollection property with the appropriate request headers.
Second, it must return the appropriate virtual path for the request.

 After calling the OverrideExecuteUrlPath method and accessing the virtual path for the request, the
BeginProcessRequest method of DefaultHttpHandler invokes the BeginExecuteUrlForEntireResponse
method on the HttpResponse object that represents the current HTTP request, passing in the virtual path
of the requested resource, the NameValueCollection collection that contains the names and values of
the request headers, the AsyncCallback delegate discussed earlier, and the object that was passed in
as the third argument of the BeginProcessRequest method:

return context.Response.BeginExecuteUrlForEntireResponse(virtualPath,

 executeUrlHeaders, asyncCallback, asyncState);

❑

❑

c01.indd 36c01.indd 36 9/20/08 6:49:41 AM9/20/08 6:49:41 AM

Chapter 1: The SharePoint 2007 Architecture

37

 Listing 1 - 18 presents the internal implementation of the BeginExecuteUrlForEntireResponse method.

 Listing 1 - 18: The BeginExecuteUrlForEntireResponse method

public sealed class HttpResponse

{

 internal IAsyncResult BeginExecuteUrlForEntireResponse(string pathOverride,

 NameValueCollection requestHeaders,

 AsyncCallback asyncCallback, object asyncState)

 {

 string userName = context.User.Identity.Name;

 string authenticationType = context.User.Identity.AuthenticationType;

 string rewrittenUrl = Request.RewrittenUrl;

 if (pathOverride != null)

 rewrittenUrl = pathOverride;

 string requestHeadersStr;

 if (requestHeaders != null)

 {

 if (requestHeaders.Count > 0)

 {

 StringBuilder stringBuilder = new StringBuilder();

 for (int i = 0; i < requestHeaders.Count; i++)

 {

 stringBuilder.Append(requestHeaders.GetKey(i));

 stringBuilder.Append(“: “);

 stringBuilder.Append(requestHeaders.Get(i));

 stringBuilder.Append(“\r\n”);

 }

 requestHeadersStr = stringBuilder.ToString();

 }

 }

 byte[] entityBody = context.Request.EntityBody;

 IAsyncResult asyncResult =

 this.workerRequest.BeginExecuteUrl(

 rewrittenUrl, null, requestHeadersStr, true, true,

 this.workerRequest.GetUserToken(), userName,

 authenticationType, entityBody, asyncCallback, asyncState);

 headersWritten = true;

 ended = true;

 return asyncResult;

 }

}

 This method first accesses the username of the Windows account under which the current request is
executing:

string userName = context.User.Identity.Name;

c01.indd 37c01.indd 37 9/20/08 6:49:41 AM9/20/08 6:49:41 AM

Chapter 1: The SharePoint 2007 Architecture

38

 Next, it determines the authentication type:

string authenticationType = context.User.Identity.AuthenticationType;

 Then, it specifies the virtual path for the request:

 string rewrittenUrl = Request.RewrittenUrl;

 if (pathOverride != null)

 rewrittenUrl = pathOverride;

 Next, it iterates through the NameValueCollection collection and creates a string consisting of an “ \r\n ”
separated list of substrings, each substring consisting of two parts separated by a colon character where
the first part is a request header name and the second part is the value of the header:

 string requestHeadersStr = null;

 if (requestHeaders != null)

 {

 if (requestHeaders.Count > 0)

 {

 StringBuilder stringBuilder = new StringBuilder();

 for (int i = 0; i < requestHeaders.Count; i++)

 {

 stringBuilder.Append(requestHeaders.GetKey(i));

 stringBuilder.Append(“: “);

 stringBuilder.Append(requestHeaders.Get(i));

 stringBuilder.Append(“\r\n”);

 }

 requestHeadersStr = stringBuilder.ToString();

 }

 }

 Then, it determines the body of the request:

 byte[] entityBody = context.Request.EntityBody;

 Finally, it invokes the BeginExecuteUrl method on the HttpWorkerRequest to execute the specified URL,
passing in the virtual path of the requested resource, request headers, username of the Windows
account, authentication type, body of the request, the AsyncCallback delegate discussed earlier, and the
optional object discussed earlier:

IAsyncResult asyncResult =

 this.workerRequest.BeginExecuteUrl(

 rewrittenUrl, null, requestHeadersStr, true, true,

 this.workerRequest.GetUserToken(), userName,

 authenticationType, entityBody, asyncCallback, asyncState);

 Recall that the HttpWorkerRequest facilitates the communications between ASP.NET and its host, which
is IIS in this case. In other words, the BeginExecuteUrl method of the HttpWorkerRequest method in
effect starts a new request with a new URL and new request headers.

c01.indd 38c01.indd 38 9/20/08 6:49:41 AM9/20/08 6:49:41 AM

Chapter 1: The SharePoint 2007 Architecture

39

 As you can see, the DefaultHttpHandler HTTP handler provides a powerful approach to custom request
processing where you can restart a whole new request with a new URL and new set of custom request
headers. Your custom DefaultHttpHandler - derived HTTP handler must override the
OverrideExecuteUrlPath method of the DefaultHttpHandler where it must determine the new URL and
the new set of custom request headers needed for the new request.

 One of the great things about using a DefaultHttpHandler - derived HTTP handler is that all requests,
regardless of the HTTP verbs used to make them and regardless of the file extensions of the
requested resources, go through all the registered HTTP modules. Each HTTP module performs a
specific preprocessing task on each request and stores the outcome of this task in the HttpContext object.
For example, the FormAuthenticationModule HTTP module instantiates and initializes an IPrinciple
object and assigns it to the User property of the HttpContext object to represent the security context of
the request. This means that the new request for the new URL with new set of custom request headers
now carries with it the outcome of all the HTTP modules that the previous request went through.
As a matter of fact, as you can see from Listing 1 - 18 , the BeginExecuteUrlForEntireResponse method
of the current HttpResponse object passes the username and authentication types as arguments
into the BeginExecuteUrl method of the HttpWorkerRequest object. In other words, all requests,
regardless of the HTTP verbs used to make them and regardless of the file extensions of the requested
resources, get authenticated and authorized through the same ASP.NET authentication and authorization
modules.

 SPHttpHandler inherits from DefaultHttpHandler and overrides its OverrideExecuteUrlPath method as
shown in Listing 1 - 19 to determine the new URL and new set of custom request headers for the new
request.

 Listing 1 - 19: The internal implementation of SPHttpHandler

public sealed class SPHttpHandler : DefaultHttpHandler

{

 public override string OverrideExecuteUrlPath()

 {

 base.ExecuteUrlHeaders.Add(“VTI_TRANSLATE”,

 base.Context.Request.ServerVariables[“HTTP_TRANSLATE”]);

 base.ExecuteUrlHeaders.Remove(“TRANSLATE”);

 base.ExecuteUrlHeaders.Add(“VTI_REQUEST_METHOD”,

 base.Context.Request.HttpMethod);

 bool invalidUnicode = false;

 string url = SPHttpUtility.UrlPathEncode(base.Context.Request.RawUrl,

 true, true, ref invalidUnicode);

 base.ExecuteUrlHeaders.Add(“VTI_SCRIPT_NAME”, url);

 base.ExecuteUrlHeaders.Add(this.AppDomainIdHeader,

 AppDomain.CurrentDomain.Id.ToString(CultureInfo.InvariantCulture));

 base.ExecuteUrlHeaders.Add(this.ContentLengthHeader,

 base.Context.Request.ContentLength.ToString(CultureInfo.InvariantCulture));

 if (SPSecurity.AuthenticationMode == AuthenticationMode.Windows)

 base.ExecuteUrlHeaders.Add(this.AuthModeHeader, “Windows”);

 else

(continued)

c01.indd 39c01.indd 39 9/20/08 6:49:42 AM9/20/08 6:49:42 AM

Chapter 1: The SharePoint 2007 Architecture

40

 {

 uint num;

 base.ExecuteUrlHeaders.Add(this.AuthModeHeader, “Forms”);

 if (SPSecurity.UseMembershipUserKey & &

 base.Context.User.Identity.IsAuthenticated)

 {

 string userKey = UTF7Encode(SPUtility.GetFullUserKeyFromLoginName(

 base.Context.User.Identity.Name));

 base.ExecuteUrlHeaders.Add(this.MembershipUserKeyHeader, userKey);

 }

 string membershipProviderName = UTF7Encode(Membership.Provider.Name);

 base.ExecuteUrlHeaders.Add(this.AuthProviderHeader, membershipProviderName);

 string roles;

 SPSecurity.GetRolesForUser(out num, out roles);

 if (num > 0)

 {

 base.ExecuteUrlHeaders.Add(this.RoleCountHeader,

 num.ToString(CultureInfo.InvariantCulture));

 base.ExecuteUrlHeaders.Add(this.RolesHeader, UTF7Encode(roles));

 }

 }

 HttpCookieCollection cookies = base.Context.Response.Cookies;

 if ((cookies != null) & & (cookies.Count > 0))

 {

 bool supportsHttpOnly = SupportsHttpOnly();

 for (int i = 0; i < cookies.Count; i++)

 {

 string cookieName = this.ManagedCookiesHeader + “_” +

 i.ToString(CultureInfo.InvariantCulture);

 string cookieValue = UTF7Encode(this.GetCookieString(cookies[i],

 supportsHttpOnly));

 base.ExecuteUrlHeaders.Add(cookieName, cookieValue);

 }

 }

 ...

 }

}

 The OverrideExecuteUrlPath method of SPHttpHandler, like the OverrideExecuteUrlPath method
of any other DefaultHttpHandler - derived HTTP handler, first populates the ExecuteUrlHeader
NameValueCollection collection with the appropriate header names and values. Recall that the
BeginProcessRequest method of DefaultHttpHandler passes the content of this collection as a
parameter into the BeginExecuteUrlForEntireResponse method of the current HttpResponse object.

Listing 1 - 19 (continued)

c01.indd 40c01.indd 40 9/20/08 6:49:42 AM9/20/08 6:49:42 AM

Chapter 1: The SharePoint 2007 Architecture

41

 Note that OverrideExecuteUrlPath also stores the authentication and authorization information into the
ExecuteUrlHeader NameValueCollection collection:

 if (SPSecurity.AuthenticationMode == AuthenticationMode.Windows)

 base.ExecuteUrlHeaders.Add(this.AuthModeHeader, “Windows”);

 else

 {

 uint num;

 base.ExecuteUrlHeaders.Add(this.AuthModeHeader, “Forms”);

 if (SPSecurity.UseMembershipUserKey & &

 base.Context.User.Identity.IsAuthenticated)

 {

 string userKey = UTF7Encode(SPUtility.GetFullUserKeyFromLoginName(

 base.Context.User.Identity.Name));

 base.ExecuteUrlHeaders.Add(this.MembershipUserKeyHeader, userKey);

 }

 string membershipProviderName = UTF7Encode(Membership.Provider.Name);

 base.ExecuteUrlHeaders.Add(this.AuthProviderHeader, membershipProviderName);

 string roles;

 SPSecurity.GetRolesForUser(out num, out roles);

 if (num > 0)

 {

 base.ExecuteUrlHeaders.Add(this.RoleCountHeader,

 num.ToString(CultureInfo.InvariantCulture));

 base.ExecuteUrlHeaders.Add(this.RolesHeader, UTF7Encode(roles));

 }

 }

 OverrideExecuteUrlPath also stores response cookies into this collection:

 HttpCookieCollection cookies = base.Context.Response.Cookies;

 if ((cookies != null) & & (cookies.Count > 0))

 {

 bool supportsHttpOnly = SupportsHttpOnly();

 for (int i = 0; i < cookies.Count; i++)

 {

 string cookieName = this.ManagedCookiesHeader + “_” +

 i.ToString(CultureInfo.InvariantCulture);

 string cookieValue = UTF7Encode(this.GetCookieString(cookies[i],

 supportsHttpOnly));

 base.ExecuteUrlHeaders.Add(cookieName, cookieValue);

 }

 }

 In summary, thanks to the SPHttpHandler HTTP handler, regardless of whether it targets ASP.NET or
non - ASP.NET resources, all requests go through all the HTTP modules in the ASP.NET HTTP Runtime
Pipeline, including the SPRequestModule HTTP module. This has two important effects. First, because
all requests go through the SPRequestModule HTTP module, they ’ re all initialized with the SharePoint
execution context. Second, because all requests go through all ASP.NET HTTP modules, they ’ re all
initialized with the ASP.NET execution context.

c01.indd 41c01.indd 41 9/20/08 6:49:43 AM9/20/08 6:49:43 AM

Chapter 1: The SharePoint 2007 Architecture

42

 Developing Custom HTTP Handler Factories, HTTP Handlers,
and HTTP Modules

 Deep integration of SharePoint and ASP.NET 2.0 allows you to implement your own custom HTTP
handler factories, HTTP handlers, and HTTP modules, and plug them into the ASP.NET HTTP Runtime
Pipeline to customize this pipeline.

 ASP.NET Dynamic Compilation
 Let ’ s begin our discussion with a simple example. Create a new ASP.NET web site in Visual Studio and
add the simple ASP.NET web page named default.aspx to it, as shown in Listing 1 - 20 .

 Listing 1 - 20: The default.aspx page

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”

Inherits=”Default” % >

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < body >

 < form id=”form1” runat=”server” >

 < div >

 < table >

 < tr >

 < td align=”right” >

 Display Name: < /td >

 < td >

 < asp:TextBox runat=”server” ID=”DisplayNameTbx” / > < /td >

 < /tr >

 < tr >

 < td align=”right” >

 Email: < /td >

 < td >

 < asp:TextBox runat=”server” ID=”EmailTbx” / > < /td >

 < /tr >

 < tr >

 < td colspan=”2” align=”center” >

 < asp:Button runat=”server” ID=”SubmitBtn”

 OnClick=”SubmitCallback” Text=”Submit” / >

 < /td >

 < /tr >

 < tr >

 < td colspan=”2” align=”left” >

 < asp:Label runat=”server” ID=”Info” / >

 < /td >

 < /tr >

 < /table >

 < /div >

 < /form >

 < /body >

 < /html >

c01.indd 42c01.indd 42 9/20/08 6:49:43 AM9/20/08 6:49:43 AM

Chapter 1: The SharePoint 2007 Architecture

43

 Now introduce a compilation error and hit F5 to compile the page. You should get the page shown in
Figure 1 - 2 , which has a link titled Show Complete Compilation Source. Click the link to access the code
partly shown in Listing 1 - 21 .

 Figure 1 - 2: The error page

 Listing 1 - 21: The Compilation Source

namespace ASP

{

 ...

 public class default_aspx : Default, System.Web.IHttpHandler

 {

 ...

 private TextBox @__BuildControlDisplayNameTbx()

 {

 TextBox @__ctrl;

 @__ctrl = new TextBox();

 this.DisplayNameTbx = @__ctrl;

 @__ctrl.ApplyStyleSheetSkin(this);

 @__ctrl.ID = “DisplayNameTbx”;

 return @__ctrl;

 }

 ...

 }

}

c01.indd 43c01.indd 43 9/20/08 6:49:43 AM9/20/08 6:49:43 AM

Chapter 1: The SharePoint 2007 Architecture

44

 When you hit F5, the ASP.NET build environment performs these tasks:

 1. Parses the MySimplePage.aspx markup file shown in Listing 1 - 20 .

 2. Generates the source code partly shown in Listing 1 - 21 . Notice that this source code contains a
class named default_aspx belonging to a namespace named ASP. You can think of this class as
the programmatic representation of the MySimplePage.aspx markup file shown in Listing 1 - 20 .

 3. Stores this source code in a file in the following directory on your machine:

%SystemRoot%\Microsoft.NET\Framework\versionNumber\ASP.NET Temporary Files

 By default, the ASP.NET build environment deletes this file after it compiles it into an assembly.
However, you can change this default behavior by setting the Debug attribute on the @Page
directive to true. This will allow you to view this file in a text editor.

 4. Compiles the preceding source code file into an assembly and stores the assembly in the
ASP.NET Temporary Files directory.

 5. Loads the compiled assembly into the application domain that contains the ASP.NET application
to make the dynamically generated default_aspx class available to the managed code running in
the application domain.

 In other words, the ASP.NET build environment converts the markup code shown in Listing 1 - 20 into
the procedural code partly shown in Listing 1 - 21 . You may be wondering why this conversion from
markup to procedural code is necessary. As a matter of fact, the older web development technologies
such as ASP don ’ t do this conversion. Instead, they interpret the markup. This is very similar to what
browsers do when they ’ re displaying an HTML page. The browsers scan through the HTML page and
interpret the HTML markup they run into. For example, when they see a < table > HTML element,
they take it that they ’ re asked to render a table. The great thing about markup programming is its
convenience. Writing code in an HTML - like markup language is more convenient than writing code in a
procedural language such as C# or VB.NET and significantly improves the developer productivity.
Markup programming is also the basis on which visual designers such as Visual Studio operate. The
disadvantage of markup programming is the performance - degradation due to the underlying
interpretation mechanism.

 This is where the ASP.NET build environment comes into play. The ASP.NET build environment allows
you or visual designers to use markup programming to implement your ASP.NET web page and
transparently compiles your markup code into procedural code. This allows you to enjoy both the
convenience and productivity boost of markup programming and the performance boost of procedural
programming. Who says you can ’ t have your cake and eat it too?

 The GetHandler method of the PageHandlerFactory internally uses the ASP.NET page parser to parse a
requested ASP.NET page such as the one shown in Listing 1 - 20 into a class that inherits from the Page
base class. The name of this class follows the ASP.NET internal naming convention. According to this
convention, the name of the class consists of two parts. The first part is the name of the ASP.NET page
being processed. The second part, on the other hand, is the file extension of the ASP.NET page, that is,
.aspx. For example, the name of the HTTP handler that handles requests for the default.aspx file is
default_aspx. All dynamically generated classes such as default_aspx belong to an assembly named ASP.
To see this in action, create an ASP.NET Web Site project in Visual Studio and add a Web Form to this
page. Then switch to the code - behind file for this page and start typing ASP as shown in Figure 1 - 3 .

c01.indd 44c01.indd 44 9/20/08 6:49:44 AM9/20/08 6:49:44 AM

Chapter 1: The SharePoint 2007 Architecture

45

 As you can see, this popup menu contains an entry for the ASP namespace. If you add a dot after ASP,
you should see the menu shown in Figure 1 - 4 .

 Figure 1 - 3: The default_aspx class

 Figure 1 - 4: Temporary files for the application

 As the tooltip shows, the ASP namespace contains a class named default_aspx. Note that the name of the
class is the concatenation of the file name (default) and the file extension (aspx) separated by an
underscore (_) character as discussed earlier.

c01.indd 45c01.indd 45 9/20/08 6:49:44 AM9/20/08 6:49:44 AM

Chapter 1: The SharePoint 2007 Architecture

46

 As mentioned, the ASP.NET build environment temporarily stores the source code for this dynamically
generated class in the Temporary ASP.NET Files directory. This directory contains one directory for each
ASP.NET application that has ever run on the machine. The directory is named after the virtual root
directory of its associated ASP.NET application. A couple of directories down this root directory, you
can find the temporary files that contain the dynamically generated classes such as default_aspx.
As mentioned, the ASP.NET build environment deletes these files immediately after the compilation
process ends, unless you set the Debug attribute on the @Page directive of the ASP.NET page to true.

 Next, take a look at the contents of the directory that contains the temporary files for the application.
You ’ ll start with hash.web file, which is located in the hash folder. This file contains the hash value
for this directory. ASP.NET uses this hash value to generate hash values that are used as part of
the names of the files contained in this directory. As you ’ ll see later, these hash values ensure the
uniqueness of the names of these files. Next, we ’ ll discuss these four files: App_Web_jgyyqxek.0.cs,
App_Web_jgyyqxek.1.cs, App_Web_jgyyqxek.2.cs, and App_Web_jgyyqxek.dll. Listing 1 - 22 will help
you understand the role and significance of these four files.

 Recall that Listing 1 - 20 contains the content of the Default.aspx file. Notice that this file registers
an event handler named SubmitCallback for the Click event of the Submit button. The Default.aspx.cs
code - behind file contains the implementation of this event handler as shown in Listing 1 - 22 .

 Listing 1 - 22: The code - behind file

using System;

public partial class Default : System.Web.UI.Page

{

 protected void SubmitCallback(object sender, EventArgs e)

 {

 Info.Text = “ < b > Display Name: < /b > ” + DisplayNameTbx.Text + “ < br/ > ”;

 Info.Text += “ < b > Email: < /b > ” + EmailTbx.Text;

 }

}

 The App_Web_jgyyqxek.1.cs file contains the class defined in the code - behind file, that is, the Default
class. Notice that this class references the server controls defined in the markup file, that is, Default.aspx.
Also note that the class does not expose these server controls as protected fields as it used to do in
Visual Studio 2003. Thanks to partial classes the addition of these tool - generated protected fields is no
longer necessary when you ’ re developing your pages. When you hit F5 to build and run the application,
ASP.NET automatically generates another partial class exposing the required protected fields. The
App_Web_jgyyqxek.0.cs file contains this partial class as shown in Listing 1 - 23 .

 Listing 1 - 23: The App_Web_ jgyyqxek.0.cs file

public partial class Default : System.Web.SessionState.IRequiresSessionState

{

 protected global::System.Web.UI.WebControls.TextBox DisplayNameTbx;

 protected global::System.Web.UI.WebControls.TextBox EmailTbx;

 protected global::System.Web.UI.WebControls.Button SubmitBtn;

 protected global::System.Web.UI.WebControls.Label Info;

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 ...

}

c01.indd 46c01.indd 46 9/20/08 6:49:45 AM9/20/08 6:49:45 AM

Chapter 1: The SharePoint 2007 Architecture

47

 You may be wondering why the Default class shown in Listing 1 - 23 implements the
IRequiresSessionState interface. What is this interface anyway? This interface is a marker interface;
that is, it doesn ’ t have any methods, properties, or events. Implementing this interface marks the
implementor (the class that implements the interface) as a class that needs write access to the session
data. The Default class shown in Listing 1 - 23 implements this interface when the value of the
EnableSessionState attribute on the @Page directive is set to true (default).

 When a compiler sees a partial class like the Default class shown in Listing 1 - 22 (App_Web_
jgyyqxek.1.cs), it knows that the definition of this class is not complete and the class is missing some
members. Therefore the compiler doesn ’ t attempt to compile the class. Instead it first merges the partial
Default classes shown in Listings 1 - 22 and 1 - 23 into a complete Default class as shown in Listing 1 - 24 .

 Listing 1 - 24: The complete Default class

public class Default : System.Web.UI.Page,

 System.Web.SessionState.IRequiresSessionState

{

 protected global::System.Web.UI.WebControls.TextBox DisplayNameTbx;

 protected global::System.Web.UI.WebControls.TextBox EmailTbx;

 protected global::System.Web.UI.WebControls.Button SubmitBtn;

 protected global::System.Web.UI.WebControls.Label Info;

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 ...

 protected void SubmitCallback(object sender, EventArgs e)

 {

 Info.Text = “ < b > Display Name: < /b > ” + DisplayNameTbx.Text + “ < br/ > ”;

 Info.Text += “ < b > Email: < /b > ” + EmailTbx.Text;

 }

}

 Next, the ASP.NET build environment uses the PageBuildProvider to generate the source code for
the class that represents the markup file, that is, the Default.aspx file shown in Listing 1 - 20 . The
App_Web_jgyyqxek.0.cs file contains the source code for this class as shown in Listing 1 - 21 . Notice
that this class inherits from the Default class shown in Listing 1 - 24 .

 Finally, Listing 1 - 25 presents the content of the App_Web_jgyyqxek.2.cs file. Notice that this file
simply defines a fast object factory for the default_aspx type. The PageBuilderProvider calls the
GenerateTypeFactory method of the AssemblyBuilder to generate this fast object factory class.

 Listing 1 - 25: The type factory

namespace @__ASP

{

 internal class FastObjectFactory_app_web_jgyyqxek

 {

 static object Create_ASP_default_aspx()

 {

 return new ASP.default_aspx();

 }

 }

}

c01.indd 47c01.indd 47 9/20/08 6:49:45 AM9/20/08 6:49:45 AM

Chapter 1: The SharePoint 2007 Architecture

48

 Notice that the directory whose content is shown on the right panel of the Windows Explorer shown in
Figure 1 - 5 contains the following files that capture the information that the compiler generates:

 jgyyqxek.cmdline. This file contains the command line used to compile the code:

/t:library /utf8output

/R:”C:\Windows\assembly\GAC_32\System.EnterpriseServices\2.0.0.0__b03f5f7f11d50a3a\

System.EnterpriseServices.dll”

/R:”C:\Windows\assembly\GAC_MSIL\System.Core\3.5.0.0__b77a5c561934e089\

System.Core.dll”

...

/out:”C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\

website1\a49191ca\d589c0e2\ App_Web_jgyyqxek.dll ”

/D:DEBUG /debug+ /optimize- /w:4 /nowarn:1659;1699;1701 /warnaserror-

“C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\website1\

a49191ca\d589c0e2\ App_Web_jgyyqxek.0.cs ”

“C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\website1\

a49191ca\d589c0e2\ App_Web_jgyyqxek.1.cs ”

“C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\website1\

a49191ca\d589c0e2\ App_Web_jgyyqxek.2.cs ”

 As the boldfaced portions of this listing shows, this command line compiles the
App_Web_jgyyqxek.0.cs, App_Web_jgyyqxek.1.cs, and App_Web_jgyyqxek.2.cs files
into an assembly named App_Web_jgyyqxek.dll.

 gyyqxek.out. This file contains any text that the compiler generates while it ’ s compiling.

 jgyyqxek.err. This file contains any error text that the compiler generates.

❑

❑

❑

 Figure 1 - 5: The dynamically generated files for an ASP.NET application

 There is one more important file in the right panel of the Windows Explorer; Listing 1 - 26 shows the
content of this file.

c01.indd 48c01.indd 48 9/20/08 6:49:46 AM9/20/08 6:49:46 AM

Chapter 1: The SharePoint 2007 Architecture

49

 Listing 1 - 26: The default.aspx.cdcab7d2 compiled file

 < ?xml version=”1.0” encoding=”utf-8”? >

 < preserve resultType=”3” virtualPath=”/WebSite1/Default.aspx”hash=”fffffff8cb1ce302”

filehash=”28511aded9d26a0a” flags=”110000” assembly=”App_Web_jgyyqxek”

type=”ASP.default_aspx” >

 < filedeps >

 < filedep name=”/WebSite1/Default.aspx” / >

 < filedep name=”/WebSite1/Default.aspx.cs” / >

 < /filedeps >

 < /preserve >

 As discussed earlier, the ASP.NET build environment compiles the App_Web_jgyyqxek.0.cs,
App_Web_jgyyqxek.1.cs, and App_Web_jgyyqxek.2.cs files (the default_aspx class) into App_Web_
jgyyqxek.dll (which is stored in the ASP.NET Temporary Files directory), loads this compiled assembly
into the application domain where the current application is running, instantiates the default_aspx class,
and calls its ProcessRequest method to process the current request.

 Now let ’ s see what happens when the next request for the same page (Default.aspx) arrives. ASP.NET
first reads the content of the default.aspx.cdcab7d2 file shown in Listing 1 - 26 . Notice that this file is an
XML file with a document element named < preserve > that features the following important attributes:

 virtualPath. The virtual path of the Default.aspx file

 type. The fully qualified name of the type or class that represents the Default.aspx file, that is,
the ASP.default_aspx class

 assembly. The name of the assembly that contains the ASP.default_aspx class

 ASP.NET retrieves two important pieces of information from the default.aspx.cdcab7d2 file: the name
of the class that represents the Default.aspx file and the name of the assembly that contains this file.
ASP.NET then simply locates this assembly in the application domain and calls the type factory shown
in Listing 1 - 25 to create an instance of the ASP.default_aspx class and finally calls the ProcessRequest
method of this instance to process the request. In other words, processing the second request does not go
through the code generation and compilation steps that the first request went through. Therefore, the
second request will not experience the code generation and compilation delay that the first request
experienced. As you ’ ll see later, SharePoint application pages and page templates for ghosted site pages
are processed through this same exact ASP.NET compilation model. In other words, these pages are
treated just like any other normal ASP.NET pages. That is why SharePoint application pages and ghosted
site pages perform much better than unghosted site pages.

 Notice that the < preserve > document element features a single child element named < filedeps > , which
contains one or more < filedep > elements where each < filedep > element features an attribute that
specifies the virtual path of the file that the ASP.default_aspx class depends on. When one of these files
changes, ASP.NET checks whether the assembly that contains the ASP.default_aspx class contains other
classes. If so, it doesn ’ t delete the assembly. Instead it uses the same code generation and compilation
steps discussed in this chapter to compile a new assembly and loads this assembly into the application
domain where the current application is running. This means that now both the old assembly and
the new assembly are running side - by - side inside the application domain. This is possible because the
assembly name contains a randomly generated hash value that ensures the uniqueness of the assembly
names. In other words, each time ASP.NET compiles a new assembly, it gives it a new name.

❑

❑

❑

c01.indd 49c01.indd 49 9/20/08 6:49:46 AM9/20/08 6:49:46 AM

Chapter 1: The SharePoint 2007 Architecture

50

 If the old assembly doesn ’ t contain any other classes, ASP.NET attempts to remove it from the ASP.NET
Temporary Files directory. If another request is using this assembly, the assembly cannot be deleted
because it ’ s locked. If that is the case, ASP.NET simply renames the assembly to App_Web_jgyyqxek.dll
.delete. The assemblies that are marked as deleted are deleted when the application restarts. Even
though ASP.NET may not be able to remove the old assembly, it can still go ahead with building the new
assembly and loading it into the application domain, which means that now we have two different
versions of the same assembly running side - by - side inside the application domain.

 This raises the following question: What happens to the old assembly when the request using it ends?
Unfortunately, you cannot unload an assembly from an application domain, which means that the old
assembly will remain in the application domain until the application domain shuts down even though
no one is using this assembly. This is because the application domain is the CLR unloading unit. You
have to unload the entire application domain in order to unload an assembly. Unloading an application
domain unloads all the assemblies loaded into the application domain.

 Therefore, every time you make a little change in the Default.aspx or Default.aspx.cs file, ASP.NET
loads a new assembly into the application domain without unloading the old ones. In other words, after
several recompiles, you end up littering the application domain with a bunch of useless assemblies. That
is why ASP.NET puts an upper limit on the number of allowable recompiles. When an application
domain reaches this limit, ASP.NET automatically unloads the application domain, which automatically
unloads all the assemblies loaded into the application domain.

 Keeping unused old assemblies in web server memory causes major problems for SharePoint web
servers that host thousands of sites, each with numerous site pages. As an example let ’ s consider the
home pages of these sites. The home page of a site is a site page provisioned from a page template
named default.aspx. When a site page is provisioned from a page template it remains in ghosted state
until it is customized. When the first request for the home page of a site arrives, if this is the first request
made to any instance of the default.aspx page template, that is, if the home page of no other sites has
been requested yet, the SPVirtualPathProvider simply loads the default.aspx page template from the file
system of the front - end web server and passes it along to the ASP.NET page parser for the standard
ASP.NET compilation processing as just thoroughly discussed where:

 The default.aspx page template is parsed into a dynamically generated class named
ASP.default_aspx

 The ASP.default_aspx class is dynamically compiled into an assembly, which is stored in the
ASP.NET Temporary Files folder on the file system of the front - end web server

 An instance of the ASP.default_aspx class is dynamically instantiated and assigned to the task of
processing the request

 The next request for the home page of the same site or any other sites in the same SharePoint application
will be directly served from the same assembly where a new instance of the ASP.default_aspx class is
instantiated and assigned to the task of processing the request. In other words, the first two steps of the
previous three steps are not repeated for the next request to the home pages of the same or other sites of
the same web applications. As you can see, this is a great boost in performance for these requests.

 Now imagine the case where the site administrators of these sites, which could be thousands of them,
customize the home pages of these sites in the SharePoint Designer. When a site administrator saves his
or her changes, the SharePoint Designer saves the content of the home page in the content database.
This means that each site now has its own version of the default.aspx page template stored in the content

❑

❑

❑

c01.indd 50c01.indd 50 9/20/08 6:49:47 AM9/20/08 6:49:47 AM

Chapter 1: The SharePoint 2007 Architecture

51

database. When a request for the home page of one of these sites arrives, the SPVirtualPathProvider
loads the associated version of the default.aspx page template from the content database and passes it
along to ASP.NET parser for the standard ASP.NET compilation processing discussed earlier.

 This means that now each version of the default.aspx page template, that is, each site page, which
could run into thousands, is compiled into a separate assembly. As you can see, we end up having
literally thousands of assemblies in the web server memory and consequently the application domain
reaches it upper limit of assemblies and unloads. As you can imagine, this is simply not scalable in large
SharePoint web applications. You may be wondering why not simply unload the assembly right after the
request for its associated site page is processed. As mentioned earlier .NET does not allow unloading
individual assemblies from an application domain. When an assembly is loaded into memory it must
remain in memory until the application domain is unloaded.

 That is why unghosted site pages do not go through the standard ASP.NET compilation process, which
means that they are not compiled into assemblies. Instead they are simply parsed and interpreted on the
fly. This is known as no - compile mode and these pages are known as no - compile pages. When a request
for an unghosted site page arrives and the SPVirtualPathProvider determines that the requested resource
is an unghosted site page, SPVirtualPathProvider downloads the unghosted site page from the content
database into the web server memory and passes it along to the ASP.NET page parser as usual. However,
SPVirtualPathProvider also instructs the ASP.NET page parser to process the unghosted site page in
no - compile mode. This allows SharePoint to unload the page from memory after the request is processed
to release precious web server resources for next requests. This is obviously a much more scalable
solution than compiled pages.

 This, however, introduces a restriction on site pages. Because site pages are not compiled into
assemblies, they cannot contain inline code. There is also a security aspect involved here. Because site
pages are stored in the content database, by default, they are processed in safe mode where no inline
code is allowed, and where the site pages can only contain server controls that are registered as safe
controls. These security measures are in place to ensure that no one can mount an attack on the content
database and consequently an attack on the web server by injecting malicious inline code or server
controls into a site page.

 When you implement a custom server control that you want to be used in site pages, you must add an
entry into the web.config file of the SharePoint web application to register your server control as a safe
control before anyone can use it in a site page. This entry is an element named < SafeControl > , which
exposes the following attributes:

 Assembly. This is the complete information about the assembly that contains the server controls
being registered as safe, including assembly name, version, culture, and public key token.

 Namespace. This is the complete namespace containment hierarchy of the server controls being
registered as safe.

 Type. This is the type of the server control being registered as safe. Set this attribute to * to register
all server controls in the specified namespace in the specified assembly as safe.

 Safe. Set this attribute to true to register the specified server controls as safe.

 AllowRemoteDesigner. Set this attribute to true to allow the remote designer.

❑

❑

❑

❑

❑

c01.indd 51c01.indd 51 9/20/08 6:49:47 AM9/20/08 6:49:47 AM

Chapter 1: The SharePoint 2007 Architecture

52

 When you provision a SharePoint web application, SharePoint automatically registers all standard
ASP.NET and SharePoint server controls as safe. The following excerpt for the web.config file of a typical
SharePoint web application shows a few of these SafeControl entries:

 < configuration >

 < SharePoint >

 < SafeControls >

 < SafeControl Assembly=”System.Web, Version=1.0.5000.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a”

 Namespace=”System.Web.UI.WebControls” TypeName=”*” Safe=”True”

 AllowRemoteDesigner=”True” / >

 < SafeControl Assembly=”System.web, Version=1.0.5000.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a”

 Namespace=”System.Web.UI.HtmlControls” TypeName=”*” Safe=”True”

 AllowRemoteDesigner=”True” / >

 < SafeControl Assembly=”System.Web, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a”

 Namespace=”System.Web.UI” TypeName=”*” Safe=”True”

 AllowRemoteDesigner=”True” / >

 < SafeControl Assembly=”Microsoft.SharePoint, Version=12.0.0.0,

 Culture=neutral, PublicKeyToken=71e9bce111e9429c”

 Namespace=”Microsoft.SharePoint.WebControls” TypeName=”*” Safe=”True”

 AllowRemoteDesigner=”True” / >

 < /SafeControls >

 < /SharePoint >

 < /configuration >

 Keep in mind that when you provision a site page from a page template, the site page remains in
ghosted state until it is customized. As discussed earlier, requests for ghosted site pages are processed
through a normal ASP.NET compiled page scenario where the SharePoint safe mode is not involved.
This means that the page template could in principle contain inline code and unsafe server controls.
However, as soon as someone customizes the site page, SharePoint will process the next requests
through the safe mode. Therefore the next requests will get an exception if the page template contains
inline code and/or unsafe server controls. To avoid this problem, you should never contain inline code
and/or unsafe server controls in your page templates.

 Summary
 This chapter provided an in - depth coverage of the SharePoint 2007 architecture and its main
components. You learned how SharePoint extends ASP.NET and IIS to add support for SharePoint -
 specific functionality and features. The chapter discussed the main ASP.NET and IIS components and the
SharePoint extensions to these components. You also learned a great deal about the ASP.NET HTTP
Runtime Pipeline and the ASP.NET dynamic compilation and the role they play in SharePoint.

 The next chapter moves on to the Collaborative Application Markup Language (CAML) and shows you
how to use these power markup languages to query SharePoint data and to implement various SharePoint
components. You ’ ll also learn a great deal about custom actions, features, and application pages.

c01.indd 52c01.indd 52 9/20/08 6:49:47 AM9/20/08 6:49:47 AM

